E. Hitzer, The orthogonal planes split of quaternions and its relation to quaternion geometry of rotations, submitted to F. Brackx, H. De Schepper, J. Van der Jeugt (eds.), Proceedings of the 30th International Colloquium on Group Theoretical Methods in Physics (troup30), 14-18 July 2014, Ghent, Belgium, to be published by IOP in the Journal of Physics: Conference Series (JPCS), 2014.

The orthogonal planes split of quaternions and its relation to quaternion geometry of rotations ${ }^{1}$

Eckhard Hitzer

Osawa 3-10-2, Mitaka 181-8585, International Christian University, Japan
E-mail: hitzer@icu.ac.jp

Abstract

Recently the general orthogonal planes split with respect to any two pure unit quaternions $f, g \in \mathbb{H}, f^{2}=g^{2}=-1$, including the case $f=g$, has proved extremely useful for the construction and geometric interpretation of general classes of double-kernel quaternion Fourier transformations (QFT) [7]. Applications include color image processing, where the orthogonal planes split with $f=g=$ the grayline, naturally splits a pure quaternionic three-dimensional color signal into luminance and chrominance components. Yet it is found independently in the quaternion geometry of rotations [3], that the pure quaternion units f, g and the analysis planes, which they define, play a key role in the spherical geometry of rotations, and the geometrical interpretation of integrals related to the spherical Radon transform of probability density functions of unit quaternions, as relevant for texture analysis in crystallography. In our contribution we further investigate these connections.

1. Introduction to quaternions

Gauss, Rodrigues and Hamilton's four-dimensional (4D) quaternion algebra \mathbb{H} is defined over \mathbb{R} with three imaginary units:

$$
\begin{equation*}
i \boldsymbol{j}=-\boldsymbol{j} \boldsymbol{i}=\boldsymbol{k}, \boldsymbol{j} \boldsymbol{k}=-\boldsymbol{k} \boldsymbol{j}=\boldsymbol{i}, \boldsymbol{k i}=-\boldsymbol{i k}=\boldsymbol{j}, \boldsymbol{i}^{2}=\boldsymbol{j}^{2}=\boldsymbol{k}^{2}=\boldsymbol{i} \boldsymbol{j} \boldsymbol{k}=-1 . \tag{1}
\end{equation*}
$$

The explicit form of a quaternion $q \in \mathbb{H}$ is $q=q_{r}+q_{i} \boldsymbol{i}+q_{j} \boldsymbol{j}+q_{k} \boldsymbol{k} \in \mathbb{H}$, $q_{r}, q_{i}, q_{j}, q_{k} \in \mathbb{R}$. The quaternion conjugate (equivalent to Clifford conjugation in $C l(3,0)^{+}$and $\left.C l(0,2)\right)$ is defined as $\widetilde{q}=q_{r}-q_{i} \boldsymbol{i}-q_{j} \boldsymbol{j}-q_{k} \boldsymbol{k}, \widetilde{p} q=\widetilde{q} \widetilde{p}$, which leaves the scalar part q_{r} unchanged. This leads to the norm of $q \in \mathbb{H}$ $|q|=\sqrt{q \widetilde{q}}=\sqrt{q_{r}^{2}+q_{i}^{2}+q_{j}^{2}+q_{k}^{2}},|p q|=|p||q|$. The part $\boldsymbol{q}=V(q)=q-q_{r}=$ $\frac{1}{2}(q-\widetilde{q})=q_{i} \boldsymbol{i}+q_{j} \boldsymbol{j}+q_{k} \boldsymbol{k}$ is called a pure quaternion, it squares to the

[^0]negative number $-\left(q_{i}^{2}+q_{j}^{2}+q_{k}^{2}\right)$. Every unit quaternion $\in \mathbb{S}^{3}$ (i.e. $|q|=1$) can be written as: $q=q_{r}+q_{i} \boldsymbol{i}+q_{j} \boldsymbol{j}+q_{k} \boldsymbol{k}=q_{r}+\sqrt{q_{i}^{2}+q_{j}^{2}+q_{k}^{2}} \widehat{\boldsymbol{q}}=$ $\cos \alpha+\widehat{\boldsymbol{q}} \sin \alpha=\exp (\alpha \widehat{\boldsymbol{q}})$, where $\cos \alpha=q_{r}, \sin \alpha=\sqrt{q_{i}^{2}+q_{j}^{2}+q_{k}^{2}}, \widehat{\boldsymbol{q}}=$ $\boldsymbol{q} /|q|=\left(q_{i} \boldsymbol{i}+q_{j} \boldsymbol{j}+q_{k} \boldsymbol{k}\right) / \sqrt{q_{i}^{2}+q_{j}^{2}+q_{k}^{2}}$, and $\widehat{\boldsymbol{q}}^{2}=-1, \widehat{\boldsymbol{q}} \in \mathbb{S}^{2}$. The left and right inverse of a non-zero quaternion is $q^{-1}=\widetilde{q} /|q|^{2}=\widetilde{q} /(q \widetilde{q})$. The scalar part of a quaternion is defined as $\mathrm{S}(q)=q_{r}=\frac{1}{2}(q+\widetilde{q})$, with symmetries $\forall p, q \in \mathbb{H}: \mathrm{S}(p q)=\mathrm{S}(q p)=p_{r} q_{r}-p_{i} q_{i}-p_{j} q_{j}-p_{k} q_{k}, \mathrm{~S}(q)=\mathrm{S}(\widetilde{q})$, and linearity $\mathrm{S}(\alpha p+\beta q)=\alpha \mathrm{S}(p)+\beta \mathrm{S}(q)=\alpha p_{r}+\beta q_{r}, \forall p, q \in \mathbb{H}, \alpha, \beta \in \mathbb{R}$. The scalar part and the quaternion conjugate allow the definition of the \mathbb{R}^{4} inner product of two quaternions p, q as $p \cdot q=\mathrm{S}(p \widetilde{q})=p_{r} q_{r}+p_{i} q_{i}+p_{j} q_{j}+p_{k} q_{k} \in \mathbb{R}$.
Definition 1.1 (Orthogonality of quaternions). Two quaternions $p, q \in \mathbb{H}$ are orthogonal $p \perp q$, if and only if $S(p \widetilde{q})=0$.

