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Abstract

In this paper, the neutrrosophic multi relation (NMR) defined on the
neutrosophic multisets [18] is introduced. Various properties like reflexiv-
ity,symmetry and transitivity are studied.

Keyword 0.1 Neutrosophic sets, neutrosophic multisets, neutrosophic
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1 Introduction

Recently, several theories have been proposed to deal with uncertainty, impre-
cision and vagueness. Theory of probability, fuzzy set theory[40], intuitionistic
fuzzy sets[7], rough set theory[25] etc. are consistently being utilized as efficient
tools for dealing with diverse types of uncertainties and imprecision embedded in
a system. However, All these above theories failed to deal with indeterminate
and inconsistent information which exist in beliefs system. In 1995, inspired
from the sport games (wining/tie/defeating), from votes (yes/ NA/ No), from
decision making (making a decision/ hesitating/not making) etc. and guided by
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the fact that the law of excluded middle did not work any longer in the modern
logics, F.Smarandache[36] developed a new concept called neutrosophic set (NS)
which generalizes fuzzy sets and intuitionistic fuzzy sets. NS can be described
by membership degree, indeterminate degree and non-membership degree. This
theory and their hybrid structures has proven useful in many different fields
such as control theory[1], databases[2, 3], medical diagnosis problem[4], decision
making problem [16, 21], physics[26], topology [22], etc. The works on neu-
trosophic set, in theories and applications, have been progressing rapidly (e.g.
[5, 6, 10]).

Combining neutrosophic set models with other mathematical models has at-
tracted the attention of many researchers. Maji et al.[23] presented the concept
of neutrosophic soft set which is based on a combination of the neutrosophic set
and soft set models. Broumi and Smarandache[8, 11] introduced the concept
of the intuitionistic neutrosophic soft set by combining the intuitionistic neu-
trosophic sets set and soft set. Broumi et al. presented the concept of rough
neutrosophic set[14] which is based on a combination of the neutrosophic set
and rough set models. The works on neutrosophic set combining soft sets, in
theories and applications, have been progressing rapidly (e.g. [9, 12, 13, 19]).

The notion of multiset was formulated first in [39] by Yager as generalization
of the concept of set theory and then the set developed in [15] by Calude et
al. Several authors from time to time made a number of generalization of set
theory. For example, Sebastian and Ramakrishnan[34, 33] introduced a new
notion is called multi fuzzy set, which is a generalization of multiset. Since
then, Several researcher[24, 32, 37, 38] discuussed more properties on multi
fuzzy set. [35, 20] made an extension of the concept of Fuzzy multisets by an
intuitionstic fuzzy set, which called intuitionstic fuzzy multisets(IFMS). Since
then in the study on IFMS , a lot of excellent results have been achieved by
researcher [17, 27, 28, 29, 30, 31]. An element of a multi fuzzy sets can occur
more than once with possibly the same or different membership values, whereas
an element of intuitionistic fuzzy multisets allows the repeated occurrences of
membership and non–membership values. The concepts of FMS and IFMS fails
to deal with indeterminacy. Therefore Deli et al.[18] give neutrosophic multisets.

The neutrosophic relations are the neutrosophic subsets in a cartesian prod-
uct of universe. The purpose of this paper is an attempt to extend the neutro-
sophic relations to neutrosophic multi relations(NMR). This paper is arranged
in the following manner. In section 2, we present some definitions and notion
about intuitionstic fuzzy set, intuitionstic fuzzy multisets, neutrosophic set and
neutrosophic multi set theory which is help us in later section. In section 3, we
study the concept of neutrosophic multisets and their operations. In section 4,
we present an application of NMR in medical diagnosis. Finally, we conclude
the paper.
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2 Preliminary

In this section, we mainly recall some notions related to neutrosophic sets[36]
relevant to the present work. See especially[2, 3, 4, 5, 6, 10, 16, 21, 22, 26] for
further details and background.

