Asymptotic expansions for distributions of extremes from generalized Maxwell distribution

Jianwen Huang Yanmin Liu
School of Mathematics and Computational Science, Zunyi Normal College, Guizhou Zunyi 563002, China

Abstract

In this paper, with optimal normalized constants, the asymptotic expansions of the distribution of the normalized maxima from generalized Maxwell distribution is derived. It shows that the convergence rate of the normalized maxima to the Gumbel extreme value distribution is proportional to $1 / \log n$.

Keywords. Expansion; Extreme value distribution; Generalized Maxwell distribution.

1 Introduction

Let ($X_{n}, n \geq 1$) be a sequence of independent and identically distributed (iid) random variables with common cumulative distribution function (cdf) F_{k} which obeying the generalized Maxwell distribution (denote by $\left.F_{k} \sim G M D(k)\right)$. Let $M_{n}=\max \left(X_{k}, 1 \leq k \leq n\right)$ denote the partial maximum of $\left(X_{n}, n \geq 1\right)$. The probability density function (pdf) of $\operatorname{GMD}(\mathrm{k})$ is given by

$$
f_{k}(x)=\frac{k}{2^{k / 2} \sigma^{2+1 / k} \Gamma(1+k / 2)} x^{2 k} \exp \left(-\frac{x^{2 k}}{2 \sigma^{2}}\right), x>0
$$

where k, σ is positive and $\Gamma(\cdot)$ represents the Gamma function. For $k=1$, GMD(1) reduces to the ordinary Maxwell distribution.

Recently, asymptotic properties associated with GMD (k) have been investigated in the literature. Huang et al. (2014) established the Mills inequality, the Mills type ratio and distributional tail representation of $\operatorname{GMD}(\mathrm{k})$, and showed that F_{k} belongs to the domain of attraction Λ of the Gumbel extreme value distribution, i.e., there exist normalizing constants $a_{n}>0$ and $b_{n} \in \mathbb{R}$, such that

$$
\lim _{n \rightarrow \infty} P\left(\left(M_{n}-b_{n}\right) / a_{n} \leq x\right)=\lim _{n \rightarrow \infty} F_{k}^{n}\left(a_{n} x+b_{n}\right)=\Lambda(x)
$$

where $\Lambda(x)=\exp \left\{-e^{-x}\right\}$. Liu and Liu (2013) established the uniform convergence rate of normalized maxima for $\operatorname{GMD}(1)$, i.e., the ordinary Maxwell distribution (MD for short). Huang and Chen (2014) extended the work of Liu and Liu (2013) to the case of $k>0$.

The aim of this paper is to establish the asymptotic expansion for the distribution of normalized maxima of $\operatorname{GMD}(\mathrm{k})$ random variables. The uniform convergence rates and asymptotic expansions of M_{n}, the maximum of independent and identically distributed random variables for any given cdf F, have been of considerable interest. Hall (1979) derived optimal rates of uniform convergence for the cdf of M_{n} as F is the standard normal cdf. Nair (1981) obtained asymptotic expansions for the distribution and moments of M_{n} as F is the standard normal cdf. Peng et al. (2010) established optimal rates of uniform convergence for the cdf of M_{n} as F is the general error distribution. For
other work, see Liao and Peng (2012) for the log-normal distribution, and Liao et al. (2013, 2014), respectively, for logarithmic skew-normal distribution and for skew-normal distribution.

In order to gain the asymptotic expansions of the distribution of normalized maxima from $\operatorname{GMD}(\mathrm{k})$, we cite some results from Huang and Chen (2014). They gave the Mills type ratio of $\operatorname{GMD}(\mathrm{k})$ as follows: for $k>0$,

$$
\begin{equation*}
\frac{1-F_{k}(x)}{f_{k}(x)} \sim \frac{\sigma^{2}}{k} x^{1-2 k}, \text { as } x \rightarrow \infty . \tag{1.1}
\end{equation*}
$$

