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1 Introduction

Let {Xn, n ≥ 1} be a sequence of independent and identically distributed (iid) random
variables with common distribution function (df) F . Suppose that there exist normalizing
constants an > 0, bn ∈ R and nondegenerate distribution function G(x) such that

lim
n→∞

P (Mn ≤ anx+ bn) = lim
n→∞

F n(anx+ bn) = G(x), (1.1)

for all x ∈ C(G), the set of all continuity points of G, where Mn = maxi≤n Xi denote the
largest of the first n. Then G(x) must belong to one of the following three classes:

Φα(x) =

{
0, if x < 0,

exp{−x−α}, if x ≥ 0,

Ψα(x) =

{
exp{−(−x)α}, if x < 0,

1, if x ≥ 0,
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Λ(x) = exp{−e−x}, x ∈ R,

where α is positive parameter. We say that df F belongs to the max domain of attraction of
G under linear normalization if (1.1) holds. We denote such a fact by F ∈ Dl(G). Criteria for
F ∈ Dl(G) and the choice of normalization constants an and bn can be found in de Haan[6],
Galambos[7], Leadbetter et al.[10] and Resnick[20].

According to Mohan and Ravi[14], Pancheva[17], F is said to belong to the max domain
of attraction of a df H under power normalization, standed for F ∈ Dp(H) if there exist
normalizing constants αn > 0 and βn > 0, such that

lim
n→∞

P

(∣∣∣∣Mn

αn

∣∣∣∣ 1
βn

sign(Mn) ≤ x

)
= lim

n→∞
F n(αn|x|βn sign(x)) = H(x), (1.2)

where sign(x) = −1, 0 or 1 as x < 0, x = 0, x > 0. A df H is called power-max stable or
p-max stable for short by Mohan and Ravi[14] if it satisfies the stability relation

Hn(αn|x|βn sign(x)) = H(x), x ∈ R and n ∈ N,

for some constants αn > 0 and βn > 0. Pancheva[17] showed that H is of the power type of
one of the following six distributions:

Type I: H1,α(x) =

{
0, if x ≤ 1,

exp{−(log x)−α}, if x > 1,

Type II: H2,α(x) =


0, if x ≤ 0,

exp{−(− log x)α}, if 0 < x < 1,

1, if x ≥ 1,

Type III: H3,α(x) =


0, if x ≤ −1,

exp{−(− log(−x))−α}, if − 1 < x < 0,

1, if x ≥ 0,

Type IV: H4,α(x) =

{
exp{−(− log(−x))α}, if x < −1,

1, if x ≥ −1,

Type V: H5,α(x) = Φ1(x) =

{
0, if x ≤ 0,

exp{−x−1}, if x > 0,

Type VI: H6,α(x) = Ψ1(x) =

{
exp{x}, if x < 0,

1, if x ≥ 0,

where α is a positive parameter. Necessary and sufficient conditions for F to satisfy (1.2)
were given by Christoph and Fark[5], Mohan and Ravi[14], Mohan and Subramanya[15] and
Subramanya[22].
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It is popular nowadays in theoretical analysis and wide applications that the normal
distribution is carried over to logarithmic normal one. Besides, the logarithm normal dis-
tribution (the lognormal distribution) is one of the most widely applied distributions in
statistics, biology and some other disciplines. For applications of the field of Electronics,
Astronomy and Physics, see Bergmann and Bill[2]. For applications of the field of Biological
Sciences and Social Science, see Limpet et al.[12], Gron̈holm and Annila [9]. For applications
of the field of Statistics, see Olsson [16], Burmaster and Hull[3], Parkin et al.[18], Bacry [1].
For the application of the field of Marine Ecology, see Gray [8]. For the application of the
field of Environment, see Singh et al.[21]. The probability density function of the lognormal
distribution is given by

F ′(x) =
x−1√
2π

exp

{
−(log x)2

2

}
, x > 0.

Our interesting problem in extreme value theory is to estimate the rate of uniform con-
vergence of F n(·) to its extreme value distribution. For power normalization, Chen and
Feng[4] proved the result that the uniform convergence rate of F ∼ STSD (STSD stand-
s for the short-tailed symmetric distribution) to its exteme value limit is proportional to
1/ log n. For linear normalization, Peng et al.[19] proved that 1/ log n is the most optimal
convergence rate for the maximum of GED (GED stands for the general error distribution)
random variables. Liu and Liu[13] proved a simialr result for the Maxwell distribution. Liao
and Peng[11] derived the following results if df F is the lognormal distribution:

c1
(log n)1/2

< sup
x∈R

|F n(anx+ bn)− Λ(x)| < c2
(log n)1/2

,

for n ≥ 2 and 0 < c1 < c2, where norming constants an and bn are given by:

2π(log bn)
2 exp

(
(log bn)

2
)
= n2,

and

an =
bn

log bn
.