Definition 2.1 [36] Let U be a space of points (objects), with a generic element
in U denoted by u. A neutrosophic sets(N-sets) A in U is characterized by a
truth-membership function TA, a indeterminacy-membership function IA and a
falsity-membership function FA. TA(x); IA(x) and FA(x) are real standard or
nonstandard subsets of [0, 1]. It can be written as

A = {< u, (TA(x), IA(x), FA(x)) >: x ∈ E, TA(x), IA(x), FA(x) ∈ [0, 1]}.
There is no restriction on the sum of TA(x); IA(x) and FA(x), so 0 ≤

TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.2 [18] Let E be a universe. A neutrosophic multiset(NMS) A on
E can be defined as follows:

A = {< x, (T 1
A(x), T 2

A(x), ..., TP
A (x)), (I1

A(x), I2
A(x), ..., IP

A (x)),
(F 1

A(x), F 2
A(x), ..., FP

A (x)) >: x ∈ E}
where,

T 1
A(x), T 2

A(x), ..., TP
A (x) : E → [0, 1],

I1
A(x), I2

A(x), ..., IP
A (x) : E → [0, 1],

and
F 1

A(x), F 2
A(x), ..., FP

A (x) : E → [0, 1]

such that
0 ≤ T i

A(x) + Ii
A(x) + F i

A(x) ≤ 3

(i = 1, 2, ..., P ) and

T 1
A(x) ≤ T 2

A(x) ≤ ... ≤ TP
A (x)

for any x ∈ E.
(T 1

A(x), T 2
A(x), ..., TP

A (x)), (I1
A(x), I2

A(x), ..., IP
A (x)) and (F 1

A(x), F 2
A(x), ..., FP

A (x))
is the truth-membership sequence, indeterminacy-membership sequence and falsity-
membership sequence of the element x, respectively. Also, P is called the di-
mension(cardinality) of NMS A. We arrange the truth-membership sequence in
decreasing order but the corresponding indeterminacy-membership and falsity-
membership sequence may not be in decreasing or increasing order.

The set of all Neutrosophic multisets on E is denoted by NMS(E).

Definition 2.3 [18] Let A,B ∈ NMS(E). Then,
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1. A is said to be NM subset of B is denoted by A⊆̃B if T i
A(x) ≤ T i

B(x),
Ii
A(x) ≥ Ii

B(x) ,F i
A(x) ≥ F i

B(x), ∀x ∈ E.

2. A is said to be neutrosophic equal of B is denoted by A = B if T i
A(x) =

T i
B(x), Ii

A(x) = Ii
B(x) ,F i

A(x) = F i
B(x), ∀x ∈ E.

3. the complement of A denoted by Aec and is defined by

Aec = {< x, (F 1
A(x), F 2

A(x), ..., FP
A (x)), (I1

A(x), I2
A(x), ..., IP

A (x)),
(T 1

A(x), T 2
A(x), ..., TP

A (x)) >: x ∈ E}

4. If T i
A(x) = 0 and Ii

A(x) = F i
A(x) = 1 for all x ∈ E and i = 1, 2, ..., P then

A is called null ns-set and denoted by Φ̃.

5. If T i
A(x) = 1 and Ii

A(x) = F i
A(x) = 0 for all x ∈ E and i = 1, 2, ..., P ,

then A is called universal ns-set and denoted by Ẽ.

Definition 2.4 [18] Let A,B ∈ NMS(E). Then,

1. the union of A and B is denoted by A∪̃B = C1 and is defined by

C = {< x, (T 1
C(x), T 2

C(x), ..., TP
C (x)), (I1

C(x), I2
C(x), ..., IP

C (x)),
(F 1

C(x), F 2
C(x), ..., FP

C (x)) >: x ∈ E}
where T i

C = T i
A(x) ∨ T i

B(x), Ii
C = Ii

A(x) ∧ Ii
B(x) ,F i

C = F i
A(x) ∧ F i

B(x),
∀x ∈ E and i = 1, 2, ..., P .

2. the intersection of A and B is denoted by A∩̃B = D and is defined by

D = {< x, (T 1
D(x), T 2

D(x), ..., TP
D (x)), (I1

D(x), I2
D(x), ..., IP

D(x)),
(F 1

D(x), F 2
D(x), ..., FP

D (x)) >: x ∈ E}
where T i

D = T i
A(x) ∧ T i

B(x), Ii
D = Ii

A(x) ∨ Ii
B(x) ,F i

D = F i
A(x) ∨ F i

B(x),
∀x ∈ E and i = 1, 2, ..., P .

