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Abstract. Recently the general orthogonal planes split with respect to
any two pure unit quaternions f, g ∈ H, f2 = g2 = −1, including
the case f = g, has proved extremely useful for the construction and
geometric interpretation of general classes of double-kernel quaternion
Fourier transformations (QFT) [7]. Applications include color image
processing, where the orthogonal planes split with f = g = the grayline,
naturally splits a pure quaternionic three-dimensional color signal into
luminance and chrominance components. Yet it is found independently in
the quaternion geometry of rotations [3], that the pure quaternion units f, g
and the analysis planes, which they define, play a key role in the spherical
geometry of rotations, and the geometrical interpretation of integrals related
to the spherical Radon transform of probability density functions of unit
quaternions, as relevant for texture analysis in crystallography. In our
contribution we further investigate these connections.

1. Introduction to quaternions
Gauss, Rodrigues and Hamilton’s four-dimensional (4D) quaternion algebra
H is defined over R with three imaginary units:

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1. (1)

The explicit form of a quaternion q ∈ H is q = qr + qii + qjj + qkk ∈ H,
qr, qi, qj , qk ∈ R. The quaternion conjugate (equivalent to Clifford conjugation
in Cl(3, 0)+ and Cl(0, 2)) is defined as q̃ = qr − qii − qjj − qkk, p̃q = q̃ p̃,
which leaves the scalar part qr unchanged. This leads to the norm of q ∈ H
|q| =

√
qq̃ =

√
q2
r + q2

i + q2
j + q2

k, |pq| = |p| |q| . The part q = V (q) = q − qr =
1
2(q − q̃) = qii + qjj + qkk is called a pure quaternion, it squares to the

1 In memory of Hans Wondratschek, *07 Mar. 1925 in Bonn, †26 Oct. 2014 in Durlach.
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negative number −(q2
i + q2

j + q2
k). Every unit quaternion ∈ S3 (i.e. |q| = 1)

can be written as: q = qr + qii + qjj + qkk = qr +
√
q2
i + q2

j + q2
k q̂ =

cosα + q̂ sinα = exp(α q̂), where cosα = qr, sinα =
√
q2
i + q2

j + q2
k, q̂ =

q/ |q| = (qii + qjj + qkk)/
√
q2
i + q2

j + q2
k, and q̂2 = −1, q̂ ∈ S2. The left

and right inverse of a non-zero quaternion is q−1 = q̃/ |q|2 = q̃/(qq̃). The
scalar part of a quaternion is defined as S(q) = qr = 1

2(q + q̃), with symmetries
∀p, q ∈ H: S(pq) = S(qp) = prqr − piqi − pjqj − pkqk, S(q) = S(q̃), and linearity
S(αp+ βq) = α S(p) + β S(q) = αpr + βqr, ∀p, q ∈ H, α, β ∈ R. The scalar part
and the quaternion conjugate allow the definition of the R4 inner product of
two quaternions p, q as p · q = S(pq̃) = prqr + piqi + pjqj + pkqk ∈ R.

Definition 1.1 (Orthogonality of quaternions). Two quaternions p, q ∈ H are
orthogonal p ⊥ q, if and only if S(pq̃) = 0.

2. Motivation for quaternion split
2.1. Splitting quaternions and knowing what it means
We deal with a split of quaternions, motivated by the consistent appearance
of two terms in the quaternion Fourier transform [4]. This observation (note that
in the following always i is on the left, and j is on the right) and that every
quaternion can be rewritten as q = qr + qii + qjj + qkk = qr + qii + qjj + qkij,
motivated the quaternion split2 with respect to the pair of orthonormal pure
unit quaternions i, j

q = q+ + q−, q± =
1

2
(q ± iqj). (2)

Using (1), the detailed results of this split can be expanded in terms of real
components qr, qi, qj , qk ∈ R, as

q± = {qr ± qk + i(qi ∓ qj)}
1± k

2
=

1± k

2
{qr ± qk + j(qj ∓ qi)}. (3)

The analysis of these two components leads to the following Pythagorean
modulus identity [5].