The aim of this paper is to establish the more accurate uniform convergence rate of extreme
value from the lognormal distribution under power normalization, which can be used to
estimate the error committed by the replacement of the exact distribution of the extremes
by that limiting form and data analysis.

This note is organized as follows: some auxiliary results are given in Section 2. In Section
3, we provide our main results. Proofs are deferred to Section 4.

2 Preliminaries

In order to derive the uniform convergence rate of extreme value from the lognormal
distribution under power normalization, we cite some results from Liao and Peng[11], Mohan
and Ravi[14].
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In the sequel, let {Xn, n ≥ 1} be a sequence of iid random variables with common
distribution F which follows the lognormal distribution. As before let Mn represent the
partial maximum of {Xk, 1 ≤ k ≤ n}. Liao and Peng[11] showed that:

lim
n→∞

P (Mn ≤ anx+ bn) = lim
n→∞

F n(anx+ bn) = Λ(x), (2.1)

for all x ∈ R, where

an =
exp

(
(2 log n)1/2

)
(2 log n)1/2

, (2.2)

and

bn =
(
exp

(
(2 log n)1/2

))(
1− log 4π + log log n

2(2 log n)1/2

)
. (2.3)

From (2.1) we immediately obtain F ∈ Dl(Λ). It follows from Liao and Peng[11] that

1− F (x)

F ′(x)
∼ x

log x
, (2.4)

as x → ∞, where F ′(x) is of the density function of the lognormal distribution F (x). It also
follows from Liao and Peng[11] that

1− F (x) = c(x) exp

(
−
∫ x

e

g(t)

f̃(t)
dt

)
,

for sufficiently large x, where c(x) → (2πe)−1/2 as x → ∞, g(x) = 1 + (log x)−2 and

f̃(x) =
x

log x
. (2.5)

Noting that f̃ ′(x) → 0, g(x) → 1 as x → ∞.

We will use the following properties of the lognormal distribution and Lemma 1 of Liao
and Peng[11].

Lemma 2.1. Let F denote the logarithm normal function. For x > 1, we have

1− F (x) =
1√
2π

(log x)−1 exp

(
−(log x)2

2

)
− γ(x) (2.6)

=
1√
2π

(log x)−1 exp

(
−(log x)2

2

)(
1− (log x)−2

)
+ S(x), (2.7)

where

0 < γ(x) <
1√
2π

(log x)−3 exp

(
−(log x)2

2

)
(2.8)

and

0 < S(x) < 3√
2π

(log x)−5 exp

(
−(log x)2

2

)
. (2.9)

In order to obtain the main results, we need the following two lemmas.
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Lemma 2.2. (Theorem 3.1(a)(ii), Mohan and Ravi[14])Let F be a distribution function, if
F ∈ Dl(Λ) and r(F ) = ∞, then

F ∈ Dp(Φ1),

and the power normalizing constants

αn = bn, βn =
an
bn

,

where r(F ) = sup{x : F (x) < 1}.

Lemma 2.3. (Theorem 2.5, Mohan and Ravi[14])Let F be a distribution function, if F ∈
Dp(Φ1) if and only if

(i)r(F ) > 0, and

(ii) limt→r(F )
1−F (t exp(yf(t)))

1−F (t)
= exp(−y), for some positive valued function f .

If (ii) holds for some f then −
∫ r(F )

a
(1−F (x))/x dx < ∞ for 0 < a < r(F ) and (ii) holds

with the choice f(t) = 1/(1− F (t))
∫ r(F )

t
(1− F (x))/x dx. The normalization constants may

be chosen as αn = F←(1− 1/n) and βn = f(αn), where F←(x) = inf{y : 1− F (y) ≥ x}.

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of iid random variables with common distri-
bution F which follows the lognormal distribution. Then F ∈ Dp(Φ1) and the normalizing
constants can be chosen as α∗n = bn, β∗n = an/bn, where an and bn are given by (2.2) and
(2.3).