2. Motivation for quaternion split

2.1. Splitting quaternions and knowing what it means

We deal with a split of quaternions, motivated by the consistent appearance of two terms in the quaternion Fourier transform [4]. This observation (note that in the following always i is on the left, and \boldsymbol{j} is on the right) and that every quaternion can be rewritten as $q=q_{r}+q_{i} \boldsymbol{i}+q_{j} \boldsymbol{j}+q_{k} \boldsymbol{k}=q_{r}+q_{i} \boldsymbol{i}+q_{j} \boldsymbol{j}+q_{k} \boldsymbol{i} \boldsymbol{j}$, motivated the quaternion split ${ }^{2}$ with respect to the pair of orthonormal pure unit quaternions $\boldsymbol{i}, \boldsymbol{j}$

$$
\begin{equation*}
q=q_{+}+q_{-}, \quad q_{ \pm}=\frac{1}{2}(q \pm \boldsymbol{i} q \boldsymbol{j}) . \tag{2}
\end{equation*}
$$

Using (1), the detailed results of this split can be expanded in terms of real components $q_{r}, q_{i}, q_{j}, q_{k} \in \mathbb{R}$, as

$$
\begin{equation*}
q_{ \pm}=\left\{q_{r} \pm q_{k}+\boldsymbol{i}\left(q_{i} \mp q_{j}\right)\right\} \frac{1 \pm \boldsymbol{k}}{2}=\frac{1 \pm \boldsymbol{k}}{2}\left\{q_{r} \pm q_{k}+\boldsymbol{j}\left(q_{j} \mp q_{i}\right)\right\} . \tag{3}
\end{equation*}
$$

The analysis of these two components leads to the following Pythagorean modulus identity [5].
Lemma 2.1 (Modulus identity). For $q \in \mathbb{H},|q|^{2}=\left|q_{-}\right|^{2}+\left|q_{+}\right|^{2}$.
Lemma 2.2 (Orthogonality of OPS split parts [5]). Given any two quaternions $p, q \in \mathbb{H}$ and applying the OPS split of (2) the resulting two parts are orthogonal, i.e., $p_{+} \perp q_{-}$and $p_{-} \perp q_{+}$,

$$
\begin{equation*}
\mathrm{S}\left(p_{+} \widetilde{q_{-}}\right)=0, \quad \mathrm{~S}\left(p_{-} \widetilde{q_{+}}\right)=0 \tag{4}
\end{equation*}
$$

Next, we discuss the map $\boldsymbol{i}() \boldsymbol{j}$, which will lead to an adapted orthogonal basis of \mathbb{H}. We observe, that $i q j=q_{+}-q_{-}$, i.e. under the $\operatorname{map} \boldsymbol{i}() \boldsymbol{j}$ the q_{+} part is invariant, but the q - part changes sign. Both parts are two-dimensional (3),

[^1]and by Lemma 2.2 they span two completely orthogonal planes, therefore also the name orthogonal planes split (OPS). The q_{+}plane has the orthogonal quaternion basis $\{\boldsymbol{i}-\boldsymbol{j}=\boldsymbol{i}(1+\boldsymbol{i j}), 1+\boldsymbol{i} \boldsymbol{j}=1+\boldsymbol{k}\}$, and the q_{-}plane has orthogonal basis $\{\boldsymbol{i}+\boldsymbol{j}=\boldsymbol{i}(1-\boldsymbol{i}), 1-\boldsymbol{i}=1-\boldsymbol{k}\}$. All four basis quaternions (if normed: $\left.\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}\right)$
\[

$$
\begin{equation*}
\{\boldsymbol{i}-\boldsymbol{j}, 1+\boldsymbol{i} \boldsymbol{j}, \boldsymbol{i}+\boldsymbol{j}, 1-\boldsymbol{i} \boldsymbol{j}\} \tag{5}
\end{equation*}
$$

\]

form an orthogonal basis of \mathbb{H} interpreted as \mathbb{R}^{4}. Moreover, we obtain the following geometric picture on the left side of Fig. 1. The map $i() j$ rotates the q_{-}plane by 180° around the two-dimensional q_{+}axis plane. This interpretation of the map $\boldsymbol{i}() \boldsymbol{j}$ is in perfect agreement with Coxeter's notion of half-turn [2]. In agreement with its geometric interpretation, the map $\boldsymbol{i}() \boldsymbol{j}$ is an involution, because applying it twice leads to identity

$$
\begin{equation*}
\boldsymbol{i}(i q \boldsymbol{j}) \boldsymbol{j}=\boldsymbol{i}^{2} q \boldsymbol{j}^{2}=(-1)^{2} q=q . \tag{6}
\end{equation*}
$$

We have the important exponential factor identity

$$
\begin{equation*}
e^{\alpha i} q_{ \pm} e^{\beta j}=q_{ \pm} e^{(\beta \mp \alpha) j}=e^{(\alpha \mp \beta) i} q_{ \pm} . \tag{7}
\end{equation*}
$$

This equation should be compared with the kernel construction of the quaternion Fourier transform (QFT). The equation is also often used in our present context for values $\alpha=\pi / 2$ or $\beta=\pi / 2$.

