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Introduction: The ABC conjecture was proposed by Joseoh Oesterle in 

1988 and David Masser in 1985 respectively independently. Its general 

formulation is that for any infinitesimal quantity ε > 0, there exists a constant 

Cε > 0, such that for any three relatively prime integers a, b and c satisfying 

a+b=c, and the inequality holds, where p/abc 

indicates that the product is over prime p which divide the product abc. This 

is an unsolved problem hitherto although Shinichi Mochizuki published four 

papers on the internet claiming prove it.   

Abstract  

We first get rid of three kinds from A+B=C according to their respective 

odevity and gcf (A, B, C) =1. Next expound relations between C and paf 

(ABC) by the symmetric law of odd numbers. Finally we have proven C ≤ 

Cε [paf (ABC)] 
1+ ε

 such being the case A+B=C, and gcf (A, B, C) =1.  
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A + B = C on gcf (A, B, C) =1  

For any natural number N, let paf (N) denotes the product of all distinct 

prime factors of N, e.g. when N=2
5
×11

2
×13

4
, paf (N) =2×11×13 =286.  

In addition, let gcf (A, B, C) denotes greatest common factor of A, B and C. 

Well then, the ABC conjecture can thus state that given a real number ε > 0, 

there exists a constant Cε > 0, such that every triple of positive integers A, B 

and C satisfying A + B = C, and gcf (A, B, C) =1, so we have C ≤ Cε [paf 

(ABC)] 
1+ ε

.    

Let us first get rid of three kinds from A+B=C according to their respective 

odevity and gcf (A, B, C) =1, as listed below.    

1. If A, B and C all are positive odd numbers, then A+B
 
is an even number, 

yet C
 
is an odd number, evidently there is only A+B≠C

 
according to an odd 

number ≠ an even number.   

2. If any two in A, B and C are positive even numbers, and another is a 

positive odd number, then when A+B is an even number, C is an odd number, 

yet when A+B is an odd number, C is an even number, so there is only 

A+B≠C
 
according to an odd number ≠ an even number.  

3. If A, B and C all are positive even numbers, then they have at least a 

common prime factor 2, manifestly this and the given prerequisite gcf (A, B, 

C) =1 are inconsistent, so A, B and C can not be three positive even numbers 

together.    

Therefore, we can only continue to have a kind of A+B=C, namely A, B and 
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C are two positive odd numbers and one positive even number.  

So let following two equalities add together to replace A+B=C such being 

the case A, B and C are two positive odd numbers and one positive even 

number. Undoubtedly, that is feasible completely.   

1. A+B=2
X
S, where A, B and S all are positive odd numbers without any 

common prime factor >1, and X is an integer ≥ 1, similarly hereinafter.  

2. Since A and B in A+B=C have only a positive even number, so let B is 

positive even number 2
Y
V, then we get A +2

Y
V = C, where A, V and C all 

are positive odd numbers without any common prime factor >1, and Y is an 

integer ≥ 1, similarly hereinafter.   

Or rather, the proof for ABC conjecture, by now, it is exactly to prove that 

the following two inequalities hold water.    

(1). 2
X
S ≤ Cε [paf (A, B, 2

 X
S)] 

1+ ε 
such being the case A+B=2

X
S;  

(2). C ≤ Cε [paf (A, 2
Y
V, C)] 

1+ ε 
such being the case A+2

Y
V =C.   

Deducing at Sequence of Natural Numbers 
 

We use 4n as modulus to divide all positive odd numbers, so obtain two 

congruence classes of odd numbers, i.e. A whose remainder is 1, and B 

whose remainder is 3. Well then, the form of A is 1+4n, and the form of B is 

3+4n, where n≥0. Two congruence classes of odd numbers are all positive 

odd numbers. They are arranged as follows.  

A: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69…1+4n …    

B: 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67…3+4n …   
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We list from small to great positive integers, well then you would discover 

that Permutations of seriate positive integers show up a certain law.  