Proof. Note that F follows the lognormal distribution, which implies F ∈ Dp(Φ1) and
α∗n = bn, β∗n = an/bn, by (2.1) in Liao and Peng[11] and Lemma 2.2, where an and bn are
defined by (2.2) and (2.3).

By Lemma 2.3 and (2.4), we may choose the norming constants αn and βn in such a way
that αn is the solution of the equation

1√
2π

(logαn)
−1 exp

(
−(logαn)

2

2

)
=

1

n
(2.10)

and

βn =
f̃(αn)

αn

=
1

logαn

(2.11)

i.e.
(logαn)βn = 1,

where f̃ is given by (2.5). The solution of (2.10) may be expression as

αn =
(
exp

(
(2 log n)1/2

))(
1− log 4π + log log n

2(2 log n)1/2
+ o(

1

(log n)1/2
)

)
(2.12)

and it is easy to see that

βn ∼ 1

(2 log n)1/2
.
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3 Main result

We provide two main results. Theorem 3.1 shows that the uniform convergence rate of
F (αnx

βn) to its extreme value limit is proportional to 1/ log n. Theorem 3.2 shows that
the pointwise rate of convergence of |Mn/αn|1/βn sign(Mn) to the extreme value distribution
exp(−x−1) is of the order of O(exp(−x−1)x−1β2

n).

Theorem 3.1. Let {Xn, n ≥ 1} denote a sequence of iid random variables with common
distribution F which follows the lognormal distribution. Then there exist absolute constants
0 < C1 < C2 such that

C1
log n

< sup
x>0

|F n(αnx
βn)− Φ1(x)| <

C2
log n

for large n > n0, where αn and βn defined by (2.10) and (2.11), respectively.

Theorem 3.2. Let αn and βn given by (2.10) and (2.11). For x > 0, we have

|F n(αnx
βn)− Φ1(x)| ∼ exp

{
−1

x

}
1

x
β2
n

for large n.

4 Proofs

Firstly, Theorem of 3.2 is proved for it is relatively easy.

Proof of Theorem 3.2 . By Lemma 2.1, we have

1− F (αnx
βn) =

1√
2π

(log(αnx
βn))−1 exp

(
−(log(αnx

βn))2

2

)
×
(
1− (log(αnx

βn))−2
)
+ S(αnx

βn)

=: T1(x)T2(x) + T3(x)

for x > 0, where T1(x) = (
√
2π)−1(log(αnx

βn))−1 exp
(
−(log(αnx

βn))2/2
)
,

T2(x) =
(
1− (log(αnx

βn))−2
)
and T3(x) = S(αnx

βn).
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Firstly, we calculate the T1(x). By (2.10) and (2.11), we have

T1(x) =
1√
2π

(log(αnx
βn))−1 exp

(
−(log(αnx

βn))2

2

)
=

1√
2π

(logαn)
−1 exp

(
−(logαn)

2

2

)
(1 + (logαn)

−1βn log x)
−1

× exp

(
−(logαn)βn log x− β2

n log
2 x

2

)
=

1

nx
(1 + β2

n log x)
−1 exp

(
−β2

n log
2 x

2

)
=

1

nx
(1− β2

n log x+O(β4
n))

(
1− β2

n log
2 x

2
+O(β4

n)

)
=

1

nx

(
1− β2

n(1 +
1

2
log x) log x+O(β4

n)

)
. (4.1)

Secondly, we estimate T2(x) and T3(x) for x > 0. By (2.11), we derive

T2(x) = 1− (log(αnx
βn))−2

= 1− (logαn)
−2(1 + (logαn)

−1βn log x)
−2

= 1− β2
n(1 + β2

n log x)
−2

= 1− β2
n(1− 2β2

n log x+O(β4
n))

= 1− β2
n +O(β4

n), (4.2)

and by Lemma 2.1, we have

T3(x) ≤
3√
2π

(log(αnx
βn))−5 exp

(
−(log(αnx

βn))2

2

)
= 3(log(αnx

βn))−4T1(x)

= 3β4
n(1 + β2

n log x)
−4T1(x)

= O(
1

n
β4
n). (4.3)

By (4.1), (4.2) and (4.3), we have

1− F n(αnx
βn) =

1

nx

(
1− β2

n

(
1 + (1 +

1

2
log x) log x

)
+O(β4

n)

)
.