3. the addition of A and B is denoted by A+̃B = E1 and is defined by

E1 = {< x, (T 1
E1

(x), T 2
E1

(x), ..., TP
E1

(x)), (I1
E1

(x), I2
E1

(x), ..., IP
E1

(x)),
(F 1

E1
(x), F 2

E1
(x), ..., FP

E1
(x)) >: x ∈ E}

where T i
E1

= T i
A(x) + T i

B(x) − T i
A(x).T i

B(x), Ii
E1

= Ii
A(x).Ii

B(x) ,F i
E1

=
F i

A(x).F i
B(x), ∀x ∈ E and i = 1, 2, ..., P .

4. the multiplication of A and B is denoted by A×̃B = E2 and is defined by

E2 = {< x, (T 1
E2

(x), T 2
E2

(x), ..., TP
E2

(x)), (I1
E2

(x), I2
E2

(x), ..., IP
E2

(x)),
(F 1

E2
(x), F 2

E2
(x), ..., FP

E2
(x)) >: x ∈ E}

where T i
E2

= T i
A(x).T i

B(x), Ii
E2

= Ii
A(x) + Ii

B(x) − Ii
A(x).Ii

B(x) ,F i
E2

=
F i

A(x) + F i
B(x)− F i

A(x).F i
B(x), ∀x ∈ E and i = 1, 2, ..., P .

Here ∨, ∧, +, ., − denotes maximum, minimum, addition, multiplication, sub-
traction of real numbers respectively.
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3 Relations on Neutrosophic Multisets

In this section, after given the cartesian products of two neutrosophic multisets,
we define a relations on neutrosophic multisets and study their desired prop-
erties. The relation extend the concept of intuitionistic multirelation [29] to
neutrosophic multirelation. Some of it is quoted from [18, 29, 36].

Definition 3.1 Let ∅ 6= A,B ∈ NMS(E) and j ∈ {1, 2, ..., n}. Then, cartesian
product of A and B is a neutrosophic multiset in E×E, denoted by A×B, defined
as

A×B = {< (x, y), T j
A×B(x, y)), Ij

A×B(x, y), F j
A×B(x, y) >: (x, y) ∈ E × E}

where
T j

A×B(x, y), Ij
A×B(x, y), F j

A×B(x, y) : E → [0, 1]

,

T j
A×B(x, y) = min

{
T j

A(x), T j
B(x)

}
,

Ij
A×B(x, y) = max

{
Ij
A(x), Ij

B(x)
}

and
F j

A×B(x, y) = max
{

F j
A(x), F j

B(x)
}

for all x, y ∈ E.

Remark 3.2 A cartesian product on A is a neutrosophic multiset in E × E,
denoted by A×A, defined as

A×A = {< (x, y), T j
A×A(x, y)), Ij

A×A(x, y), F j
A×A(x, y) >: (x, y) ∈ E × E}

where j = 1, 2, ..., n and T j
A×A, Ij

A×A, F j
A×A : E × E → [0, 1].

Definition 3.3 Let ∅ 6= A,B ∈ NMS(E) and j ∈ {1, 2, ..., n}. Then, a neu-
trosophic multi relation from A to B is a neutrosophic multi subset of A × B.
In other words, a neutrosophic multi relation from A to B is of the form
(R,C), (C ⊆ E × E) where R(x, y) ⊆ A×B ∀(x, y) ∈ C.

Definition 3.4 Let A, B ∈ NMS(E) and, R and S be two neutrosophic mul-
tirelation from A to B. Then, the operations R∪̃S, R∩̃S, R+̃S and R×̃S are
defined as follows;

1.

R∪̃S = {< (x, y), (T 1
Re∪S

(x, y), T 2
Re∪S

(x, y), ..., Tn
Re∪S

(x, y)),
(I1

Re∪S
(x, y), I2

Re∪S
(x, y), ..., In

Re∪S
(x, y)),

(F 1
Re∪S

(x, y), F 2
Re∪S

(x, y), ..., Fn
Re∪S

(x, y)) >: x, y ∈ E}
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where

T i
Re∪S(x, y) = T i

R(x) ∨ T i
S(y),

Ii
Re∪S(x, y) = Ii

R(x) ∧ Ii
S(y),

F i
Re∪S(x, y) = F i

R(x) ∧ F i
S(y)

∀x, y ∈ E and i = 1, 2, ..., n.