1, 2
1
, 3, 2

2
, 5, 2

1
×3, 7, 2

3
, 9, 2

1
×5, 11, 2

2
×3, 13, 2

1
×7, 15, 2

4
, 17, 2

1
×9, 19, 

2
2
×5, 21, 2

1
×11, 23, 2

3
×3, 25, 2

1
×13, 27, 2

2
×7, 29, 2

1
×15, 31, 2

5
, 33, 2

1
×17, 

35, 2
2
×9, 37, 2

1
×19, 39, 2

3
×5, 41, 2

1
×21, 43, 2

2
×11, 45, 2

1
×23, 47, 2

4
×3, 49, 

2
1
×25, 51, 2

2
×13, 53, 2

1
×27, 55, 2

3
×7, 57, 2

1
×29, 59, 2

2
×15, 61, 2

1
×31, 63, 

2
6
, 65, 2

1
×33, 67, 2

2
×17, 69, 2

1
×35, 71, 2

3
×9, 73, 2

1
×37, 75, 2

2
×19, 77, 

2
1
×39, 79, 2

4
×5, 81, 2

1
×41, 83, 2

2
×21, 85, 2

1
×43, 87, 2

3
×11, 89, 2

1
×45, 91, 

2
2
×23, 93, 2

1
×47, 95, 2

5
×3, 97, 2

1
×49, 99, 2

2
×25, 101, 2

1
×51, 103 …→   

Integers which indicated an exponent of 2 are all even numbers, yet others 

are odd numbers, in the above-listed sequence of natural numbers.  

After the above-listed each odd number is replaced by a congruence class of 

itself, the sequence of natural numbers is changed into the above-listed form.  

A 2
1 
B 2

2 
A 2

1
×3 B 2

3
 A 2

1
×5 B 2

2
×3 A 2

1
×7 B 2

4
 A 2

1
×9 B 2

2
×5 A 2

1
×11 B 

2
3
×3 A 2

1
×13 B 2

2
×7 A 2

1
×15 B 2

5
 A 2

1
×17 B 2

2
×9 A 2

1
×19 B 2

3
×5 A 2

1
×21 

B 2
2
×11 A 2

1
×23 B 2

4
×3 A 2

1
×25 B 2

2
×13 A 2

1
×27 B 2

3
×7 A 2

1
×29 B 2

2
×15 

A 2
1
×31 B 2

6
 A 2

1
×33 B 2

2
×17 A 2

1
×35 B 2

3
×9 A 2

1
×37 B 2

2
×19 A 2

1
×39 B 

2
4
×5 A 2

1
×41 B 2

2
×21 A 2

1
×43 B 2

3
×11 A 2

1
×45 B 2

2
×23 A 2

1
×47 B 2

5
×3 A 

2
1
×49 B 2

2
×25 A 2

1
×51 B …→   

Thus it can seen, leave from any given even number >2, there are finitely 

cycles of BA leftwards until 3(B) 1(A), and there are infinitely many cycles 

of AB rightwards up to infinite.  
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If we regard a positive even number as a symmetric center, then two odd 

numbers of every bilateral symmetry are A and B, and a sum of bilateral 

symmetric A and B is the double of the even number. For example, odd 

numbers 23(B) and 25(A), 21(A) and 27(B), 19(B) and 29(A) etc are 

respectively bilateral symmetry whereby even number 2
3
×3 to act as the 

center of the symmetry, then there are 23+25=2
4
×3, 21+27=2

4
×3, 19+29= 

2
4
×3 etc. In addition, odd numbers 49(A) and 51(B), 47(B) and 53(A), 45(A) 

and 55(B) etc are respectively bilateral symmetry whereby even number 

2
4
×3+2 to act as the center of the symmetry, then there are 49+51=2

5
×3+2

2
= 

2
2
5

2
, 21+27=2

2
5

2
, 19+29=2

2
5

2
 etc.  

Again give an example, 63(B) and 65(A), 61(A) and 67(B), 59(B) and 69(A) 

etc are respectively bilateral symmetry whereby even number 2
6
 to act as the 

center of the symmetry, then there are 63+65=2
7
, 61+67=2

7
, 59+69=2

7
 etc.   

Overall, there is A+B=2
X+1

S such being the case A and B are bilateral 

symmetry whereby 2
X
S to act as the center of the symmetry.   

