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Abstract: The very unusual symbolic aspects of Nonstandard Analysis are

discussed. Most formal constructions are not presented. The definitions,

interrelations and symbolic manipulations of six distinct NSA symbolic

languages are presented. Examples are given for these interrelations and

symbolic manipulations. These symbolic forms are interpreted theologi-

cally relative to the characterizing of Divine attributes and relative to the

intelligent design of a General Grand Unification Model produced phys-

ical universe. The predicted theological conclusions are summarized by

the numbered statements in Sections 5 and 6 of this article. This arti-

cle is intended to present the necessary material that should make these

statements fully comprehensible.

1. Introduction.

Mathematics and its applications used throughout almost all of present day soci-

ety is highly distinct from a rather obscure subject termed Nonstandard Analysis

(NSA). Although NSA was considered when first proposed from 1961 - 1966 to be a

remarkable new area of mathematical discourse, expecially since it solves the “problem

or Newton and Leibniz” and was applied to many mathematical and physical science

areas, it is, except for a few controversial topics, slowly pasting from the scene. This

is understandable since the subject is a product of formal logic and abstract model

theory, two subjects that are not part of ones mainstream mathematical eduction and

informal mathematical discourse.

Further, throughout the years of its development, it was felt necessary to adhere

to the rather rigid standards required of these two subjects. Thus, the explanatory

linguistic terms that were assiduously used in the past were not altered from what

they meant. Due to the subject matter to which NSA is applied, there arose a clash

in terminology that has, over the years, clouded the meanings of the terms employed.

Material is often written only for the highly experienced who do, indeed, “know what

the author means” when much is not specifically stated. The informal language, like

the one being presently employed, has a great deal in common with the language
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employed in formal logic and model theory. This tends to lead to misunderstandings.

In definitions, further explanations and proofs of theorems, adjectives are dropped

from terms, modifiers that tell one what a symbol actually signifies since the reader is

suppose to “know what they signify.”

Although it is not specifically stated, much of NSA is but abstract mathematics.

That is, it is symbol manipulation that follows either explicitly stated or implied but

accepted rules. These rules are often not stated but are learned via practice. Informal

mathematics is most often written in terms of a “first-order predicate language with

constants.” Other types of entities such as functions are also included. If the language

refers to set-theory, then technically such additional language entities are not necessary.

A predicate is usually thought of as a simple declarative sentence that states a

relation between noun type words, where the names of the noun can vary. For example,

a two place predicate “- is going to - ” or the one place predicate “- is a horse” states the

relation part, where the missing noun can vary. The fact that it can vary is expressed

by “variables.” So, one has, “x is going to y ” or simple “x is a horse.” The language

uses a list of terms and forms, the two standard or equivalent quantifiers, “for each,”

“there exists,” as well as the words “and,” “or,” “not,” and the forms “If -, then - ”

and “- if and only if -”. The term first-order means that the variable is a predicate

variable and it is not a predicate itself. That is, the predicates are not quantified. This

normal informal language of mathematical discourse can be written in a more formal

pure symbolic form.

A formal language uses constant symbols like a, b, B, E, special symbols such

as ∀, ∃, ∧, ∨, ¬, →, ↔, for two quantifiers, specific words and two forms, respectively.

Then it uses distinctly different variables symbols like x, y, z. Here are a few lines from

a claimed “informal” proof. The ∈ and = are symbols for two place predicates.

“Let (A,E) be an infinite graph. . . . Let B be a hyperfinite subset of ∗A . . .

such that ∀a ∈ A, ∗a ∈ B. Then B ∈ ∗F . . . such that ∀x, y ∈ B, if (x, y) ∈ ∗E,

then . . . . In particular, ∀a, b ∈ A, if (a, b) ∈ E, then ( ∗a, ∗b) ∈ ∗E, so g( ∗a) 6= g( ∗b).”

(Loeb and Wolf, ((2000, p. 49)).

Notice the different constants taken from the first part of the alphabet and the

use of the formal symbol ∀. Often when a mathematician writes a statement very

informally, such as in a classroom, this symbol might be used as a mere abbreviation

for the phrase “for each” as well as ∋ for the phrase “such that,” but due to their

more formal usage in NSA the practice should be otherwise avoided. The constants

are modified with the * notation but there are also two variables x, y used. As will be

discussed later, the part of the proof using the variables is not necessary and the phrase

“In particular” is also not necessary. In this case, the formal ∀ is also employed. This
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statement is a “translation” from a formal-logic expression used to express behavior of

the objects in a model, a nonstandard one. Further, the objects are given names such

as the word “hyperfinite” which is important. One learns specifically described rules

for writing a formal expression from left-to-right and a formal expression associated

with this proof partially looks like

∀z ∈ F(∃w . . . (∀x∀y ∈ z)[(x, y) ∈ E → w(x) 6= w(y)].

(Note: I have made an alteration in the original to correspond to what is discussed

later in this article. )

I would not have used the variables in two context, the formal and the informal.

Indeed, it is unnecessary to do so. As mentioned, I would not have used the formal ∀

for the phrase in the informal statement but rather its informal meaning “for each.”