It also follows from Huang and Chen (2014) that

$$
\begin{equation*}
1-F_{k}(x)=c(x) \exp \left(-\int_{1}^{x} \frac{g(t)}{f(t)} \mathrm{dt}\right) \tag{1.2}
\end{equation*}
$$

for sufficiently large x, where

$$
c(x) \rightarrow \frac{\exp \left(-1 /\left(2 \sigma^{2}\right)\right)}{2^{k / 2} \sigma^{1 / k} \Gamma(1+k / 2)}, \text { as } x \rightarrow \infty
$$

and

$$
\begin{equation*}
f(t)=k^{-1} \sigma^{2} t^{1-2 k}, g(t)=1-k^{-1} \sigma^{2} t^{-2 k} . \tag{1.3}
\end{equation*}
$$

Note that $f^{\prime}(t) \rightarrow 0$ and $g(t) \rightarrow 1$, and we can choose the norming constants a_{n} and b_{n} in such way that b_{n} is satisfying the equation

$$
\begin{equation*}
1-F_{k}\left(b_{n}\right)=n^{-1} \tag{1.4}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{n}=f\left(b_{n}\right) \tag{1.5}
\end{equation*}
$$

such that

$$
\lim _{n \rightarrow \infty} F_{k}^{n}\left(a_{n} x+b_{n}\right)=\Lambda(x) .
$$

The remainder of this paper are organized as follows. Section 2 gives the main result on asymptotic expansions for the distribution of partial maxima of the GMD (k) with $k>0$. Some auxiliary lemmas needed to prove the main result and related proof are given in Section 3. In the sequel we shall assume that the parameter $k>0$.

2 Main result

In this section, we derive an asymptotic expansion for the distribution of normalized maxima from the $\operatorname{GMD}(\mathrm{k})$. The distributional expansion could be used to show that the convergence rate of M_{n} to the Gumbel extreme value distribution is of the order of $O\left((\log n)^{-1}\right)$.

Theorem 2.1. Let $F_{k}(x)$ represent the cdf of $\operatorname{GMD}(k)$. For normalizing constants a_{n} and b_{n} given, respectively, by (1.4) and (1.5), we have

$$
b_{n}^{2 k}\left[b_{n}^{2 k}\left(F_{k}^{n}\left(a_{n} x+b_{n}\right)-\Lambda(x)\right)-l_{k}(x) \Lambda(x)\right] \rightarrow\left(w_{k}(x)+\frac{l_{k}^{2}(x)}{2}\right) \Lambda(x)
$$

as $n \rightarrow \infty$, where $l_{k}(x)$ and $w_{k}(x)$ are, respectively, given by

$$
l_{k}(x)=k^{-1} \sigma^{2}\left[(2 k-1) x^{2}-2 x\right] e^{-x} / 2
$$

and

$$
w_{k}(x)=-k^{-2} \sigma^{4}\left[3(2 k-1)^{2} x^{4}-4(2 k+1)(2 k-1) x^{3}+24 x^{2}-48 k x\right] e^{-x} / 24
$$

Remark 2.1. By the definition of b_{n}, it is easy to check that $b_{n}^{2 k}=O(1 / \log n)$. Hence, Theorem 2.1 shows that the convergence rate of $F_{k}^{n}\left(a_{n} x+b_{n}\right)$ tending to its extreme value limit is proportional to $1 / \log n$. Further, the convergence rate of $b_{n}^{2 k}\left(F_{k}^{n}\left(a_{n} x+b_{n}\right)-\Lambda(x)\right)$ tending to its limit is also proportional to $1 / \log n$.

Remark 2.2. As the mentioned in the Introduction, we get ordinary Maxwell pdf when $k=1$, and then Theorem 2.1 shows also that the asymptotic expansion of the distribution of normalized maximum from ordinary Maxwell distribution is

$$
\bar{b}_{n}^{2}\left[\bar{b}_{n}^{2}\left(F_{1}^{n}\left(\bar{a}_{n} x+\bar{b}_{n}\right)-\Lambda(x)\right)-l_{1}(x) \Lambda(x)\right] \rightarrow\left(w_{1}(x)+\frac{l_{1}^{2}(x)}{2}\right) \Lambda(x)
$$

as $n \rightarrow \infty$, with norming constants determined by

$$
1-F_{1}\left(\bar{b}_{n}\right)=n^{-1} \text { and } \bar{a}_{n}=\sigma^{2} \bar{b}_{n}^{-1}
$$

where $l_{1}(x)$ and $w_{1}(x)$ are, respectively, given by

$$
l_{1}(x)=\frac{1}{2} \sigma^{2}\left(x^{2}-2 x\right) e^{-x}
$$

and

$$
w_{1}(x)=-\frac{1}{8} \sigma^{4}\left(x^{4}-4 x^{3}+8 x^{2}-16 x\right) e^{-x}
$$

3 Auxiliary results and proofs

In order to obtain expansions for the distribution of the normalized maximum of GMD (k) random varibles, we provide the following tail decomposition of $\operatorname{GMD}(\mathrm{k})$.