One number of A and B on the left of 2
X
S is the very number of pairs of A 

and B wherewith to express the sum as 2
X+1

S, thus for any finite-great even 

number 2
X+1

S, a number of pairs of A and B wherewith to express their sum 

is still finite. This combines with above-mentioned three examples, we can 

count and get that when A+B=2
X+1

S, a number of pairs of bilateral 

symmetric A and B for symmetric center 2
X
S is a half of 2

X
S , i.e. 2

X-1
S; 

when A+B=2
X+1

S+2
2
n, a number of pairs of bilateral symmetric A and B for 
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symmetric center 2
X
S+2n is a half of 2

X
S+2n, i.e. 2

X-1
s+n; when A+B=2

X+2
, 

a number of pairs of bilateral symmetric A and B for symmetric center 2
X+1

 

is a half of 2
X+1

, i.e. 2
X
.    

On the supposition that A and B are bilateral symmetric odd numbers 

whereby 2
X
S to act as the center of the symmetry, then A+B=2

X+1
S, needless 

to explain, this is known. Now let A added to 2
X+1

S, then B and A+2
X+1

S are 

still bilateral symmetry whereby 2
X+1

S to act as the center of the symmetry, 

and B+ (A+2
X+1

S) = 2
X+2

S.  

Provided substitute B for A, let B added to 2
X+1

S, then A and B+ 2
X+1

S are 

too bilateral symmetry whereby 2
X+1

S to act as the center of the symmetry, 

and A+ (B+2
X+1

S) =2
X+2

S.  

If both let A added to 2
X+1

S, and let B added to 2
X+1

S, then A+2
X+1

S and 

B+2
X+1

S are likewise bilateral symmetry whereby 3×2
X
S to act as the center 

of the symmetry, and (A+2
X+1

S) + (B+2
X+1

S) = 3×2
X+1

S.  

Since there are merely A and B at two odd places of every bilateral 

symmetry on two sides of each even number, then aforementioned 

B+(A+2
X+1

S)=2
X+2

S or A+(B+2
X+1

S)=2
X+2

S is exactly A+B=2
X+2

S, and write 

(A+2
X+1

S)+(B+2
X+1

S)=3×2
X+1

S into A+B=3×2
X+1

S=2
X+1

S1, where S1 is an 

odd number >1.  

Do it like this, enable one by one equality like as A+B=2
X+1

S is proven to 

continue the existence, along with which the values of X plus S are getting 

greater and greater, equalities like as A+B=2
X+1

S are getting more and more, 
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up to there are infinitely more A+B=2
X+1

S.   

Pro tanto, we have expounded that regard each positive even number 2
X
S as 

a symmetric center, then there are infinitely more A+B=2
X+1

S, including 

finite A+B=2
X+1

S for each value of X, at the sequence of natural numbers.  

Thereinafter, we need to regard each positive odd number as a symmetric 

center, prove that there are infinitely more A+2
Y
V=C by the aid of the 

infinitude of A+B=2
X+1

S, at the sequence of natural numbers.     

Since equalities like as A+2
Y
V=C are essentially such equalities that two 

sides of A+B=2
X+1

S either added to a positive odd number or subtracted a 

positive odd number to get, but when use the subtraction, the subtractive 

positive odd number must be not greater than C-4, so we adopt the addition 

hereinafter, that is enough.   

Now that there is equality A+2
Y
V=C, i.e. equality A+ (2

Y
V+p) =C+ p, where 

p is a positive odd number, so let odd number 2
Y
V+p=B, and even number 

C+ p =2
X+1

S, well then A+ (2
Y
V+p) = C+ p is exactly A +B =2

X+1
S.  

Since there are infinitely more A+B=2
X+1

S, i.e. A+ (2
Y
V+p) =C+ p at the 

sequence of natural numbers, then for each and every A+ (2
Y
V+p) = C+ p, 

its two sides subtracted odd number p together, so we get that there are 

infinitely more A+2
Y
V=C, including finite A+2

Y
V=C i.e. a number of pair of 

A and 2
Y
V wherewith to express sum C, at the sequence of natural numbers.  