Finally, we note the interpretation [7] of the QFT integrand $e^{-i x_{1} \omega_{1}} h(\boldsymbol{x}) e^{-j x_{2} \omega_{2}}$ as a local rotation by phase angle $-\left(x_{1} \omega_{1}+x_{2} \omega_{2}\right)$ of $h_{-}(\boldsymbol{x})$ in the twodimensional q_{-}plane, spanned by $\{\boldsymbol{i}+\boldsymbol{j}, 1-\boldsymbol{i} \boldsymbol{j}\}$, and a local rotation by phase angle $-\left(x_{1} \omega_{1}-x_{2} \omega_{2}\right)$ of $h_{+}(\boldsymbol{x})$ in the two-dimensional q_{+}plane, spanned by $\{\boldsymbol{i}-\boldsymbol{j}, 1+\boldsymbol{i} \boldsymbol{j}\}$. This concludes the geometric picture of the OPS of \mathbb{H} (interpreted as \mathbb{R}^{4}) with respect to two orthonormal pure quaternion units.

2.2. Even one pure unit quaternion can do a nice split

Let us now analyze the involution $i() i$. The map $i() i$ gives

$$
\begin{equation*}
\boldsymbol{i} q \boldsymbol{i}=\boldsymbol{i}\left(q_{r}+q_{i} \boldsymbol{i}+q_{j} \boldsymbol{j}+q_{k} \boldsymbol{k}\right) \boldsymbol{i}=-q_{r}-q_{i} \boldsymbol{i}+q_{j} \boldsymbol{j}+q_{k} \boldsymbol{k} . \tag{8}
\end{equation*}
$$

The following orthogonal planes split (OPS) with respect to the single quaternion unit \boldsymbol{i} gives

$$
\begin{equation*}
q_{ \pm}=\frac{1}{2}(q \pm \boldsymbol{i} q \boldsymbol{i}), \quad q_{+}=q_{j} \boldsymbol{j}+q_{k} \boldsymbol{k}=\left(q_{j}+q_{k} \boldsymbol{i}\right) \boldsymbol{j}, \quad q_{-}=q_{r}+q_{i} \boldsymbol{i} \tag{9}
\end{equation*}
$$

where the q_{+}plane is two-dimensional and manifestly orthogonal to the twodimensional q_{-}plane. The basis of the two planes are (if normed: $\left\{q_{1}, q_{2}\right\}$, $\left.\left\{q_{3}, q_{4}\right\}\right)$

$$
\begin{equation*}
q_{+} \text {-basis: }\{\boldsymbol{j}, \boldsymbol{k}\}, \quad q_{-} \text {-basis: }\{1, \boldsymbol{i}\} . \tag{10}
\end{equation*}
$$

The geometric interpretation of $\boldsymbol{i}() \boldsymbol{i}$ as Coxeter half-turn is perfectly analogous to the case $\boldsymbol{i}() \boldsymbol{j}$. This form (9) of the OPS is identical to the quaternionic simplex/perplex split applied in quaternionic signal processing, which leads in color image processing to the luminosity/chrominance split [6].

3. General orthogonal two-dimensional planes split (OPS)

Assume in the following an arbitrary pair of pure unit quaternions $f, g, f^{2}=$ $g^{2}=-1$. The orthogonal 2D planes split (OPS) is then defined with respect to any two pure unit quaternions f, g as

$$
\begin{equation*}
q_{ \pm}=\frac{1}{2}(q \pm f q g) \quad \Longrightarrow \quad f q g=q_{+}-q_{-} \tag{11}
\end{equation*}
$$

i.e. under the map $f() g$ the q_{+}part is invariant, but the q_{-}part changes sign.

Both parts are two-dimensional, and span two completely orthogonal planes. For $f \neq \pm g$ the q_{+}plane is spanned by two orthogonal quaternions $\{f-g, 1+f g=-f(f-g)\}$, the q - plane is e.g. spanned by $\{f+g, 1-f g=$ $-f(f+g)\}$. For $g=f$ a fully orthonormal four-dimensional basis of \mathbb{H} is (R acts as rotation operator (rotor))

$$
\begin{equation*}
\left\{1, f, \boldsymbol{j}^{\prime}, \boldsymbol{k}^{\prime}\right\}=R^{-1}\{1, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\} R, \quad R=\boldsymbol{i}(\boldsymbol{i}+f) \tag{12}
\end{equation*}
$$

and the two orthogonal two-dimensional planes basis:

$$
\begin{equation*}
q_{+} \text {-basis: }\left\{\boldsymbol{j}^{\prime}, \boldsymbol{k}^{\prime}\right\}, \quad q_{-} \text {-basis: }\{1, f\} \tag{13}
\end{equation*}
$$