Lemma 2.1 (Modulus identity). For q ∈ H, |q|2 = |q−|2 + |q+|2.

Lemma 2.2 (Orthogonality of OPS split parts [5]). Given any two quaternions
p, q ∈ H and applying the OPS split of (2) the resulting two parts are orthogonal,
i.e., p+ ⊥ q− and p− ⊥ q+,

S(p+q̃−) = 0, S(p−q̃+) = 0. (4)

Next, we discuss the map i( )j, which will lead to an adapted orthogonal
basis of H. We observe, that iqj = q+ − q− , i.e. under the map i( )j the q+

part is invariant, but the q− part changes sign. Both parts are two-dimensional (3),

2 Also called orthogonal planes split (OPS) as explained below.



and by Lemma 2.2 they span two completely orthogonal planes, therefore also the
name orthogonal planes split (OPS). The q+ plane has the orthogonal quaternion
basis {i− j = i(1 + ij), 1 + ij = 1 +k}, and the q− plane has orthogonal basis
{i + j = i(1 − ij), 1 − ij = 1 − k}. All four basis quaternions (if normed:
{q1, q2, q3, q4})

{i− j, 1 + ij, i + j, 1− ij}, (5)

form an orthogonal basis of H interpreted as R4. Moreover, we obtain
the following geometric picture on the left side of Fig. 1. The map i()j
rotates the q− plane by 180◦ around the two-dimensional q+ axis plane. This
interpretation of the map i()j is in perfect agreement with Coxeter’s notion of
half-turn [2]. In agreement with its geometric interpretation, the map i( )j is an
involution, because applying it twice leads to identity

i(iqj)j = i2qj2 = (−1)2q = q. (6)

We have the important exponential factor identity

eαiq±e
βj = q±e

(β∓α)j = e(α∓β)iq±. (7)

This equation should be compared with the kernel construction of the
quaternion Fourier transform (QFT). The equation is also often used in our
present context for values α = π/2 or β = π/2.

Finally, we note the interpretation [7] of the QFT integrand e−ix1ω1h(x) e−jx2ω2

as a local rotation by phase angle −(x1ω1 + x2ω2) of h−(x) in the two-
dimensional q− plane, spanned by {i + j, 1− ij}, and a local rotation by phase
angle −(x1ω1 − x2ω2) of h+(x) in the two-dimensional q+ plane, spanned by
{i−j, 1+ij}. This concludes the geometric picture of the OPS of H (interpreted
as R4) with respect to two orthonormal pure quaternion units.

2.2. Even one pure unit quaternion can do a nice split
Let us now analyze the involution i( )i. The map i( )i gives

iqi = i(qr + qii + qjj + qkk)i = −qr − qii + qjj + qkk. (8)

The following orthogonal planes split (OPS) with respect to the single
quaternion unit i gives

q± =
1

2
(q ± iqi), q+ = qjj + qkk = (qj + qki)j, q− = qr + qii, (9)

where the q+ plane is two-dimensional and manifestly orthogonal to the two-
dimensional q− plane. The basis of the two planes are (if normed: {q1, q2},
{q3, q4})

q+-basis: {j,k}, q−-basis: {1, i}. (10)

The geometric interpretation of i( )i as Coxeter half-turn is perfectly analogous
to the case i( )j. This form (9) of the OPS is identical to the quaternionic
simplex/perplex split applied in quaternionic signal processing, which leads in
color image processing to the luminosity/chrominance split [6].



3. General orthogonal two-dimensional planes split (OPS)
Assume in the following an arbitrary pair of pure unit quaternions f, g, f2 =
g2 = −1. The orthogonal 2D planes split (OPS) is then defined with respect to
any two pure unit quaternions f, g as

q± =
1

2
(q ± fqg) =⇒ fqg = q+ − q−, (11)

i.e. under the map f()g the q+ part is invariant, but the q− part changes sign.
Both parts are two-dimensional, and span two completely orthogonal

planes. For f 6= ±g the q+ plane is spanned by two orthogonal quaternions
{f − g, 1 + fg = −f(f − g)}, the q− plane is e.g. spanned by {f + g, 1− fg =
−f(f+g)}. For g = f a fully orthonormal four-dimensional basis of H is (R acts
as rotation operator (rotor))

{1, f, j′,k′} = R−1{1, i, j,k}R, R = i(i + f), (12)

and the two orthogonal two-dimensional planes basis:

q+-basis: {j′,k′}, q−-basis: {1, f}. (13)

Note the notation for normed vectors in [3] {q1, q2, q3, q4} for the resulting total
orthonormal basis of H.

