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Abstract

Linear Programming is now included in Algorithm undergraduate and postgraduate courses for
Computer Science majors. It is possible to teach interior-point methods directly with just minimal
knowledge of Algebra and Matrices.

1 Introduction

Terlaky [3] and Lesaja [1] have suggested simple ways to teach interior-point methods. In this paper
a still simpler way is being suggested. Most material required to teach interior-point methods is
available in popular text books [2, 4]. However, these books assume knowledge of Calculus, which
is not really required. In this paper, it is suggested if appropriate material is selected from these
books then it becomes very easy to teach interior-point methods as the first or only method for
Linear programming in Computer Science Courses.

Canonical Linear Programming Problem is to

minimise cxT subject to Ax = b and x ≥ 0.

Here A is an n×m matrix, b and c are n-dimensional and x is an m-dimensional vector.

Remark 1 maximise cxT is equivalent to minimise −cxT .

Remark 2 Constraints of type α1x1 + . . .+αnxn ≤ β can be replaced by α1x1 + . . .+αnxn+γ = β
with a new (slack) variable γ ≥ 0. Similarly constraints of type α1x1 + . . . + αnxn ≥ β can be
replaced by α1x1 + . . .+ αnxn − γ = β with (surplus) variable γ ≥ 0.

Thus, we assume that there are n constraints and m variables, with m > n (more variables and
fewer constraints)— basically slack or surplus are added or subtracted to convert inequalities into
equalities.
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We first use pivoting to make first term of all but the first equation as zero. Basically, we
multiply ithequation by −a11

ai1
and subtract the first equation. In similar way we make first two

terms of all but the first two equations as zero– multiply ithequation (for i 6= 2) by −a22
a21

and
subtract the second equation. And so on. In case, if in any equation all coefficients become zero,
we drop those equations. As a result, in the end all remaining equations will be linearly independent.
Or the resulting matrix will have full row rank.

Remark We may have to interchange two columns (interchange two variables), in case, for example,
if a diagonal term of an equation becomes zero.

From convexity, it is sufficient to obtain a locally optimal solution, as local optimality will imply
global optimality.

We consider another problem, the “dual problem” which is

maximise byT subject to AT y + s = c, with slack variables s ≥ 0 and variables y are
unconstrained.

Claim 1 byT ≤ cxT . The equality will hold if and only if, sixi = 0 for all is.

Remark Thus if value of both primal and dual are the same, then both are optimal.

Proof: s = c − AT y, or xT s = xT c − xT (AT y) = cTx − (xTAT )y = cTx − bT y. As x, s ≥ 0, we
have xT s ≥ 0 or cTx ≥ bT y.

Equality will hold if xT s = 0 or
∑
i sixi = 0 but as si, xi ≥ 0, we want each term (product)

sixi = 0.

Thus, if we are able to find a solution of following equations (last one is not linear, else, an
inversion of matrix would have been sufficient), we will be getting optimal solutions of both the
original and the dual problems.

Ax = b, AT y + s = c, xisi = 0

subject to x ≥ 0, s ≥ 0.

We will relax the last condition to get something like (duality gap):

xisi ≈ µ

with parameter µ ≥ 0. Thus, we will be solving (the exact last equation will be derived in the next
section):

Ax = b, AT y + s = c, xisi ≈ µ
subject to x ≥ 0, s ≥ 0.

Remark Thus, byT − cxT ≈ mµ. If µ is very small, then in the case of rationals, the solution will
be exact.

Use of Newton Raphson Method

We will use the Newton-Raphson method[2]. Let us choose the next values as x + h, y + k, s + f .
Then we want:
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1. A(x+ h) = b or Ax+Ah = b but as Ax = b, we get Ah = 0.

2. AT (y+k) + (s+ f) = c, from AT y+ s = c, we get ATk+ f = c−AT y− s = 0 or ATk+ f = 0

3. (xi +hi)(si + fi) ≈ µ or xisi +hisi + fixi +hifi ≈ µ. Or approximately, xisi +hisi + fixi = µ
(neglecting the non-linear hifi term). Thus, the equation we will be solving is

hisi + fixi = µ− xisi

Thus, we have a system of linear equations for hi, ki, fi. We next show that these can be solved
by “inverting” a matrix.

But first observe that from the third equation,

Observation 1 (xi + hi)(si + fi) = µ+ hifi

Theorem 1 Following equations have a unique solution:

1. Ah = 0

2. ATk + f = 0

3. hisi + fixi = µ− xisi

Proof: We will follow Vanderbei[4] and use capital letters (e.g. X) in this proof (only) to denote
a diagonal matrix with entries of the corresponding row vector (e.g. in X the diagonal entries will
be x1, x2, . . ., xm). We will also use e to denote a column vector of all ones (usually of length m).

Then in the new notation, the last equation is:

Sh+Xf = µe−XSe

Let us look at this equation in more detail.