Thus, we obtain

F n(αnx
βn)− Φ1(x)

=

{
1− 1

nx

(
1− β2

n

(
1 + (1 +

1

2
log x) log x

)
+O(β4

n)

)}n

− exp(−1

x
)

= exp(−1

x
)

{
exp

{
1

x

(
β2
n

(
1 + (1 +

1

2
log x) log x

)
+O(β4

n)

)}
− 1

}
=exp(−1

x
)

{
β2
n

1

x

(
1 + (1 +

1

2
log x) log x

)
+O(β4

n)

}
(4.4)

7



for large n and x > 0. We immediately get the result of Theorem 3.2 by (4.4).

Proof of Theorem 3.1 . (1)Firstly, we will estimate the lower bound for x > 0.

(i)Consider the case of x > 1. By Lemma 2.1, we obtain

F n(αnx
βn)− Φ1(x)

=

{
1− 1√

2π
(log(αnx

βn))−1 exp

(
−(log(αnx

βn))2

2

)
+ γ(αnx

βn)

}n

− exp(−1

x
)

≥
{
1− 1√

2π
(log(αnx

βn))−1 exp

(
−(log(αnx

βn))2

2

)}n

− exp(−1

x
).

By (4.1), we have{
1− 1

nx

{
1− β2

n(1 +
1

2
log x) log x+O(β4

n)

}}n

− exp(−1

x
)

= exp(−1

x
)

{
exp

{
1

x
β2
n(1 +

1

2
log x) log x+O(β4

n)

}
− 1

}
=exp(−1

x
)
1

x
β2
n

{
(1 +

1

2
log x) log x+O(β2

n)

}
≥K exp(−1

x
)
1

x
β2
n(1 +

1

2
log x) log x

for large n, where K is a positive number and 0 < K < 1. Hence, we have

sup
x>1

|F n(αnx
βn)− Φ1(x)|

≥K sup
x>1

∣∣∣∣exp(−1

x
)
1

x
β2
n(1 +

1

2
log x) log x

∣∣∣∣
≥K sup

x>1

∣∣∣∣e−1 1xβ2
n(1 +

1

2
log x) log x

∣∣∣∣ .
Let h(x) = x−1(1 + 1

2
log x) log x, then h′(x) = (1 − 1

2
log2 x)/x2. Put h′(x) = 0, we derive

log x0 =
√
2.

Therefore, there exists c̃1 such that

K sup
x>1

∣∣∣∣e−1 1xβ2
n(1 +

1

2
log x) log x

∣∣∣∣
≥Ke−1−

√
2(1 +

√
2)β2

n

=
c̃1

log n
.

(ii)Next, we will estimate the lower for the situation of e−2 ≤ x ≤ 1. Since

F n(αnx
βn)− Φ1(x)

= exp(−1

x
)

{
β2
n

1

x

(
1 + (1 +

1

2
log x) log x

)
+O(β4

n)

}
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and

1 + (1 +
1

2
log x) log x > 0

for e−2 ≤ x ≤ 1. Thus, we have

β2
n

1

x

(
1 + (1 +

1

2
log x) log x

)
+O(β4

n) > 0

for large n. Hence, there exists 0 < ϵ < 1 such that

β2
n

1

x

(
1 + (1 +

1

2
log x) log x

)
+O(β4

n)

≥(1− ϵ)β2
n

1

x

(
1 + (1 +

1

2
log x) log x

)
.

Therefore, there exists c̃2 such that

sup
e−2≤x≤1

|F n(αnx
βn)− Φ1(x)|

≥ sup
e−2≤x≤1

∣∣∣∣(1− ϵ) exp(−1

x
)β2

n

1

x

(
1 + (1 +

1

2
log x) log x

)∣∣∣∣
=

c̃2
log n

.

(iii)Now we estimate the lower bound for 0 < x < e−2. Note that{
1− 1

nx

{
1− β2

n(1 +
1

2
log x) log x+O(β4

n)

}}n

− exp(−1

x
)

= exp(−1

x
)
1

x
β2
n

{
(1 +

1

2
log x) log x+O(β2

n)

}
≥K̃ exp(−1

x
)
1

x
β2
n

{
(1 +

1

2
log x) log x

}
> 0,

where 0 < K̃ < 1, there exists c̃3, such that

sup
0<x<e−2

|F n(αnx
βn)− Φ1(x)|

≥ sup
0<x<e−2

K̃

∣∣∣∣exp(−1

x
)β2

n

1

x
(1 +

1

2
log x) log x

∣∣∣∣
=

c̃3
log n

.