Lemma 3.1. Let $F_{k}(x)$ represent the cdf of $G M D(k)$. For large x, we have

$$
\begin{align*}
1-F_{k}(x)= & f_{k}(x) \frac{\sigma^{2}}{k} x^{1-2 k}\left(1+k^{-1} \sigma^{2} x^{-2 k}+k^{-2}(1-2 k) \sigma^{4} x^{-4 k}+O\left(x^{-6 k}\right)\right) \\
= & \frac{\exp \left(-1 /\left(2 \sigma^{2}\right)\right)}{2^{k / 2} \sigma^{1 / k} \Gamma(1+k / 2)}\left(1+k^{-1} \sigma^{2} x^{-2 k}+k^{-2}(1-2 k) \sigma^{4} x^{-4 k}\right. \\
& \left.+O\left(x^{-6 k}\right)\right) \exp \left(-\int_{1}^{x} \frac{g(t)}{f(t)} \mathrm{dt}\right) \tag{3.1}
\end{align*}
$$

with $f(t)$ and $g(t)$ given by (1.3).

Proof. By integration by parts, we have

$$
\begin{align*}
1-F_{k}(x)= & f_{k}(x) \frac{\sigma^{2}}{k} x^{1-2 k}\left(1+\frac{\sigma^{2}}{k} x^{-2 k}+\frac{(1-2 k) \sigma^{4}}{k^{2}} x^{-4 k}+\frac{(1-2 k)(1-4 k) \sigma^{6}}{k^{3}} x^{-6 k}\right) \\
& +\frac{(1-2 k)(1-4 k)(1-6 k)}{2^{k / 2} k^{3} \sigma^{1 / k-6} \Gamma(1+k / 2)} \int_{x}^{\infty} t^{-6 k} \exp \left(-\frac{t^{2 k}}{2 \sigma^{2}}\right) \mathrm{dt} \tag{3.2}
\end{align*}
$$

It is easy to show by utilizing L'Hospital's rule that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\int_{x}^{\infty} t^{-6 k} \exp \left(-\frac{t^{2 k}}{2 \sigma^{2}}\right) d t}{x^{1-6 k} \exp \left(-\frac{x^{2 k}}{2 \sigma^{2}}\right)}=0 \tag{3.3}
\end{equation*}
$$

Thus, by (1.1), (1.2), (3.2) and (3.3), for large x, we can have

$$
\begin{aligned}
1-F_{k}(x) & =f_{k}(x) \frac{\sigma^{2}}{k} x^{1-2 k}\left(1+\frac{\sigma^{2}}{k} x^{-2 k}+\frac{(1-2 k) \sigma^{4}}{k^{2}} x^{-4 k}+O\left(x^{-6 k}\right)\right) \\
= & \frac{\exp \left(-\frac{1}{2 \sigma^{2}}\right)}{2^{\frac{k}{2}} \sigma^{\frac{1}{k}} \Gamma\left(1+\frac{k}{2}\right)}\left(1+\frac{\sigma^{2}}{k} x^{-2 k}+\frac{(1-2 k) \sigma^{4}}{k^{2}} x^{-4 k}\right. \\
& \left.+O\left(x^{-6 k}\right)\right) \exp \left(-\int_{1}^{x} \frac{g(t)}{f(t)} \mathrm{dt}\right) .
\end{aligned}
$$