After factorizations of A, B, C, S and V in A+B=2
X+1

S and A+2
Y
V=C, if part 

prime factors of terms of each equality have greater exponents, then there are 
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2
X+1

S ≥ paf (A, B, 2
X+1

S) and C ≥ paf (A, 2
Y
V, C), for example, 2

7 
> paf (3, 

5
3
, 2

7
) =3×5×2=30, due to 3+5

3
=2

7
, i.e. 128; and 3

10 
> paf (5

6
, 2

5
×23×59, 3

10
) 

=5×2×23×59×3 =40710, due to 5
6
+ 2

5
×23×59 =3

10 
, i.e. 59049.   

On the contrary, there are 2
X+1

S ≤ paf (A, B, 2
X+1

S) and C ≤ paf (A, 2
Y
V, C), 

for example, 2
2
×7 < paf (13, 3×5, 2

2
×7) = 13×3×5×2×7=2730, due to 

13+3×5= 2
2
×7, i.e. 28; and 3

4  
< paf (2

2
, 11×7, 3

4
) = 2×11×7×3=462, due to 

11×7+2
2 
=3

4
 , i.e. 81.   

In A+B =2
X+1

S, either A or B plus an even number is still an odd number, 

and 2
X+1

S plus an even number is still an even number, thereby we can still 

use equality A+B=2
X+1

S to express every such equality after the addition. Of 

course, can too continue to use equality A+2
Y
V=C, namely two sides of 

A+B=2
X+1

S to wit A+ (2
Y
V+p) =C+ p subtracted p, to express every such 

equality after the addition. Therefore there are infinitely more 2
X+1

S ≥ paf (A, 

B, 2
X+1

S) plus 2
X+1

S ≤ paf (A, B, 2
X+1

S) such being the case A+B=2
X+1

S, as 

well there are infinitely more C ≥ paf (A, 2
Y
V, C) plus C ≤ paf (A, 2

Y
V, C) 

such being the case A+2
Y
V =C, at sequence of natural numbers. But if part 

2
X+1

S ≥ paf (A, B, 2
X+1

S) and 2
X+1

S ≤ paf (A, B, 2
X+1

S), and part C ≥ paf (A, 

2
Y
V, C) and C ≤ paf (A, 2

Y
V, C), then inequalities like as each of them, all 

in all, we conclude not whether they are still infinitely more or are finitely.  

Proving C ≤ Cε [paf (A, B, C)] 
1+ε

 

Hereinbefore we have deduced that there are both 2
X+1

S ≤ paf (A, B, 2
X+1

S), 

2
X+1

S ≥ paf (A, B, 2
X+1

S) such being the case A+B=2
X
S, and C ≤ paf (A, 2

Y
V, 
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C), C ≥ paf (A, 2
Y
V, C) such being the case A+2

Y
V =C, at sequence of natural 

numbers. 

If a positive even number on the right side of each of above-mentioned four 

inequalities added to a smaller integer ≥1, then the result is both equivalent to 

multiply the positive even number by a smaller fraction, and equivalent to add 

a tiny real number >0 to the exponent of the positive even number. Actually 

three such ways of doing all are in order to increase the value on the base of an 

identical positive even number.  

Judging from this, on the one hand, there are both 2
X+1

S ≤ paf (A, B, 2
X+1

S) 

and C ≤ paf (A, 2
Y
V, C) at sequence of natural numbers, then a positive even 

number on the right of every 2
X+1

S ≤ paf (A, B, 2
X+1

S) plus every C ≤ paf (A, 

2
Y
V, C) added to a smaller positive integer to turn themselves into one 2

X+1
S ≤ 

[paf (A, B, 2
X+1

S)]
1+ ε 

or one C ≤ [paf (A, 2
Y
V, C)]

1+ ε
, naturally there are both 

2
X+1

S ≤ [paf (A, B, 2
 X+1

S) ]
1+ ε 

and C ≤ [paf (A, 2
 Y

V, C) ]
1+ ε

. Even need not to 

multiply the right of each of them by Cε, as well enable two such inequalities 

hold water successively, thus we need not to prove again these circumstances.     