2.
R∩̃S = {< (x, y), (T 1

Re∩S
(x, y), T 2

Re∩S
(x, y), ..., Tn

Re∩S
(x, y)),

(I1
Re∩S

(x, y), I2
Re∩S

(x, y), ..., In
Re∩S

(x, y)),
(F 1

Re∩S
(x, y), F 2

Re∩S
(x, y), ..., Fn

Re∩S
(x, y)) >: x, y ∈ E}

where

T i
Re∩S(x, y) = T i

R(x) ∧ T i
S(y),

Ii
Re∩S(x, y) = Ii

R(x) ∨ Ii
S(y),

F i
Re∩S(x, y) = F i

R(x) ∨ F i
S(y)

∀x, y ∈ E and i = 1, 2, ..., n.

3.

R+̃S = {< (x, y), (T 1
Re+S

(x, y), T 2
Re+S

(x, y), ..., Tn
Re+S

(x, y)),
(I1

Re+S
(x, y), I2

Re+S
(x, y), ..., In

Re+S
(x, y)),

(F 1
Re+S

(x, y), F 2
Re+S

(x, y), ..., Fn
Re+S

(x, y)) >: x, y ∈ E}
where

T i
Re+S

(x, y) = T i
R(x) + T i

S(y)− T i
R(x).T i

S(y),

Ii
Re+S

(x, y) = Ii
R(x).Ii

S(y),

F i
Re+S

(x, y) = F i
R(x).F i

S(y)

∀x, y ∈ E and i = 1, 2, ..., n.

4.

R×̃S = {< (x, y), (T 1
R×̃S

(x, y), T 2
R×̃S

(x, y), ..., Tn
R×̃S

(x, y)),
(I1

R×̃S
(x, y), I2

R×̃S
(x, y), ..., In

R×̃S
(x, y)),

(F 1
R×̃S

(x, y), F 2
R×̃S

(x, y), ..., Fn
R×̃S

(x, y)) >: x, y ∈ E}
where

T i
R×̃S(x, y) = T i

R(x).T i
S(y),

Ii
R×̃S

(x, y) = Ii
R(x) + Ii

S(y)− Ii
R(x).Ii

S(y),

F i
R×̃S(x, y) = F i

R(x) + F i
S(y)− F i

R(x).F i
S(y)

∀x, y ∈ E and i = 1, 2, ..., n.
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Here ∨, ∧, +, ., − denotes maximum, minimum, addition, multiplication, sub-
traction of real numbers respectively.

Assume that ∅ 6= A, B,C ∈ NMS(E). Two neutrosophic multirelations under
a suitable composition, could too yield a new neutrosophic multirelation with
a useful significance. Composition of relations is important for applications,
because of the reason that if a relation on A and B is known and if a relation on
B and C is known then the relation on A and C could be computed and defined
as follows;

Definition 3.5 Let R(A→ B) and S (B→ C) be two neutrosophic multire-
lations. The composition S ◦R is a neutrosophic multirelation from A to C,
defined by

S ◦R = {< (x, z), (T 1
S◦R(x, z), T 2

S◦R(x, z), ..., Tn
S◦R(x, z)),

(I1
S◦R(x, z), I2

S◦R(x, z), ..., In
S◦R(x, z)),

(F 1
S◦R(x, z), F 2

S◦R(x, z), ..., Fn
S◦R(x, z)) >: x, z ∈ E}

where
T j

S◦R(x, z) = ∨
y

{
T j

R(x, y) ∧ T j
S(y, z)

}

Ij
S◦R(x, z) = ∧

y

{
Ij
R(x, y) ∨ Ij

S(y, z)
}

and
F j

S◦R(x, z) = ∧
y

{
F j

R(x, y) ∨ F j
S(y, z)

}

for every (x, z) E × E, for every y ∈ E and j = 1, 2, ..., n.