Sh+Xf = µe−XSe
h+ S−1Xf = S−1µe− S−1XSe pre-multiply by S−1

h+ S−1Xf = µS−1e−X�
��S−1

�Se diagonal matrices commute
h+ S−1Xf = µS−1e− x as Xe = x

Ah+AS−1Xf = µAS−1e−Ax pre-multiply by A
AS−1Xf = µAS−1e− b but Ax = b and Ah = 0

−AS−1XATk = µAS−1e− b using f = −ATk
b−AS−1e = (AS−1XAT )k

As XS−1 is diagonal with positive items and as A has full rank, if W =
√
XS−1 (each diagonal

term is
√
xi/si) then AS−1XAT = (AW )(AW )T = AW 2AT is invertible (see appendix). The last

equation can thus be used to get the value of matrix k after inverting the matrix AS−1XAT , or

k = (AS−1XAT )−1
(
b−AS−1e

)

Then we can find f from f = −ATk.
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And to get h we use the equation: h+ S−1Xf = µS−1e− x, i.e.,

h = −XS−1f + µS−1e− x

Thus, the above system has a unique solution.

Claim 2
∑
i hifi = 0 or equivalently hT f = fTh = 0

Proof: As ATk+ f = 0, we get hTATk+hT f = 0 but hTAT = (Ah)T = 0, hence hT f = 0 follows.

Invariants in each Iteration

We will maintain following invariants:

1. AxT = b, with x > 0 (strict inequality)

2. AT y + s = c with s > 0 (strict inequality)

3. If µ is the “approximate duality gap” then σ ≤ 2
3 <
√

3− 1 where σ2 =
∑
i

(
xisi
µ − 1

)2
.

At end of this iteration we want duality gap µ′ ≤ (1− δ)µ. We will see that δ can be chosen as
δ = Θ

(
1√
m

)
.

We first show that strict inequality invariants hold (in σ′ we have x+ h, s+ f and same µ):

Fact 1 If σ′ < 1 then x+ h > 0 and s+ f > 0

Proof: We first show that the product (xi+hi)(si+fi) is term-wise positive. From Observation 1,
(xi + hi)(si + fi) = µ+ hisi.

From σ′ < 1 we get σ′2 < 1. But (using Observation 1):

σ′2 =
∑
i

(
(xi + hi)(si + fi)

µ
− 1

)2

=
∑
i

(
hisi
µ

)2

< 1

As the sum is at most one, it follows that each term of the summation must be less than one, or∣∣∣hifi
µ

∣∣∣ < 1 or −µ < hifi < µ. In particular µ+ hifi > 0.

Thus the product (xi + h)(si + f) is term-wise positive.

Assume for contradiction that both xi + hi < 0 and si + fi < 0. But as si > 0 and hi > 0,
we have si(xi + hi) + xi(si + fi) < 0, or µ + xisi < 0. Which is impossible as µ, xi, si are all
non-negative, a contradiction.

We have to still show that the “approximate duality gap” µ decreases as desired.

Let us define three new variables:

Hi = hi

√
si
xiµ
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Fi = fi

√
xi
siµ

Observe that
∑
iHiFi =

∑ hifi
µ = 0 (see Claim 2).

Hi + Fi = hi

√
si
xiµ

+ fi

√
xi
siµ

=

√
1

xisiµ
(hisi + fixi)

=

√
1

xisiµ
(µ− xisi)

=
√

µ

xisi

(
1− xisi

µ

)
= −

√
µ

xisi

(
−1 +

xisi
µ

)

From, the proof of Fact 1, we also observe that σ′2 =
∑
i

(
hifi
µ

)2
, or σ′2 =

∑
i(HiFi)2

And finally

σ′2 =
∑
i

(HiFi)2

≤
∑
i

(H2
i + F 2

i )2

4
using AM-GM inequality-see Appendix

≤ 1
4

(∑
i

(H2
i + F 2

i )

)2

more positive terms

≤ 1
4

(∑
i

(Hi + Fi)2
)2

from Claim 2

=
1
4

(∑
i

µ

xisi

(
xisi
µ
− 1

)2
)2

≤
(

max
µ

xisi

)2 1
4

(∑(
xisi
µ
− 1

)2
)2

≤ σ4

4

(
max

µ

xisi

)2

As σ2 =
∑(

xisi
µ − 1

)2
, each individual term is at most σ2 or∣∣∣∣xisiµ − 1

∣∣∣∣ ≤ σ
Thus,

−σ ≤ xisi
µ − 1 ≤ σ

1− σ ≤ xisi
µ ≤ 1 + σ
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In particular µ
xisi
≤ 1

1−σ or

max
µ

xisi
≤ 1

1− σ

Thus, σ′2 ≤
(

1
1−σ

)2
σ4

4 or σ′ ≤ 1
2
σ2

1−σ

We summarise our observations as:

Observation 2

σ′ ≤ 1
2

σ2

1− σ

For σ′ < 1, σ2

1−σ < 2 or σ2 < 2 − 2σ or σ2 + 2σ − 2 < 0 or σ = −2±
√

22−4×1×(−2)

2 = −2+
√

12
2 =

−1 +
√

3 =
√

3− 1.