Note the notation for normed vectors in [3] $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ for the resulting total orthonormal basis of \mathbb{H}.
Lemma 3.1 (Orthogonality of two OPS planes). Given any two quaternions q, p and applying the OPS with respect to any two pure unit quaternions f, g we get zero for the scalar part of the mixed products

$$
\begin{equation*}
S c\left(p_{+} \widetilde{q}_{-}\right)=0, \quad S c\left(p_{-} \widetilde{q}_{+}\right)=0 \tag{14}
\end{equation*}
$$

Note, that the two parts $x_{ \pm}$can be represented as

$$
\begin{equation*}
x_{ \pm}=x_{+f} \frac{1 \pm f g}{2}+x_{-f} \frac{1 \mp f g}{2}=\frac{1 \pm f g}{2} x_{+g}+\frac{1 \mp f g}{2} x_{-g} \tag{15}
\end{equation*}
$$

with commuting and anticommuting parts $x_{ \pm f} f= \pm f x_{ \pm f}$, etc.
Next we mention the possibility to perform a split along any given set of two (two-dimensional) analysis planes. It has been found, that any twodimensional plane in \mathbb{R}^{4} determines in an elementary way an OPS split and vice versa, compare Theorem 3.5 of [7].

Let us turn to the geometric interpretation of the map $f() g$. It rotates the q_{-}plane by 180° around the q_{+}axis plane. This is in perfect agreement with Coxeter's notion of half-turn [2], see the right side of Fig. 1. The following identities hold

$$
\begin{equation*}
e^{\alpha f} q_{ \pm} e^{\beta g}=q_{ \pm} e^{(\beta \mp \alpha) g}=e^{(\alpha \mp \beta) f} q_{ \pm} \tag{16}
\end{equation*}
$$

This leads to a straightforward geometric interpretation of the integrands of the quaternion Fourier transform (OPS-QFT) with two pure quaternions f, g, and of the orthogonal 2D planes phase rotation Fourier transform [7].

Figure 1. Geometric pictures of the involutions $\boldsymbol{i}() \boldsymbol{j}$ and $f() g$ as half turns.

We can further incorporate quaternion conjugation, which consequently provides a geometric interpretation of the QFT involving quaternion conjugation of the signal function. For $d=e^{\alpha g}, t=e^{\beta f}$ the map $\left.d \widetilde{(}\right) t$ represents a rotary-reflection in four dimensions with pointwise invariant line $d+t$, a rotary-reflection axis $d-t: d \widetilde{(d-t)} t=-(d-t)$, and rotation angle $\Gamma=\pi-\arccos \mathrm{S}(\widetilde{d t})$ in the plane $\perp\{d+t, d-t\}$. (The derivation of Γ will be shown later.) We obtain the following Lemma.
Lemma 3.2. For OPS $q_{ \pm}=\frac{1}{2}(q \pm f q g)$, and left and right exponential factors we have the identity

$$
\begin{equation*}
e^{\alpha g} \widetilde{q_{ \pm}} e^{\beta f}=\widetilde{q_{ \pm}} e^{(\beta \mp \alpha) f}=e^{(\alpha \mp \beta) g} \widetilde{q_{ \pm}} . \tag{17}
\end{equation*}
$$

4. Coxeter on Quaternions and Reflections [2]

The four-dimensional angle Θ between two unit quaternions $p, q \in \mathbb{H},|p|=$ $|q|=1$, is defined by

$$
\begin{equation*}
\cos \Theta=S c(p \widetilde{q}) \tag{18}
\end{equation*}
$$

The right and left Clifford translations are defined by Coxeter [2] as

$$
\begin{equation*}
q \rightarrow q^{\prime}=q a, \quad q \rightarrow q^{\prime \prime}=a q, \quad a=e^{\widehat{a} \Theta}, \quad \widehat{a}^{2}=-1 . \tag{19}
\end{equation*}
$$

Both Clifford translations represent turns by constant angles $\Theta_{q, q^{\prime}}=\Theta_{q, q^{\prime \prime}}=\Theta$. We analyze the following special cases, assuming the split $q_{ \pm}$w.r.t. $f=g=\widehat{a}$:

- For $\widehat{a}=i, a q_{-}=q_{-} a=\left(q_{-} a\right)_{-}$, is a mathematically positive (anti clockwise) rotation in the q_{-}plane $\{1, i\}$.
- Similarly, $a q_{+}=\left(a q_{+}\right)_{+}$, is a mathematically positive rotation in the q_{+} plane $\{\boldsymbol{j}, \boldsymbol{k}\}$.
- Finally, $q_{+} a=\widetilde{a} q_{+}=\left(q_{+} a\right)_{+}$, is a mathematically negative rotation (clockwise) by Θ in the q_{+}plane $\{\boldsymbol{j}, \boldsymbol{k}\}$.
Next, we compose Clifford translations, assuming the split $q_{ \pm}$w.r.t. $f=g=\widehat{a}$. For the unit quaternion $a=e^{\widehat{a} \Theta}, \widehat{a}^{2}=-1$ we find that

$$
\begin{equation*}
q \rightarrow a q a=a^{2} q_{-}+q_{+} \tag{20}
\end{equation*}
$$

is a rotation only in the q_{-}plane by the angle 2Θ, and

$$
\begin{equation*}
q \rightarrow a q \tilde{a}=q_{-}+a^{2} q_{+} \tag{21}
\end{equation*}
$$

is a rotation only in the q_{+}plane by the angle 2Θ.
Let us now revisit Coxeter's Lemma 2.2 in [2]: For any two quaternions $a, b \in \mathbb{H},|a|=|b|, a_{r}=b_{r}$, we can find a $y \in \mathbb{H}$ such that

$$
\begin{equation*}
a y=y b . \tag{22}
\end{equation*}
$$

We now further ask for the set of all $y \in \mathbb{H}$ such that $a y=y b$? Based on the OPS, the answer is straightforward. For $a=|a| e^{\Theta \hat{a}}, b=|a| e^{\Phi \hat{b}}, \Phi= \pm \Theta$, $\hat{a}^{2}=\hat{b}^{2}=-1$ we use the split $q_{ \pm}=\frac{1}{2}(q \pm \hat{a} q \hat{b})$ to obtain:

