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Abstract. In this paper, with optimal normalized constants, the asymptotic expansions
of the distribution of the normalized maxima from generalized Maxwell distribution is
derived. It shows that the convergence rate of the normalized maxima to the Gumbel
extreme value distribution is proportional to 1/ log n.
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1 Introduction

Let (Xn, n ≥ 1) be a sequence of independent and identically distributed (iid) random variables
with common cumulative distribution function (cdf) Fk which obeying the generalized Maxwell
distribution (denote by Fk ∼ GMD(k)). Let Mn = max(Xk, 1 ≤ k ≤ n) denote the partial
maximum of (Xn, n ≥ 1). The probability density function (pdf) of GMD(k) is given by

fk(x) =
k

2k/2σ2+1/kΓ(1 + k/2)
x2k exp

(
−x2k

2σ2

)
, x > 0,

where k, σ is positive and Γ(·) represents the Gamma function. For k = 1, GMD(1) reduces to the
ordinary Maxwell distribution.

Recently, asymptotic properties associated with GMD(k) have been investigated in the litera-
ture. Huang et al. (2014) established the Mills inequality, the Mills type ratio and distributional
tail representation of GMD(k), and showed that Fk belongs to the domain of attraction Λ of the
Gumbel extreme value distribution, i.e., there exist normalizing constants an > 0 and bn ∈ R, such
that

lim
n→∞P

(
(Mn − bn)/an ≤ x

)
= lim

n→∞Fn
k (anx + bn) = Λ(x),

where Λ(x) = exp{−e−x}. Liu and Liu (2013) established the uniform convergence rate of normal-
ized maxima for GMD(1), i.e., the ordinary Maxwell distribution (MD for short). Huang and Chen
(2014) extended the work of Liu and Liu (2013) to the case of k > 0.

The aim of this paper is to establish the asymptotic expansion for the distribution of normalized
maxima of GMD(k) random variables. The uniform convergence rates and asymptotic expansions
of Mn, the maximum of independent and identically distributed random variables for any given cdf
F , have been of considerable interest. Hall (1979) derived optimal rates of uniform convergence for
the cdf of Mn as F is the standard normal cdf. Nair (1981) obtained asymptotic expansions for the
distribution and moments of Mn as F is the standard normal cdf. Peng et al. (2010) established
optimal rates of uniform convergence for the cdf of Mn as F is the general error distribution. For
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other work, see Liao and Peng (2012) for the log-normal distribution, and Liao et al. (2013, 2014),
respectively, for logarithmic skew-normal distribution and for skew-normal distribution.

In order to gain the asymptotic expansions of the distribution of normalized maxima from
GMD(k), we cite some results from Huang and Chen (2014). They gave the Mills type ratio of
GMD(k) as follows: for k > 0,

1− Fk(x)
fk(x)

∼ σ2

k
x1−2k, as x →∞. (1.1)

It also follows from Huang and Chen (2014) that

1− Fk(x) = c(x) exp
(
−

∫ x

1

g(t)
f(t)

dt
)

(1.2)

for sufficiently large x, where

c(x) →
exp

(
− 1/(2σ2)

)

2k/2σ1/kΓ(1 + k/2)
, as x →∞

and

f(t) = k−1σ2t1−2k, g(t) = 1− k−1σ2t−2k. (1.3)

Note that f ′(t) → 0 and g(t) → 1, and we can choose the norming constants an and bn in such way
that bn is satisfying the equation

1− Fk(bn) = n−1 (1.4)

with

an = f(bn) (1.5)

such that
lim

n→∞Fn
k (anx + bn) = Λ(x).

The remainder of this paper are organized as follows. Section 2 gives the main result on
asymptotic expansions for the distribution of partial maxima of the GMD(k) with k > 0. Some
auxiliary lemmas needed to prove the main result and related proof are given in Section 3. In the
sequel we shall assume that the parameter k > 0.

2 Main result

In this section, we derive an asymptotic expansion for the distribution of normalized maxima
from the GMD(k). The distributional expansion could be used to show that the convergence rate
of Mn to the Gumbel extreme value distribution is of the order of O((log n)−1).

Theorem 2.1. Let Fk(x) represent the cdf of GMD(k). For normalizing constants an and bn given,
respectively, by (1.4) and (1.5), we have

b2k
n

[
b2k
n

(
Fn

k (anx + bn)− Λ(x)
)
− lk(x)Λ(x)

]
→

(
wk(x) +

l2k(x)
2

)
Λ(x)
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as n →∞, where lk(x) and wk(x) are, respectively, given by

lk(x) = k−1σ2

[
(2k − 1)x2 − 2x

]
e−x/2

and

wk(x) = −k−2σ4

[
3(2k − 1)2x4 − 4(2k + 1)(2k − 1)x3 + 24x2 − 48kx

]
e−x/24.