Remark Thus σ ≤ 2
3 is more than enough.

Let us finally try to get bounds on δ (and hence µ). Let us assume µ′ = µ(1 − δ) then if σ′′

corresponds to x+ h, s+ f and µ′ we have

σ′′2 =
∑
i

(
(xi + hi)(si + fi)

µ(1− δ)
− 1

)2

=
∑
i

(
(xi + hi)(si + fi)− µ(1− δ)

µ(1− δ)

)2

=
∑
i

(
(xi + hi)(si + fi)− µ

µ(1− δ)
+

δ

1− δ

)2

=
∑
i

(
hifi

µ(1− δ)
+

δ

1− δ

)2

From Observation 1

=
1

(1− δ)2
∑
i

(
hifi
µ

+ δ

)2

=
1

(1− δ)2

(∑
i

(
hifi
µ

)2

+mδ2 +
2δ
µ

∑
hifi

)

=
1

(1− δ)2

(∑
i

(
hifi
µ

)2

+mδ2
)

From Claim 2

=
1

(1− δ)2
(
σ′2 +mδ2

)

Thus observe that

Observation 3
σ′′ =

1
1− δ

√
σ′2 +mδ2

We want to choose δ such that σ′′ ≤ 2
3 . As σ′′ = 1

1−δ
√
σ′2 +mδ2 ≤ 1

1−δ
√
mδ2 = δ

√
m

1−δ

We want δ
√
m

1−δ <
2
3 or δ

1−δ <
2

3
√
m

. We can thus choose δ = 1
4
√
m

.
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Summary

Let us assume that initial duality gap is µ0 and final duality gap is µf , as after each iteration,
µ′ ≤ (1− δ)µ, thus after r iterations, µf ≤ (1− δ)rµ0, or

log
µ0

µf
= −r log(1− δ) ≈ −r(−δ)

or

r = O

(
1
δ

log
µ0

µf

)
= O

(
√
m log

µ0

µf

)

As 1− σ ≤ xisi
µ ≤ 1 + σ, we have (in last inequality we use σ < 2

3).

µ(1− σ) ≤ xisi ≤ µ(1 + σ) <
5
3
µ

Thus, when µ becomes very small, even the products xisis will be very small. The above method
will give a polynomial time algorithm even if µ0 = 2m

2
and µf = 1

2m2 .

Initial Solution: Phase 1 Method

Consider a starting solution x0 s.t. all components of x0 are strictly positive (say all xi = 1
n).

Define a vector ρ = b−Ax0.

Consider the following problem[4]:

minimise xn+1 (a new variable) subject to

Ax+ xn+1ρ = b

with x ≥ 0, xn+1 ≥ 0.

Clearly, (x0, 1)T is a feasible solution.

We can solve this problem by the previous method. If the optimal solution has xn+1 > 0 then
the original problem is unfeasible.

Remark We are ignoring the case when some xi (for i ≤ n) turns out to be zero.

Then using the condition xisi = µ, we fix si. And finally from AT y+ s = c we get AT y = c− s
or (AAT )y = A(c− s) but as (AAT ) is invertible (see appendix), we get y = (AAT )−1A(c− s).

Remark Variables y are unconstrained. They can either be positive or negative or zero.
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Appendix: Result from Algebra

Assume that A is n×m matrix and rank of A is n, with n < m. Then all n rows of A are linearly
independent. Or α1A1 + α2A2 + . . . + αnAn = 0 (here 0 is a row vector of size m) has only one
solution αi = 0. Thus, if x is any 1 × n matrix (a column vector of size n), then xA = 0 implies
x = 0.

As A is n ×m matrix, AT will be m × n matrix. The product AAT will be an n × n square
matrix. Let yT be an n× 1 matrix (or y is a row-vector of size n).

Consider the equation (AAT )yT = 0. Pre-multiplying by y we get yAAT yT = 0 or (yA)(yA)T =
0 or the dot product < yA, yA >= 0 which, for real vectors (matrices) means, that each term of
yA is (individually) zero, or y is identically zero.

Thus, the matrix AAT has rank n and is invertible.

Also observe that if X is a diagonal matrix (with all diagonal entries non-zero) and if A has full
row-rank, then AX will also have full row-rank. Basically if entries of X are x1, x2, . . ., xn then the
matrix AX will have rows as x1A1, x2A2, . . ., xnAn (i.e., ithrow of A gets scaled by xi). If rows of
AX are not independent then there are βs (not all zero) such that:
β1x1A1 + β2x2A2 + . . .+ βnxnAn = 0, or there are αs (not all zero) such that:
α1A1 + α2A2 + . . .+ αnAn = 0 with αi = βixi.

Arithmetic-Geometric Inequality follows from:

(x+ y)2 ≥ (x+ y)2 − (x− y)2 = 4xy

or taking square roots (of the first and the last) x+ y ≥ 2
√
xy
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