Lemma 3.1 (Orthogonality of two OPS planes). Given any two quaternions q, p
and applying the OPS with respect to any two pure unit quaternions f, g we get zero
for the scalar part of the mixed products

Sc(p+q̃−) = 0, Sc(p−q̃+) = 0. (14)

Note, that the two parts x± can be represented as

x± = x+f
1± fg

2
+ x−f

1∓ fg
2

=
1± fg

2
x+g +

1∓ fg
2

x−g, (15)

with commuting and anticommuting parts x±ff = ±fx±f , etc.
Next we mention the possibility to perform a split along any given set

of two (two-dimensional) analysis planes. It has been found, that any two-
dimensional plane in R4 determines in an elementary way an OPS split and
vice versa, compare Theorem 3.5 of [7].

Let us turn to the geometric interpretation of the map f()g. It rotates the
q− plane by 180◦ around the q+ axis plane. This is in perfect agreement with
Coxeter’s notion of half-turn [2], see the right side of Fig. 1. The following
identities hold

eαfq±e
βg = q±e

(β∓α)g = e(α∓β)fq±. (16)

This leads to a straightforward geometric interpretation of the integrands of
the quaternion Fourier transform (OPS-QFT) with two pure quaternions f, g,
and of the orthogonal 2D planes phase rotation Fourier transform [7].
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Figure 1. Geometric pictures of the involutions i( )j and f()g as half turns.

We can further incorporate quaternion conjugation, which consequently
provides a geometric interpretation of the QFT involving quaternion
conjugation of the signal function. For d = eαg, t = eβf the map d (̃ ) t
represents a rotary-reflection in four dimensions with pointwise invariant line

d + t, a rotary-reflection axis d − t: d (̃d− t) t = −(d − t), and rotation angle
Γ = π − arccos S

(
d̃t
)

in the plane ⊥ {d+ t, d− t}. (The derivation of Γ will be
shown later.) We obtain the following Lemma.

Lemma 3.2. For OPS q± = 1
2(q ± fqg), and left and right exponential factors we

have the identity
eαg q̃±e

βf = q̃±e
(β∓α)f = e(α∓β)g q̃±. (17)

4. Coxeter on Quaternions and Reflections [2]
The four-dimensional angle Θ between two unit quaternions p, q ∈ H, |p| =
|q| = 1, is defined by

cos Θ = Sc(pq̃). (18)

The right and left Clifford translations are defined by Coxeter [2] as

q → q′ = qa, q → q′′ = aq, a = eâΘ, â2 = −1. (19)

Both Clifford translations represent turns by constant angles Θq,q′ = Θq,q′′ = Θ.
We analyze the following special cases, assuming the split q± w.r.t. f = g = â:

• For â = i, aq− = q−a = (q−a)−, is a mathematically positive (anti
clockwise) rotation in the q− plane {1, i}.
• Similarly, aq+ = (aq+)+, is a mathematically positive rotation in the q+

plane {j,k}.
• Finally, q+a = ãq+ = (q+a)+, is a mathematically negative rotation

(clockwise) by Θ in the q+ plane {j,k}.
Next, we compose Clifford translations, assuming the split q± w.r.t. f = g = â.
For the unit quaternion a = eâΘ, â2 = −1 we find that

q → aqa = a2q− + q+ (20)



is a rotation only in the q− plane by the angle 2Θ, and

q → aqã = q− + a2q+ (21)

is a rotation only in the q+ plane by the angle 2Θ.
Let us now revisit Coxeter’s Lemma 2.2 in [2]: For any two quaternions

a, b ∈ H, |a| = |b|, ar = br, we can find a y ∈ H such that

ay = yb. (22)