(2) In order to obtain the upper bound for x > 0, we need to prove

(a). sup
1≤x<∞

|F n(αnx
βn)− Φ1(x)| < d1β

2
n, (4.5)

(b). sup
cn≤x<1

|F n(αnx
βn)− Φ1(x)| < d2β

2
n, (4.6)

(c). sup
0<x<cn

|F n(αnx
βn)− Φ1(x)| < d3β

2
n, (4.7)
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for n > n0, where di > 0, i = 1, 2, 3 are absolute constants and

cn =
1

2 log logαn

is positive for n > n0. By (2.10) and (2.11), we have

0.4(2 log n)1/2 < logαn < (2 log n)1/2

and
1

(2 log n)1/2
< βn <

5

23/2(log n)1/2

for n > n0.

(i)Firstly, consider the case of x ≥ cn. Set

Rn(x) = −[n logF (αnx
βn) + nΨn(x)], Bn(x) = exp(−Rn), An(x) = exp(−nΨn(x) +

1

x
),

where Ψn(x) = 1− F (αnx
βn) and An(x) → 1, as x → ∞. Since

Ψn(x) ≤ Ψn(cn) <
1√
2π

(log(αnc
βn
n ))−1 exp

(
−(log(αnc

βn
n ))2

2

)
=

1

n
(1 + β2

n log cn)
−1 exp

(
− log cn −

β2
n log

2 cn
2

)
<

1

n
(1 + β2

n log cn)
−1 exp (− log cn)

=
1

n
(1 + β2

n log cn)
−1c−1n

=

(
1− log(2 log logαn)

(logαn)2

)−1
2 log logαn

n

< c̃4 < 1

for n > n0.

So,
inf
x>cn

(1−Ψn(x)) > 1− c̃4 > 0.

Since

−x− x2

2(1− x)
< log(1− x) < −x,
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for 0 < x < 1, we obtain

0 < Rn(x) ≤
nΨ2

n(x)

2(1−Ψn(x))
<

nΨ2
n(cn)

2(1−Ψn(x))

<
n−1(1 + β2

n log cn)
−2c−2n

2(1−Ψn(x))

<
n−1(1 + β2

n log cn)
−2c−2n (logαn)

2

2(1− c̃4)β−2n

=
2√

2π(1− c̃4)

(
1− log(2 log logαn)

(logαn)2

)−2
(log logαn)

2 logαn

exp
(

(logαn)2

2

) β2
n

< c̃5β
2
n

for n > n0.

Hence, we have
n−1β−2n (1 + β2

n log cn)
−2c−2n < c̃6

for n > n0. Thus,

|Bn(x)− 1| = | exp(−Rn)− 1| < Rn < c̃5β
2
n, (4.8)

for n > n0.

By (4.8), we have

|F n(αnx
βn)− Φ1(x)|

≤ Φ1(x)Bn(x)|An(x)− 1|+ |Bn(x)− 1|
< Φ1(x)|An(x)− 1|+ c̃5β

2
n (4.9)

for x ≥ cn.

We now prove (4.5). By (2.10), (2.11) and the definition of An(x), we have

A′n(x) =

(
exp(−nΨn(x) +

1

x
)

)
(−nΨn(x) +

1

x
)′

= An(x)

(
nF ′(αnx

βn)− 1

x2

)
= An(x)

(√
2π(logαn)

(
exp(

(logαn)
2

2
)

)
1√
2π

1

αnxβn

(
exp(−(log(αnx

βn))2

2
)

)
− 1

x2

)
= An(x)

(
1

x1+βn

logαn

αn

exp

(
−1

2
β2
n log

2 x

)
− 1

x2

)
< 0

for x > 1. Since

0 < nγ(αn) < (logαn)
−2 = β2

n,
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exp(nγ(αn)) < exp(β2
n) < exp

(
25

8 log n

)
< exp

(
25

8 log n0

)
, for n > n0,

ex − 1 ≤ xex, for 0 ≤ x ≤ 1,

and (2.6), (2.10), we have

sup
x≥1

|An(x)− 1| = |An(1)− 1|

= | exp(nγ(αn))− 1|
≤ nγ(αn) exp(nγ(αn))

≤ c̃7β
2
n (4.10)

for n > n0.

Combine (4.9) with (4.10), we have

sup
x≥1

|F n(αnx
βn)− Φ1(x)|

< (c̃5 + c̃7)β
2
n.