The desired result follows.
In order to prove Theorem 2.1, the following auxiliary result is needed.
Lemma 3.2. Let $v_{k}\left(b_{n} ; x\right)=n \log F_{k}\left(a_{n} x+b_{n}\right)+e^{-x}$. For normalizing constants a_{n} and b_{n} given, respectively, by (1.4) and (1.5), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b_{n}^{2 k}\left[b_{n}^{2 k} v_{k}\left(b_{n} ; x\right)-l_{k}(x)\right]=w_{k}(x) \tag{3.4}
\end{equation*}
$$

where $l_{k}(x)$ and $w_{k}(x)$ are given by Theorem 2.1.
Proof. Obviously, $b_{n} \rightarrow \infty$ if and only if $n \rightarrow \infty$ since $1-F_{k}\left(b_{n}\right)=n^{-1}$. The following facts can be gained by (1.1)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1-F_{k}\left(a_{n} x+b_{n}\right)}{n^{-1}}=e^{-x} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1-F_{k}\left(a_{n} x+b_{n}\right)}{b_{n}^{-2 j}}=0, \quad j=2,4 . \tag{3.6}
\end{equation*}
$$

Set

$$
B_{k}(n, x)=\frac{1+\frac{\sigma^{2}}{k} b_{n}^{-2 k}+\frac{(1-2 k) \sigma^{4}}{k^{2}} b_{n}^{-4 k}+O\left(b_{n}^{-6 k}\right)}{1+\frac{\sigma^{2}}{k}\left(a_{n} x+b_{n}\right)^{-2 k}+\frac{(1-2 k) \sigma^{4}}{k^{2}}\left(a_{n} x+b_{n}\right)^{-4 k}+O\left(\left(a_{n} x+b_{n}\right)^{-6 k}\right)} .
$$

It is easy to check that $\lim _{n \rightarrow \infty} B_{k}(n, x)=1$ and

$$
B_{k}(n, x)-1=\left(\frac{2 \sigma^{4}}{k} b_{n}^{-4 k} x+\frac{4(1-2 k) \sigma^{6}}{k^{2}} b_{n}^{-6 k} x+O\left(b_{n}^{-6 k}\right)\right)(1+o(1))
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{B_{k}(n, x)-1}{b_{n}^{-2 k}}=0 \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{B_{k}(n, x)-1}{b_{n}^{-4 k}}=\frac{2 \sigma^{4}}{k} x \tag{3.8}
\end{equation*}
$$

By (3.1), we have

$$
\begin{align*}
\frac{1-F_{k}\left(b_{n}\right)}{1-F_{k}\left(a_{n} x+b_{n}\right)} e^{-x}= & B_{k}(n, x) \exp \left(\int_{0}^{x}\left(\frac{k}{\sigma^{2}} a_{n}\left(a_{n} s+b_{n}\right)^{2 k-1}-\frac{a_{n}}{a_{n} s+b_{n}}-1\right) \mathrm{ds}\right) \\
= & B_{k}(n, x)\left\{1+\int_{0}^{x}\left(\frac{k}{\sigma^{2}} a_{n}\left(a_{n} s+b_{n}\right)^{2 k-1}-\frac{a_{n}}{a_{n} s+b_{n}}-1\right) \mathrm{ds}\right. \\
& \left.+\frac{1}{2}\left(\int_{0}^{x}\left(\frac{k}{\sigma^{2}} a_{n}\left(a_{n} s+b_{n}\right)^{2 k-1}-\frac{a_{n}}{a_{n} s+b_{n}}-1\right) \mathrm{ds}\right)^{2}(1+o(1))\right\} \tag{3.9}
\end{align*}
$$