We now further ask for the set of all y ∈ H such that ay = yb? Based on
the OPS, the answer is straightforward. For a = |a|eΘâ, b = |a|eΦb̂, Φ = ±Θ,
â2 = b̂2 = −1 we use the split q± = 1

2(q ± âqb̂) to obtain:

• For Θ = Φ: The set of all y spans the q− plane. Moreover,

aq+b = q+, q+b = ãq+, aq+ = q+b̃, aq−b = a2q− = q−b
2, aq− = q−b. (23)

• For Θ = −Φ: The set of all y spans the q+ plane. Moreover,

aq−b = q−, q−b = ãq−, aq− = q−b̃, aq+b = a2q+ = q+b
2, aq+ = q+b. (24)

Let us turn to a reflection in a hyperplane. Theorem 5.1 in [2] says: The
reflection in the hyperplane⊥ a ∈ H: Sc(aq̃) = 0, |a|2 = 1, a = |a|eΘâ, â2 = −1,
is represented by

q → −aq̃a. (25)

We analyze the situation using the OPS. We define the split q± = 1
2(q± âqâ)

to obtain
q+ → −aq̃+a = q+, a→ −aãa = −a. (26)

and for a′ = ae−
π
2
â

a′ → −aã′a = a′. (27)

We further consider a general rotation. Theorem 5.2 in [2] states: The
general rotation through 2Φ (about a plane) is q → aqb, a = |a|eΦâ, b = |a|eΘb̂,
Φ = ±Θ, â2 = b̂2 = −1.

We again apply the OPS. We define the split q± = 1
2(q ± âqb̂) to obtain:

• For Θ = Φ: Rotation of q− plane by 2Φ around q+-plane.
• For Θ = −Φ: Rotation of q+ plane by 2Φ around q−-plane.

Let us illustrate this with an example: â = b̂ = i, Φ = −Θ,

aq−b = q−. (28)

For q+ = j:

aq+b = ajb = jb2 = je−2θi = j cos 2Φ− k sin 2Φ, (29)



a rotation in the q+-plane around the q− plane. Note, that the detailed analysis
of general q → aqb, q± = 1

2(q ± âqb̂), |a| = |b| = 1, can be found in [7].
As for the rotary inversion, we follow the discussion in [7], sec. 5.1, but add

a simple formula for determining the rotation angle. The rotary inversion is
given by, d, t ∈ H, |d| = |t| = 1, q → dq̃t. For d 6= ±t, [d, t] = dt− td, we obtain
two vectors in the rotation plane v1,2 = [d, t](1± d̃t), with dṽ1,2t = −v1,2d̃t. The
angle Γ of rotation can therefore be simply found from

cos Γ = Sc(
1

|v1|2
ṽ1dṽ1t) = Sc(−d̃t) = cos(π − γ), (30)

with γ the angle between d and t : cos γ = d̃t.

5. Quaternion geometry of rotations [3] analyzed by 2D OPS
According to [3] the circle C(q1, q2) of all unit quaternions, which rotate g → f ,
f 6= ±g is given by

q(t) =
1− fg
|1− fg|

e
t
2
g = q1e

t
2
g, t ∈ [0, 2π), q(t)gq̃(t) = f, q2 =

f + g

|f + g|
.

The two-dimensional OPS qf,g± = 1
2(q ± fqg) tells us, that all q(t), t ∈ [ 0, 2π )

are elements of the q− plane. And in deed, fq−g = −q− for all q− ∈ H leads to

f = q−gq
−1
− , (31)

for all q− in the q−-plane. Note, that this is valid for all f, g ∈ H, f2 = g2 = −1,
even for f = ±g ! We therefore get a one line proof, which at the same time
generalizes from the unit circle to the whole plane.