(ii)Secondly, consider the situation of cn ≤ x < 1. By Lemma 2.1, we obtain

−nΨn(x) +
1

x
= −n(1− F (αnx

βn)) +
1

x

= −n

(
1√
2π

(log(αnx
βn))−1 exp

(
−(log(αnx

βn))2

2

)
− γ(αnx

βn)

)
+

1

x

= −n

(
1√
2π

(log(αnx
βn))−1 exp

(
−(log(αnx

βn))2

2

)

− 1√
2π

(log(αnx
βn))−3qn(αnx

βn) exp

(
−(log(αnx

βn))2

2

))
+

1

x

=
1

x
(1 + β2

n log x)
−1(−

(
1− (logαn)

−2qn(αnx
βn)(1 + β2

n log x)
−2)

× exp

(
−1

2
β2
n log

2 x

)
+ 1 + β2

n log x)

=
1

x
(1 + β2

n log x)
−1Qn(x),

where 0 < qn(x) < 1 and

Qn(x) = −
(
1− (logαn)

−2qn(αnx
βn)(1 + β2

n log x)
−2) exp(−1

2
β2
n log

2 x

)
+ 1 + β2

n log x

= −
(
1− β2

nqn(αnx
βn)(1 + β2

n log x)
−2) exp(−1

2
β2
n log

2 x

)
+ 1 + β2

n log x.

Since
e−x > 1− x, x > 0,

12



we have

Qn(x) < −(1− β2
nqn(αnx

βn)(1 + β2
n log x)

−2)(1− 1

2
β2
n log

2 x) + 1 + β2
n log x

= −1 + β2
nqn(αnx

βn)(1 + β2
n log x)

−2 +
1

2
β2
n log

2 x− 1

2
β4
nqn(αnx

βn)(1 + β2
n log x)

−2 log2 x

+ 1 + β2
n log x

< β2
n(1 + β2

n log x)
−2 +

1

2
β2
n log

2 x

= β2
n((1 + β2

n log x)
−2 +

1

2
log2 x).

But

Qn(x) = −(1− β2
nqn(αnx

βn)(1 + β2
n log x)

−2) exp

(
−1

2
β2
n log

2 x

)
+ 1 + β2

n log x

> −(1− β2
nqn(αnx

βn)(1 + β2
n log x)

−2) + 1 + β2
n log x

= β2
nqn(αnx

βn)(1 + β2
n log x)

−2 + β2
n log x

> β2
n log x.

Hence, we obtain

|Qn(x)| < β2
n((1 + β2

n log x)
−2 +

1

2
log2 x+ | log x|)

< β2
n((1 + β2

n log cn)
−2 +

1

2
log2 x+ | log x|)

= β2
n

((
1− log(2 log logαn)

log2 αn

)−2
+

1

2
log2 x+ | log x|

)
< β2

n(c̃8 +
1

2
log2 x+ | log x|)

for n ≥ n0, where cn ≤ x < 1. Therefore,

| − nΨn(x) +
1

x
| < β2

n(c̃8 +
1

2
log2 x+ | log x|)x−1(1 + β2

n log x)
−1

< β2
n(c̃8 +

1

2
log2 cn + | log cn|)c−1n (1 + β2

n log cn)
−1

< c̃9

for n ≥ n0. Thus, there exists 0 < θ < 1 such that

Φ1(x)|An(x)− 1| = Φ1(x)| exp(−nΨn(x) +
1

x
)− 1|

< Φ1(x) exp(θ(−nΨn(x) +
1

x
))| − nΨn(x) +

1

x
|

< exp(c̃9)β
2
n sup
cn≤x<1

|(c̃8 +
1

2
log2 x+ | log x|)x−1|(1 + β2

n log cn)
−1

< c̃10β
2
n. (4.11)
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By (4.9) and (4.11), the proof of (4.6) is completed.

(iii) Thirdly ,consider the circumstance of 0 < x < cn. Note

Φ1(x) < Φ1(cn) = β2
n,

we have

sup
0<x<cn

|F n(αnx
βn)− Φ1(x)|

=F n(αnc
βn
n ) + Φ1(cn)

=F n(αnc
βn
n )− Φ1(cn) + 2Φ1(cn)

= sup
cn<x<1

|F n(αnx
βn)− Φ1(x)|+ 2Φ1(cn)

<(c̃5 + c̃10)β
2
n + β2

n

<c̃11β
2
n.

The proof of Theorem 3.1 is finished.
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