Further, for the phrase “in particular” and the statement ∀a, b ∈ A, I would have

written this, as I do throughout my published papers and books, as “Let a, b ∈ A.”

It is standard practice that one word is understood when one informally writes “Let

a, b ∈ A.” The complete phrase is “Let arbitrary a, b ∈ A.” The same holds when

“Let” is replaced by “Given.” For NSA, these are arbitrary members of the set of

language constants. After these phrases, any additional restrictions placed on these

arbitrary members of a set are stated.

In order to obtain its results, abstract algebra is a subject that employs rules for

symbol manipulation. These rules are applied to the same set of symbols. The same

concept can be applied to NSA. However, there are different sets of symbols employed

and, for the modern treatment, one very special form of manipulation. Further, one

does not just manipulate symbols with no particlar goal in mind, but, rather, there is

a particular reason for doing so.

2. The Beginnings of the Symbolic World of NSA.

The first major introduction to NSA occurred in 1966 with the publication of

Robinson’s book on the subject (Robinson, 1966). In order to not rely merely upon

the customary axiom systems for specific mathematical theories, Robinson employed

the notion of the “higher ordered structure” and a modification to a very general

formal approach known as a “theory of types” (Robinson 1966, p. 19). These concepts

are not part of the mainstream of mathematical discourse and its applications and few

individuals have a background in formal type theory. In order to simplify this approach,

a second method was introduced called “pseudo-set-theory.” Your author wrote his

dissertation in pseudo-set-theory and published a few papers using this approach. Then,

in 1969, a third approach was introduced that employs a standard form of set-theory
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and the formal logical discourse is that of the more familiar type taught in first courses

in Mathematical Logic - the first-order predicate calculus with, at the least, enough

constants.

Since most practical mathematics is treated axiomatically in such a manner that

a slightly modified form of modern set-theory is sufficient, only two special predicate

symbols are employed. They are the “element-hood” binary predicate ∈ and the cus-

tomary equality symbol =, with its symbolic properties. The = is interpreted as the

equality of set-theory and a form of logical identity for members of a foundational set.

It is this third form, the superstructure approach, that almost always comprises the

subject as of today. While this approach has greatly simplified the basic requirements,

it has made one aspect somewhat more complex. Six distinct symbolic “languages” are

necessary in order to properly discuss the details of NSA.

Relative to the usual set-theory axioms, there is an additional one. In order to

apply NSA to numerously many informal mathematical and physical science subjects,

there is selected a type of “starting” object upon which the models are built. This is

called the set of “individuals” or “urelements” and, for the set-theory, the general term

atoms is employed. This is a rather special nonempty set. The objects in it are not

considered as sets and, hence, the reason for their special name. For a specific set of

individuals H, if r ∈ H, then one cannot write a ∈ r within this theory. Notice that

from the language viewpoint all this means is that if a is a constant or variable then

predicate ∈ does not apply to a. Thus, you have a rule that states that a symbolic

form cannot be used. Outside of this one special axiom, all the other axioms of ZF

set-theory are employed and usually the axiom of choice, C, is added.

When it comes to set-theory, one uses the structure idea and “constants” as a

“type of model.” That is, nonempty sets are but composed of symbols. And what

one does is to manipulate the symbols in accordance with the axioms. Of course,

additional symbols are defined and they have their manipulation properties. Thus,

when one writes that a ∈ A ∩ B one can merely “think of this” as meaning that the

symbol a is intuitively contained in the set A and in the set B. The word “and” takes

on the common meaning. Then one writes, via symbol manipulation, that a ∈ A and

a ∈ B. Hence, in an informal proof, one would write, “If a ∈ A ∩ B, then a ∈ A and

a ∈ B.”

When one introduces models into a first course in Mathematical Logic only rather

concrete models are used. For example, you have a binary predicate denoted by

P (−,−). Then a formal axiom ∀x∀y∀z(P (x, y)∧P (y, z)∧P (x, z)). The P is considered

as a dedicated constant. There is an axiom in formal first-order predicate calculus

with constants that states that we can substitute into this formal statement, for the
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x, y, z, any constants from the list of constants. Thus, it is logically legal to write

P (a, b)∧P (b, c)∧P (a, c). Abstract model theory, as presented in Herrmann (2006), can

be based upon this replacement. You can also use an equivalent process for ∃z. The

mathematical foundation is an informal nonempty set called the domain and this set

has constants that name its elements. This P symbol corresponds to a binary relation

and with its domain yields a structure.

Constants from the formal language are in one-to-one correspondence with the con-

stants “names” for domain members. In Herrmann (2006), these new constant names

are denoted by the language constants with an additional prime attached. However, in

the literature, this approach is also used but with a slight difference.

Then, for a simple model, this is translated into simple set-theoretic terms. All

one needs is one set over which the x, y, z are to vary. But, how, in general, are the

domain constants denoted? For application to this form of logic, in Herrmann (2006),

P (a, b)∧P (b, c)∧P (a, c) is translated into P ′(a′, b′)∧P ′(b′, c′)∧P ′(a′, c′), a statement

about members of D. The slight difference is that, elsewhere, the same constants are

used in the structure and in the formal language. The ∀ is translated to mean that the

statement holds in the structure as you vary named constants over the entire domain

D. The ∧ has the common meaning of “and.” The structure is a model for the

translated formal statement if it informally holds within the structure. The best

way to understand this is by example since, in this case, to hold informally is a product

of human thought.