Meister and Schaeben [3] state that for q ∈ C(q1, q2): fq, qg, fqg ∈ C(q1, q2).
This can easily be generalized to the whole q−-plane, because

(fq−)− = fq−, (q−g)− = q−g, (fq−g)− = fq−g. (32)

We can use the exponential form, and show that the circle C(q1, q2)
parametrization of (34), (35) in [3] is a specialization of the general relation

e
t
2
fq− = q−e

t
2
g (33)

which means that the two parametrizations are element wise identical.
Now we look at the quaternion circles for the rotations g → ±f . Prop. 5 of

[3] states: Two circles C(q1, q2) = G(g, f) and C(q3, q4) = G(g,−f) = G(−g, f),
representing all rotations g → f and g → −f , respectively, are orthonormal to
each other. Here four orthogonal unit quaternions are defined as:

q1 =
1− fg
|1− fg|

, q2 =
f + g

|f + g|
, q3 =

1 + fg

|1 + fg|
, q4 =

f − g
|f − g|

. (34)



We provide a simple proof: We already know that all q1, q2, span the q− plane
of the split qf,g± = 1

2(q ± fqg), and q3, q4 span the q+-plane. And that

fq±g = ±q± ⇔ f = q±(∓g)q−1
± . (35)

QED. Note, the proof is again much faster than in [3]. We see that G(g, f) =

{qf,g− /|qf,g− |, ∀q ∈ H}, and G(g,−f) = {qf,g+ /|qf,g+ |, ∀q ∈ H}.
For later use, we translate the notation of [3] (38),(39):

n3 = −n1 =
[f, g]

|[f, g]|
, n4 = q4, n2 = n4n1, n4 = n1n2, n1 = n2n4, (36)

which shows that {n1, n2, n4} is a right handed set of three orthonormal pure
quaternions, obtained by rotating {i, j,k}.

The two circles G(g, f), G(g′, f) do not intersect for g 6= g′, see Cor. 1(i) of
[3]. We provide a simple proof: Assume ∃1q ∈ H : fqg = −q, fqg′ = −q for
g 6= g′. Then

fqg = fqg′ ⇔ g = g′ ⇒ G(g, f)
⋂
G(g′, f) = ∅. (37)

QED.
Cor. 1 (iii) of [3] further states that for every 3D rotation R and given g0,

g2
0 = −1 we can always find f , f2 = −1, such that R is represented by a

(unit) quaternion q in G(g0, f). We can equivalently ask for f , such that q
representing the rotation R is ∈ qf,g0− -plane. We find

fqg0 = −q ⇔ f = qg0q
−1. (38)

The left side of Fig. 2 shows two small circles C(g, ρ), C(f, ρ) ⊂ S2 [3]. We
now analyze the mapping between pairs of small circles. A small circle with
center g and radius ρ is defined as C(g, ρ) = {g′ ∈ S2 : g · g′ = cos ρ}, and
all q ∈ qf,g− -plane map C(g, ρ) to the small circle C(f, ρ) of the same radius (a
slight generalization of [3], Prop. 6), with the correspondence

q(t)g′(u)q(t)−1 = f ′(u+ 2t),

q(t) = q1e
tg, g′(u) = e

u
2
gg′0e

−u
2
g, f ′(u) = e

u
2
ff ′0e

−u
2
f (39)

starting with the corresponding circle points q1g
′
0 = f ′0q1.

We provide the following direct proof: We repeatedly apply (16) to obtain

q1g
′
0 = f ′0q1 ⇔ e

u
2
fq1g

′
0e
−u

2
g = e

u
2
ff ′0q1e

−u
2
g

⇔ q1e
u
2
gg′0e

−u
2
g = e

u
2
ff ′0e

−u
2
fq1

⇔ etfq1e
u
2
gg′0e

−u
2
g = etfe

u
2
ff ′0e

−u
2
fe−tfetfq1

⇔ q1e
tg e

u
2
gg′0e

−u
2
g = etfe

u
2
ff ′0e

−u
2
fe−tf q1e

tg. (40)

QED. Note, that this proof is much shorter than in [3], and we do not need to
use addition theorems.



Figure 2. Small circles and tangential plane projection. Adapted from Figs. 2
and 3 of [3].