On the other hand, there are both 2
X+1

S ≥ paf (A, B, 2
X+1

S) and C ≥ paf (A, 

2
Y
V, C) at sequence of natural numbers, then a positive even number on the 

right of every 2
X+1

S ≥ paf (A, B, 2
X+1

S) plus every C ≥ paf (A, 2
Y
V, C) added 

to a smaller positive integer to turn themselves into one 2
X+1

S ≥ Cε [paf (A, B, 

2
X+1

S)]
1+ ε 

and one C ≥ Cε [paf (A, 2
Y
V, C)]

1+ ε
, naturally there are both 2

X+1
S 

≥ [paf (A, B, 2
 X+1

S)]
1+ ε 

and C ≥ [paf (A, 2
 Y

V, C)]
1+ ε

, after that, must multiply 
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an even number on the right of each inequality by Cε, just can get one 2
X+1

S ≤ 

Cε [paf (A, B, 2
 X+1

S)]
1+ ε 

and one C ≤ Cε [paf (A, 2
 Y

V, C)]
1+ ε

.  

Taken one with another, there are infinitely more both 2
X+1

S ≤ [paf (A, B, 

2
X+1

S)]
1+ ε 

plus 2
X+1

S ≤ Cε [paf (A, B, 2
 X+1

S)]
1+ ε

, and C ≤ [paf (A, 2
 Y

V, C)]
1+ ε

 

plus C ≤ Cε [paf (A, 2
 Y

V, C)]
1+ ε

.  

But then for an individual inequality 2
X+1

S ≤ paf (A, B, 2
X+1

S), C ≤ paf (A, 

2
Y
V, C), 2

X+1
S ≥ paf (A, B, 2

X+1
S) or C ≥ paf (A, 2

Y
V, C), after an even 

number on the right of each of them added to a smaller positive integer to turn 

themselves into 2
X+1

S  [paf (A, B, 2
 X+1

S)]
1+ ε 

, C ≤ [paf (A, 2
 Y

V, C)]
1+ ε

, 

2
X+1

S ≥ [paf (A, B, 2
X+1

S)]
1+ ε 

and C ≥ [paf (A, 2
Y
V, C)]

1+ ε
, there are only 

finite 2
X+1

S  [paf (A, B, 2
 X+1

S)]
1+ ε

, C ≤ [paf (A, 2
 Y

V, C)]
1+ ε

, 2
X+1

S ≥ [paf (A, 

B, 2
X+1

S)]
1+ ε 

and C ≥ [paf (A, 2
Y
V, C)]

1+ ε
 at sequence of natural numbers. 

This is because that after paf (A, B, 2
X+1

S) added to a smaller positive integer 

to turn itself into [paf (A, B, 2
 X+1

S)]
1+ ε

, notwithstanding there are still 2
X+1

S ≤ 

[paf (A, B, 2
X+1

S)]
 1+ ε 

and 2
X+1

S ≥ [paf (A, B, 2
X+1

S)]
 1+ ε

, but any even number 

like as 2
 X+1

S is not the symmetric center of odd numbers A and B already, thus 

there are only A+B ≠ 2
X+1

S, and A+2
Y
V≠C due to A+B ≠2

 X+1
S to wit 

A+(2
Y
V+p) ≠C+ p.   

In order to obtain anew an equality under the prerequisite that continue to have 

the value which increased paf (A, B, 2
X+1

S), must adjust values among A, B 

and 2
X+1

S, but such an equality after the adjustment is not any of equalities 

like as A+B=2
X+1

S already. Thus after paf (A, B, 2
X+1

S) is added a value into 
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[paf (A, B, 2
X+1

S)]
 1+ ε

, in any case, it can not come into an equality like as 

A+B=2
 X+1

S always.  

Obviously, after paf (A, 2
Y
V, C) is added a value into [paf (A, 2

Y
V, C)]

 1+ ε
, it 

can not come into an equality like as A+2
Y
V=C always either, along with the 

impossibility of equality like as A+B=2
 X+1

S on paf (A, B, 2
X+1

S)
 1+ ε

.   