Remark 2.1. By the definition of bn, it is easy to check that b2k
n = O(1/ log n). Hence, Theorem 2.1

shows that the convergence rate of Fn
k (anx + bn) tending to its extreme value limit is proportional

to 1/ log n. Further, the convergence rate of b2k
n (Fn

k (anx + bn) − Λ(x)) tending to its limit is also
proportional to 1/ log n.

Remark 2.2. As the mentioned in the Introduction, we get ordinary Maxwell pdf when k = 1,
and then Theorem 2.1 shows also that the asymptotic expansion of the distribution of normalized
maximum from ordinary Maxwell distribution is

b̄2
n

[
b̄2
n

(
Fn

1 (ānx + b̄n)− Λ(x)
)
− l1(x)Λ(x)

]
→

(
w1(x) +

l21(x)
2

)
Λ(x)

as n →∞, with norming constants determined by

1− F1(b̄n) = n−1 and ān = σ2b̄−1
n ,

where l1(x) and w1(x) are, respectively, given by

l1(x) =
1
2
σ2(x2 − 2x)e−x

and

w1(x) = −1
8
σ4

(
x4 − 4x3 + 8x2 − 16x

)
e−x.

3 Auxiliary results and proofs

In order to obtain expansions for the distribution of the normalized maximum of GMD(k)
random varibles, we provide the following tail decomposition of GMD(k).

Lemma 3.1. Let Fk(x) represent the cdf of GMD(k). For large x, we have

1− Fk(x) =fk(x)
σ2

k
x1−2k

(
1 + k−1σ2x−2k + k−2(1− 2k)σ4x−4k + O(x−6k)

)

=
exp(−1/(2σ2))

2k/2σ1/kΓ(1 + k/2)

(
1 + k−1σ2x−2k + k−2(1− 2k)σ4x−4k

+ O(x−6k)
)

exp
(
−

∫ x

1

g(t)
f(t)

dt
)

(3.1)

with f(t) and g(t) given by (1.3).
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Proof. By integration by parts, we have

1− Fk(x) =fk(x)
σ2

k
x1−2k

(
1 +

σ2

k
x−2k +

(1− 2k)σ4

k2
x−4k +

(1− 2k)(1− 4k)σ6

k3
x−6k

)

+
(1− 2k)(1− 4k)(1− 6k)
2k/2k3σ1/k−6Γ(1 + k/2)

∫ ∞

x
t−6k exp

(
− t2k

2σ2

)
dt. (3.2)

It is easy to show by utilizing L’Hospital’s rule that

lim
x→∞

∫∞
x t−6k exp(− t2k

2σ2 ) dt

x1−6k exp(− x2k

2σ2 )
= 0. (3.3)

Thus, by (1.1), (1.2), (3.2) and (3.3), for large x, we can have

1− Fk(x) = fk(x)
σ2

k
x1−2k

(
1 +

σ2

k
x−2k +

(1− 2k)σ4

k2
x−4k + O(x−6k)

)

=
exp(− 1

2σ2 )

2
k
2 σ

1
k Γ(1 + k

2 )

(
1 +

σ2

k
x−2k +

(1− 2k)σ4

k2
x−4k

+ O(x−6k)
)

exp
(
−

∫ x

1

g(t)
f(t)

dt
)

.

The desired result follows.

In order to prove Theorem 2.1, the following auxiliary result is needed.

Lemma 3.2. Let vk(bn;x) = n log Fk(anx+ bn)+ e−x. For normalizing constants an and bn given,
respectively, by (1.4) and (1.5), we have

lim
n→∞ b2k

n

[
b2k
n vk(bn;x)− lk(x)

]
= wk(x), (3.4)

where lk(x) and wk(x) are given by Theorem 2.1.

Proof. Obviously, bn →∞ if and only if n →∞ since 1− Fk(bn) = n−1. The following facts can
be gained by (1.1)

lim
n→∞

1− Fk(anx + bn)
n−1

= e−x (3.5)

and

lim
n→∞

1− Fk(anx + bn)

b−2j
n

= 0, j = 2, 4. (3.6)

Set

Bk(n, x) =
1 + σ2

k b−2k
n + (1−2k)σ4

k2 b−4k
n + O(b−6k

n )

1 + σ2

k (anx + bn)−2k + (1−2k)σ4

k2 (anx + bn)−4k + O

(
(anx + bn)−6k

) .