Combining with $(3.5),(3.6),(3.7),(3.8)$ and (3.9), we have

$$
\begin{align*}
& \lim _{n \rightarrow \infty} b_{n}^{2 k} v_{k}\left(b_{n} ; x\right) \\
& =\lim _{n \rightarrow \infty} \frac{\log F_{k}\left(a_{n} x+b_{n}\right)+\left(1-F_{k}\left(b_{n}\right)\right) e^{-x}}{n^{-1} b_{n}^{-2 k}} \\
& =\lim _{n \rightarrow \infty} \frac{-\left(1-F_{k}\left(a_{n} x+b_{n}\right)\right)-\frac{1}{2}\left(1-F_{k}\left(a_{n} x+b_{n}\right)\right)^{2}(1+o(1))}{n^{-1} b_{n}^{-2 k}}+\lim _{n \rightarrow \infty} \frac{\left(1-F_{k}\left(b_{n}\right)\right) e^{-x}}{n^{-1} b_{n}^{-2 k}} \\
& =\lim _{n \rightarrow \infty} \frac{1-F_{k}\left(a_{n} x+b_{n}\right) \frac{1-F_{k}\left(b_{n}\right)}{n^{-1}} \frac{1-F_{k}\left(a_{n} x+b_{n}\right)}{b_{n}^{-2 k}} e^{-x}-1}{b_{n}} \\
& =e^{-x} \lim _{n \rightarrow \infty}\left\{B_{k}(n, x) b_{n}^{2 k}\left(\int_{0}^{x}\left(\frac{k}{\sigma^{2}} a_{n}\left(a_{n} s+b_{n}\right)^{2 k-1}-\frac{a_{n}}{a_{n} s+b_{n}}-1\right) \mathrm{ds}\right)(1+o(1))+\frac{B_{k}(n, x)-1}{b_{n}^{-2 k}}\right\} \\
& =e^{-x} \lim _{n \rightarrow \infty} \int_{0}^{x} b_{n}^{2 k}\left(\frac{k}{\sigma^{2}} a_{n}\left(a_{n} s+b_{n}\right)^{2 k-1}-\frac{a_{n}}{a_{n} s+b_{n}}-1\right) \mathrm{ds} \\
& =\frac{\sigma^{2}}{2 k}\left((2 k-1) x^{2}-2 x\right) e^{-x}=l_{k}(x), \tag{3.10}
\end{align*}
$$

where the last step follows by the dominated convergence theorem and

$$
\lim _{n \rightarrow \infty} b_{n}^{2 k}\left(\frac{k}{\sigma^{2}} a_{n}\left(a_{n} s+b_{n}\right)^{2 k-1}-1\right)=\frac{2 k-1}{2 k} \sigma^{2} s
$$

and

$$
\lim _{n \rightarrow \infty} \frac{a_{n} b_{n}^{2 k}}{a_{n} s+b_{n}}=\frac{\sigma^{2}}{k}
$$

By arguments similar to (3.10), we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} b_{n}^{2 k}\left[b_{n}^{2 k} v_{k}\left(b_{n} ; x\right)-l_{k}(x)\right] \\
= & \lim _{n \rightarrow \infty} \frac{\log F_{k}\left(a_{n} x+b_{n}\right)+n^{-1} e^{-x}-n^{-1} b_{n}^{-2 k} l_{k}(x)}{n^{-1} b_{n}^{-4 k}}
\end{aligned}
$$

$$
\begin{aligned}
= & \lim _{n \rightarrow \infty} \frac{\log F_{k}\left(a_{n} x+b_{n}\right)+\left(1-F_{k}\left(b_{n}\right)\right) e^{-x}\left(1-l_{k}(x) e^{x} b_{n}^{-2 k}\right)}{n^{-1} b_{n}^{-4 k}} \\
= & \lim _{n \rightarrow \infty} \frac{-\left(1-F_{k}\left(a_{n} x+b_{n}\right)\right)+\left(1-F_{k}\left(b_{n}\right)\right) e^{-x}\left(1-l_{k}(x) e^{x} b_{n}^{-2 k}\right)}{n^{-1} b_{n}^{-4 k}} \\
= & \lim _{n \rightarrow \infty} \frac{1-F_{k}\left(a_{n} x+b_{n}\right)}{n^{-1}} \frac{\frac{1-F_{k}\left(b_{n}\right)}{1-F_{k}\left(a_{n} x+b_{n}\right)} e^{-x}\left(1-l_{k}(x) e^{x} b_{n}^{-2 k}\right)-1}{b_{n}^{-4 k}} \\
= & e^{-x} \lim _{n \rightarrow \infty}\left\{B_{k}(n, x) b_{n}^{4 k}\left[\int_{0}^{x}\left(\frac{k}{\sigma^{2}} a_{n}\left(a_{n} s+b_{n}\right)^{2 k-1}-\frac{a_{n}}{a_{n} s+b_{n}}-1\right) \mathrm{ds}-l_{k}(x) e^{x} b_{n}^{-2 k}\right]\right. \\
& +\frac{1}{2} B_{k}(n, x) b_{n}^{4 k}\left[\int_{0}^{x}\left(\frac{k}{\sigma^{2}} a_{n}\left(a_{n} s+b_{n}\right)^{2 k-1}-\frac{a_{n}}{a_{n} s+b_{n}}-1\right) \mathrm{ds}\right]^{2} \\
& \left.-B_{k}(n, x) l_{k}(x) e^{x} b_{n}^{2 k} \int_{0}^{x}\left(\frac{k}{\sigma^{2}} a_{n}\left(a_{n} s+b_{n}\right)^{2 k-1}-\frac{a_{n}}{a_{n} s+b_{n}}-1\right) \mathrm{ds}+\frac{B_{k}(n, x)-1}{b_{n}^{-4 k}}\right\} \\
= & -\frac{\sigma^{4}}{24 k^{2}}\left[3(2 k-1)^{2} x^{4}-4(2 k+1)(2 k-1) x^{3}+24 x^{2}-48 k x\right] e^{-x}=w_{k}(x) .
\end{aligned}
$$