What deserve to mention is that if added to a smaller integer p on the two 

sides of 2
X+1

S ≤ paf (A, B, 2
X+1

S)
 
plus 2

X+1
S ≥ paf (A, B, 2

X+1
S), then their 

results 2
X+1

S+ p ≤ [paf (A, B, 2
X+1

S)]
 1+ ε 

and 2
X+1

S+ p ≥ [paf (A, B, 2
X+1

S)]
 1+ ε

 

would have complete differentia, even though this is a superfluous remark.   

Since it is so, we shall continue to prove concretely 2
X+1

S ≤ Cε [paf (A, B, 

2
X+1

S)] 
1+ ε 

such being the case 2
X+1

S ≥ paf (A, B, 2
X+1

S), secondly prove 

concretely C ≤Cε [paf (A, 2
Y 

V, C)] 
1+ ε 

such being the case C≥ paf (A, 2
Y
V, C).  

First let us factorize A as a1
a
 a2

b
…ad

y
, B as b1

α
 b2

β
…bλ

μ
, and S as s1

e
 s2

f
…sφ

z
, 

where a, b…y, α, β…μ, e, f…z are positive integers; and d, λ and φ ≥ 1, also a1, 

a2…ad, b1, b2…bλ, s1, s2…sφ are one another’s-disparate odd prime numbers.  

Well then, 2
X+1

S=2
X+1

s1
e
s2

f
…sφ

z
; paf (A, B, 2

X+1
S) =2a1a2…adb1b2…bλs1s2…sφ;   

2
X+1

S ≥ paf (A, B, 2
X+1

S) to wit 2
X+1

s1
e
s2

f
…sφ

z
 ≥ 2a1a2…adb1b2…bλs1 s2…sφ 

under these circumstances of A+B=2
X+1

S. Judging from this, two sides of the 

inequality are two even numbers, and they have common prime factors 2, s1, 

s2…sφ-1 and sφ.     

If a positive integer P1 is added a smaller value into another positive integer P2, 

where P2 > P1, then either P1 added to an appropriate positive integer to get P2, 
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or multiply P1 by a certain fraction to get P2, even increase exponent of P1 by 

an appropriate real number to get P2.  

Thus, if paf (A, B, 2
X+1

S) added to a smaller positive integer q to get 

2a1a2…adb1b2… bλs1s2…sφ+ q, undoubtedly such a way of doing is equivalent 

to increase exponent of 2a1a2… adb1b2…bλs1s2…sφ by a corresponding tiny 

real number such as ε, where q=1, 2, 3 etc., similarly hereinafter. That is to say, 

there is the equality as listed below.  

2a1a2…adb1b2…bλs1s2…sφ+ q = (2a1a2…adb1b2…bλs1s2…sφ) 
1+ ε

, from this get 

1+ε=log2a1a2…adb1b2…bλs1s2…sφ(2a1a2…adb1b2…bλs1s2…sφ+ q), so further get 

ε=[log2a1a2…adb1b2…bλs1s2…sφ(2a1a2…adb1b2…bλs1s2…sφ+ q)]-1.  

From (2a1a2…adb1b2…bλs1s2…sφ) 
1+ ε 

= (2a1a2…adb1b2…bλs1s2…sφ) (2a1a2… ad 

b1b2… bλs1s2 …sφ)
ε
, we know that this (2a1a2…adb1b2…bλs1s2…sφ)

ε
 belongs to 

the incremental factor on the base of paf (A, B, 2
X+1

S). Actually the 

incremental part out of paf (A, B, 2
X+1

S) is equal to q. That is to say, there is 

paf (A, B, 2
X+1

S) + q = [paf (A, B, 2
X+1

S)] 
1+ ε

.   

For 2
X+1

S ≥ paf (A, B, 2
X+1

S) such being the case A + B =2
X+1

S due to part 

prime factors of terms of A + B =2
X+1

S have greater exponents, if paf (A, B, 

2
X+1

S) added to a smaller positive integer q, but also there is successively 

2
X+1

S ≥ [paf (A, B, 2
X+1

S)]
1+ ε

 after the addition, if enable the sign which 

expresses inequality of 2
X+1

S ≥ [paf (A, B, 2
X+1

S)]
1+ ε

 is changed into the 

reverse direction, then must multiply [paf (A, B, 2
X+1

S)]
1+ ε 

by a constant Cε, 

after that, there justly is 2
X+1

S ≤ Cε [paf (A, B, 2
X+1

S)]
1+ ε

. For the constant Cε, 
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we can determine its value as follows.  

