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Abstract 

This is a compilation of quaternionic number systems, quaternionic function theory, quaternionic 

Hilbert spaces and Gelfand triples. 

The difference between quaternionic differential calculus and Maxwell based differential calculus is 

explained. 
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1 Introduction 
Hilbert spaces are a special kind of vector space. What makes this space special is the fact that its set 

of closed subspaces has the same relational structure as quantum logic has. 

It is not generally known that separable Hilbert spaces can only handle number systems that form 

division rings. This was inescapably proven by Maria Pia Solèr. 

Only three suitable division rings exist: the real numbers, the complex numbers and the quaternions. 

The first two are contained in the last one. Thus the most elaborate separable Hilbert space is a 

quaternionic Hilbert space.  

See: “Division algebras and quantum theory” by John Baez.http://arxiv.org/abs/1101.5690 

According to my experience hardly any scientist knows that quaternionic number systems, and 

continuous quaternionic functions exist in 16 versions that only differ in their discrete symmetry. 

Also most scientist do not notice what separable stands for. It means that eigenspaces of operators 

can only contain a countable number of eigenvalues. For example operators whose eigenspaces 

contain all rational numbers may exist, but operators whose eigenspaces contain all (or a closed set 

of) real numbers can only exist in a non-separable Hilbert space, such as a Gelfand triple.  

By the way, each infinite dimensional separable Hilbert space owns a Gelfand triple. 

Great resemblance exists between Maxwell-like equations and quaternionic differential equations. 

However, also significant differences exist. This paper indicates what these differences are. 

2 Quaternion geometry and arithmetic 
Quaternions and quaternionic functions offer the advantage of a very compact notation of items that 

belong together. 

Quaternions can be considered as the combination of a real scalar and a 3D vector that has real 

coefficients. This vector forms the imaginary part of the quaternion. Quaternionic number systems 

are division rings. Other division rings are real numbers and complex numbers. Octonions do not 

form a division ring. 

 

Bi-quaternions exist whose parts exist of a complex scalar and a 3D vector that has complex 

coefficients. Bi-quaternions do not form division rings. This paper does not use them. 

2.1 Notation 
We indicate the real part of quaternion 𝑎 by the suffix 𝑎0. 

We indicate the imaginary part of quaternion 𝑎 by bold face 𝒂. 

 

𝑎 = 𝑎0 + 𝒂 

 

𝑎∗ = 𝑎0 − 𝒂 

(1) 

(2) 

https://www.linkedin.com/redirect?url=http%3A%2F%2Farxiv%2Eorg%2Fabs%2F1101%2E5690&urlhash=aDHk&_t=tracking_disc


2.2 Sum 
𝑐 = 𝑐0 + 𝒄 = 𝑎 + 𝑏 

 

𝑐0 = 𝑎0 + 𝑏0 

 

𝒄 = 𝒂 + 𝒃 

 

2.3 Product 
𝑓 = 𝑓0 + 𝒇 = 𝑑 𝑒 

 

𝑓0 = 𝑑0𝑒0 − ⟨𝒅, 𝒆⟩ 

 

𝒇 = 𝑑0𝒆 + 𝑒0𝒅 ± 𝒅 × 𝒆 

 

The ± sign indicates the influence of right or left handedness of the number system1.  

 

⟨𝒅, 𝒆⟩ is the inner product of 𝒅 and 𝒆. 

𝒅 × 𝒆 is the outer product of 𝒅 and 𝒆. 

 

2.4 Norm 

|𝑎| = √𝑎0𝑎0 + 〈𝒂, 𝒂〉 = √𝑎𝑎∗ 

 

2.5 Quaternionic rotation 
In multiplication quaternions do not commute. Thus, in general 𝑎 𝑏/𝑎 ≠ 𝑏. In this multiplication 

the imaginary part of 𝑏 that is perpendicular to the imaginary part of 𝑎 is rotated over an angle 𝜑 

that is twice the complex phase of 𝑎. 

                                                           
1 Quaternionic number systems exist in 16 symmetry flavors. Within a coherent set all 

elements belong to the same symmetry flavor. 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 



 

 

This means that if 𝜑 = 𝜋/4, then the rotation 𝑐 = 𝑎 𝑏/𝑎 shifts 𝒃⊥ to another dimension. This fact 

puts quaternions that feature the same size of the real part as the size of the imaginary part is in 

a special category. They can switch states of tri-state systems. 

2.6 Split 
It is possible to split quaternions. 

 

𝑞 = 𝑞+ + 𝑞− 

 

𝑞± =
𝑞 ± 𝒊𝑞𝒋

2
 

 

For quaternionic functions: 

 

𝑓(𝑥+, 𝑥−) = 𝑓+(𝑥+, 𝑥−) + 𝑓−(𝑥+, 𝑥−) 

(1) 

(2) 

(1) 

a 

b|| 

2φ 

ab⊥a
-1 

b 

b⊥ 

a a 

aτ φ 

aba
-1 

The transform aba
-1
 rotates the 

imaginary part b of b around an 

axis along the imaginary part a of 

a over an angle 2φ that is twice 

the argument φ of a in the 

complex field spanned by a and 1 

1 

a = |a|exp(iφ) 

Δb 

⊥ means perpendicular 
‖ means parallel  

i 



 

𝑓±(𝑥+, 𝑥−) =
𝑓(𝑥+, 𝑥−) ± 𝒊 𝑓(𝑥+, 𝑥−) 𝒋

2
 

 

3 Quaternionic Fourier transform 
We use the quaternion split in the definition of the quaternionic Fourier transform. 

𝑓±(�̃�, �̃�) = ∫exp(−𝒊 (𝑥�̃� ±  𝑦�̃�))  𝑓±(𝑥, 𝑦) d𝑥 𝑑𝑦 = ∫  𝑓±(𝑥) exp(−𝒋 (𝑥�̃� ±  𝑦�̃�)) 𝑑𝑥  

𝑓+(�̃�, �̃�) = ∫exp(−𝒊 (𝑥�̃� +  𝑦�̃�))  𝑓+(𝑥, 𝑦) d𝑥 𝑑𝑦 = 

½∫exp(−𝒊 (𝑥�̃� +  𝑦�̃�))  𝑓(𝑥, 𝑦) d𝑥 𝑑𝑦  

+½∫exp(−𝒊 (𝑥�̃� +  𝑦�̃�)) 𝒊 𝑓(𝑥, 𝑦)𝒋 d𝑥 𝑑𝑦  

+ 

4 The separable Hilbert space 
We will specify the characteristics of a generalized quaternionic infinite dimensional  separable 

Hilbert space ℌ. The adjective “quaternionic” indicates that the inner products of vectors and the 

eigenvalues of operators are taken from the number system of the quaternions. Separable Hilbert 

spaces can be using real numbers, complex numbers or quaternions. These three number systems 

are division rings. In fact the quaternionic number system comprises all division rings. 

4.1 Notations and naming conventions 
{𝑓𝑥}𝑥 means ordered set of 𝑓𝑥 . It is a way to define discrete functions. 

The use of bras and kets differs slightly from the way Dirac uses them. 

 

|𝑓〉 is a ket vector. 

〈𝑓| is a bra vector. 

 

𝐴 is an operator. 

𝐴† is the adjoint operator of operator 𝐴. 

| on its own, is a nil operator. 

 

We will use capitals for operators and lower case Greek characters for quaternions and eigenvalues. 

We use Latin characters for ket vectors, bra vectors and eigenvectors. Imaginary and anti-Hermitian 

objects will be indicated in bold text. Real numbers get subscript  0.  

(2) 



Due to the non-commutative product of quaternions, special care must be paid to the ordering of 

factors inside products. In this paper a particular ordering is selected. It is one out of a lager set of 

possibilities. 

4.2 Quaternionic Hilbert space 
The Hilbert space ℌ is a linear space. That means for the elements |𝑓〉, |𝑔〉 and |ℎ〉 of ℌ and 

quaternionic numbers 𝛼 and 𝛽 a linear space is defined. |𝑓〉, |𝑔〉 and |ℎ〉 are ket vectors. 

4.2.1 Ket vectors 
For ket vectors hold 

 

|𝑓〉  + |𝑔〉  =  |𝑔〉  + |𝑓〉  =  |𝑔 + 𝑓〉 

 

(|𝑓〉  + |𝑔〉)  + |ℎ〉 =  |𝑓〉  + (|𝑔〉  + |ℎ〉) 

 

|𝛼𝑓〉 = |𝑓〉 𝛼 ;  |𝑓〉 = |𝛼𝑓〉 𝛼−1 

 

|( 𝛼 +  𝛽) 𝑓〉  =  |𝑓〉 𝛼 + |𝑓〉 𝛽 

 

(|𝑓〉  + |𝑔〉) 𝛼 =  |𝑓〉 𝛼 + |𝑔〉 𝛼 

 

|𝑓〉 0 =  |0〉 

 

|𝑓〉 1 =  |𝑓〉 

 

4.2.2 Bra vectors 

The bra vectors form the dual Hilbert space ℌ† of ℌ . 

 

〈𝑓|  + 〈𝑔|  =  〈𝑔|  + 〈𝑓|  =  〈𝑓 + 𝑔|  

 

(〈𝑓|  + 〈𝑔|)  + 〈ℎ|  =  〈𝑓|  + (〈𝑔|  +  〈ℎ|) 

 

〈𝛼𝑓| = 𝛼∗〈𝑓| ;   〈𝑓| = (𝛼∗)−1 〈𝛼𝑓| 

 

〈𝑓 (𝛼 +  𝛽)| =  𝛼∗〈𝑓|  + 𝛽∗ 〈𝑓|  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 

(2) 

(3) 

(4) 



 

Notice the quaternionic conjugation that affects the coefficients of bra vectors. 

 

(〈𝑓|  + 〈𝑔|)𝛼 =  〈𝑓| 𝛼 + 〈𝑔| 𝛼  

 

0 〈𝑓|  =  〈0| 

 

1 〈𝑓|  =  〈𝑓| 

 

4.2.3 Scalar product 

The scalar product couples Hilbert space ℌ† to its dual ℌ. 

 

〈𝑓|𝑔〉 = 〈𝑔|𝑓〉∗ 

 

〈𝑓 + 𝑔|ℎ〉 = 〈𝑓|ℎ〉 + 〈𝑔|ℎ〉 

 

〈𝛼𝑓|𝑔〉 = 𝛼∗〈𝑓|𝑔〉 = 𝛼∗〈𝑔|𝑓〉∗ = 〈𝑔|𝛼𝑓〉∗ 

 

〈𝑓|𝛼𝑔〉 = 〈𝑓|𝑔〉 𝛼 = 〈𝑔|𝑓〉∗ 𝛼 = 〈𝛼𝑔|𝑓〉∗  

 

〈𝑓| is a bra vector. |𝑔〉 is a ket vector.  𝛼 is a quaternion. 〈𝑓|𝑔〉 is quaternion valued. 

If the Hilbert space represents both dual spaces, then the scalar product is also called an inner 

product. 

4.2.4 Separable 
In mathematics a topological space is called separable if it contains a countable dense subset; that is, 

there exists a sequence {|𝑥𝑛〉}𝑛=1
∞  of elements of the space such that every nonempty open subset of 

the space contains at least one element of the sequence. 

Every continuous function on the separable space ℌ is determined by its values on this countable 

dense subset. 

4.2.5 Base vectors 
The Hilbert space ℌ is separable. That means that a countable row of elements {|𝑓𝑛〉} exists that 

spans the whole space. 