Definition 3.6 A neutrosophic multirelation R on A is said to be;

1. reflexive if T j
R(x, x) = 1, Ij

R(x, x) = 0 and F j
R(x, x) = 0 for all x ∈ E

2. symmetric if T j
R(x, y) = T j

R(y, x), Ij
R(x, y) = Ij

R(y, x) and F j
R(x, y) =

F j
R(y, x) for all x, y ∈ E

3. transitive if R ◦R ⊆ R.

4. neutrosophic multi equivalence relation if the relation R satisfies reflexive,
symmetric and transitive.

Definition 3.7 The transitive closure of a neutrosophic multirelation R on E×
E is

ˆ

R = R∪̃R2∪̃R3∪̃...

Definition 3.8 If R is a neutrosophic multirelation from A to B then R−1 is
the inverse neutrosophic multirelation R from B to A, defined as follows:

R−1 =
{〈

(y, x), T j
R−1(x, y)), Ij

R−1(x, y), F j
R−1(x, y)

〉
: (x, y) ∈ E × E

}

where
T j

R−1(x, y) = T j
R(y, x), Ij

R−1(x, y) = Ij
R(y, x), F j

R−1(x, y) = F j
R(y, x) and

j = 1, 2, ..., n.
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Proposition 3.9 If R and S are two neutrosophic multirelation from A to B
and B to C, respectively. Then,

1. (R−1)−1 = R

2. (S ◦R)−1 = R−1 ◦ S−1

Proof

1. Since R−1 is a neutrosophic multirelation from B to A, we have
T j

R−1(x, y) = T j
R(y, x), Ij

R−1(x, y) = Ij
R(y, x) and F j

R−1(x, y) = F j
R(y, x)

Then,

T j
(R−1)−1(x, y) = T j

R−1(y, x) = T j
R(x, y),

Ij
(R−1)−1(x, y) = Ij

R−1(y, x) = Ij
R(x, y)

and
F j

(R−1)−1(x, y) = F j
R−1(y, x) = F j

R(x, y)

therefore (R−1)−1 = R.

2. If the composition S ◦R is a neutrosophic multirelation from A to C, then
the compostion R−1 ◦ S−1 is a neutrosophic multirelation from C to A.
Then,

T j
(S◦R)−1(z, x) = T j

(S◦R)(x, z)

= ∨
y

{
T j

R(x, y) ∧ T j
S(y, z)

}

= ∨
y

{
T j

R−1(y, x) ∧ T j
S−1(z, y)

}

= ∨
y

{
T j

S−1(z, y) ∧ T j
R−1(y, x)

}

= T j
R−1◦S−1(z, x)

,

Ij
(S◦R)−1(z, x) = Ij

(S◦R)(x, z)

= ∧
y

{
Ij
R(x, y) ∨ Ij

S(y, z)
}

= ∧
y

{
Ij
R−1(y, x) ∨ Ij

S−1(z, y)
}

= ∧
y

{
Ij
S−1(z, y) ∨ Ij

R−1(y, x)
}

= Ij
R−1◦S−1(z, x)

and
F j

(S◦R)−1(z, x) = F j
(S◦R)(x, z)

= ∧
y

{
F j

R(x, y) ∨ F j
S(y, z)

}

= ∧
y

{
F j

R−1(y, x) ∨ F j
S−1(z, y)

}

= ∧
y

{
F j

S−1(z, y) ∨ F j
R−1(y, x)

}

= F j
R−1◦S−1(z, x)
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Finally; proof is valid.

Proposition 3.10 If R is symmetric ,then R−1is also symmetric.

Proof: Assume that R is Symmetric then we have

T j
R(x, y) = T j

R(y, x),

Ij
R(x, y) = Ij

R(y, x)

and
F j

R(x, y) = F j
R(y, x)

Also if R−1 is an inverse relation, then we have

T j
R−1(x, y) = T j

R(y, x),

Ij
R−1(x, y) = Ij

R(y, x)

and
F j

R−1(x, y) = F j
R(y, x)

for all x, y ∈ E
To prove R−1 is symmetric, it is enough to prove

T j
R−1(x, y) = T j

R−1(y, x),

Ij
R−1(x, y) = Ij

R−1(y, x)

and
F j

R−1(x, y) = F j
R−1(y, x)

for all x, y ∈ E
Therefore;

T j
R−1(x, y) = T j

R(y, x) = T j
R(x, y) = T j

R−1(y, x);

Ij
R−1(x, y) = Ij

R(y, x) = Ij
R(x, y) = Ij

R−1(y, x)

and
F j

R−1(x, y) = F j
R(y, x) = F j

R(x, y) = F j
R−1(y, x)

Finally; proof is valid.