From 2
X+1

S ≥ paf (A, B, 2
X+1

S) + q, i.e. 2
X+1

s1
e
s2

f
… sφ

z
 ≥ 2a1a2… adb1b2 … 

bλs1s2…sφ + q, Cε is more than or equal to the quotient which 2
X+1

s1
e
s2

f
… sφ

z
 

divided by (2a1a2…adb1b2…bλs1s2…sφ +q), to wit Cε ≥2
X+1

s1
e
s2

f
… sφ

z 
∕ (2a1 

a2…adb1 b2 … bλs1s2…sφ +q).   

Excepting smaller positive integer q, a number which every sign of Cε 

expresses is a given number. Actually q is a relative- smaller positive integer, 

if 2a1a2…adb1 b2… bλs1s2…sφ tends to infinity, then any concrete positive 

integer so long as we can write out is a smaller positive integer, yet once the 

value of p is determined, it exactly is a known constant, therefore Cε is a 

constant.  

To sum up, we have got 2
X+1

s1
e
s2

f
… sφ

z
 ≤ Cε (2a1a2… adb1b2… bλs1s2…sφ +q), 

in other words, we have proven 2
X+1

S ≤ Cε [paf (A, B, 2
X+1

S)] 
1+ ε

 such being 

the case A + B =2
X+1

S and gcf (A, B, 2
X+1

S) =1.        

There is no harm to give again an aforementioned concrete instance to explain 

above- mentioned calculations. For equality 3+5
3
=2

7
, odd numbers 3 and 5

3
 

are bilateral symmetry whereby 2
6
 to act as the center of the symmetry at 

sequence of natural numbers. And there is 2
7 
> paf (3, 5

3
, 2

7
) = 3×5×2 = 30. If 

paf (3, 5
3
, 2

7
) added to integer 1, then it is equivalent to increase exponent of 

3×5×2 by a corresponding tiny real number such as ε. That is to say, there is 

3×5×2+1= (3×5×2)
1+ε

, i.e. 31=30
1+ε

, then 1+ε =log 30 31, so ε = (log 30 31)-1. 

Nevertheless there is still 2
7 

>30
1+ε

, so must multiply 30
1+ε 

by a constant Cε, 
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after that, there justly is 2
7
 ≤ Cε×30

1+ ε
, well then Cε ≥ 2

7
/30

1+ ε
, where ε =

 
(log 

30 31)-1.   

Hereinafter we set to prove concretely C≤ Cε [paf (A, 2
Y 

V, C)] 
1+ ε 

such being 

the case C ≥ paf (A, 2
Y
V, C).  

Like that, we factorize A as a1
a
 a2

b
…ad

y
, C as c1

α
 c2

β
…cλ

μ
, and V as v1

e
 v2

f
…vφ

z
, 

where a, b…y, α, β…μ, e, f…z are positive integers; and d, λ and φ ≥ 1, also a1, 

a2…ad, c1, c2…cλ, v1, v2…vφ are one another’s-disparate odd prime numbers.  

Well then, C ≥ paf (A, 2
Y
V, C) is exactly c1

α
 c2

β
…cλ

μ
 ≥ 2a1 a2…ad c1 c2…cλv1 

v2…vφ under these circumstances of A+2
Y
V=C. Thus it can seen, the left side 

of the inequality is an odd number, and the right side is an even number, 

however they have common prime factors c1, c2…cλ-1 and cλ.     

Let paf (A, 2
Y
V, C) added to a smaller positive integer k to get 2a1a2… 

adc1c2…cλv1v2…vφ + k, evidently the way of doing is equivalent to increase 

exponent of 2a1a2…adc1c2…cλv1v2…vφ by a corresponding tiny real number 

such as ε, where k=1, 2, 3 etc., similarly hereinafter. That is to say, there is the 

equality as listed below.   