In Herrmann (2006), the formal language constants for actual objects in the set-

theory are not used since they are considered as something rather more “pure” in

character. But on the other hand, this is all but types of symbol manipulation. As

an example, consider the informal set of constant symbols D = {a′}. So, D contains

but one constant. This set is good enough to model the formal statement if one selects

the correct set of ordered pairs for the predicate. Let P ′ = {(a′, a′)}. This gives a

structure 〈D,P ′〉. And, it is a fact that (a′, a′) ∈ P ′ and (a′, a′) ∈ P ′ and (a′, a′) ∈ P ′.

(By-the-way, this is obtained via human observation which is a basic method used in

order to prove a mathematical statement.)

However, is it possible that this is a model for the formal statement? Yes! The

reason for this is that in the formal statement there is no statement that “(x 6= y)∧(x 6=

z) ∧ (y 6= z). The formal statement is written in this fashion only to accommodate,

in another structure, possibility different values for the variables. This one simple

structure shows that the statement, an hypothesis say, is consistent. Thus, in this case,

〈D,P ′〉 is a model for the statement. This also indicates that when there is a finite

combination of ∧ and the appropriate number of ∀ and nothing more, then there is a
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structure for which such a statement holds.

Is there a structure that models the statement ∀x∀y(P (x, y) ∧ (¬P (x, y)), where

¬ is interpreted as “not”? Let domain D be a nonempty set as they all must be. One

can argue as follows: suppose that there is a nonempty set P ′ of ordered pairs that

correspond to P . Let (a′, b′) ∈ P ′. (We do not assume that a′ and b′ are necessary

distinct.) Then, it is a contradiction to state that (a′, b′) ∈ P ′ and (a′, b′) /∈ P ′, (i.e.

¬((a′, b′) ∈ P ′)). (Note: I did not write that “observationally” this follows, although

that is the only thing done to arrive at the conclusion.) This also holds if P′ is an

empty relation. Thus, since no such set of ordered pairs exists, there is no possible P ′

and the statement cannot hold in any structure.

As a final example, consider the formal statement ∀x∃y(P (x, x) → P (x, y)). Let

D′ = {a′}. Notice that the “there exists y” means that we must have a nonempty set of

ordered pairs to associate with P . Let P ′ = {(a′, a′)}. This is actually sufficient since

there is no requirement that ¬(x = y). And, it is true that for each x, in particular a′,

there exists a member of D, in particular a′, such that (a′, a′) ∈ P ′. Then the following

informal statement, “If (a′, a′) ∈ P ′, then (a′, a′) ∈ P ′” holds. Hence, 〈D′, P ′〉 models

this formal expression.

What is the must significant aspect of the first and third examples? It is the fact

that, in each case, since the statement has a structure as a model, then any expression,

with the appropriate number of quantifiers ∀, ∃, that is logically deduced from the one

hypothesis using the rules for first-order predicate deduction will hold, be true, in the

structure.

Although this model theory material does seem rather straightforward, it can

become rather more complex when the structure used is generated by another mathe-

matical theory with its own peculiar set of symbols. This is exactly what happens for

NSA.

3. The Actual Set-Theory Used.

Thus far, the set-theory used has been rather informally presented. The actual

set-theory uses two classes of variables the “sets,” and the non-sets, the urelements, as

well as two dedicated constants ∅, and A that name two special sets and two dedicated

constant binary predicate symbols ∈ and =. The variables for non-sets are all related to

A in that when one writes ∃w(w ∈ A) this signifies that in this form “w is a urelement

variable and not a set variable. Thus, unless specific variables are assigned to the

urelements, then, in any formal statement involving urelement variables, they must be

identified as being ∈ related to A. For set-theory, the predicates are not denoted in the

usual way, but by x ∈ y and x = y.
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The actual set-theory does not require any additional formal constants and the

properties of ∅ and = are defined only in terms of variable symbols. For a basic

definition, Jech, (1971, p. 122) restricts some variables. This is not necessary for

NSA. In NSA, it is required that the formal statement variables be restricted by the

formal statement itself. The quantifiers are required to be “bounded.” For example,

∀x(x ∈ Xn → · · ·. If Xn 6= A, then x is a set variable. If Xn = A, then x is a urelement.

It can also be either if x ∈ X1 = X0 ∪P(X0), where P( ) is the set of all subsets of X0.

If x ∈ X0, then it behaves like a urelement. If x ∈ P(X0)), then x behaves like a set.

For sets, the = is set equality. For urelements, = is logical identity.