We consider the projection onto the tangential plane of a S2 vector, see the right
side of Fig. 2. Assume v, r ∈ S2. Note, that (v)T (r) = v − (v · r)r of [3] can be
simplified to (v)T (r) = V (vr)r−1, valid for all pure (non-unit) quaternions r.

Finally we consider the torus theorem for all maps g → small circle C(f, 2Θ).
We slightly reformulate the theorem Prop. 13 of [3]. We will use the two-
dimensional OPS with respect to f, g ∈ S2, and the corresponding orthonormal
basis {q1, q2, q3, q4} of (34). The theorem says, that the circle C(q1, q2) ∈ q−-
plane: q−(s) = q1 exp(sg/2), s ∈ [0, 2π), represents all rotations g → f , while
the orthogonal circle C(q3, q4) ∈ q+-plane: q+(t) = q3 exp(−tg/2), t ∈ [0, 2π),
represents all rotations g → −f . Then the spherical torus T (q−(s), q+(t); Θ) is
defined as the set of quaternions

q(s, t; Θ) = q−(2s) cos Θ + q+(2t) sin Θ, s, t ∈ [0, 2π), Θ[0, π/2], (41)

and represents all rotations g → C(f, 2Θ) ⊂ S2.
In particular, the set q(s,−s; Θ) maps g for all s ∈ [0, 2π) onto f ′0 in the f, g

plane with g · f ′0 = cos(η − 2Θ), g · f = cos η,

q(s,−s; Θ)gq(s,−s; Θ)−1 = f ′0 ∀s ∈ [0, 2π). (42)

Moreover, for arbitrary s0 ∈ [0, 2π), the set q(s0, t − s0; Θ) (or equivalently
q(s0 + t, s0; Θ)) maps g → f ′ ∈ C(f, 2Θ), which results from positive rotation
(counter-clockwise) of f ′0 about f by the angle t ∈ [0, 2π),

q(s0, t− s0; Θ)gq(s0, t− s0; Θ)−1 = e
t
2
ff ′0e

− t
2
f ∀s0 ∈ [0, 2π). (43)

We state the following direct proof of the torus theorem.

q(s, t; Θ) = q−(2s) cos Θ + q+(2t) sin Θ = q1e
sg cos Θ + q3e

−tg sin Θ

= (q1 cos Θ + q3e
−(t+s)g sin Θ)esg

= (cos Θ + (q3/q1)e−(t+s)f sin Θ)q1e
sg

= (cos Θ + (−n1)e−(t+s)f sin Θ)q1e
sg

= (cos Θ + e(t+s)f (−n1) sin Θ)esfq1

= e−n
′
1Θesfq1, n′1 = e(t+s)f (−n1), (n′1)2 = −1. (44)



We observe, that n′1 is n1 rotated around f by angle s+t. Application to g gives

q(s, t; Θ)g q(s, t; Θ)−1 = e−n
′
1Θfen

′
1Θ, (45)

so geometrically g is rotated into f = esfq1g q
−1
1 e−sf , which in turn is rotated

around n′1 on the circle C(f, 2Θ). For t = −s obviously

q(s,−s; Θ)gq(s,−s; Θ)−1 = e−n1Θfen1Θ = f ′0, (46)

is a rotation in the f, g plane of g into f ′0, with g · f ′0 = cos η − 2Θ. We further
note, that for s = s0, t→ t− s0: n′1 = etf (−n1), such that

q(s0, t− s0; Θ)gq(s0, t− s0; Θ)−1 = e−n
′
1Θfen

′
1Θ = etff ′0e

−tf , (47)

describes the small circle C(f, 2Θ). QED.
Our proof is very compact, obtained by direct computation of monomial

results, which in turn permit direct geometric interpretation.

6. Conclusions
We have exposed the geometric understanding of the general OPS split of
quaternions [7] into two orthogonal planes (R4 interpretation). Moreover, we
have consolidated the OPS with the geometric understanding by Altmann [1],
Coxeter [2], and Meister and Schaeben [3].
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