Proposition 3.11 If R is symmetric ,if and only if R = R−1.

Proof: Let R be symmetric , then

T j
R(x, y) = T j

R(y, x);

Ij
R(x, y) = Ij

R(y, x)

and
F j

R(x, y) = F j
R(y, x)
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and
R−1 is an inverse relation, then

T j
R−1(x, y) = T j

R(y, x);

Ij
R−1(x, y) = Ij

R(y, x)

and
F j

R−1(x, y) = F j
R(y, x)

for all x, y ∈ E
Therefore; T j

R−1(x, y) = T j
R(y, x) = T j

R(x, y).
Similarly

Ij
R−1(x, y) = Ij

R(y, x) = Ij
R(x, y)

and
F j

R−1(x, y) = F j
R(y, x) = F j

R(x, y)

for all x, y ∈ E.
Hence R = R−1

Conversely, assume that R = R−1 then, we have

T j
R(x, y) = T j

R−1(x, y) = T j
R(y, x).

Similarly
Ij
R(x, y) = Ij

R−1(x, y) = Ij
R(y, x)

and
F j

R(x, y) = F j
R−1(x, y) = F j

R(y, x).

Hence R is symmetric.

Proposition 3.12 If R and S are symmetric neutrosophic multirelations, then

1. R∪̃S,

2. R∩̃S,

3. R+̃S

4. R×̃S

are also symmetric.

Proof: R is symmetric, then we have;

T j
R(x, y) = T j

R(y, x),

Ij
R(x, y) = Ij

R(y, x)

and
F j

R(x, y) = F j
R(y, x)

10



similarly S is symmetric, then we have

T j
S(x, y) = T j

S(y, x),

Ij
S(x, y) = Ij

S(y, x)

and
F j

S(x, y) = F j
S(y, x)

Therefore,

1.
T j

Re∪S
(x, y) = max

{
T j

R(x, y), T j
S(x, y)

}

= max
{

T j
R(y, x), T j

S(y, x)
}

= T j

Re∪S
(y, x)

,

Ij

Re∪S
(x, y) = min

{
Ij
R(x, y), Ij

S(x, y)
}

= min
{

Ij
R(y, x), Ij

S(y, x)
}

= Ij

Re∪S
(y, x),

and
F j

Re∪S
(x, y) = min

{
F j

R(x, y), F j
S(x, y)

}

= min
{

F j
R(y, x), F j

S(y, x)
}

= F j

Re∪S
(y, x)

therefore, R∪̃S is symmetric.

2.
T j

Re∩S
(x, y) = min

{
T j

R(x, y), T j
S(x, y)

}

= min
{

T j
R(y, x), T j

S(y, x)
}

= T j

Re∩S
(y, x),

Ij

Re∩S
(x, y) = max

{
Ij
R(x, y), Ij

S(x, y)
}

= max
{

Ij
R(y, x), Ij

S(y, x)
}

= Ij

Re∩S
(y, x),

and
F j

Re∩S
(x, y) = max

{
F j

R(x, y), F j
S(x, y)

}

= max
{

F j
R(y, x), F j

S(y, x)
}

= F j

Re∩S
(y, x)

therefore; R∩̃S is symmetric.
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3.
T j

R+̃S
(x, y) = T j

R(x, y) + T j
S(x, y)− T j

R(x, y)T j
S(x, y)

= T j
R(y, x) + T j

S(y, x)− T j
R(y, x)T j

S(y, x)
= T j

R+̃S
(y, x)

Ij

R+̃S
(x, y) = Ij

R(x, y)Ij
S(x, y)

= Ij
R(y, x)Ij

S(y, x)
= Ij

R+̃S
(y, x)

and
F j

R+̃S
(x, y) = F j

R(x, y)F j
S(x, y)

= F j
R(y, x)F j

S(y, x)
= F j

R+̃S
(y, x)

therefore, R+̃S is also symmetric

4.
T j

R×̃S
(x, y) = T j

R(x, y)T j
S(x, y)