A standard superstructure is set-theoretically generated. For example, as indicated

above, in one formulation for a particular “level,” the general form is Xn+1 = Xn ∪

P(Xn). Each distinctly different set necessarily has one and only one distinct language

constant name. In mathematical proofs and discussions, the ordinary language used to

discuss formal languages is called the meta-language. In proofs or elsewhere, what

may appear to be two different sets as denoted by two different meta-language informal

symbols may in reality be the same set. This is established if they are shown to be

equal. In this case, one of the symbols can be used as its formal name. If used, there

is the = notion relative to urelements. This should be considered as a type of logical

identity, where informally, for clarity, two or more meta-langrage symbols have been

used where but one may actually be the constant name.

A major difference is introduced into NSA by also allowing constant “names” to

replace the variables under an allowed logic axiom for each member of the standard

superstructure and using other types of names for members of the other superstructures.

Since for the axioms of this type of set-theory only two non-predicate constants are

employed, then this implies that for these structures one can consider the sets and

urelements as modeled by mere sets of constants. These include the constants of the

formal language itself.

4. The Actual Symbolic World of NSA.

NSA is an elaborate addition to ordinary mathematical discourse. But, just a

few specific members of the basic structure employed in this mathematical theory are

used for the GID-model. Consider an infinite set of individuals X0, the atoms for the

set-theory. Often this is intended to be a well known informal entity like the natural

numbers IN, integers Z, rational numbers Q, the real numbers IR or merely an infinite

set. Such a selected set is called the ground set. From this, the present approach

is to build, using the set-theory axioms, a collection of sets called a superstructure

that includes almost all of the relations and the usually defined objects associated with

this “ground” set that are employed throughout a particular axiomatically controlled
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mathematical theory. For example, number theory, various algebraic theories, real

number theory (analysis), the calculus, complex number theory, general or algebraic

topology and many more. These do not include the set-theory used to construct the

superstructures.

It is not important that the technical aspects of this construction be given here.

There is a one-to-one correspondence between each formal language constant and mem-

bers of this superstructure. They are said to “name” the members of the superstructure.

But, essentially what one has is actually but a specially constructed collection of sets of

constants. For NSA, this is called the standard superstructure and each entity is a

standard entity. The language constants form the standard language that names

each constituent of this structure.

When a formal statement is written using only the predicates ∈ and =,

variables and standard constants, then the most important special NSA rule

for symbol manipulation is a back and forth process. One can change the

expression into one where all of the standard constants are altered and con-

versely. For NSA, a formal statement, or its informal counterpart, holds if

and only if the statement one obtains by altering the constants and only the

constants holds for entities in a specially constructed nonstandard struc-

ture. This is called the *-transform (transfer) processes. This structure is

contained within another superstructure, the Y in the model Y = 〈Y,∈,=〉,

which is called in Herrmann (1978 - 1993), the Grundlegend Structure or

G-structure.

Notice that if we only used sets of constants and their modifications and nothing

more, then the behavior of the constants holds if and only if the behavior of the modified

constants holds. By construction, the specific standard superstructure is a model for

almost all aspects of the theory being considered. Certain purely set-theoretic aspects,

relative to the structure, are not modeled, however. The usual Roman-type alphabet

symbols are primarily used as constants as well as all of the special symbols that have

been developed for a particular theory.

Then the next steps in the construction of a nonstandard model for the theory be-

ing considered are rather complex and uses methods that are not part of an individual’s

usual educational experiences with mathematics. This includes graduate education in

subjects other than mathematics and even within graduate courses given for advanced

degrees in mathematics. The construction leads to a set of entities called the internal

entities. The language problem is that the new entities employed in the construction

are, technically, can be extremely different from those entities originally named by the

standard language constants. Further, λ ∈ Y is internal if and only if there is a set
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∗X ∈ Y , such that λ ∈ ∗X.

As mentioned, there is a one-to-one correspondence, the * correspon-

dence, between the standard constants and the extended standard con-

stants. The special NSA rule, *-transform, states that any formal state-

ment that holds in the standard structure also holds in Y upon replacing the

standard constants with the corresponding * altered constants AND con-

versely. For finitely expressed set-theoretic statements, this yields the rules

for symbol manipulation. Relative to expressing theory behavior via the

formal statements, there are also new language symbols used to name other

members of Y that behave in the exact same manner as the standard enti-

ties.

The * altered standard constant symbols are called the extended

standard. These and new language symbols form the internal language

symbols. If we were unable to analyze and compare expressions using the

standard and internal symbols, then we would not recognize that, in com-

parison, there can be considerable differences in behavior being expressed.

It is the comparative differences that, for NSA, yields the “nonstandard”

behavior.

Thus, standard language symbols are in one-to-one correspondence with a subset

of these internal language symbols. Symbolically, for each standard language symbol

a, these new names are denoted by ∗a. This is even so for the standard symbols like
∫

and sin and cos, where these are *-transformed to ∗
∫
, ∗sin, ∗cos symbols. The

* is informally called the star or hyper operator. But, there are a vast “number” of

other internal entities distinct from the named extended standard ones, where some

are named by symbols such as taken from the Greek alphabet and usually one states

that they are for internal entities.