  

(5) 

(6) 

(7) 

(1) 

(2) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Dense_(topology)
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Open_subset
http://en.wikipedia.org/wiki/Continuous_function


If 〈𝑓𝑛|𝑓𝑚〉  =  𝛿(𝑚, 𝑛)  =  [1 when 𝑛 =  𝑚;  0 otherwise] then {|𝑓𝑛〉} forms an orthonormal base of 

the Hilbert space. 

A ket base {|𝑘〉} of ℌ is a minimal set of ket vectors |𝑘〉 that together span the Hilbert space ℌ. 

Any ket vector |𝑓〉 in ℌ can be written as a linear combination of elements of {|𝑘〉}. 

 

|𝑓〉  =  ∑(|𝑘〉 〈𝑘|𝑓〉)

𝑘

 

 

A bra base {〈𝑏|} of ℌ† is a minimal set of bra vectors 〈𝑏| that together span the Hilbert space ℌ†. 

Any bra vector 〈𝑓| in ℌ† can be written as a linear combination of elements of {〈𝑏|}. 

 

〈𝑓|  = ∑(〈𝑘|𝑓〉 〈𝑏|)

𝑘

  

 

Usually base vectors are taken such that their norm equals 1. Such a base is called an orthonormal 

base. 

 

4.2.6 Operators 
Operators act on a subset of the elements of the Hilbert space.  

4.2.6.1 Linear operators 

An operator 𝑄 is linear when for all vectors |𝑓〉 and |𝑔〉 for which 𝑄 is defined and for all quaternionic 

numbers 𝛼 and 𝛽: 

 

|𝑄 𝛼 𝑓〉  + |𝑄 𝛽 𝑔〉 = |𝑄 𝑓〉𝛼 + |𝑄 𝑔〉 𝛽 =  

𝑄(|𝛼 𝑓〉  + |𝛽 𝑔〉) = 𝑄(|𝑓〉𝛼 + |𝑔〉𝛽) 

 

Operator 𝐵 is colinear when for all vectors |𝑓〉 for which 𝐵 is defined and for all quaternionic 

numbers 𝛼 there exists a quaternionic number 𝛾 such that: 

 

|𝛼 𝐵 𝑓〉  =  |𝐵 𝑓〉 𝛾𝛼𝛾−1  ≡ |𝐵 𝛾𝛼𝛾−1 𝑓〉  

 

If |𝑓〉 is an eigenvector of operator 𝐴 with quaternionic eigenvalue 𝑎,  

 

(1) 

(2) 

(1) 

(2) 



𝐴|𝑓〉 =  |𝑓〉𝑎   

 

then |𝑏 𝑓〉 is an eigenvector of 𝐴 with quaternionic eigenvalue 𝑏−1𝑎 𝑏. 

 

𝐴|𝑏 𝑓〉 = |𝐴 𝑏 𝑓〉 =  |𝐴 𝑓〉 𝑏 = |𝑓〉𝑎 𝑏 =  |𝑏 𝑓〉 𝑏−1𝑎 𝑏  

 

𝐴† is the adjoint of the normal operator 𝐴.  

  

〈𝑓 |𝐴 𝑔〉 =  〈𝑓 𝐴†|𝑔〉 = 〈𝑔 |𝐴† 𝑓〉∗ 

 

𝐴† †  =  𝐴 

 

(𝐴 + 𝐵)†   =  𝐵† + 𝐴† 

 

(𝐴 · 𝐵)†   =  𝐵†𝐴† 

 

If 𝐴 = 𝐴†, then 𝐴 is a self adjoint operator. 

| is a nil operator.  

4.2.6.2 Operator construction 

The construct |𝑓〉〈𝑔| acts as a linear operator. |𝑔〉〈𝑓| is its adjoint operator. 

The using an orthonormal base {|𝑞𝑖〉} that belong to quaternionic eigenvalues {𝑞𝑖} and a 

quaternionic function 𝑓(𝑞) a linear operator 𝐹 can be defined such that for all vectors |𝑔〉 and |ℎ〉 

holds: 

〈𝑔|𝐹 ℎ〉 = ∑{〈𝑔|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|ℎ〉}

𝑖

 

 

𝐹 ≡ ∑{|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|}

𝑖

 

 

For the orthonormal base {|𝑞𝑖〉} holds: 

 

〈𝑞𝑗|𝑞𝑘〉 = 𝛿𝑗𝑘  

(4) 

(5) 

(6) 

(7) 

(7) 

(8) 

(9) 



 

We will use  

 

𝐹 ≡ |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖| 

 

as a shorthand for equations (7) and (8). 

 

𝐹† ≡ |𝑞𝑖〉𝑓(𝑞𝑖)
∗〈𝑞𝑖| 

 

|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖| = |𝑞𝑖 𝑓(𝑞𝑖)〉〈𝑞𝑖| = |𝑞𝑖〉〈𝑓(𝑞𝑖)
∗ 𝑞𝑖| 

 

The eigenspace of reference operator ℛ defined by 

 

ℛ ≡ ∑{|𝑞𝑖〉𝑞𝑖〈𝑞𝑖|}

𝑖

 

 

represents the countable parameter space of discrete function 𝑓(𝑞𝑖). 

𝐹 and ℛ are constructed operators. 

If collection {𝑞𝑖} covers all rational members of a quaternionic number system then this definition 

specifies a reference operator for which the eigenspace represents the parameter space of all 

discrete functions that can be defined with this number system. 

Quaternionic number systems exist in several versions that only differ in the way that the elements 

are ordered. We will identify these different versions with special superscripts. When relevant, this 

will also be done with the number systems, with the operators, with the eigenvectors and with the 

eigenvalues. 

 

ℛ⓪ ≡ ∑{|𝑞𝑖
⓪〉 𝑞𝑖

⓪ 〈𝑞𝑖
⓪
|}

𝑖

 

 

ℛ⓪ is a member of a set of reference operators {ℛ𝑥}. The superscript  𝑥 specifies the symmetry 

flavor of the number system {𝑞𝑥}. 

The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥,  ⑦,  ⑧,  ⑨,  ⑩,  ⑪,  ⑫,  ⑬,  ⑭, or ⑮.  

Often, we will use the same letter for identifying eigenvectors, eigenvalues and the corresponding 

operator. 

(10) 

(11) 

(12) 

(13) 

(14) 



Definition 8 specifies a normal operator. The set of eigenvectors of a normal operator form an 

orthonormal base of the Hilbert space. 

A self adjoint operator has real numbers as eigenvalues. 

4.2.6.3 Normal operators 

The most common definition of continuous operators is: 

 

A continuous operator is an operator that creates images such that the inverse images of open sets 

are open.  

 

Similarly, a continuous operator creates images such that the inverse images of closed sets are 

closed. 

If |𝑎〉 is an eigenvector of normal operator 𝐴 with eigenvalue 𝑎 then  

〈𝑎|𝐴|𝑎〉  =  〈𝑎|𝑎|𝑎〉  =  〈𝑎|𝑎〉 𝑎 

indicates that the eigenvalues are taken from the same number system as the inner products. 

 

A normal operator is a continuous linear operator. 

A normal operator in ℌ creates an image of ℌ onto ℌ. It transfers closed subspaces of ℌ into closed 

subspaces of ℌ.  

 

The normal operators 𝑁 have the following property. 

  

𝑁: ℌ ⇒  ℌ 

Thus the normal operator 𝑁 maps separable Hilbert space ℌ onto itself. 

𝑁 commutes with its (Hermitian) adjoint 𝑁†: 

  

𝑁𝑁†  =  𝑁†𝑁 

 

Normal operators are important because the spectral theorem holds for them.  

Examples of normal operators are 

  

 unitary operators: 𝑈† = 𝑈−1, unitary operators are bounded; 

 Hermitian operators (i.e., self-adjoint operators): 𝑁† = 𝑁 ;  

 Anti-Hermitian or anti-self-adjoint operators: 𝑁† = −𝑁;  

 Anti-unitary operators: 𝑈† = −𝑈−1 , anti-unitary operators are bounded;  

(1) 

(2) 

(2) 



 positive operators: 𝑁 = 𝑀𝑀†  

 orthogonal projection operators: 𝑃† = 𝑃 = 𝑃2. 
 
For normal operators hold: 
 

𝐴𝐵 = 𝐴0𝐵0 − 〈𝑨,𝑩〉 + 𝐴0𝑩+ 𝑨𝐵0 ± 𝑨 × 𝑩 
 

𝑁0 = ½(𝑁+𝑁†) 

 

𝑵 = ½(𝑁−𝑁†) 

 

𝑁𝑁† = 𝑁0𝑁0 + 〈𝑵,𝑵〉 = 𝑁0
2 −𝑵2 

 

4.2.6.4 Spectral theorem 

For every compact self-adjoint operator 𝑇 on a real, complex or quaternionic Hilbert space ℌ, there 

exists an orthonormal basis of ℌ consisting of eigenvectors of 𝑇. More specifically, the orthogonal 

complement of the kernel (null space) of 𝑇 admits, either a finite orthonormal basis of eigenvectors 

of 𝑇, or a countable infinite orthonormal basis of eigenvectors of 𝑇, with corresponding eigenvalues 

{𝜆𝑛}  ⊂  ℝ, such that 𝜆𝑛  →  0. Due to the fact that ℌ is separable the set of eigenvectors of 𝑇 can be 

extended with a base of the kernel in order to form a complete orthonormal base of ℌ. 

 

If 𝑇 is compact on an infinite dimensional Hilbert space ℌ, then 𝑇 is not invertible, hence 𝜎(𝑇), the 

spectrum of 𝑇, always contains 0. The spectral theorem shows that 𝜎(𝑇) consists of the eigenvalues 

{𝜆𝑛} of 𝑇, and of 0 (if 0 is not already an eigenvalue). The set 𝜎(𝑇) is a compact subset of the real 

line, and the eigenvalues are dense in 𝜎(𝑇). 

 

A normal operator has a set of eigenvectors that spans the whole Hilbert space ℌ.  

In quaternionic Hilbert space a normal operator has quaternions as eigenvalues. 

 

The set of eigenvalues of a normal operator is NOT compact. This is due to the fact that ℌ is 

separable. Therefore the set of eigenvectors is countable. As a consequence the set of eigenvalues is 

countable. Further, in general the eigenspace of normal operators has no finite diameter.  

 

A continuous bounded linear operator on ℌ has a compact eigenspace. The set of eigenvalues has a 

closure and it has a finite diameter.  

4.2.6.5 Eigenspace 

The set of eigenvalues {𝑞} of the operator 𝑄 form the eigenspace of 𝑄. 

4.2.6.6 Eigenvectors and eigenvalues 

For the eigenvector |𝑞〉 of normal operator 𝑄 holds  

 

|𝑄 𝑞〉 = |𝑞 𝑞〉 = |𝑞〉𝑞 

(3) 

(4) 

(5) 

(6) 

(1) 

http://en.wikipedia.org/wiki/Orthonormal_basis
http://en.wikipedia.org/wiki/Countable_set


 

〈𝑞 𝑄†| = 〈𝑞 𝑞| = 𝑞∗〈𝑞| 

 

∀|𝑓〉 ∈ ℌ  [{〈𝑓|𝑄 𝑞〉}𝑞 = {〈𝑓|𝑞〉𝑞}𝑞 = {〈𝑞 𝑄†|𝑓〉∗}
𝑞
= {(𝑞∗〈𝑞|𝑓〉)∗}𝑞] 

 

The eigenvalues of 2n-on normal operator are 2n-ons. For Hilbert spaces the eigenvalues are 

restricted to elements of a division ring. 