= T j
R(y, x)T j

S(y, x)
= T j

R×̃tS
(y, x)

Ij

R×̃S
(x, y) = Ij

R(x, y) + Ij
S(x, y)− Ij

R(x, y)Ij
S(x, y)

= Ij
R(y, x) + Ij

S(y, x)− Ij
R(y, x)Ij

S(y, x)
= Ij

R×̃S
(y, x)

F j

R×̃S
(x, y) = F j

R(x, y) + F j
S(x, y)− F j

R(x, y)F j
S(x, y)

= F j
R(y, x) + F j

S(y, x)− F j
R(y, x)F j

S(y, x)
= F j

R×̃S
(y, x)

hence, R×̃S is also symmetric.

Remark 3.13 R◦S in general is not symmetric, as

T j
(R◦S)(x, z) = ∨

y

{
T j

S(x, y) ∧ T j
R(y, z)

}

= ∨
y

{
T j

S(y, x) ∧ T j
R(z, y)

}

6= T j
(R◦S)(z, x)

Ij
(R◦S)(x, z) = ∧

y

{
Ij
S(x, y) ∨ Ij

R(y, z)
}

= ∧
y

{
Ij
S(y, x) ∨ Ij

R(z, y)
}

6= Ij
(R◦S)(z, x)
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F j
(R◦S)(x, z) = ∧

y

{
F j

S(x, y) ∨ F j
R(y, z)

}

= ∧
y

{
F j

S(y, x) ∨ F j
R(z, y)

}

6= F j
(R◦S)(z, x)

but R◦S is symmetric ,if R◦S = S◦R, for R and S are symmetric relations.

T j
(R◦S)(x, z) = ∨

y

{
T j

S(x, y) ∧ T j
R(y, z)

}

= ∨
y

{
T j

S(y, x) ∧ T j
R(z, y)

}

= ∨
y

{
T j

R(y, x) ∧ T j
R(z, y)

}

T j
(R◦S)(z, x)

Ij
(R◦S)(x, z) = ∧

y

{
Ij
S(x, y) ∨ Ij

R(y, z)
}

= ∧
y

{
Ij
S(y, x) ∨ Ij

R(z, y)
}

= ∧
y

{
Ij
R(y, x) ∨ Ij

R(z, y)
}

Ij
(R◦S)(z, x)

and
F j

(R◦S)(x, z) = ∧
y

{
F j

S(x, y) ∨ F j
R(y, z)

}

= ∧
y

{
F j

S(y, x) ∨ F j
R(z, y)

}

= ∧
y

{
F j

R(y, x) ∨ F j
R(z, y)

}

F j
(R◦S)(z, x)

for every (x, z) ∈ E × E and for y ∈ E.

Proposition 3.14 If R is transitive relation, then R−1 is also transitive.

Proof : R is transitive relation, if R ◦ R ⊆ R, hence if R−1 ◦ R−1 ⊆ R−1,
then R−1 is transitive.

Consider;

T j
R−1(x, y) = T j

R(y, x) ≥ T j
R◦R(y, x)

= ∨
z

{
T j

R(y, z) ∧ T j
R(z, x)

}

= ∨
z

{
T j

R−1(x, z) ∧ T j
R−1(z, y)

}

= T j
R−1◦R−1(x, y)

Ij
R−1(x, y) = Ij

R(y, x) ≤ Ij
R◦R(y, x)

= ∧
z

{
Ij
R(y, z) ∨ Ij

R(z, x)
}

= ∧
z

{
Ij
R−1(x, z) ∨ Ij

R−1(z, y)
}

= Ij
R−1◦R−1(x, y)
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and
F j

R−1(x, y) = F j
R(y, x) ≤ F j

R◦R(y, x)
= ∧

z

{
F j

R(y, z) ∨ F j
R(z, x)

}

= ∧
z

{
F j

R−1(x, z) ∨ F j
R−1(z, y)

}

= F j
R−1◦R−1(x, y)

hence, proof is valid.