- For $\Theta=\Phi$: The set of all y spans the q_{-}plane. Moreover,

$$
\begin{equation*}
a q_{+} b=q_{+}, q_{+} b=\tilde{a} q_{+}, a q_{+}=q_{+} \tilde{b}, a q_{-} b=a^{2} q_{-}=q_{-} b^{2}, a q_{-}=q_{-} b . \tag{23}
\end{equation*}
$$

- For $\Theta=-\Phi$: The set of all y spans the q_{+}plane. Moreover,

$$
\begin{equation*}
a q_{-} b=q_{-}, q_{-} b=\tilde{a} q_{-}, a q_{-}=q_{-} \tilde{b}, a q_{+} b=a^{2} q_{+}=q_{+} b^{2}, a q_{+}=q_{+} b . \tag{24}
\end{equation*}
$$

Let us turn to a reflection in a hyperplane. Theorem 5.1 in [2] says: The reflection in the hyperplane $\perp a \in \mathbb{H}: S c(a \tilde{q})=0,|a|^{2}=1, a=|a| e^{\Theta \hat{a}}, \hat{a}^{2}=-1$, is represented by

$$
\begin{equation*}
q \rightarrow-a \tilde{q} a . \tag{25}
\end{equation*}
$$

We analyze the situation using the OPS. We define the split $q_{ \pm}=\frac{1}{2}(q \pm \widehat{a} q \widehat{a})$ to obtain

$$
\begin{equation*}
q_{+} \rightarrow-a \widetilde{q_{+}} a=q_{+}, \quad a \rightarrow-a \widetilde{a} a=-a . \tag{26}
\end{equation*}
$$

and for $a^{\prime}=a e^{-\frac{\pi}{2} \hat{a}}$

$$
\begin{equation*}
a^{\prime} \rightarrow-a \tilde{a^{\prime}} a=a^{\prime} . \tag{27}
\end{equation*}
$$

We further consider a general rotation. Theorem 5.2 in [2] states: The general rotation through 2Φ (about a plane) is $q \rightarrow a q b, a=|a| e^{\Phi \hat{a}}, b=|a| e^{\Theta \hat{b}}$, $\Phi= \pm \Theta, \hat{a}^{2}=\hat{b}^{2}=-1$.

We again apply the OPS. We define the split $q_{ \pm}=\frac{1}{2}(q \pm \hat{a} q \hat{b})$ to obtain:

- For $\Theta=\Phi$: Rotation of q_{-}plane by 2Φ around q_{+}-plane.
- For $\Theta=-\Phi$: Rotation of q_{+}plane by 2Φ around q_{-}-plane.

Let us illustrate this with an example: $\hat{a}=\hat{b}=\boldsymbol{i}, \Phi=-\Theta$,

$$
\begin{equation*}
a q_{-} b=q_{-} . \tag{28}
\end{equation*}
$$

For $q_{+}=\boldsymbol{j}$:

$$
\begin{equation*}
a q_{+} b=a \boldsymbol{j} b=\boldsymbol{j} b^{2}=\boldsymbol{j} e^{-2 \theta \boldsymbol{i}}=\boldsymbol{j} \cos 2 \Phi-\boldsymbol{k} \sin 2 \Phi, \tag{29}
\end{equation*}
$$

a rotation in the q_{+}-plane around the q_{-}plane. Note, that the detailed analysis of general $q \rightarrow a q b, q_{ \pm}=\frac{1}{2}(q \pm \hat{a} q \hat{b}),|a|=|b|=1$, can be found in [7].

As for the rotary inversion, we follow the discussion in [7], sec. 5.1, but add a simple formula for determining the rotation angle. The rotary inversion is given by, $d, t \in \mathbb{H},|d|=|t|=1, q \rightarrow d \widetilde{q} t$. For $d \neq \pm t,[d, t]=d t-t d$, we obtain two vectors in the rotation plane $v_{1,2}=[d, t](1 \pm \tilde{d} t)$, with $d \widetilde{v_{1,2}} t=-v_{1,2} \tilde{d} t$. The angle Γ of rotation can therefore be simply found from

$$
\begin{equation*}
\cos \Gamma=S c\left(\frac{1}{\left|v_{1}\right|^{2}} \widetilde{v_{1}} d \widetilde{v_{1}} t\right)=S c(-\tilde{d} t)=\cos (\pi-\gamma), \tag{30}
\end{equation*}
$$

with γ the angle between d and $t: \cos \gamma=\tilde{d t}$.