The proof is complete.
Proof of Theorem 2.1. By (3.10), we have $v_{k}\left(b_{n} ; x\right) \rightarrow 0$ and

$$
\left|\sum_{i=3}^{\infty} \frac{v_{k}^{i-3}\left(b_{n} ; x\right)}{i!}\right|<\exp \left(\left|v_{k}\left(b_{n} ; x\right)\right|\right) \rightarrow 1
$$

as $n \rightarrow \infty$. By applying Lemma 3.2, we have

$$
\begin{aligned}
& b_{n}^{2 k}\left[b_{n}^{2 k}\left(F_{k}^{n}\left(a_{n} x+b_{n}\right)-\Lambda(x)\right)-l_{k}(x) \Lambda(x)\right] \\
= & b_{n}^{2 k}\left[b_{n}^{2 k}\left(\exp \left(v_{k}\left(b_{n} ; x\right)\right)-1\right)-l_{k}(x)\right] \Lambda(x) \\
= & {\left[b_{n}^{2 k}\left(b_{n}^{2 k} v_{k}\left(b_{n} ; x\right)-l_{k}(x)\right)+b_{n}^{4 k} v_{k}^{2}\left(b_{n} ; x\right)\left(\frac{1}{2}+v_{k}\left(b_{n} ; x\right) \sum_{i=3}^{\infty} \frac{v_{k}^{i-3}\left(b_{n} ; x\right)}{i!}\right)\right] \Lambda(x) } \\
\rightarrow & \left(w_{k}(x)+\frac{l_{k}^{2}(x)}{2}\right) \Lambda(x)
\end{aligned}
$$

as $n \rightarrow \infty$.
We obtain the desired result.

References

[1] Hall, P. (1979). On the rate of convergence of normal extremes. Journal of Applied Probability 16, 433-439.
[2] Huang, J., Chen, S. and Tuo, Z. (2014). Tail behavior of the generalized Maxwell distribution. Avaliable on-line at http://eprints.ma.man.ac.uk/2124/
[3] Huang, J. and Chen, S. (2014). Convergence rate of extremes of generalized Maxwell distribution. Avaliable on-line at http://eprints.ma.man.ac.uk/2176/
[4] Liao, X. and Peng, Z. (2012). Convergence rates of limit distribution of maxima of lognormal samples. Journal of Mathematical Analysis and Applications 395, 643-653.
[5] Liao, X., Peng, Z. and Nadarajah, S. (2013). Tail properties and asymptotic expansions for the maximum of the logarithmic skew-normal distribution. Journal of Applied Probability 50, 900-907.
[6] Liao, X., Peng, Z., Nadarajah, S. and Wang, X. (2014). Rates of convergence of extremes from skew normal samples. Statistics and Probability Letters 84, 40-47.
[7] Liu, C. and Liu, B. (2013). Convergence rate of extremes fromMaxwell sample. Journal of Inequalities and Applications 2013, 2013:477
[8] Nair, K. A. (1981). Asymptotic distribution and moments of normal extremes. Annals of Probability 9, 150-153.
[9] Peng, Z., Nadarajah, S. and Lin, F. (2010). Convergence rate of extremes from general error distribution. Journal of Applied Probability 47, 668-679.