  

𝑄 = ∑ I𝑗𝑄𝑖

𝑛−1

𝑗=0

 

 

The 𝑄𝑗 are self-adjoint operators. 

  

(2) 

(3) 

(4) 



4.2.6.7 Unitary operators 

For unitary operators holds: 

  

𝑈† = 𝑈−1 

Thus 

  

𝑈𝑈†  = 𝑈†𝑈 = 𝐼 

 

Suppose 𝑈 = 𝐼 + 𝐶 where 𝑈 is unitary and 𝐶 is compact. The equations (2) and 𝐶 = 𝑈 −  𝐼 show 

that 𝐶 is normal. The spectrum of 𝐶 contains 0, and possibly, a finite set or a sequence tending to 0. 

Since 𝑈 = 𝐼 + 𝐶, the spectrum of 𝑈 is obtained by shifting the spectrum of 𝐶 by 1. 

The unitary transform can be expressed as: 

 

𝑈 = 𝑒𝑥𝑝(Ĩ 𝛷/ℏ) 

 

ℏ =  ℎ/(2 𝜋) 

 

𝛷 is Hermitian. The constant ℎ refers to the granularity of the eigenspace. 

Unitary operators have eigenvalues that are located in the unity sphere of the 2n-ons field.  

The eigenvalues have the form: 

  

𝑢 =  𝑒𝑥𝑝(𝒊 𝜑/ℏ) 

 

𝜑 is real. 𝒊 is a unit length imaginary number in 2n-on space. It represents a direction.  

𝑢 spans a sphere in 2n-on space. For constant 𝒊, 𝑢 spans a circle in a complex subspace.  

4.2.6.7.1 Polar decomposition 
Normal operators 𝑁 can be split into a real operator 𝐴 and a unitary operator 𝑈. 𝑈 and 𝐴 have the 

same set of eigenvectors as 𝑁. 

  

𝑁 = ‖𝑁‖ 𝑈 = 𝐴 𝑈 = 𝑈 𝐴 = 𝐴 𝑒𝑥𝑝 (Ĩ
𝛷

ℏ
) = 𝑒𝑥𝑝 (𝛷𝑟 + Ĩ

𝛷

ℏ
) 

 

𝛷𝑟  is a positive normal operator. 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 



4.2.6.8 Ladder operator 

4.2.6.8.1 General formulation 

Suppose that two operators 𝑋 and 𝑁 have the commutation relation: 

[𝑁, 𝑋] = 𝑐 𝑋 

for some scalar 𝑐. If |𝑛〉 is an eigenstate of 𝑁 with eigenvalue equation, 

 

|𝑁 𝑛〉 =  |𝑛〉 𝑛 

 

then the operator 𝑋 acts on |𝑛〉 in such a way as to shift the eigenvalue by 𝑐: 

 

|𝑁 𝑋 𝑛〉 =  |(𝑋 𝑁 + [𝑁, 𝑋])𝑛〉 = |(𝑋 𝑁 +  𝑐 𝑋)𝑛〉 

= |𝑋 𝑁 𝑛〉 + |𝑋 𝑛〉 𝑐 = |𝑋 𝑛〉 𝑛 + |𝑋 𝑛〉 𝑐 = |𝑋 𝑛〉(𝑛 + 𝑐) 

 

In other words, if |𝑛〉 is an eigenstate of 𝑁 with eigenvalue 𝑛 then |𝑋 𝑛〉 is an eigenstate of 𝑁 with 

eigenvalue 𝑛 + 𝑐.  

The operator 𝑋 is a raising operator for 𝑁 if 𝑐 is real and positive, and a lowering operator for 𝑁 if 𝑐 is 

real and negative. 

If 𝑁 is a Hermitian operator then 𝑐 must be real and the Hermitian adjoint of 𝑋 obeys 

the commutation relation: 

[𝑁,  𝑋†] = − c  𝑋† 

In particular, if 𝑋 is a lowering operator for 𝑁 then  𝑋† is a raising operator for 𝑁 and vice-versa. 

4.2.7 Unit sphere of ℌ 

The ket vectors in ℌ that have their norm equal to one form together the unit sphere  of ℌ. 

The orthonormal base vectors are all member of the unit sphere.  

4.2.8 Bra-ket in four dimensional space 
The Bra-ket formulation can also be used in transformations of the four dimensional curved spaces. 

The bra 〈𝑓| is then a covariant vector and the ket |𝑔〉 is a contra-variant vector. The inner product 

acts as a metric.  

𝑠 = 〈𝑓|𝑔〉 

The effect of a linear transformation 𝐿 is then given by 

𝑠𝐿 = 〈𝑓|𝐿𝑔〉 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 



The effect of a the transpose transformation 𝐿† is then given by 

〈𝑓𝐿† |𝑔〉 = 〈𝑓|𝐿𝑔〉 

For a unitary transformation 𝑈 holds: 

 

〈𝑁𝑓|𝑁𝑔〉 = 〈𝑓|𝑁†𝑁𝑔〉 = 〈𝑓|𝑁𝑁†𝑔〉 = 〈𝑁𝑁†𝑓|𝑔〉 = 〈𝑁†𝑁𝑓|𝑔〉 

 

〈𝑈𝑓|𝑈𝑔〉 = 〈𝑓|𝑔〉 

 

〈∇𝑓|∇𝑔〉 = 〈𝑓|∇†∇g〉 = 〈𝑓|∇∇†g〉 = 〈∇∇†𝑓|g〉 = 〈∇†∇𝑓|g〉 

 

Notice that 

∇∇†= ∇†∇= ∇0∇0 + 〈𝛁,𝛁〉 = ∇0
2 − 𝛁2 

4.2.9 Closure 
The closure of ℌ means that converging rows of vectors converge to a vector of ℌ. 

  

In general converging rows of eigenvalues of 𝑄 do not converge to an eigenvalue of 𝑄. 

Thus, the set of eigenvalues of 𝑄 is open.  

At best the density of the coverage of the set of eigenvalues is comparable with the set of 2n-ons that 

have rational numbers as coordinate values. 

With other words, compared to the set of real numbers the eigenvalue spectrum of 𝑄 has holes. 

The set of eigenvalues of operator 𝑄 includes 0. This means that 𝑄 does not have an inverse. 

 

The rigged Hilbert space ℋ can offer a solution, but then the direct relation with quantum logic is 

lost. 

 

4.2.10 Canonical conjugate operator P 
The existence of a canonical conjugate represents a stronger requirement on the continuity of the 

eigenvalues of canonical eigenvalues.  

𝑄 has eigenvectors {|𝑞〉}𝑞 and eigenvalues 𝑞𝑠. 

𝑃 has eigenvectors {|𝑝〉}𝑝 and eigenvalues 𝑝𝑠. 

For each eigenvector |𝑞〉 of 𝑄 we define an eigenvector |𝑝〉 and eigenvalues 𝑝𝑠 of 𝑃 such that: 

  

〈𝑞|𝑝〉 = 〈𝑝|𝑞〉∗ = 𝑒𝑥𝑝 (𝒊 𝑝𝑠 𝑞𝑠/ℏ) 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 



 

ℏ =  ℎ/(2𝜋) is a scaling factor. 〈𝑞|𝑝〉 is a quaternion. 𝒊 is a unit length imaginary quaternion. 𝑞𝑠 and 

𝑝𝑠 are quaternionic (eigen)values corresponding to |𝑞〉 𝑎𝑛𝑑 |𝑝〉. 

4.2.11 Displacement generators 
Variance of the scalar product gives: 

 

𝒊 ℏ 𝛿〈𝑞|𝑝〉  =  −𝑝𝑠〈𝑞|𝑝〉𝛿𝑞 

 

𝒊 ℏ 𝛿〈𝑝|𝑞〉  =  −𝑞𝑠〈𝑝|𝑞〉𝛿𝑝 

 

In the rigged Hilbert space ℋ the variance can be replaced by differentiation.  

Partial differentiation of the function 〈𝑞|𝑝〉 gives: 

 

𝒊 ℏ 
𝜕

𝜕𝑞𝑠
〈𝑞|𝑝〉  =  −𝑝𝑠〈𝑞|𝑝〉 

 

𝒊 ℏ
𝜕

𝜕𝑝𝑠
〈𝑝|𝑞〉 = −𝑞𝑠〈𝑝|𝑞〉 

4.3 Quaternionic L² space 
The space of quaternionic measurable functions is a separable quaternionic Hilbert space. For 

example quaternionic probability density distributions are measurable.2 

This space is spanned by an orthonormal basis of quaternionic measurable functions. The shared 

affine-like versions of the parameter space of these functions is called Palestra3. When the Palestra is 

non-curved, then this base has a canonical conjugate, which is the quaternionic Fourier transform of 

the original base. 

As soon as curvature of the Palestra arises, this relation is disturbed. 

With other words: “In advance the Palestra has a virgin state.” 

  

                                                           
2 http://en.wikipedia.org/wiki/Lp_space#Lp_spaces 
3 The name Palestra is suggested by Henning Dekant’s wife Sarah. It is a name from Greek 

antiquity. It is a public place for training or exercise in wrestling or athletics 

 

(1) 

(2) 

(3) 

(4) 



5 Gelfand triple 

The separable Hilbert space only supports countable orthonormal bases and countable eigenspaces. 

The rigged Hilbert space ℋ that belongs to an infinite dimensional separable Hilbert space ℌ is a 

Gelfand triple. It supports non-countable orthonormal bases and continuum eigenspaces. 

A rigged Hilbert space is a pair (ℌ, 𝛷) with ℌ a Hilbert space, 𝛷 a dense subspace, such that 𝛷 is given a 

topological vector space structure for which the inclusion map i is continuous.  

Identifying ℌ with its dual space ℌ†, the adjoint to i is the map 

𝑖∗: ℌ = ℌ† → 𝛷† 

The duality pairing between 𝛷 and 𝛷† has to be compatible with the inner product on ℌ, in the sense 

that: 

 

〈𝑢, 𝑣〉𝛷×𝛷† = (𝑢, 𝑣)ℌ 

 

whenever 𝑢 ∈ 𝛷 ⊂ ℌ and 𝑣 ∈ ℌ = ℌ† ⊂ 𝛷†. 

 

The specific triple (𝛷 ⊂ ℌ ⊂ 𝛷†) is often named after the mathematician Israel Gelfand). 

Note that even though 𝛷 is isomorphic to 𝛷† if 𝛷 is a Hilbert space in its own right, this 

isomorphism is not the same as the composition of the inclusion 𝑖 with its adjoint 𝑖† 

𝑖†𝑖: 𝛷 ⊂ ℌ = ℌ† → 𝛷† 

5.1 Understanding the Gelfand triple 
The Gelfand triple of a real separable Hilbert space can be understood via the enumeration model of 

the real separable Hilbert space. This enumeration is obtained by taking the set of eigenvectors of a 

normal operator that has rational numbers as its eigenvalues. Let the smallest enumeration value of 

the rational enumerators approach zero. Even when zero is reached, then still the set of enumerators 

is countable. Now add all limits of converging rows of rational enumerators to the enumeration set. 