5. Quaternion geometry of rotations [3] analyzed by 2D OPS

According to [3] the circle $C\left(q_{1}, q_{2}\right)$ of all unit quaternions, which rotate $g \rightarrow f$, $f \neq \pm g$ is given by

$$
q(t)=\frac{1-f g}{|1-f g|} e^{e^{\frac{t}{g} g}}=q_{1} e^{\frac{t}{2} g}, \quad t \in[0,2 \pi), \quad q(t) g q(t)=f, \quad q_{2}=\frac{f+g}{|f+g|} .
$$

The two-dimensional OPS $q_{ \pm}^{f, g}=\frac{1}{2}(q \pm f q g)$ tells us, that all $q(t), t \in[0,2 \pi)$ are elements of the q_{-}plane. And in deed, $f q_{-} g=-q_{-}$for all $q_{-} \in \mathbb{H}$ leads to

$$
\begin{equation*}
f=q_{-} g q_{-}^{-1}, \tag{31}
\end{equation*}
$$

for all q_{-}in the q_{-}-plane. Note, that this is valid for all $f, g \in \mathbb{H}, f^{2}=g^{2}=-1$, even for $f= \pm g$! We therefore get a one line proof, which at the same time generalizes from the unit circle to the whole plane.

Meister and Schaeben [3] state that for $q \in C\left(q_{1}, q_{2}\right): f q, q g, f q g \in C\left(q_{1}, q_{2}\right)$. This can easily be generalized to the whole q_{-}-plane, because

$$
\begin{equation*}
\left(f q_{-}\right)_{-}=f q_{-}, \quad\left(q_{-} g\right)_{-}=q_{-} g, \quad\left(f q_{-} g\right)_{-}=f q_{-} g . \tag{32}
\end{equation*}
$$

We can use the exponential form, and show that the circle $C\left(q_{1}, q_{2}\right)$ parametrization of (34), (35) in [3] is a specialization of the general relation

$$
\begin{equation*}
e^{\frac{t}{2} f} q_{-}=q_{-} e^{\frac{t}{2} g} \tag{33}
\end{equation*}
$$

which means that the two parametrizations are element wise identical.
Now we look at the quaternion circles for the rotations $g \rightarrow \pm f$. Prop. 5 of [3] states: Two circles $C\left(q_{1}, q_{2}\right)=G(g, f)$ and $C\left(q_{3}, q_{4}\right)=G(g,-f)=G(-g, f)$, representing all rotations $g \rightarrow f$ and $g \rightarrow-f$, respectively, are orthonormal to each other. Here four orthogonal unit quaternions are defined as:

$$
\begin{equation*}
q_{1}=\frac{1-f g}{|1-f g|}, \quad q_{2}=\frac{f+g}{|f+g|}, \quad q_{3}=\frac{1+f g}{|1+f g|}, \quad q_{4}=\frac{f-g}{|f-g|} . \tag{34}
\end{equation*}
$$

We provide a simple proof: We already know that all q_{1}, q_{2}, span the q_{-}plane of the split $q_{ \pm}^{f, g}=\frac{1}{2}(q \pm f q g)$, and q_{3}, q_{4} span the q_{+}-plane. And that

$$
\begin{equation*}
f q_{ \pm} g= \pm q_{ \pm} \quad \Leftrightarrow \quad f=q_{ \pm}(\mp g) q_{ \pm}^{-1} . \tag{35}
\end{equation*}
$$

QED. Note, the proof is again much faster than in [3]. We see that $G(g, f)=$ $\left\{q_{-}^{f, g} /\left|q_{-}^{f, g}\right|, \forall q \in \mathbb{H}\right\}$, and $G(g,-f)=\left\{q_{+}^{f, g} /\left|q_{+}^{f, g}\right|, \forall q \in \mathbb{H}\right\}$.

For later use, we translate the notation of [3] (38),(39):

$$
\begin{equation*}
n_{3}=-n_{1}=\frac{[f, g]}{|[f, g]|}, \quad n_{4}=q_{4}, \quad n_{2}=n_{4} n_{1}, \quad n_{4}=n_{1} n_{2}, \quad n_{1}=n_{2} n_{4}, \tag{36}
\end{equation*}
$$

which shows that $\left\{n_{1}, n_{2}, n_{4}\right\}$ is a right handed set of three orthonormal pure quaternions, obtained by rotating $\{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$.

The two circles $G(g, f), G\left(g^{\prime}, f\right)$ do not intersect for $g \neq g^{\prime}$, see Cor. 1(i) of [3]. We provide a simple proof: Assume $\exists_{1} q \in H: f q g=-q, f q g^{\prime}=-q$ for $g \neq g^{\prime}$. Then

$$
\begin{equation*}
f q g=f q g^{\prime} \Leftrightarrow g=g^{\prime} \Rightarrow G(g, f) \bigcap G\left(g^{\prime}, f\right)=\emptyset . \tag{37}
\end{equation*}
$$

QED.
Cor. 1 (iii) of [3] further states that for every 3D rotation R and given g_{0}, $g_{0}^{2}=-1$ we can always find $f, f^{2}=-1$, such that R is represented by a (unit) quaternion q in $G\left(g_{0}, f\right)$. We can equivalently ask for f, such that q representing the rotation R is $\in q_{-}^{f, g_{0}}$-plane. We find

$$
\begin{equation*}
f q g_{0}=-q \Leftrightarrow f=q g_{0} q^{-1} . \tag{38}
\end{equation*}
$$