2a1a2…adc1c2…cλv1v2…vφ+ k = (2a1a2…adc1c2…cλv1v2…vφ)
1+ε

, from this get 

1+ε=log2a1a2…adc1c2…cλv1v2…vφ(2a1a2…adc1c2…cλv1v2…vφ+ k), so get further 

ε=[log2a1a2…adc1c2…cλv1v2…vφ(2a1a2…adc1c2…cλv1v2…vφ + k)]-1.  

From (2a1a2…adc1c2…cλv1v2…vφ) 
1+ ε 

= (2a1a2…adc1c2…cλv1v2…vφ) (2a1a2… 

adc1c2…cλv1v2…vφ)
ε
, we know that this (2a1a2…adc1c2…cλv1v2…vφ)

ε
 belongs 

to the incremental factor on the base of paf (A, 2
Y
V, C). Actually the 
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incremental part out of paf (A, 2
Y
V, C) is equal to k. That is to say, there is paf 

(A, 2
Y
V, C) + k = [paf (A, 2

Y
V, C)] 

1+ ε
.   

For C ≥ paf (A, 2
Y
V, C) such being the case A+2

Y
V=C due to part prime 

factors of terms of A +2
Y
V=C have greater exponents, if paf (A, 2

Y
V, C) added 

to a smaller positive integer k, but also there is successively C ≥ [paf (A, 2
Y
V, 

C)]
1+ ε

 after the addition, if enable the sign which expresses inequality of C ≥ 

[paf (A, 2
Y
V, C)]

1+ ε
 is changed into the reverse direction, then must multiply 

[paf (A, 2
Y
V, C)]

1+ ε 
by a constant Cε, after that, there justly is C ≤ Cε [paf (A, 

2
Y
V, C)]

1+ ε
. For the constant Cε, we can determine its value as follows.  

From C ≥ paf (A, 2
Y
V, C) + k, i.e. c1

α
 c2

β
…cλ

μ 
≥ 2a1a2…adc1c2 …cλv1v2…vφ + k, 

Cε is more than or equal to the quotient which c1
α
 c2

β
…cλ

μ 
divided by 

(2a1a2…adc1c2… cλv1 v2…vφ +k), to wit Cε ≥ c1
α
 c2

β
…cλ

μ 
∕ (2a1a2…adc1 c2 … 

cλv1v2…vφ +k).   

Excepting smaller positive integer k, a number which every sign of Cε 

expresses is a given number. Actually k is a relative- smaller positive integer, 

if 2a1a2…adc1c2…cλv1v2…vφ tends to infinity, then any concrete positive 

integer so long as we can write out is a smaller positive integer, yet once the 

value of k is determined, it exactly is a known constant, therefore Cε is a 

constant.  

To sum up, we have got c1
α
 c2

β
…cλ

μ 
≤ Cε (2a1a2… adc1c2…cλv1v2…vφ + k), in 

other words, we have proven C ≤ Cε [ paf (A, 2
Y
V, C) ] 

1+ ε 
such being the case 

A +2
Y
V = C, and gcf (A, 2

Y
V, C) =1.    
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Like that, we give an aforementioned concrete instance to explain above- 

mentioned calculations. For equality 5
6
+ 2

5
×23×59 =3

10
, there is 3

10 
> paf (5

6
, 

2
5
×23×59, 3

10
) = 5×2×23×59×3 =40710. If paf (5

6
, 2

5
×23×59, 3

10
) added to 

integer 1, then it is equivalent to increase exponent of 5×2×23×59×3 by a 

corresponding tiny real number such as ε. That is to say, there is 

5×2×23×59×3+1 = (5×2×23×59×3)
1+ε

, i.e. 40711=40710
1+ε

, well then 1+ε 

=log 40710 40711, so ε = (log 40710 40711)-1. Nevertheless there is successively 

3
10 

>40710
1+ε

, so must multiply 40710
1+ε 

by a constant Cε, after that, there is 

justly 3
10

 ≤Cε×40710
1+ ε

, so Cε ≥ 3
10

/40710
1+ ε

, where ε =(log 40710 40711)-1.  

Heretofore, the ABC conjecture is proven by us as the true. The proof was thus 

brought to a close. As a consequence, the ABC conjecture does hold water.   
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