After this operation the enumeration set has become a continuum and has the same cardinality as 

the set of the real numbers. This operation converts the Hilbert space ℌ into its Gelfand triple ℋ and 

it converts the normal operator in a new operator that has the real numbers as its eigenspace. It 

means that the orthonormal base of the Gelfand triple that is formed by the eigenvectors of the new 

normal operator has the cardinality of the real numbers. It also means that linear operators in this 

Gelfand triple have eigenspaces that are continuums and have the cardinality of the real numbers4. 

The same reasoning holds for complex number based Hilbert spaces and quaternionic Hilbert spaces 

and their respective Gelfand triples. 

                                                           
4 This story also applies to the complex and the quaternionic Hilbert spaces and their Gelfand 

triples. 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Topological_vector_space
http://en.wikipedia.org/wiki/Inclusion_map
http://en.wikipedia.org/wiki/Israel_Gelfand


  



6 Categories of operators 

6.1 Functions as Hilbert space operators 
Paul Dirac introduced the bra-ket notation that eases the formulation of Hilbert space habits.  

By using reverse bra-ket notation, operators that reside in the Hilbert space and correspond to 

continuous functions, can easily be defined by starting from an orthonormal base of vectors. In this 

base the vectors are normalized and are mutually orthogonal. The vectors span a subspace of the 

Hilbert space. This works both in separable Hilbert spaces as well as in non-separable Hilbert spaces.  

Let {𝑞𝑖} be the set of rational quaternions in a selected quaternionic number system and let {|𝑞𝑖〉} be 

the set of corresponding base vectors. They are eigenvectors of a normal operator ℛ = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|. 

Here we enumerate the base vectors with index 𝑖. 

ℛ = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|  

ℛ is the configuration parameter space operator.  

ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint operator. Its eigenvalues can be used to order the eigenvectors. 

The ordered eigenvalues can be interpreted as progression values. 

𝓡 = (ℛ − ℛ†)/2 is an imaginary operator. Its eigenvalues can be used to order the eigenvectors. 

The eigenvalues can be interpreted as spatial values and can be ordered in several ways. 

 

Let 𝑓(𝑞) be a quaternionic function. 

𝐹 = |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|  

𝑓 defines a new operator that is based on function 𝑓(𝑞). Here we suppose that the target values of 𝑓 

belong to the same version of the quaternionic number system as its parameter space does. 

Operator 𝑓 has a countable set of discrete quaternionic eigenvalues. 

For this operator the reverse bra-ket notation is a shorthand for 

〈𝑥|𝐹 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖

 

This formula uses the Kronecker delta 〈𝑞𝑖|𝑞𝑗〉 = 𝛿𝑖𝑗 . In a non-separable Hilbert space, such as the 

Gelfand triple, the continuous function ℱ(𝑞) can be used to define an operator, which features a 

continuum eigenspace. 

 

ℱ = |𝑞〉ℱ(𝑞)〈𝑞|  

 

Via the continuous quaternionic function ℱ(𝑞), the operator ℱ defines a curved continuum ℱ. This 

operator and the continuum reside in the Gelfand triple, which is a non-separable Hilbert space. 

 

ℜ = |𝑞〉𝑞〈𝑞| 

(1) 

(2) 

(3) 

(7) 

(8) 



 

The function ℱ(𝑞) uses the eigenspace of the reference operator ℜ as a flat parameter space that is 

spanned by a quaternionic number system {𝑞}. The continuum ℱ represents the target space of 

function ℱ(𝑞).  

Here we no longer enumerate the base vectors with index 𝑖. We just use the name of the parameter. 

If no conflict arises, then we will use the same symbol for the defining function, the defined operator 

and the continuum that is represented by the eigenspace. 

For the shorthand of the reverse bra-ket notation of operator ℱ the integral over 𝑞 replaces the 

summation over 𝑞𝑖. 

 

〈𝑥|ℱ 𝑦〉 = ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

This formula uses the Dirac delta function 〈𝑞|𝑝〉 = 𝛿(𝑝 − 𝑞). 

Remember that quaternionic number systems exist in several versions, thus also the operators 𝐹 and 

ℱ exist in these versions. The same holds for the parameter space operators. When relevant, we will 

use superscripts in order to differentiate between these versions.  

Thus, operator 𝑓𝑥 = |𝑞𝑖
𝑥〉𝑓𝑥(𝑞𝑖

𝑥)〈𝑞𝑖
𝑥| is a specific version of operator 𝑓. Function 𝑓𝑥(𝑞𝑖

𝑥) uses 

parameter space ℛ𝑥.  

Similarly, ℱ𝑥 = |𝑞𝑥〉ℱ𝑥(𝑞𝑥)〈𝑞𝑥| is a specific version of operator ℱ. Function ℱ𝑥(𝑞𝑥) and continuum 

ℱ𝑥 use parameter space ℜ𝑥. 

In general the dimension of a subspace loses its significance in the non-separable Hilbert space.  

The continuums that appear as eigenspaces in the non-separable Hilbert space ℋ can be considered 

as quaternionic functions that also have a representation in the corresponding infinite dimensional 

separable Hilbert space ℌ. Both representations use a flat parameter space ℜ or ℛ that is spanned 

by quaternions. ℛ is spanned by rational quaternions. 

The parameter space operators will be treated as reference operators. The rational quaternionic 

eigenvalues {𝑞𝑖} that occur as eigenvalues of the reference operator ℛ in the separable Hilbert space 

map onto the rational quaternionic eigenvalues {𝑞𝑖} that occur as subset of the quaternionic 

eigenvalues {𝑞} of the reference operator ℜ in the Gelfand triple. In this way the reference operator 

ℛ in the infinite dimensional separable Hilbert space ℌ relates directly to the reference operator ℜ, 

which resides in the Gelfand triple ℋ. 

The examples ℛ, 𝐹,ℜ and ℱ are constructed operators. 

6.1.1 Symmetry centers 
Symmetry centers 𝕾𝑥 are anti-Hermitian reference operators. The symmetry flavor  𝑥 of the 

symmetry center 𝕾𝑥, which is maintained by operator 𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| is determined by the affine 

Cartesian preordering of its eigenspace. The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥, or  ⑦. 

Apart from the affine Cartesian ordering the symmetry centers feature a spherical coordinate 

ordering that starts from the affine Cartesian ordering. 

(9) 



The eigenspace of a symmetry centers can float on the eigenspace of reference operator ℛ⓪. As a 

consequence, many symmetry centers can coexist in an infinite dimensional separable Hilbert space. 

The spherical ordering of the symmetry center defines a spin value and its relation to reference 

operator ℛ⓪ defines a relative position. The Cartesian coordinate axes of 𝕾𝑥 and ℛ⓪ are parallel. 

6.1 Stochastic operators 
Stochastic operators do not get their data from a continuous quaternionic function. Instead a 

stochastic process delivers the eigenvalues. Again for quaternionic stochastic operators these 

eigenvalues are quaternions and the real parts of these quaternions may be interpreted as 

progression values. 

The mechanisms that control the stochastic processes do not belong to the Hilbert space. Stochastic 

operators only act in a step-wise fashion. Their eigenspace is countable. If the real parts of the 

eigenvalues are interpreted as progression, then some of these stochastic operators may be 

considered to act in a cyclic fashion. 

These mechanisms can synchronize the progression values with the model wide progression that is 

set by a selected reference operator. 

6.1.1 Density operators 
The eigenspace of a stochastic operator may be characterized by a continuous density distribution. In 

that case the corresponding stochastic process must ensure that this continuous density distribution 

fits. The density distribution can be constructed afterwards or after each regeneration cycle. 

Constructing the density distribution involves a reordering of the imaginary parts of the produced 

eigenvalues. A different operator can then use the continuous density distribution in order to 

generate its functionality. The real parts of the eigenvalues may then reflect the reordering. The 

construction of the density distribution is a pure administrative action that is performed as an 

aftermath. The constructed density operator represents a continuous function and may reside both 

in the separable Hilbert space and in the Gelfand triple. 

  



7 Change of base 
In quaternionic Hilbert space a change of base can be achieved by: 

 

〈𝑥|ℱ̃ 𝑦〉 = ∫ 〈𝑥 |�̃�〉  ∫〈𝑞 |𝑞〉ℱ(𝑞)〈𝑞|�̃�〉 𝑑𝑞
𝑞

〈 �̃�|𝑦〉 𝑑�̃�
�̃�

 

= ∫〈𝑥|�̃�〉ℱ̃(�̃�)〈�̃�|𝑦〉
�̃�

 𝑑�̃� 

ℱ̃(�̃�) = ∫〈𝑞 |𝑞〉ℱ(𝑞)〈𝑞|�̃�〉
𝑞

 𝑑𝑞  

ℜ̃(�̃�) = ∫〈𝑞 |𝑞〉𝑞〈𝑞|�̃�〉
𝑞

 𝑑𝑞  

〈𝑥|ℜ̃ 𝑦〉 = ∫〈𝑥|�̃�〉ℜ̃(�̃�)〈�̃�|𝑦〉
�̃�

 𝑑�̃� 

ℜ̃ = |�̃�〉�̃�〈�̃�| 

However, as we see in the formulas this method merely achieves a rotation of parameter spaces and 

functions. In the complex number based Hilbert space it would achieve no change at all. 

7.1 Quaternionic Fourier transform 
A Fourier transform uses a different approach. It is not a direct transform between parameter 

spaces, but instead it is a transform between sets of mutually orthogonal functions, which are 

formed by inner products, which are related to different parameter spaces. The quaternionic Fourier 

transform exists in three versions. The first two versions have a reverse Fourier transform.  

The left oriented Fourier transform is defined by: 

 

ℱ̃𝐿(�̃�𝐿) = ∫〈�̃�𝐿|𝑞〉 ℱ(𝑞)
𝑞

 𝑑𝑞  

Like the functions 〈𝑞|𝑞′〉 and 〈�̃�𝐿|�̃�𝐿
′ 〉, the functions 〈�̃�𝐿|𝑞〉 and 〈𝑞|�̃�𝐿〉 form sets of mutually 

orthogonal functions, as will be clear from:  

〈𝑞|𝑞′〉 = 𝛿(𝑞 − 𝑞′) 

〈�̃�𝐿|�̃�𝐿
′ 〉 = 𝛿(�̃�𝐿 − �̃�𝐿

′ ) 

∫ 〈𝑞′|�̃�𝐿〉〈�̃�𝐿|𝑞〉  𝑑�̃�𝐿
�̃�𝐿

= 𝛿(𝑞 − 𝑞′) 

∫〈�̃�𝐿
′ |𝑞〉〈𝑞|�̃�𝐿〉  𝑑𝑞

𝑞

= 𝛿(�̃�𝐿 − �̃�𝐿
′ ) 

 

The reverse transform is: 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 



ℱ(𝑞) = ∫ 〈𝑞|�̃�𝐿〉ℱ̃𝐿(�̃�𝐿) 𝑑�̃�𝐿 =
�̃�𝐿

∫ ∫ 〈𝑞|�̃�𝐿〉〈�̃�𝐿|𝑞
′〉ℱ(𝑞′) 𝑑�̃�𝐿

𝑞′�̃�𝐿

𝑑𝑞′  

= ∫  ∫ 〈𝑞|�̃�𝐿〉〈�̃�𝐿|𝑞
′〉 𝑑�̃�𝐿

�̃�𝐿

 ℱ(𝑞′)
𝑞′

𝑑𝑞′ = ∫ 𝛿(𝑞 − 𝑞′)ℱ(𝑞′) 𝑑𝑞′ 
𝑞′

 

 

The reverse bra-ket form of the operator ℱ̃𝐿 equals: 

ℱ̃𝐿 = |�̃�𝐿〉ℱ̃𝐿(�̃�𝐿)〈�̃�𝐿|  

 

Operator ℜ̃𝐿 provides the parameter space for the left oriented Fourier transform ℱ̃𝐿(�̃�𝐿) of function 

ℱ(𝑞) in equations (1) and (6).  