The left side of Fig. 2 shows two small circles $C(g, \rho), C(f, \rho) \subset \mathbb{S}^{2}[3]$. We now analyze the mapping between pairs of small circles. A small circle with center g and radius ρ is defined as $C(g, \rho)=\left\{g^{\prime} \in \mathbb{S}^{2}: g \cdot g^{\prime}=\cos \rho\right\}$, and all $q \in q_{-}^{f, g}$-plane map $C(g, \rho)$ to the small circle $C(f, \rho)$ of the same radius (a slight generalization of [3], Prop. 6), with the correspondence

$$
\begin{gather*}
q(t) g^{\prime}(u) q(t)^{-1}=f^{\prime}(u+2 t), \\
q(t)=q_{1} e^{t g}, \quad g^{\prime}(u)=e^{\frac{u}{2} g} g_{0}^{\prime} e^{-\frac{u}{2} g}, \quad f^{\prime}(u)=e^{\frac{u}{2} f} f_{0}^{\prime} e^{-\frac{u}{2} f} \tag{39}
\end{gather*}
$$

starting with the corresponding circle points $q_{1} g_{0}^{\prime}=f_{0}^{\prime} q_{1}$.
We provide the following direct proof: We repeatedly apply (16) to obtain

$$
\begin{align*}
q_{1} g_{0}^{\prime}=f_{0}^{\prime} q_{1} & \Leftrightarrow e^{\frac{u}{2} f} q_{1} g_{0}^{\prime} e^{-\frac{u}{2} g}=e^{\frac{u}{2} f} f_{0}^{\prime} q_{1} e^{-\frac{u}{2} g} \\
& \Leftrightarrow q_{1} e^{\frac{u}{2} g} g_{0}^{\prime}-\frac{u}{2} g \\
& \Leftrightarrow e^{\frac{u}{2} f} f_{0}^{\prime} e^{-\frac{u}{2} f} q_{1} \\
& \Leftrightarrow e^{t f} q_{1} e^{\frac{u}{2} g} g_{0}^{\prime} e^{-\frac{u}{2} g}=e^{t f} e^{\frac{u}{2} f} f_{0}^{\prime} e^{-\frac{u}{2} f} e^{-t f} e^{t f} q_{1} \tag{40}\\
& \Leftrightarrow q_{1} e^{t g} e^{\frac{u}{2} g} g_{0}^{\prime} e^{-\frac{u}{2} g}=e^{t f} e^{\frac{u}{2} f} f_{0}^{\prime} e^{-\frac{u}{2} f} e^{-t f} q_{1} e^{t g} .
\end{align*}
$$

QED. Note, that this proof is much shorter than in [3], and we do not need to use addition theorems.

Figure 2. Small circles and tangential plane projection. Adapted from Figs. 2 and 3 of [3].

We consider the projection onto the tangential plane of a \mathbb{S}^{2} vector, see the right side of Fig. 2. Assume $v, r \in \mathbb{S}^{2}$. Note, that $(v)_{T}(r)=v-(v \cdot r) r$ of [3] can be simplified to $(v)_{T}(r)=V(v r) r^{-1}$, valid for all pure (non-unit) quaternions r.

Finally we consider the torus theorem for all maps $g \rightarrow$ small circle $C(f, 2 \Theta)$. We slightly reformulate the theorem Prop. 13 of [3]. We will use the twodimensional OPS with respect to $f, g \in \mathbb{S}^{2}$, and the corresponding orthonormal basis $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ of (34). The theorem says, that the circle $C\left(q_{1}, q_{2}\right) \in q_{-}-$ plane: $q_{-}(s)=q_{1} \exp (s g / 2), s \in[0,2 \pi)$, represents all rotations $g \rightarrow f$, while the orthogonal circle $C\left(q_{3}, q_{4}\right) \in q_{+}$-plane: $q_{+}(t)=q_{3} \exp (-t g / 2), t \in[0,2 \pi)$, represents all rotations $g \rightarrow-f$. Then the spherical torus $T\left(q_{-}(s), q_{+}(t) ; \Theta\right)$ is defined as the set of quaternions

$$
\begin{equation*}
q(s, t ; \Theta)=q_{-}(2 s) \cos \Theta+q_{+}(2 t) \sin \Theta, \quad s, t \in[0,2 \pi), \quad \Theta[0, \pi / 2], \tag{41}
\end{equation*}
$$

and represents all rotations $g \rightarrow C(f, 2 \Theta) \subset \mathbb{S}^{2}$.
In particular, the set $q(s,-s ; \Theta)$ maps g for all $s \in[0,2 \pi)$ onto f_{0}^{\prime} in the f, g plane with $g \cdot f_{0}^{\prime}=\cos (\eta-2 \Theta), g \cdot f=\cos \eta$,

$$
\begin{equation*}
q(s,-s ; \Theta) g q(s,-s ; \Theta)^{-1}=f_{0}^{\prime} \quad \forall s \in[0,2 \pi) . \tag{42}
\end{equation*}
$$

Moreover, for arbitrary $s_{0} \in[0,2 \pi)$, the set $q\left(s_{0}, t-s_{0} ; \Theta\right.$) (or equivalently $\left.q\left(s_{0}+t, s_{0} ; \Theta\right)\right)$ maps $g \rightarrow f^{\prime} \in C(f, 2 \Theta)$, which results from positive rotation (counter-clockwise) of f_{0}^{\prime} about f by the angle $t \in[0,2 \pi$),

$$
\begin{equation*}
q\left(s_{0}, t-s_{0} ; \Theta\right) g q\left(s_{0}, t-s_{0} ; \Theta\right)^{-1}=e^{\frac{t}{2} f} f_{0}^{\prime} e^{-\frac{t}{2} f} \quad \forall s_{0} \in[0,2 \pi) . \tag{43}
\end{equation*}
$$