The type of construction employed has another property. Suppose that the ground

set includes the natural numbers IN, or at least, a set that behaves like it. Then in ∗
IN

is an internal λ such that for any n ∈ IN, ∗n < λ. And, clearly, λ /∈ IN for if it were

we would have the contradiction that λ < λ since by the *-transform process there are

no members of ∗
IN with this property. (Actually, I have used a certain convention in

order to write it this way since the < is actually an extension of the natural number

relation < and it satisfies all the modeled natural number properties if restricted to the

extended standard symbols obtained from IN. Some authors would have written this

as ∗<.)

The rules for symbol manipulation include those that allow one to go from the

standard symbols to the * symbols. Via *-transform, the rules are generally obtained
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as follows: take any standard statement that holds in the standard structure. Write

it using only standard symbols without any variables. Express it only in a finite real

or conceptually finite form. Then put a * on each of the constant language sym-

bols. Symbols such as {, }, (, ) and the like are not standard constant symbols. For

example, if one knows that {a, b, c, d} ⊂ B, then we know that ∗{a, b, c, d} means

{ ∗a, ∗b, ∗c, ∗d} ⊂ ∗B. Why have I not writing ∗⊂? The ⊂ relation is defined by the

∈ in the standard structure, and the construction of Y is of a very special type so that

the ∈ is the same throughout the entire superstructure. When *-transform is applied,

the ⊂ only refers to “internal sets.” As mentioned, properly written formal standard

statements always need to include a portion that specially states that the variables are

members of a set in the standard superstructure. Sometimes, this requirement is miss-

ing but is to be “understood.” The superstructure Y includes all the internal entities

as well as many others not yet discussed. For an infinite B, there are subsets of ∗B

that are “external” objects and some of these are identified below.

Then we have the sets that are carved out of the standard structure by “set-

builder” notation. The same holds in that case also. For example, define B = {x |

(x ∈ IN) ∧ (x > 6)}. Then ∗B = {x | (x ∈ ∗
IN) ∧ (x > 6)}. It seems I may have just

broken one of the rules. The totally correct set-builder definition for ∗B should have

been ∗B = {x | (x ∈ ∗
IN) ∧ (x ∗> ∗6)}. The reason for this is that > is a standard

name for a binary relation on the natural numbers IN and 6 is a standard name for one

of them. In the literature, this way of defining ∗B is retained. This alteration in what

one should expect follows what mathematicians term as “conventions” (special rules).

The set IN is a subset of the atoms A in our set-theory. So, let a ∈ A. Then

the *-transform is ∗a ∈ ∗A and conversely. By definition, the expression b ∈ a has

no meaning using the language of the set-theory. Hence, a set of symbols strings like
∗b ∈ ∗a has no meaning in Y, in this case. The superstructure Y is constructed within

our set-theory from the set ∗A. So for this superstructure, the ∗A behaves as we had

hoped like a set of superstructure atoms. This is one reason that, by convention, most

individuals who have worked in NSA simply use the older standard symbol for members

of ∗A, it being understood that they are not actual members of A. This seems to make

A a subset of ∗A which, technically, it is not. This will be more fully explained below.

A convention is also used for various < type names. This relation is defined for

members of IN in this case. So if we restrict the ∗< to them, then, by the previous

convention, another convention drops the ∗ notation. But, this does not explain why

it is also dropped even if one or more of the objects to which ∗< applies are inter-

nal nonstandard objects with their internal names. This is yet another convention.

Mathematically, under the previous convention, when restricted to the symbols used
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for members of what is now IN, < is used rather than ∗<. So, why not specialize this

just a little bit more and not use ∗< for any members of ∗
IN and then simply consider

the < as it is used for the now IN looking members of ∗
IN as but a restriction of < rel-

ative to how the symbol is employed for ∗
IN. The ∗< relation has the same first-order

properties on internal objects as < has on standard objects. Note that each ∗n = n,

(the notational convention) is internal since ∗n ∈ ∗
IN.

Is there a reasonable explanation why we might have added these conventions to

the already large storehouse of new symbols and rules for how to manipulate them?

What are the natural numbers? Although we investigate them by manipulating mere

collections of symbols are we actually investigating a unique set of entities termed the

natural numbers? In fact, natural numbers properties correspond to “anything” that

satisfies a specific set of theory statements. Relative to collections of symbols, they

are any collection of symbols that satisfies the axioms. If the axioms are stated in the

form of variables, with maybe one or two dedicated constant, then the symbols form a

model for these axioms. Are there collections of such symbols used to name members

of the standard superstructure in the structure Y that do satisfy the standard structure

natural number theory statements? The answer is yes and, in the literature, they may

or may not be identified. They are just the collections of all of the extended standard

language symbols, relative to IN.

The nonstandard structure is determined by means of the ultrapower construc-

tion using a Theorem such as 8.2 in Hurd and Loeb (1985). When used for comparison

purposes these sets are defined as follows: let B be a member of the standard super-

structure. Then for each a ∈ B, [a] is the equivalence class that contains the constant

a sequence. Define σB = {[a] | a ∈ B}. (Note: This definition for σ is not the one that

appears in many of my writings. There I often define σB = { ∗a | a ∈ B}.) If you do

this for all of the atoms and sets in the standard superstructure and only consider these

sets and of objects which are also members of Y , then the entire collection behaves like

the corresponding named objects without the σ attached. That is, they form a model

within superstructure Y for statements that hold in the standard superstructure. So this

gives an indication as to why on the level of the atoms and relations relative to them

this special convention is employed. It allows one to write a comparative statement

such as IN ⊂ ∗
IN, IN 6= ∗

IN, where, technically, this means that σ
IN ⊂ ∗

IN, σ
IN 6= ∗

IN.