ℜ̃𝐿 = |�̃�𝐿〉�̃�𝐿〈�̃�𝐿|  

 

Similarly the right oriented Fourier transform can be defined. 

ℱ̃𝑅(�̃�) = ∫ℱ(𝑞′)〈𝑞′|�̃�〉
𝑞

 𝑑𝑞′  

The reverse transform is: 

ℱ(𝑞) = ∫ ℱ̃𝑅(�̃�𝑅)〈𝑞|�̃�𝑅〉 𝑑�̃�𝑅 =
�̃�𝑅

∫ ∫ ℱ(𝑞′)〈𝑞′|�̃�𝑅〉〈�̃�𝑅|𝑞〉 𝑑𝑞
′ 𝑑�̃�𝑅

𝑞′�̃�𝑅

 

= ∫ ℱ(𝑞′)  ∫ 〈𝑞′|�̃�𝑅〉〈�̃�𝑅|𝑞〉  𝑑�̃�𝑅
�̃�𝑅

 𝑑𝑞′

𝑞′
= ∫ ℱ(𝑞′) 𝛿(𝑞 − 𝑞′) 𝑑𝑞′ 

𝑞′
 

 

Also here the functions 〈𝑞|𝑞′〉, 〈�̃�𝑅|�̃�𝑅
′ 〉, 〈�̃�𝑅|𝑞〉 and 〈𝑞|�̃�𝑅〉 form sets of mutually orthogonal 

functions. 

The reverse bra-ket form of the operator ℱ̃𝑅 equals: 

ℱ̃𝑅 = |�̃�𝑅〉ℱ̃𝑅(�̃�𝑅)〈�̃�𝑅|  

 

Operator ℜ̃𝑅 provides the parameter space for the right oriented Fourier transform ℱ̃𝑅(�̃�𝑅) of 

function ℱ(𝑞) in equations (9) and (10).  

ℜ̃𝑅 = |�̃�𝑅〉�̃�𝑅〈�̃�𝑅|  

 

The third version of the Fourier transform is: 

ℱ̃(�̃�𝐿, �̃�𝑅) =
ℱ̃𝐿(�̃�𝐿) + ℱ̃𝑅(�̃�𝑅)

2
= ½∫{〈�̃�𝐿|𝑞〉ℱ(𝑞) + ℱ(𝑞)〈𝑞|�̃�𝑅〉} 𝑑𝑞

𝑞

  

In contrast to the right and left version, the third version has no reverse.  

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 



  



8 Symmetry flavor 
Quaternionic number systems can be mapped to Cartesian coordinates along the orthonormal base 

vectors 1, 𝒊, 𝒋 and 𝒌; with 𝒊𝒋 = 𝒌  

Due to the four dimensions of quaternions, quaternionic number systems exist in 16 well-ordered 

versions {𝑞𝑥} that differ only in their discrete Cartesian symmetry set. The quaternionic number 

systems {𝑞𝑥} correspond to 16 versions {𝑞𝑖
𝑥} of rational quaternions.  

Half of these versions are right handed and the other half are left handed. Thus the handedness is 

influenced by the symmetry flavor. 

The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥,  ⑦,  ⑧,  ⑨,  ⑩,  ⑪,  ⑫,  ⑬,  ⑭, or ⑮.  

This superscript represents the symmetry flavor of the superscripted subject. 

The reference operator ℛ⓪ = |𝑞𝑖
⓪
〉 𝑞𝑖

⓪
〈𝑞𝑖

⓪
| in separable Hilbert space ℌ maps into the reference 

operator ℜ⓪ = |𝑞⓪〉𝑞⓪〈𝑞⓪| in Gelfand triple ℋ. 

The symmetry flavor of the symmetry center 𝕾𝑥, which is maintained by operator 𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| is 

determined by its Cartesian ordering and then compared with the reference symmetry flavor, which 

is the symmetry flavor of the reference operator ℛ⓪.  

Now the symmetry related charge follows in three steps. 

1. Count the difference of the spatial part of the symmetry flavor of 𝕾𝑥 with the spatial part of 

the symmetry flavor of reference operator ℛ⓪. 

2. If the handedness changes from R to L, then switch the sign of the count. 

3. Switch the sign of the result for anti-particles. 

Electric charge equals symmetry related charge divided by 3. 

Symmetry flavor 

Ordering 

x   y   z    τ 

Super 

script 

Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry center type. 

Names are taken from the 

standard model 

 ⓪ R N +0 neutrino 

 ① L R −1 down quark 

 ② L G −1 down quark 

 ③ L B −1 down quark 

 ④ R B +2 up quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N −3 electron 

 ⑧ R N +3 positron 

 ⑨ L �̅� −2 anti-up quark 

 ⑩ L �̅� −2 anti-up quark 

 ⑪ L �̅� −2 anti-up quark 

 ⑫ R �̅� +1 anti-down quark 

 ⑬ R �̅� +1 anti-down quark 

 ⑭ R �̅� +1 anti-down quark 

 ⑮ L N −0 anti-neutrino 

 

 



Per definition, members of coherent sets {𝑎𝑖
𝑥} of quaternions all feature the same symmetry flavor 

that is marked by superscript  𝑥. 

Also continuous functions and continuums feature a symmetry flavor. Continuous quaternionic 

functions 𝜓𝑥(𝑞𝑥) and corresponding continuums do not switch to other symmetry flavors  𝑦.  

The reference symmetry flavor 𝜓𝑦(𝑞𝑦) of a continuous function 𝜓𝑥(𝑞𝑦) is the symmetry flavor of 

the parameter space {𝑞𝑦}.  

The symmetry related charge conforms to the amount of reordering that is required when the 

symmetry center or one of its elements is mapped onto the reference space ℛ⓪. 

 

The concept of symmetry flavor sins against the cosmologic principle, which states that universe 

does not contain specific directions. It also claims that universe has no origin. Affine Cartesian 

ordering does not apply a selected spatial origin. That does not say that universe cannot have a 

unique spatial origin. That origin would be the spatial origin of reference operator ℛ⓪. All symmetry 

centers own a unique spatial origin. That origin maps onto a dynamic location in ℛ⓪. 

  



8.1.1 Symmetry flavor conversion tools 
Quaternionic conjugation 

(𝜓𝑥)∗ = 𝜓(7−𝑥); 𝑥 = ⓪,①,②,③,④,⑤,⑥,⑦ 

 

Via quaternionic rotation, the following normalized quaternions 𝜚𝑥 can shift the indices of symmetry 

flavors of coordinate mapped quaternions and for quaternionic functions: 

 

𝜚① =
1 + 𝒊

√2
; 𝜚② =

1 + 𝒋

√2
; 𝜚③ =

1 + 𝒌

√2
; 𝜚④ =

1 − 𝒌

√2
; 𝜚⑤ =

1 − 𝒋

√2
; 𝜚⑥ =

1 − 𝒊

√2
 

 

𝒊𝒋 = 𝒌;   𝒋𝒌 = 𝒊;   𝒌𝒊 = 𝒋 

 

𝜚⑥ = (𝜚①)
∗
 

 

For example 

 

𝜓③ = 𝜚①𝜓②/𝜚① 

 

𝜓③𝜚① = 𝜚①𝜓② 

 

𝜓⓪ = 𝜚𝑥𝜓⓪/𝜚𝑥; 𝜓⑦ = 𝜚𝑥𝜓⑦/𝜚𝑥  

 

Also strings of symmetry flavor convertors change the index of symmetry flavor of the multiplied 

quaternion or quaternionic function. The convertors can act on each other. 

For example: 

𝜚①𝜚② = 𝜚②𝜚③ = 𝜚③𝜚① =
1 + 𝒊 + 𝒋 + 𝒌

2
 

 

The result is an isotropic quaternion. This means: 

 

𝜚①𝜓②/𝜚𝑥 = 𝜚②𝜓③/𝜚𝑥 = 𝜓(𝑥+1) 

 



Here (𝑥 + 1) means 𝒊 → 𝒋 → 𝒌 → 𝒊 → 𝒋 → 𝒌, or ①→②→③→①→②→③ and so on. 

9 Quaternionic functions 

9.1 Norm 
Square-integrable functions are normalizable. The norm is defined by: 

 

‖𝜓‖2 = ∫|𝜓|2 𝑑𝑉
𝑉

 

= ∫{|𝜓0|
2 + |𝝍|2 }𝑑𝑉

𝑉

 

 

= ‖𝜓0‖
2 + ‖𝝍‖2 

 

9.2 Differentiation 
Under rather general conditions the change of a quaternionic function 𝑓(𝑞) can be described by: 

 

𝑑𝑓(𝑞) = 𝑐𝜏 𝑑𝑞𝜏 + 𝑐𝑥 𝑑𝑞𝑥 + 𝑐𝑦 𝑑𝑞𝑦 + 𝑐𝑧 𝑑𝑞𝑧 = 𝑑𝑓𝜈(𝑞)𝑒
𝜈 = ∑

𝜕𝑓

𝜕𝑞𝜇
𝑑𝑞𝜇

𝜇=0…3

= 𝑐𝜇(𝑞)𝑑𝑞
𝜇 

 

Here the coefficients 𝑐𝜇(𝑞) are full quaternionic functions. 𝑑𝑞𝜇 are real numbers. 𝑒𝜈 are 

quaternionic base vectors. 

More violent conditions require the inclusion of higher order partial differential terms. For example: 

 

𝑑𝑓(𝑞) = ∑(
𝜕𝑓

𝜕𝑞𝜇
+ ( ∑

𝜕2𝑓

𝜕𝑞𝜇𝜕𝑞𝜈
𝑑𝑞𝜈

𝜈=0…3

))

𝜇=0…3

𝑑𝑞𝜇 

 

Under more moderate and sufficiently short range conditions the function 𝑓(𝑞) behaves more 

linearly.  

 

𝑑𝑓(𝑞) = 𝑐0
𝜏 𝑑𝑞𝜏 + 𝑐0

𝑥 𝒊 𝑑𝑞𝑥 + 𝑐0
𝑦
 𝒋 𝑑𝑞𝑦 + 𝑐0

𝑧 𝒌 𝑑𝑞𝑧 = 𝑐0
𝜇(𝑞) 𝑒𝜇 𝑑𝑞𝜇 

 

Here the coefficients 𝑐0
𝜇(𝑞) are real functions.  

 

(1) 

(1) 

(2) 

(2) 



 

Thus, in a rather flat continuum we can use the quaternionic nabla ∇. 