We state the following direct proof of the torus theorem.

$$
\begin{align*}
q(s, t ; \Theta) & =q_{-}(2 s) \cos \Theta+q_{+}(2 t) \sin \Theta=q_{1} e^{s g} \cos \Theta+q_{3} e^{-t g} \sin \Theta \\
& =\left(q_{1} \cos \Theta+q_{3} e^{-(t+s) g} \sin \Theta\right) e^{s g} \\
& =\left(\cos \Theta+\left(q_{3} / q_{1}\right) e^{-(t+s) f} \sin \Theta\right) q_{1} e^{s g} \\
& =\left(\cos \Theta+\left(-n_{1}\right) e^{-(t+s) f} \sin \Theta\right) q_{1} e^{s g} \\
& =\left(\cos \Theta+e^{(t+s) f}\left(-n_{1}\right) \sin \Theta\right) e^{s f} q_{1} \\
& =e^{-n_{1}^{\prime} \Theta} e^{s f} q_{1}, \quad n_{1}^{\prime}=e^{(t+s) f}\left(-n_{1}\right),\left(n_{1}^{\prime}\right)^{2}=-1 . \tag{44}
\end{align*}
$$

We observe, that n_{1}^{\prime} is n_{1} rotated around f by angle $s+t$. Application to g gives

$$
\begin{equation*}
q(s, t ; \Theta) g q(s, t ; \Theta)^{-1}=e^{-n_{1}^{\prime} \Theta} f e^{n_{1}^{\prime} \Theta} \tag{45}
\end{equation*}
$$

so geometrically g is rotated into $f=e^{s f} q_{1} g q_{1}^{-1} e^{-s f}$, which in turn is rotated around n_{1}^{\prime} on the circle $C(f, 2 \Theta)$. For $t=-s$ obviously

$$
\begin{equation*}
q(s,-s ; \Theta) g q(s,-s ; \Theta)^{-1}=e^{-n_{1} \Theta} f e^{n_{1} \Theta}=f_{0}^{\prime} \tag{46}
\end{equation*}
$$

is a rotation in the f, g plane of g into f_{0}^{\prime}, with $g \cdot f_{0}^{\prime}=\cos \eta-2 \Theta$. We further note, that for $s=s_{0}, t \rightarrow t-s_{0}: n_{1}^{\prime}=e^{t f}\left(-n_{1}\right)$, such that

$$
\begin{equation*}
q\left(s_{0}, t-s_{0} ; \Theta\right) g q\left(s_{0}, t-s_{0} ; \Theta\right)^{-1}=e^{-n_{1}^{\prime} \Theta} f e^{n_{1}^{\prime} \Theta}=e^{t f} f_{0}^{\prime} e^{-t f} \tag{47}
\end{equation*}
$$

describes the small circle $C(f, 2 \Theta)$. QED.
Our proof is very compact, obtained by direct computation of monomial results, which in turn permit direct geometric interpretation.

6. Conclusions

We have exposed the geometric understanding of the general OPS split of quaternions [7] into two orthogonal planes (\mathbb{R}^{4} interpretation). Moreover, we have consolidated the OPS with the geometric understanding by Altmann [1], Coxeter [2], and Meister and Schaeben [3].

Acknowledgments

Soli Deo gloria. R. Ablamowicz, F. Brackx, R. Bujack, D. Eelbode, S. Georgiev, J. Helmstetter, B. Mawardi, S. Sangwine, G. Scheuermann.

References

[1] Altmann S 1986 Rotations, Quaternions, and Double Groups (New York: Dover)
[2] Coxeter H S M 1946 Quaternions and Reflections The Amer. Math. Monthly 53(3) 136
[3] Meister L and Schaeben H 2005 A concise quaternion geometry of rotations Math. Meth. in the Appl. Sci. 28101
[4] Hitzer E 2007 Quaternion Fourier Transform on Quaternion Fields and Generalizations Adv. in App. Cliff. Alg. 17497
[5] Hitzer E 2010 Directional Uncertainty Principle for Quaternion Fourier Transforms Adv. in App. Cliff. Alg. 20(2) 271
[6] Ell T A and Sangwine S J 2007 Hypercomplex Fourier Transforms of Color Images IEEE Trans. on Image Processing 16(1) 22
[7] Hitzer E and Sangwine S J 2013 The Orthogonal 2D Planes Split of Quaternions and Steerable Quaternion Fourier Transform In Hitzer E and Sangwine S J (eds.) Quaternion and Clifford Fourier Transforms and Wavelets TIM 27 (Heidelberg: Springer)
[8] Bülow T, Felsberg M and Sommer G 2001 Non-commutative Hypercomplex Fourier Transforms of Multidimensional Signals In Sommer G (ed.) Geometric Computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics (Berlin: Springer) 187

[^0]: ${ }^{1}$ In memory of Hans Wondratschek, *07 Mar. 1925 in Bonn, $\dagger 26$ Oct. 2014 in Durlach.

[^1]: ${ }^{2}$ Also called orthogonal planes split (OPS) as explained below.