The structure Y has a special property which is identified by its name. The

structure is a polysaturated enlargement. (This only refers to the degree of “sat-

uration.”) If B is any infinite set in Y , then σB is an “external” object member of Y

and an external subset of ∗B and σB 6= ∗B. The conventions used allow for one to

write for the (external) set of atoms A ⊂ ∗A. I tend to follow these conventions.
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On the other hand, to make comparisons within “higher-levels” within the super-

structure Y , the σ notion is used. This does not invalidate the comparison relative

to the original superstructure since one can merely consider this is a change in the

names employed. Some authors simply construct their theorems and proofs so that

such comparisons are not needed. Consider the following three statements.

(1) For each y ∈ IN, ∃x((x ∈ IN) ∧ (x > y)). (2) For each y ∈ σ
IN, ∃x((x ∈

σ
IN)∧(x σ> y)). (3) For each y ∈ ∗

IN, ∃x((x ∈ ∗
IN)∧(x ∗> y)) (without the convention).

Each of these statements holds in their respective structures. It is statement (3) that,

due to the construction of Y, leads to the further conclusion that there is a λ ∈ ∗
IN

such that for each n ∈ σ
IN, λ ∗> n or simply λ > n.

Thus, the major difference between NSA and other mathematical approaches is in

its use of different sets of symbols that use the customary rules for their manipulation

and new rules not seen before. There are two other sets of symbols not yet mentioned.

After you remove all the internal language symbols there remains many more members

of Y that one needs to name. They are named by the external language symbols

or the the symbols for the external entities. Thus, there are internal objects in

Y and all others are external objects. The Robinson set of infinitesimals and the set

of infinite numbers are external objects in Y . But, how do we investigate the interplay

between distinctly different members of Y ? As mentioned, in mathematical logic, the

ordinary language we use to discuss formal languages is the meta-language. This is

what is done in this case. The meta-language one sees in NSA proofs, discussions, and

definitions includes the other languages and all else that is needed.

The meta-language used to construct the superstructures and structures used for

NSA is not used in this article. It is unnecessary if one trusts the mathematicians who

have developed NSA. This is an example as to why such material does not appear here.

“Set Π0
U
V (X) :=

⋃∞

n=0
ΠU [Vn(X) − Vn−1(X)]. . . . When [a], [b] ∈ Π0

U
, we write

[a] ∈U [b] if ai ∈ bi a.e.”

Such an elaborate addition to mathematical discourse seems rather purposeless

unless it gives results that yield significant results not obtainable by less than rigorous

means. The most significant, if they exist, would be in areas of application to other

disciplines. Although NSA solves the Newton-Leibniz problem, as well as others, and

clarifies and improves comprehension as mathematics is applied to various physical

areas, apparently these results and applications are not considered significant enough

so as to replace the older well established methods. The General Grand Unification

Model, its GID-model and the GD-model interpretations should be exceptions to this.
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5. The Grundlegend-Deductive (GD)-model.

For non-mathematical applications, the term “model” is generalized to include a

one-to-one correspondence between the mathematical symbols as they appear in a math-

ematical theory and meaningful terms taken from another discipline. Properly defined

discipline items, represented by formal and informally defined sets, are also in one-to-

one correspondence with mathematical symbols.

The first theological application of NSA is the Grundlegend-Deductive (GD)-

model. This model is a comparative model for God’s Old and than New Testament

Biblically stated attributes. This was followed, in 1983, by a creationary interpretation

for the NSA produced General Grand Unification Model (GGU-model). This solves

the General Grand Unification Problem that was considered as unsolvable by members

of the mathematics and physics departments of Princeton University. Applying NSA

to theology yields the first mathematical models for various theological concepts and

establishes there rationality.

The assignment of the abstract symbols to other symbols or terms within math-

ematical theories or non-mathematical disciplines is called, in general, an interpre-

tation. The term “vector” as used in the theory “linear algebra” can take on many

different interpretations. Vectors can be line segments with identified end points in

geometry. They can be assigned the physical notions of a direction as coupled with

a numerical value. They can yield significant physical measures in quantum physics.

They can even take on terms from economics.

Hence, once one has the mathematical language used to produce the results con-

tained within NSA, then unless one wishes to remain within its technical boundaries,

one interpretes it in mathematical subjects such as real or complex analysis, or within

other disciplines considered as exterior to mere symbolic manipulation.

The subject of Mathematical Logic is an application of metamathematics to the

mathematical languages themselves, which are expressed formally. Thus, if one applies

NSA to aspects of this subject there is a considerable clash in terminology. NSA has its

languages and we are using that language to investigate other “languages.” This can

be more confusing if the concepts of universal logic are investigated by NSA since

universal logic investigates the notion of languages in general not just those that use

written alphabets or formal expressions. I term this as a general language and it

includes, at least, all forms we use to communicate ideas in visual form. Thus, when the

NSA symbols are interpreted as entities related to a general language, different terms

need to be used or understood and the interpreted symbols themselves should carry their

interpreted meanings. Further, the symbols used for the interpretations may be different
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in formal technical papers than employed for more informal presentations. This often

occurs due to the lack of fonts.