 

∇= {
𝜕

𝜕𝜏
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} =  

𝜕

𝜕𝜏
+ 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= 𝛻0 +  𝜵 

 

9.2.1 Moderate continuity conditions 
If 𝑔 is differentiable then the quaternionic nabla 𝛻𝑔 of 𝑔 exists. 

The quaternionic nabla 𝛻 is a shorthand for 𝛻0 + 𝜵 

 

𝛻0 =
𝜕

𝜕𝜏
 

 

𝛁 = {
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} 

 

ℎ = ℎ0 + 𝒉 = ∇𝑔 

 

ℎ0 = ∇0𝑔0 − ⟨𝛁,𝒈⟩ 

 

𝒉 = ∇0𝒈 + 𝛁𝑔0 ± 𝛁 × 𝒈 

 

𝜙 = 𝛻𝜓 ⇒ 𝜙∗ = (𝛻𝜓)∗ 

 

(𝛻𝜓)∗ = ∇0𝜓0 − ⟨𝛁,𝝍⟩ − ∇0𝝍− 𝛁𝜓0 ∓ 𝛁 ×𝝍 

 

𝛻∗𝜓∗ = ∇0𝜓0 − ⟨𝛁,𝝍⟩ − ∇0𝝍− 𝛁𝜓0 ± 𝛁 ×𝝍 

Similarity of these equations with Maxwell equations is not accidental. In Maxwell equations 

several terms in the above equations have been given special names and special symbols. 

Similar equations occur in other branches of physics. Apart from these differential equations 

also integral equations exist. 

(3) 

(3) 

(4) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 



9.2.2 Gauge transformation 
For a function 𝜒 that obeys the quaternionic wave equation5 

 

∇∗∇χ = ∇0∇0𝜒 + ⟨𝛁,𝛁𝜒⟩ = 0 

 

the value of 𝜙 in 

 

𝜙 = 𝛻𝜓 

 

does not change after the gauge transformation6 

 

𝜓 → 𝜓 + ξ =  𝜓 + ∇∗𝜒 

 

𝛻𝜉 = 0 

 

 𝜒 = 𝜒0 + 𝝌 

 

Thus in general: 

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁𝜓⟩ = 𝜌 ≠ 0 

 

𝜌 is a quaternionic function. 

Its real part 𝜌0 represents an object density distribution. 

Its imaginary part 𝝆 = 𝒗 𝜌0 represents a current density distribution. 

Equation (1) forms the basis of the generalized (quaternionic) Huygens principle7.  

 

                                                           
5 Be aware, this is the quaternionic wave equation. This is not the common form of the wave 

equation, which is complex number based. 

6 The qualification gauge transformation is usually given to a transformation that leaves the 

Laplacian untouched. Here we use that qualification for transformations that leave the 

quaternionic differential untouched. 
7 The papers on Huygens principle use the complex number based wave equation, which 

differs from the quaternionic wave equation. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6 



∇∗∇𝜒0 = 0 

Equation (7) has 3D isotropic wave fronts as its solution. 𝜒0 is a scalar function. By changing to polar 

coordinates it can be deduced that a general solution is given by: 

 

𝜒0(𝑟, 𝜏) =
𝑓0(𝒊𝑟 − 𝑐𝜏)

𝑟
 

 

Where 𝑐 = ±1 and 𝒊 represents a base vector in radial direction. In fact the parameter 𝒊𝑟 − 𝑐𝜏 of 𝑓0 

can be considered as a complex number valued function. 

 

∇∗∇𝝌 = 0 

 

Here 𝝌 is a vector function. 

Equation (9) has one dimensional wave fronts as solutions: 

 

𝝌(𝑧, 𝜏) = 𝒇(𝒊𝑧 − 𝑐𝜏) 

 

Again the parameter 𝒊𝑧 − 𝑐𝜏 of 𝒇 can be interpreted as a complex number based function. 

The imaginary 𝒊 represents the base vector in the 𝑥, 𝑦 plane. Its orientation 𝜃 may be a function of 𝑧. 

That orientation determines the polarization of the wave front. 

 

∂

∂𝜏
𝒇 = 𝑐𝒇′ 

∂2𝒇

∂𝜏2
= 𝑐

∂

∂𝜏
𝒇′ = 𝑐2𝒇′′ 

∂𝒇

∂𝑧
= 𝒊𝒇′ 

∂2𝒇

∂𝑧2
= 𝒊

∂

∂𝑧
𝒇′ = −𝒇′′ 

∂2𝒇

∂𝜏2
+
∂2𝒇

∂𝑧2
= (𝑐2 − 1)𝒇′′ 

 

If 𝑐 = ±1, then 𝒇 is a solution of the quaternionic wave equation. 

9.2.3 Non-homogeneous wave equation 
The non-homogeneous wave equation runs: 

(7) 

(8) 

(9) 

(10) 

(11) 



 

∇∗∇χ = ∇0∇0𝜒 + ⟨𝛁,𝛁𝜒⟩ = 𝜉 

 

Depending on local conditions equation it restricts to the homogeneous wave equation: 

 

∇∗∇χ = ∇0∇0𝜒 + ⟨𝛁,𝛁𝜒⟩ = 0 

 

or to the (screened) Poisson equation: 

 

⟨𝛁, 𝛁⟩𝜒 − 𝜆2𝜒 =  𝜌 

 

The function 𝜌 may represent a distribution of triggers. 

 

∇0∇0𝜒 = 𝜉 − 𝜌 = −𝜆2 𝜒 

 

The 3D solution of equation (3) is determined by the screened Green’s function 𝐺(𝑟). 

 

𝐺(𝑟) =
exp(−𝜆 𝑟)

𝑟
 

This Green’s function corresponds to the Yukawa potential. For 𝜆 = 0 it corresponds to the Coulomb 

potential. Green’s functions represent solutions for point sources. 

 

𝜒 =  ∭𝐺(𝒓 − 𝒓′) 𝜌(𝒓′) 𝑑3𝒓 ′ 

 

Equation (1) does not involve a Green’s function. If 𝜆 ≠ 0 then equation (4) has a solution 

 

𝜒 = 𝑎(𝒙) exp (±𝑖 𝜔 𝜏);  𝜆 = ±𝑖 𝜔 

 

𝜔 represents a parameter space wide clock frequency. 

The non-homogeneous wave equation can be split into continuity equations: 

 

(1) 

(2) 

(3) 

(4) 

(6) 

(7) 

(8) 



∇𝜒 = 𝜙 ; ∇∗𝜙 = 𝜌 

 

And 

 

∇∗𝜒 = 𝜑 ; ∇ 𝜑 = 𝜌 

 

9.3 Displacement generator 
The definition of the differential is 

 

Φ = 𝛻𝜓  

 

In Fourier space the nabla becomes a displacement generator.  

 

Φ̃ = ℳ�̃� 

 

ℳ is the displacement generator 

A small displacement in configuration space becomes a multiplier in Fourier space. 

In a paginated space-progression model the displacements are small and the displacement 

generators work incremental. The multipliers act as superposition coefficients. 

9.4 The coupling equation 
The coupling equation follows from peculiar properties of the differential equation. We start with 

two normalized functions 𝜓 and 𝜑 and a normalizable function Φ = 𝑚 𝜑.  

 

‖𝜓‖ = ‖𝜑‖ = 1 

 

These normalized functions are supposed to be related by: 

 

Φ = 𝛻𝜓 = 𝑚 𝜑 

 

Φ = 𝛻𝜓 defines the differential equation. 

 

𝛻𝜓 = Φ formulates a continuity equation. 

(9) 

(10) 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 



 

𝛻𝜓 = 𝑚 𝜑 formulates the coupling equation.  

 

It couples 𝜓 to 𝜑. 𝑚 is the coupling factor. 

 

𝛻𝜓 = 𝑚1 𝜑 

 

𝛻∗𝜑 = 𝑚2 𝜁 

 

∇∗𝛻𝜓 = 𝑚1 ∇
∗𝜑 = 𝑚1𝑚2𝜁 = 𝜌 

Be aware,  

 

(𝛻𝜓)∗ = Φ∗ ≠ 𝛻∗𝜓∗ = Φ∗ + 2𝜵 × 𝝍 

 

Each double differentiable quaternionic function corresponds to a normalized density 

distribution. 

9.4.1 In Fourier space 
The Fourier transform of the coupling equation is: 

 

ℳ�̃� = 𝑚�̃� 

 

ℳ is the displacement generator 

 

9.5 Difference with Maxwell-based differential equations 

9.5.1 Maxwell-like equations 
Similarity of the quaternionic differential equations with Maxwell based differential equations is not 

accidental. In Maxwell equations several terms in the differential equations have been given special 

names and special symbols. Similar equations occur in other branches of physics.  

In the quaternionic differential calculus holds: 

 

𝜙 = 𝛻𝜑 ≡ (∇0 + 𝛁)(𝜑0 +𝝋) = 𝛻0𝜑0 − 〈𝜵,𝝋〉 + 𝜵𝜑0 + 𝛻0𝝋±𝜵 × 𝝋 

 

Now we can define special symbols for the terms. 

(5) 

(6) 

(7) 

(8) 

(9) 

(1) 

(1) 



 

𝕰 ≡ −𝜵𝜑0 − 𝛻𝜏𝝋 

 

𝓑 ≡  𝜵 × 𝝋 

 

With these definitions: 

 

𝝓 = −𝕰±𝓑  

 

In addition hold: 

 

𝛻𝜏𝓑 = 𝜵 × 𝛻𝜏𝝋 = −𝜵× 𝜵𝜑0 − 𝜵 × 𝕰 = −𝜵 × 𝕰 

 

𝜵 × 𝓑 = 𝜵 × (𝜵 × 𝝋) = 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

〈𝜵,𝓑〉 = 0 

 

𝛻𝜏𝕰 = −𝛻𝜏𝜵𝜑0 − 𝛻𝜏𝛻𝜏𝝋 

 

〈𝜵, 𝕰〉 = −〈𝜵,𝜵〉𝜑0 − 𝛻𝜏〈𝜵,𝝋〉 

 

The following equation is not a Maxwell-like equation. We use a control switch 𝛼 = −1 for 

quaternionic differential equations and 𝛼 = +1 for Maxwell based differential equations: 

 

𝜙0 = −𝛼 𝛻𝜏𝜑0 − 〈𝜵,𝝋〉 

 

𝜵𝜙0 = −𝛼 𝛻𝜏𝜵𝜑0 − 𝜵〈𝜵,𝝋〉 

 

𝛻𝜏𝜙0 = −𝛼 𝛻𝜏𝛻𝜏𝜑0 − 𝛻𝜏〈𝜵,𝝋〉 

 

𝛻𝜏𝜙0 − 〈𝜵,𝕰〉 = −𝛼 𝛻𝜏𝛻𝜏𝜑0 − 𝛻𝜏〈𝜵,𝝋〉 + 〈𝜵, 𝜵〉𝜑0 + 𝛻𝜏〈𝜵,𝝋〉 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 



= −𝛼 𝛻𝜏𝛻𝜏𝜑0 + 〈𝜵, 𝜵〉𝜑0 

 

−𝜵𝜙0 − 𝜵 × 𝓑+ 𝛼 𝛻𝜏𝕰 

 

= +𝛼 𝛻𝜏𝜵𝜑0 + 𝜵〈𝜵,𝝋〉 −  𝜵〈𝜵,𝝋〉 + 〈𝜵, 𝜵〉𝝋 − 𝛼 𝛻𝜏𝜵𝜑0 − 𝛼 𝛻𝜏𝛻𝜏𝝋 

 

= − 𝛼 𝛻𝜏𝛻𝜏𝝋+ 〈𝜵, 𝜵〉𝝋 

 

With  

𝜁0 = 𝛻𝜏𝜙0 − 〈𝜵,𝕰〉  

 

and 

 

𝜻 = −𝜵𝜙0 −𝜵 × 𝓑+ 𝛼 𝛻𝜏𝕰 

 

follow the non-homogeneous equations: 

 

〈𝜵, 𝜵〉𝜑0 −  𝛼 𝛻𝜏𝛻𝜏𝜑0 = 𝜁0 

 

〈𝜵, 𝜵〉𝝋 −  𝛼 𝛻𝜏𝛻𝜏𝝋 = 𝜻 

 

(〈𝜵, 𝜵〉 −  𝛼 𝛻𝜏𝛻𝜏)𝜑 = 𝜁 

 

For 𝛼 = −1, These equations have a Euclidean signature! 