It is easy to check that limn→∞Bk(n, x) = 1 and

Bk(n, x)− 1 =
(

2σ4

k
b−4k
n x +

4(1− 2k)σ6

k2
b−6k
n x + O(b−6k

n )
)

(1 + o(1)).
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Then

lim
n→∞

Bk(n, x)− 1
b−2k
n

= 0 (3.7)

and

lim
n→∞

Bk(n, x)− 1
b−4k
n

=
2σ4

k
x. (3.8)

By (3.1), we have

1− Fk(bn)
1− Fk(anx + bn)

e−x =Bk(n, x) exp
( ∫ x

0

(
k

σ2
an(ans + bn)2k−1 − an

ans + bn
− 1

)
ds

)

=Bk(n, x)
{

1 +
∫ x

0

(
k

σ2
an(ans + bn)2k−1 − an

ans + bn
− 1

)
ds

+
1
2

( ∫ x

0

(
k

σ2
an(ans + bn)2k−1 − an

ans + bn
− 1

)
ds

)2

(1 + o(1))
}

. (3.9)

Combining with (3.5), (3.6), (3.7), (3.8) and (3.9), we have

lim
n→∞ b2k

n vk(bn;x)

= lim
n→∞

log Fk(anx + bn) + (1− Fk(bn))e−x

n−1b−2k
n

= lim
n→∞

−(1− Fk(anx + bn))− 1
2(1− Fk(anx + bn))2(1 + o(1))

n−1b−2k
n

+ lim
n→∞

(1− Fk(bn))e−x

n−1b−2k
n

= lim
n→∞

1− Fk(anx + bn)
n−1

1−Fk(bn)
1−Fk(anx+bn)e

−x − 1

b−2k
n

= e−x lim
n→∞

{
Bk(n, x)b2k

n

( ∫ x

0

(
k

σ2
an(ans + bn)2k−1 − an

ans + bn
− 1

)
ds

)
(1 + o(1)) +

Bk(n, x)− 1
b−2k
n

}

= e−x lim
n→∞

∫ x

0
b2k
n

(
k

σ2
an(ans + bn)2k−1 − an

ans + bn
− 1

)
ds

=
σ2

2k

(
(2k − 1)x2 − 2x

)
e−x = lk(x), (3.10)

where the last step follows by the dominated convergence theorem and

lim
n→∞ b2k

n

(
k

σ2
an(ans + bn)2k−1 − 1

)
=

2k − 1
2k

σ2s

and

lim
n→∞

anb2k
n

ans + bn
=

σ2

k
.

By arguments similar to (3.10), we have

lim
n→∞ b2k

n

[
b2k
n vk(bn;x)− lk(x)

]

= lim
n→∞

log Fk(anx + bn) + n−1e−x − n−1b−2k
n lk(x)

n−1b−4k
n
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= lim
n→∞

log Fk(anx + bn) + (1− Fk(bn))e−x(1− lk(x)exb−2k
n )

n−1b−4k
n

= lim
n→∞

−(1− Fk(anx + bn)) + (1− Fk(bn))e−x(1− lk(x)exb−2k
n )

n−1b−4k
n

= lim
n→∞

1− Fk(anx + bn)
n−1

1−Fk(bn)
1−Fk(anx+bn)e

−x(1− lk(x)exb−2k
n )− 1

b−4k
n

=e−x lim
n→∞

{
Bk(n, x)b4k

n

[ ∫ x

0

(
k

σ2
an(ans + bn)2k−1 − an

ans + bn
− 1

)
ds− lk(x)exb−2k

n

]

+
1
2
Bk(n, x)b4k

n

[ ∫ x

0

(
k

σ2
an(ans + bn)2k−1 − an

ans + bn
− 1

)
ds

]2

−Bk(n, x)lk(x)exb2k
n

∫ x

0

(
k

σ2
an(ans + bn)2k−1 − an

ans + bn
− 1

)
ds +

Bk(n, x)− 1
b−4k
n

}

=− σ4

24k2

[
3(2k − 1)2x4 − 4(2k + 1)(2k − 1)x3 + 24x2 − 48kx

]
e−x = wk(x).

The proof is complete.

Proof of Theorem 2.1. By (3.10), we have vk(bn;x) → 0 and

∣∣∣∣
∞∑

i=3

vi−3
k (bn;x)

i!

∣∣∣∣ < exp
(
|vk(bn;x)|

)
→ 1

as n →∞. By applying Lemma 3.2, we have

b2k
n

[
b2k
n

(
Fn

k (anx + bn)− Λ(x)
)
− lk(x)Λ(x)

]

=b2k
n

[
b2k
n

(
exp

(
vk(bn;x)

)
− 1

)
− lk(x)

]
Λ(x)

=
[
b2k
n

(
b2k
n vk(bn;x)− lk(x)

)
+ b4k

n v2
k(bn;x)

(
1
2

+ vk(bn;x)
∞∑

i=3

vi−3
k (bn;x)

i!

)]
Λ(x)

→
(

wk(x) +
l2k(x)

2

)
Λ(x),

as n →∞.

We obtain the desired result.
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