In physical modeling, it is often the case that the mathematical theory

exists prior to an application. Then one begins with a specific discipline

and assigns symbols from a mathematical theory to the discipline terms.

The application of NSA to a general language begins with an informal model

using informal set-theory for items in very basic word theory. The symbols used

for this interpretation are Roman fonts. Then this informal model is put into one-

to-one correspondence with a more formally constructed mathematical theory. The

corresponding symbols are written in bold font. Certain common mathematical entities

such as the natural and rational numbers and customary symbolic representations for

these retain their mathematics italics form. Further contextually, the same symbols

are often used for the informal natural numbers, the rational numbers and the like as

used for the formal standard structure. Thus IN denotes the natural numbers in both

contexts and, for example, f(i), as i ∈ IN, are the informal values of a sequence f.

Given a general language alphabet ALP, one constructs from ALP, Markov (1954)

styled words by intuitively writing a finite list of such alphabet items, with repetition,

from right-to-left. The alphabet ALP is for a general language. This yields the informal

set of words, today technically denoted by W′, - an informal general language.

Notationally, W′ is most often written as L. A single alphabet symbol is a word. Usually,

however, words are considered as composed of finitely many words combined by the

“juxtaposition” operator. Mathematically this operator yields an abstract algebraic

structure termed a “monoid.” I have a copy of the book of Matthew as transcribe

in the Greek of 3’rd century. It contains neither punctuation, nor spaces between the

words, the sentences, the paragraphs. It is composed of one “continuous” collection of

old-styled capital Greek alphabet letters printed on 77 pages.

The informal language L was originally encoded as subsets of the standard natural

numbers IN, which is a subset of the set of atoms. The entire NSA model prior to

interpretation was technically a pure NSA theory of numbers. Recently, this has been

modified to incorporate, if one wishes to do so, a Robinson approach, where W′ is

consider as a subset of the set of atoms. The ground set for the standard superstructure

is, at least, the set W′ ∪ Q, a subset of the set of atoms, where Q is considered as the

set of rational numbers. The properties that identify Q as such a set are contained in

rather immediate superstructure levels. The Q is used to identify GGU-model events.

So as to incorporate the fact that various combinations of words yield the exact

same word, members of W′ are encoded in such a manner to preserve this fact and
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embedded into the standard superstructure. Under this embedding, the “language” is

denoted by W ′ or L. Any symbolized object within word theory, K, that is so embedded

is symbolized by a bold K and the same terminology used in the informal theory is used

for this standard embedding. Thus, for a word w ∈ L, w ∈ L denotes the corresponding

word in the corresponding embedded general language.

Consider the term “intelligent.” Such a word can be modified by the word “very,”

or a similar word, to indicate a strength of intelligence when compared to others. If an

entity is considered as intelligent, then a second entity, in comparison, can be considered

as “very intelligent,” then a third one can be considered as “very, very intelligent.” In

these forms a small logical process is must often applied. “Very, very intelligent”

implies “very intelligent,” which implies “intelligent.” The pattern is similar to how

we compare numbers such as {0, 1, 2}, 2 > 1 > 0, and 2 > 0, if one uses these numbers

to count the number of “very” strings placed to the left of the attribute. This form of

reasoning is termed as adjective reasoning and is an actual restriction of our most

basic model for deductive thought, propositional deduction. Other constructions, such

as “much, much more”, are also employed that have the same intuitive meaning.

For the GD-model, one selects other nouns that characterize such comparative

human attributes that can be so modified by the word “very” or equivalent. Then all

of these finitely long words and an operator that mimics this reasoning process are

embedded into the standard superstructure. The standard language that represents

each of these constructed words is a subset of L. The entire embedded collection of all

such words is denoted by BP, where b is the basic attribute, and the better than

or stronger than ordering applies to those words that have the same attribute. This

ordering, denoted by ≤B, is defined by the ordering of the natural numbers, where the

number is the number of “very” strings attached to the left of an attribute.

In order to informally interprete Theorem 4.4.1 in Herrmann (1978-1993), a term

is employed that is intuitively considered to indicate that there are “infinitely many”

“very” strings attached to an attribute b. The term used is ultraword. For a particular

b ∈ BP, there is an ultraword c ∈ ∗L such that for each a ∈ BP, where b ≤B a,

the ultraword c has the property that ∗a = a ∗≤B c. Notice that c is written in a

mathematics italic font. It is an “hyperfinite” infinitely long word representable by an

infinite set [f ] that is an internal object, and it is not representable by an extended

standard symbol. This follows from the fact that c ∈ ∗Cb and each object in Cb is a

finite set. Hence, if ∗a ∈ ∗Cb and c = ∗a, then c = ∗a = a is a finite set; a contradiction

Hence, informally (intuitively), from how increasingly stronger attributes are de-

scribed by adding “very” strings to an attribute, an ultraword description is predicted

that describes an attribute that is infinitely stronger than any such attribute used to
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characterize any biological entity. If one considers such an “infinite” notation as indi-

cating the size of a set, than it has been shown that the size of this infinite is greater

than the size of any such infinite measure for any member of the standard superstruc-

ture. The mathematical measure for it is “outside” of the superstructure, so to speak.