9.5.2 Maxwell based differential calculus 
For Maxwell based differential calculus, instead of the equation for 𝜙0 an equivalent equation is used 

in order to define a gauge. 

 

𝜘 ≡ 𝛼 𝛻𝑡𝜑0 + 〈𝛁,𝝋〉 

 

In the gauge, the control factor α can be -1, 0 or 1. For the Lorentz gauge holds 𝛼 = 1 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(1) 



This means that in Maxwell based differential equations the equivalent of the real part of 𝜙 is ignored 

or is used as a gauge. Further, 𝛻𝜏 is replaced by 𝛻𝑡. We use another symbol 𝓔 for 𝕰. 

With the Lorentz gauge the Maxwell equations run as: 

 

𝓔 ≡ −𝜵𝜑0 − 𝛻𝑡𝝋 

 

𝓑 ≡  𝜵 × 𝝋 

 

𝛻𝑡𝜘 = 𝛼 𝛻𝑡𝛻𝑡𝜑0 + 𝛻𝑡〈𝛁,𝝋〉 

 

𝛁𝜘 = 𝛼 𝛻𝑡𝛁𝜑0 + 𝛁〈𝛁,𝝋〉 

 

𝛻𝑡𝜘 + 〈𝜵, 𝓔〉 = 𝛼𝛻𝑡𝛻𝑡𝜑0 + 𝛻𝑡〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝜑0 − 𝛻𝑡〈𝜵,𝝋〉 

 

= 𝛼𝛻𝑡𝛻𝑡𝜑0 − 〈𝜵, 𝜵〉𝜑0 = (𝛼𝛻𝑡𝛻𝑡 − 〈𝜵, 𝜵〉)𝜑0 

 

−𝜵𝜘 − 𝛼𝛻𝑡𝓔 + 𝜵 ×𝓑 

 

= −𝛼𝛻𝑡𝜵𝜑0 − 𝜵〈𝜵,𝝋〉 + 𝛼𝛻𝑡𝜵𝜑0 + 𝛼𝛻𝑡𝛻𝑡𝝋+ 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

= −𝛼𝛻𝑡𝜵𝜑0 + 𝛼𝛻𝑡𝜵𝜑0 + 𝛻𝑡𝛻𝑡𝝋− 〈𝜵, 𝜵〉𝝋 

 

In quaternionic differential calculus 𝛼 = −1 and 𝜙0 = −𝜘. If in Maxwell equations the Lorentz gauge 

𝛼 = 1 is applied, then: 

 

(𝛼 𝛻𝑡𝛻𝑡 − 〈𝜵, 𝜵〉)𝜑0 = 𝜌0 =  𝛻𝑡𝜘 + 〈𝜵, 𝓔〉  

 

α 
𝜕2𝜑0

𝜕𝑡2
−

𝜕2𝜑0

𝜕𝑥2 −
𝜕2𝜑0

𝜕𝑦2 −
𝜕2𝜑0

𝜕𝑧2
= 𝜌0 

 

(𝛼 𝛻𝜏𝛻𝜏 − 〈𝜵, 𝜵〉)𝝋 = 𝑱 = 𝜵 × 𝓑 −𝛼 𝛻𝜏𝓔 −  𝜵𝜘 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 



𝛼
𝜕2𝝋

𝜕𝑡2
−
𝜕2𝝋

𝜕𝑥2
−
𝜕2𝝋

𝜕𝑦2
−
𝜕2𝝋

𝜕𝑧2
= 𝑱 

 

This corresponds to the Minkowski signature. 

 

{𝜌0, 𝑱} ⟺ {𝛻𝑡𝜘 − 〈𝜵, 𝓔〉, −𝜵𝜘 + 𝜵 × 𝓑 − 𝛼 𝛻𝜏𝓔} 

 

= {𝛻𝑡𝜘,−𝜵𝜘} + {〈𝜵, 𝓔〉, 𝜵 × 𝓑 − 𝛼 𝛻𝜏𝓔 } 

 

Adding equation (1) as an extra Maxwell equation would bring Maxwell equations more in 

conformance with the equations of quaternionic differential calculus. 

 

Notice the difference of the Minkowski signature of these equations with the Euclidean signature of 

the wave function of quaternionic differential calculus. This difference is enforced by the selection of 

the value of 𝛼. 

9.5.3 Difference with Maxwell based equations 
The difference between the Maxwell-Minkowski based approach and the Hamilton-Euclidean based 

approach will become clear when the difference between the coordinate time t and the proper time 

τ is investigated. This becomes difficult when space is curved, but for infinitesimal steps space can be 

considered flat. In that situation holds: 

Coordinate time step vector = proper time step vector + spatial step vector 

 

Or in quaternionic format (∆𝜏 ≡  ∆𝑡0): 

 

∆𝑡 = ∆𝑡0 + 𝒊 ∆𝑥 + 𝒋 ∆𝑦 + 𝒌 ∆𝑧 

 

Or in Pythagoras format: 

 

(∆𝑡)2  =  (∆𝜏)2 + (∆𝑥)2+(∆𝑦)2+(∆𝑧)2 

 

(∆𝜏)2  =  (∆𝑡)2 − (∆𝑥)2−(∆𝑦)2−(∆𝑧)2 

 

In quaternionic terms this means that 𝑡 corresponds to quaternionic distance. 

 

(13) 

(1) 

(2) 

(3) 

(4) 



𝑡 = |𝑥| = |𝜏 + 𝒙| 

 

This influence is easily recognizable in the corresponding wave equations: 

In Maxell-Minkowski format the homogeneous wave equation uses coordinate time t. It runs as: 

 

𝜕2𝜓

𝜕𝑡2
−
𝜕2𝜓

𝜕𝑥2
−
𝜕2𝜓

𝜕𝑦2
−
𝜕2𝜓

𝜕𝑧2
= 0 

 

Papers on Huygens principle work with this formula or it uses the version with polar coordinates. 

For 3D the general solution runs: 

 

𝜓 = 𝑓(𝑟 − 𝑐𝑡)/𝑟, where 𝑐 = ±1; 𝑓 is real 

 

For 1D the general solution runs: 

 

𝜓 = 𝑓(𝑥 − 𝑐𝑡), where 𝑐 = ±1; 𝑓 is real 

 

In comparison the quaternionic differential calculus produces another homogeneous wave 

equation, which uses proper time 𝜏. In this case we use the quaternionic nabla 𝛻:  

 

𝛻 = {
𝜕

𝜕𝜏
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} = 𝛻0 + 𝛁; 

 

𝛻∗ = 𝛻0 − 𝛁 

 

𝛻𝜓 =  𝛻0 𝜓0 – (𝛁,𝝍) + 𝛻0 𝝍 +  𝛁 𝜓0  ±  𝛁 × 𝝍 

 

The ± sign reflects the choice between right handed and left handed quaternions. 

In this way the quaternionic format of the wave equation runs: 

 

𝛻∗𝛻𝜓 =  𝛻₀𝛻₀𝜓 + (𝛁,𝛁)𝜓 = 0 

 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 



𝜕2𝜓

𝜕𝜏2
+
𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
+
𝜕2𝜓

𝜕𝑧2
= 0 

 

Where 𝜓 = 𝜓0 +𝝍 

For the general solution holds: 𝑓 =  𝑓0 + 𝒇 

For the real part 𝜓0 of 𝜓:  

 

𝜓0  = 𝑓0 (𝒊 𝑟 − 𝑐 𝜏)/𝑟  

where 𝑐 = ±1 and 𝒊 is an imaginary base vector in radial direction 

 

For the imaginary part 𝝍 of 𝜓: 

 

𝝍 = 𝒇(𝒊 𝑧 − 𝑐 𝜏)  

where 𝑐 = ±1 and 𝒊 =  𝒊(𝑧) is an imaginary base vector in the 𝑥, 𝑦 plane 

 

The orientation 𝜃(𝑧) of 𝒊(𝑧) in the 𝑥, 𝑦 plane determines the polarization of the 1D wave front. 

9.5.4 The screened Poisson equation 
The screened Poisson equation runs: 

 

⟨𝛁, 𝛁⟩𝜒 − 𝜆2𝜒 =  𝜌 

 

In Maxwell based differential calculus this corresponds to: 

 

𝜕

𝜕𝑡

𝜕

𝜕𝑡
𝜒 = 𝜆2 𝜒 

 

A solution of this equation is 

 

𝜒 = 𝑎(𝒙) exp (± 𝜆 𝑡) 

 

This differs significantly from the quaternionic differential calculus version. 

(13) 

(14) 

(15) 

(1) 

(2) 

(3) 



10 Integral continuity equations 
The integral equations that describe cosmology are: 

 

∫∇ 𝜌 𝑑𝑉

𝑉

= ∫𝑠 𝑑𝑉

𝑉

 

 

∫∇0𝜌0 𝑑𝑉

𝑉

= ∫〈𝛁, 𝝆〉 𝑑𝑉

𝑉

+ ∫𝑠0 𝑑𝑉

𝑉

 

 

 

∫∇0 𝝆 𝑑𝑉

𝑉

= −∫𝛁𝜌0 𝑑𝑉

𝑉

−∫𝛁 × 𝝆 𝑑𝑉

𝑉

+ ∫𝒔 𝑑𝑉

𝑉

 

 

𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+∮�̂�𝜌 𝑑𝑆
𝑆

= ∫𝑠 𝑑𝑉

𝑉

 

 

 

Here �̂� is the normal vector pointing outward the surrounding surface S, 𝒗(𝜏, 𝒒) is the velocity at 

which the charge density 𝜌0(𝜏, 𝒒) enters volume V and 𝑠0 is the source density inside V. If 𝜌0 is stable 

then in the above formula 𝜌 stands for 

 

𝜌 =  𝜌0 + 𝝆 = 𝜌0 +
𝜌0𝒗

𝑐
 

 

It is the flux (flow per unit of area and per unit of progression) of 𝜌0 . 𝜏 stands for progression. 

11 Metric 
The differential of the sharp allocation function ℘ defines a kind of quaternionic metric. 

 

𝑑𝑠(𝑞) = 𝑑𝑠𝜈(𝑞)𝑒𝜈 = 𝑑℘ = ∑
𝜕℘

𝜕𝑞𝜇
𝑑𝑞𝜇

𝜇=0…3

= 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

𝑞 is the quaternionic location. 

𝑑𝑠 is the metric. 

(1) 

(2) 

(3) 

(4) 

(4) 

(1) 



𝑐𝜇 is a quaternionic function. 