Proposition 3.15 If R is transitive relation, then R ∩ S is also transitive

Proof: As R and S are transitive relations, R ◦R ⊆ R and S ◦ S ⊆ S.
also

T j

Re∩S
(x, y) ≥ T j

(Re∩S)◦(Re∩S)
(x, y)

Ij

Re∩S
(x, y) ≤ Ij

(Re∩S)◦(Re∩S)
(x, y)

F j

Re∩S
(x, y) ≤ F j

(Re∩S)◦(Re∩S)
(x, y)

implies R∩̃S) ◦ (R∩̃S) ⊆ R ∩ S, hence R ∩ S is transitive.

Proposition 3.16 If R and S are transitive relations, then

1. R∪̃S,

2. R+̃S

3. R×̃S

are not transitive.

Proof:

1. As
T j

Re∪S
(x, y) = max

{
T j

R(x, y), T j
S(x, y)

}

Ij

Re∪S
(x, y) = min

{
Ij
R(x, y), Ij

S(x, y)
}

F j

Re∪S
(x, y) = min

{
F j

R(x, y), F j
S(x, y)

}

and
T j

(Re∪S)◦(Re∪S)
(x, y) ≥ T j

Re∪S
(x, y)

Ij

(Re∪S)◦(Re∪S)
(x, y) ≤ Ij

Re∪S
(x, y)

F j

(Re∪S)◦(Re∪S)
(x, y) ≤ F j

Re∪S
(x, y)

2. As
T j

R+̃S
(x, y) = T j

R(x, y) + T j
S(x, y)− T j

R(x, y)T j
S(x, y)

Ij

R+̃S
(x, y) = Ij

R(x, y)Ij
S(x, y)

F j

R+̃S
(x, y) = F j

R(x, y)F j
S(x, y)

and
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T j

(R+̃S)◦(R+̃S)
(x, y) ≥ T j

R+̃S
(x, y)

Ij

(R+̃S)◦(R+̃S)
(x, y) ≤ Ij

R+̃S
(x, y)

F j

(R+̃S)◦(R+̃S)
(x, y) ≤ F j

R+̃S
(x, y)

3. As
T j

R×̃S
(x, y) = T j

R(x, y)T j
S(x, y)

Ij

R×̃S
(x, y) = Ij

R(x, y) + Ij
S(x, y)− Ij

R(x, y)Ij
S(x, y)

F j

R×̃S
(x, y) = F j

R(x, y) + F j
S(x, y)− F j

R(x, y)F j
S(x, y)

and
T j

(R×̃S)◦(R×̃S)
(x, y) ≥ T j

R×̃S
(x, y)

Ij

(R×̃S)◦(R×̃S)
(x, y) ≤ Ij

R×̃S
(x, y)

F j

(R×̃S)◦(R×̃S)
(x, y) ≤ F j

R×̃S
(x, y)

Hence R∪̃S, R+̃S and R×̃S are not transitive.

Proposition 3.17 If R is transitive relation, then R2 is also transitive

Proof: R is transitive relation, if R ◦ R ⊆ R, therefore if R2 ◦ R−2 ⊆ R2,
then R2 is transitive.

T j
R◦R(y, x) = ∨

z

{
T j

R(y, z) ∧ T j
R(z, x)

}
≥ ∨

z

{
T j

R◦R(y, z) ∧ T j
R◦R(z, x)

}
= T j

R2◦R2(y, x),

Ij
R◦R(y, x) = ∧

z

{
Ij
R(y, z) ∨ Ij

R(z, x)
}
≤ ∧

z

{
Ij
R◦R(y, z) ∨ Ij

R◦R(z, x)
}

= Ij
R2◦R2(y, x)

and

F j
R◦R(y, x) = ∧

z

{
F (y, z) ∨ F j

R(z, x)
}
≤ ∧

z

{
Ij
R◦R(y, z) ∨ F j

R◦R(z, x)
}

= F j
R2◦R2(y, x)

Finally, the proof is valid.
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5 Conclusion

In this paper, we have firstly defined the neutrosophic multirelations(NMR).
The NMR are the extension of neutrosophic relation (NR) and intuitionistic
multirelation[29]. The notions of inverse, symmerty, reflexivity and transitiv-
ity on neutrosophic multirelations are studied.The future work will cover the
application of the NMR in decision making, pattern recogntion and in medical
diagnosis.
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