Such predicted hyper-attributes, higher-attributes, yield a partial description for God’s

corresponding Biblical attributes. The “Omni” characterizing attributes are also ra-

tionally predicted. Recently, (Herrmann (2014), it has been shown that this notion

of the “infinite” is actually better described as “larger yet” and is actually unlimited

and mathematically immeasurable. Additional Divine characteristics, such as distinct

tri-category characteristics, are predicted after equation (2) in Herrmann (2013a).

(1) In summary, it is predicted that God’s attributes are infinitely

more powerful, stronger than or greater than comparable human attributes.

Further, the “Omni” attributes and distinct tri-category characteristics are

rationally predicted.

6. The General Intelligent Design (GID) Model.

In Herrmann (2013), GGU-model processes are used to predict five universe gen-

erating schemes. These schemes are termed as the secular model. For the single-

complexity universe, there are four schemes and each displays signatures for intelligent

design by an higher-intelligence. The “strongest” display is exhibited by schemes (S)

and (S’). As pointed out at the end of Section 7, in Herrmann (2013), these mathe-

matically represented schemes yield analogue behavioral models for processes relative

to intelligent design by an higher-intelligence.

It is predicted that within a non-physical substratum world there exists entities

called ultra-propertons that have properties but they should not actually be visual-

ized as some sort of non-physical object. An info-field is a specific and unique com-

bination of ultra-propertons. A single process applied to an info-field, the realization

process, yields a physical reality. Various aspects of the secular model are translatable

using the language of intelligent design.

The major GID-model intelligent design statements are translations taken from

Herrmann (2013b, 2002). The following statements are translations of the material that

appears in Herrmann (2014a, 2013, 2013b, 2002) for the strongest display of intelligent

design for a single complexity universe. They employ the previous “intuitive” notion

of an infinitely “long” ultraword based upon comprehensible finitely long members

of L. These are coupled with an infinite form of higher-intelligence deduction that is

predicted from the simplest linguistically modeled form of human deduction as used

within the physical science community and throughout our daily lives. This form is
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as follows: suppose that P and Q are meaningful phrases. Then P, Q ∈ L and the

sentence If P, then Q. ∈ L. The form of deduction is: given “P” and “if P, then Q.”

then “Q” is deduced.

In the following, some of the symbol names for certain entities are employed.

(1) Within our universe, every physical entity and the behavior of every physical

combination of these entities are intelligently designed by a higher-intelligence.

(2) The designs are produced by a predicted infinite form of measurable intelligence

and they satisfy the known and verified physical laws.

(3) Within our universe, every physical entity and the behavior of every physi-

cal combination of these entities is indirect evidence for the existence of a Biblically

described creator.

(4) There exists a predicted higher-intelligence designed ultraword, W ∈ ∗L, that

contains completely detailed descriptions, ∗ f(i, j) ∈ ∗L, for each specific (i, j) identified

universe-wide slice of a universe (a universe-wide frozen-frame) at each (i, j) moment

in its development. This collection of descriptions is called a *developmental paradigm.

(5) Associated with W , there exists a second higher-intelligence designed ultra-

word, WI ∈ ∗L, that contains specific instructions as to how to reproduce each designed
∗ f(i, j) via distinct info-fields IF (i, j). The WI is called an *instruction paradigm.

(Note: The * is usually translated by the term “hyper.”) The designed ultrawords

display an higher-form of rational behavior.

(6) It is predicted, from the simplest form of modeled human deduction A, that

there exists a higher-form of deduction ∗A such that, when ∗A is applied to either W

or WI , each ∗f(i, j) or IF (i, j) is *deduced in the correct (i, j) order, respectively.

(7) Each component of each of the five secular model schemes is intelligently de-

signed by a higher-intelligence.

(8) For each moment (i, j) in the development of a physical universe, application

of the realization process, St, to each IF (i, j) yields the physical-systems contained

within a specific (i, j)-universe-wide frozen-frame. The St process has an intelligent

agency signature.

(9) The ultrawords correspond to higher-intelligence thoughts that are transformed

into a physical reality.

(10) For a participator universe, where participators such as us can seemly alter

a development, there are infinitely many such ultrawords that allow for such altered

universes to be produced in the correct step-by-step order (Herrmann, (2014a).

For the weakest scheme for the development of a universe, (PWM), only the

(generalized) sequences of identified info-fields IF (i, j) exist. The intelligent design

17



is displayed for every physical-system within each specific universe-wide frozen-frame

as it is produced, via the realization process, by the refined method used within the

GGU-model to design each info-field. That is, each physical-system within a specific

universe-wide frozen-frame is intelligently designed by a higher-intelligence and the

design is displayed as each info-field is realized.
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