 

Pythagoras: 

 

𝑐2𝑑𝑡2 = 𝑑𝑠 𝑑𝑠∗ = 𝑑𝑞0
2 + 𝑑𝑞1

2+𝑑𝑞2
2+𝑑𝑞3

2 

 

Minkowski: 

 

𝑑𝑞0
2 = 𝑑𝜏2 = 𝑐2 𝑡2 − 𝑑𝑞1

2−𝑑𝑞2
2−𝑑𝑞3

2 

 

In flat space: 

 

∆𝑠𝑓𝑙𝑎𝑡 = ∆𝑞0 + 𝒊 ∆𝑞1 + 𝒋 ∆𝑞2 + 𝒌 ∆𝑞3 

 

In curved space: 

∆𝑠℘ = 𝑐0 ∆𝑞0 + 𝑐1 ∆𝑞1 +  𝑐2 ∆𝑞2 + 𝑐3 ∆𝑞3 

 

𝑑℘ is a quaternionic metric 

It is a linear combination of 16 partial derivatives 

12 Tri-state spaces 
Quaternions not only fit in the representation of dynamic geometric data. They also match in 

representing three-fold states such as the RGB colors of quarks and the three generation flavors of 

fermions. In all these roles the real part of the quaternion plays the role of progression. Thus 

quaternions can also be used to model neutrino flavor mixing. 

Say that a property is distributed over three mutually independent modes and these modes exist in a 

combination that superposes these three modes. 

The property distribution is characterized by 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧 

cos2( 𝜃𝑥) =
𝑝𝑥

𝑝𝑥 + 𝑝𝑦 + 𝑝𝑧
 

cos2(𝜃𝑥) + cos2(𝜃𝑦) + cos2(𝜃𝑧) = 1 

 

The angles 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧 indicate a direction vector 𝐧 = {𝑛𝑥, 𝑛𝑦, 𝑛𝑧} in three dimensional state 

space. 

(2) 

(3) 

(4) 

(5) 



|𝑛𝑥|
2 =

𝑝𝑥
𝑝𝑥 + 𝑝𝑦 + 𝑝𝑧

 

cos( 𝜃𝑥) =  𝑛𝑥; |𝒏| = 1 

If state mixing is a dynamic process, then the axis along direction vector 𝒏 acts as the rotation axis. 

The concerned subsystem rotates smoothly as a function of progression. This is not a rotation in 

configuration space. Instead it is a rotation in tri-state space. 

The fact that quaternions can rotate the imaginary part of other quaternions or of complete 

quaternionic functions also holds for tri-states. The quaternions that have equal real and imaginary 

size play a special role. They can shift an anisotropic property to another dimension. They can play a 

role in tri-state flavor switching. 

13 Formula compendium 

13.1 Vectors 
Please notice that the vectors, which are treated here are 3D vectors and not imaginary parts of 

quaternions. However, all equations that are exposed here also hold for the imaginary parts of 

quaternions. 

 

〈𝒂, 𝒃〉 = 〈𝒃, 𝒂〉 = 𝛿𝑖𝑗𝑎𝑖𝑏𝑗 = |𝒂||𝒃|𝑐𝑜𝑠(𝜃) 

 

𝒂 × 𝒃 = −𝒃 × 𝒂 = 𝜖𝑖𝑗𝑘�̂�𝒊𝑎𝑗𝑏𝑘 

 

〈𝒂, 𝒃〉2 + 〈𝒂 × 𝒃, 𝒂 × 𝒃〉2 = |𝒂|2|𝒃|2 

 

〈𝒂, 𝒃 × 𝒄〉 = 〈𝒂 × 𝒃, 𝒄〉 

 

𝒂 × (𝒃 × 𝒄) + 𝒃 × (𝒄 × 𝒂) + 𝒄 × (𝒂 × 𝒃) = 𝟎 

 

〈𝒂 × 𝒃, 𝒄 × 𝒅〉 = 〈𝒂, 𝒃 × (𝒄 × 𝒅)〉 = 〈𝒂, 𝒄〉〈𝒃, 𝒅〉 − 〈𝒂, 𝒅〉〈𝒃, 𝒅〉 

 

(𝒂 × 𝒃) × 𝒄 = 〈𝒂, 𝒄〉 𝒃 − 〈𝒂, 𝒃〉𝒄 

𝒂 × (𝒃 × 𝒄) = 〈𝒂, 𝒄〉 𝒃 − 〈𝒃, 𝒄〉𝒂 

 

13.2 Nabla 

13.3 Special 
 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 



𝜵〈𝒌, 𝒙〉 = 𝒌 

 

𝒌 is constant. 

 

〈𝛁, 𝐱〉 = 𝟑 

 

𝛁 × 𝐱 = 𝟎 

 

𝛁|𝐱| =
𝐱

|𝐱|
 

 

𝛁
1

|𝐱|
= −

𝐱

|𝐱|3
 

 

〈𝛁,
𝐤

|𝐱|
〉 = −

〈𝐤, 𝐱〉

|𝐱|3
 

 

〈𝛁,
𝐱

|𝐱|3
〉 = 〈𝛁, 𝛁〉

1

|𝐱|
= 4πδ(𝐱) 

 

𝛁 × (𝐤 ×
𝐱

|𝐱|3
) = −𝛁 × (𝐤 × 𝛁

1

|𝐱|
) = 𝛁 〈𝛁,

𝐤

|𝐱|
〉 

 

Under spherical conditions, the function 
1

|𝐱|
 corresponds to the Green’s function. In that case: 

 

〈𝛁, 𝛁〉𝑓 =
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑓

𝜕𝑟
) 

 

13.4 Quaternionic nabla special 
The following equations treat formulas that apply to the quaternionic nabla and parameter values. 

 

𝑥 = 𝑥0 + 𝒙 ; 𝑥∗ = 𝑥0 − 𝒙 ;  𝛻 = ∇0 + 𝛁 ; 𝛻∗ = ∇0 − 𝛁 

 

𝛻𝑥 = 1 − 3 ;  𝛻∗𝑥 = 1 + 3;  𝛻𝑥∗ = 1 + 3 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(1) 

(2) 



 

𝛻(𝑥∗𝑥) = 𝑥 

 

𝛻|𝑥| = 𝛻√(𝑥∗𝑥) =
𝑥

|𝑥|
 

 

𝛻
1

|𝑥 − 𝑥′|
= −

𝑥 − 𝑥′

|𝑥 − 𝑥′|3
 

 

For the vector nabla case holds for spherical boundary conditions: 

 

〈𝛁, 𝛁〉
1

|𝒙 − 𝒙′|
= 4𝜋 𝛿(𝒙 − 𝒙′) 

 

The next formula does not correspond to the vector nabla case. 

 

𝛻∗
𝑥

|𝑥|3
= 𝛻 𝛻∗

1

|𝑥|
= (∇0∇0 + 〈𝛁,𝛁〉)

1

|𝑥|
 

 

=
3𝜏2

|𝑥|5
−

1

|𝑥|3
+

3𝜏2

|𝑥|5
=

6𝜏2 − |𝑥|2

|𝑥|5
=

5𝜏2 − |𝒙|2

|𝑥|5
 

 

∇0∇0

1

|𝑥|
= −∇0

𝜏

|𝑥|3
= 3

𝜏2

|𝑥|5
−

1

|𝑥|3
 

 

(∇0∇0 − 〈𝛁, 𝛁〉)
1

|𝑥|
= −

1

|𝑥|3
 

 

Thus, with spherical boundary conditions, 
1

4𝜋 |𝒙−𝒙′|
 is suitable as the Green’s function for the Poisson 

equation, but 
1

4𝜋 |𝑥−𝑥′|
 does not represent a Green’s function for the quaternionic operator 

(∇0∇0 + 〈𝛁, 𝛁〉) ! 

 

13.5 Functions 
𝛁𝑎0 = �̂�𝒊𝜕𝑖𝑎0 

(3) 

(4) 

8) 

(6) 

(7) 

(8) 

(1) 



 

〈𝛁, 𝒂〉 = 𝜕𝑖𝑎𝑖 

 

𝛁 × 𝒂 = 𝜖𝑖𝑗𝑘�̂�𝒊𝜕𝑗𝑎𝑘 

 

〈𝛁, 𝛁𝑎0〉 = 𝛁𝟐𝑎0 

 

𝛁(𝑎0𝑏0) =  𝑎0𝛁(𝑏0) + 𝑏0𝛁(𝑎0) 

 

〈𝛁, 𝑎0𝒂〉 = 〈𝐚, 𝛁𝑎0〉 + 𝑎0〈𝛁, 𝒂〉 

 

〈𝛁𝑎0, 𝛁𝑏0〉 = 〈𝛁, 𝑎0𝛁𝑏0〉 − 𝑎0𝛁
𝟐𝑏0 

 

〈𝛁, 𝒂 × 𝒃〉 = 〈𝐛, 𝛁 × 𝒂〉 − 〈𝐚, 𝛁 × 𝒃〉 

 

〈𝛁𝑎0, 𝛁 × 𝒂〉 = −〈𝛁, 𝒂 × 𝛁𝑎0〉 

 

〈𝛁 × 𝒂, 𝛁 × 𝒃〉 = 〈𝒃, 𝛁 × (𝛁 × 𝒂)〉 − 〈𝛁, (𝛁 × 𝒂) × 𝒃〉 

 

𝛁 × (𝑎0𝒂) = 𝑎0𝛁 × 𝒂 − 𝒂 × 𝛁𝑎0 

 

𝛁 × (𝑎0𝛁𝑎0) = (𝛁𝑎0) × 𝛁𝑏0 

 

〈𝐚, 𝛁 × 𝒃〉 = 〈𝐚 × 𝛁, 𝒃〉 

 

〈𝛁, 𝛁 × 𝒂〉 = 0 

 

𝛁 × 𝛁𝑎0 = 𝟎 

 

〈𝛁 × 𝛁, 𝒂〉 = 0 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 



𝜵 × (𝜵 × 𝒂) = 𝛁⟨𝛁, 𝒂⟩ − 〈𝜵, 𝜵〉𝒂 

 

14 Remarks 

14.1 Non-homogeneous wave equation 
 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁⟩𝜓 =  𝜉 

 

The corresponding Poisson equation is 

 

⟨𝛁, 𝛁⟩𝜓 =  𝜌 

 

The non-homogeneous wave equation corresponds to two continuity equations. 

 

𝑚 𝜑 = ∇𝜓 ; ∇∗𝜑 =
𝜉

𝑚
 

 

14.2 Green’s function 
The Green’s function  

 

𝐺(𝒙 − 𝒙′) =
1

|𝒙 − 𝒙′|
 

 

makes sense for the integration of imaginary parts of quaternionic functions, as follows from: 

 

⟨𝛁, 𝛁⟩
1

|𝒙 − 𝒙′|
=  4𝜋 𝛿|𝒙 − 𝒙′| 

 

The equivalent  

 

𝐹(𝑥 − 𝑥′) =
1

|𝑥 − 𝑥′|
 

 

does not act as a Green’s function. This follows from: 

(17) 

(1) 

(2) 

(3) 

(1) 

(2) 



 

∇0∇0

1

|𝑥|
= −∇0

𝜏

|𝑥|3
=

3𝜏2

|𝑥|5
−

1

|𝑥|3
 

 

〈𝜵, 𝜵〉
1

|𝑥|
= 〈𝜵, 𝜵

1

|𝑥|
〉 = − 〈𝜵,

𝒙

|𝑥|3
〉 =

3𝜏2

|𝑥|5
 

 

∇∇∗
1

|𝑥 − 𝑥′|
= (∇0∇0 + 𝛁,𝛁)

1

|𝑥 − 𝑥′|
=  

6𝜏2

|𝑥|5
−

1

|𝑥|3
 

 

(2) 

(3) 

(4) 
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