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Abstract 

It is possible to derive a model from a set of well selected first principles. After a series of extensions 

of this foundation the model shows many similarities with what we know from observing reality. 

The first principles formulate a skeleton relational structure that is mathematically known as an 

orthocomplemented weakly modular lattice. It can be considered as part of a recipe for modular 

construction. When starting from this foundation it is mathematically inescapable evident that this 

model confines to a quaternionic space-progression model that proceeds with model-wide 

progression steps through an ordered sequence of sub-models that each represent a static status 

quo of the whole model.  

This base model is a hybrid construct that consists of a sub model that treats all discrete objects and 

a continuum based sub model that embeds the discrete objects. The discrete part of the model 

keeps its data in an infinite dimensional separable Hilbert space. The continuum part stores its data 

in a corresponding non-separable Hilbert space. 

An extra mechanism that controls the coherence and the scheduling of dynamics applies the 

recurrent embedding of the discrete objects into appropriate continuums. 

Despite the fact that the target of the model is planned to reach a level in which it shows many 

features and phenomena that we know from observing reality, this model is not claimed to be a 

model of physics. The reason for this restriction is that many of its aspects cannot be observed and 

will never become observable. Physicists tend to deny completely or largely deduced models. 

 

 

 

If the model introduces new science, then it has fulfilled its purpose. 
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1 Introduction 
Reality is that what physicists try to model in their theories. 

The original target of the mathematical model of reality is far reaching. That target is to reach a level 

in which the model shows many features and phenomena that we also know from observing reality. 

The current result of that approach is rather modest.  

Due to the fact that the model starts at a foundation that not even shows fundamental concepts 

such as progression and a spatial geometry, it covers merely what is generally considered as the 

lowest levels of the model of reality.  

The model covers elementary particles, photons, gluons and the origins of physical fields, but it does 

not (yet) cover nucleons and higher order composites. Still it lays the base on which such composites 

can be comprehended.  

The current model uncovers many of the white spots that were left by physicists that only want to 

consider observable and thus experimentally testable facts.  

The current state of the model already proves that alternatives exist for the approaches that are 

implemented in the contemporary models of physics. 

The model shows that the physicists that developed the contemporary models of physics made some 

choices that were not very lucky choices and that made physics more complicated than necessary. 

2 Generating the model 

2.1 First principles 
The ~25 axioms that define an orthocomplemented weakly modular lattice1 form the first principles 

on which the whole model will be built. Another name for this lattice is orthomodular lattice. 

Quantum logic has this lattice structure. Classical logic has a slightly different lattice structure. It is an 

orthocomplemented modular lattice. For our purpose it is better to interpret the elements of the 

orthomodular lattice as construction elements rather than as propositions. Only trustworthy, mostly 

mathematical methods will be used to extend this model until a level is reached in which it shows 

many features and phenomena that we recognize from observing reality. 

Space and progression emerge from the selected foundation. The first principles only deliver a static 

foundation. Via a trick we convert this static model in an ordered sequence that implements 

stepwise dynamics. As a consequence, the dynamic model uses a paginated space progression model 

that emerges from a skeleton relational structure. Paginated means that the model steps with model 

wide progression steps. 

2.2 The next level 
The set of closed subspaces of an infinite dimensional separable Hilbert space also forms an 

orthomodular lattice. The Hilbert space adds extra functionality to this orthomodular lattice. This 

extra functionality concerns the superposition principle and the possibility to store data in 

eigenspaces of normal operators. In the form of Hilbert vectors the Hilbert space features a finer 

structure than the orthomodular lattice has. 

                                                           
1 See the appendix. This lattice is described in detail in a separate paper. 
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The Hilbert space can only handle members of a division ring for specifying superposition 

coefficients, for the eigenvalues of its operators and for the values of its inner products. Only three 

suitable division rings exist: the real numbers, the complex numbers and the quaternions. 

Quaternions enable the storage of 1+3D data that have an Euclidean geometric structure. 

Thus, selecting a skeleton relational structure that is an orthomodular lattice as the foundation of the 

model already puts significant restrictions to the model. On the other hand, as will be shown, this 

choice promotes modular construction. In this way it eases system configuration and the choice 

significantly reduces the relational complexity of the final model. 

2.3 Impersonation 
Accepting the first principles as foundation of a model of reality means that reality is characterized by 

these first principles. The fact that an infinite dimensional separable Hilbert space follows directly 

from this foundation means that reality impersonates an infinite dimensional separable Hilbert 

space. Reality does not own a separable Hilbert space. Instead it implements all properties and 

capabilities of a separable Hilbert space. With other words reality is a kind of separable Hilbert space. 

The skeleton relational structure and the separable Hilbert space are the first curbs of a chain of 

mathematical structures that in this way are impersonated by reality. How else can you explain that 

mathematics fits so well in explaining features and phenomena that can be observed. 

2.4 Adding dynamics 
The primitive model that is reached after this first extension step does not provide any means to 

control dynamics and it does not support the representation of continuums.  

Dynamics can be added by using an ordered sequence of the models that can represent a static 

status quo. This choice makes the model paginated. As a consequence the model proceeds with 

model-wide progression steps. In this way, all discrete objects in the model can be considered to be 

regenerated. That does not need to be done in the smallest model wide steps. It can be done in 

progression cycles that depend on the type of the discrete object. 

With this decision, an extra mechanism must be added that ensures sufficient coherence between 

subsequent elements of the sequence. In order to reach sufficient coherence the next sequence 

member must not differ much from the considered member. With other words, the coherence must 

not be too stiff, otherwise no dynamics occurs. On the other hand it must be sufficient restrictive, 

otherwise the result is dynamical chaos. 

Due to potential difference in generation time, conflicts during the generation of composites can 

occur. Thus, the mechanism that ensures dynamic al coherence must also schedule the composite 

configuration subtasks. As a consequence, this mechanism shares many aspects with a real time 

operating system. This RTOS schedules subtasks and it ensures that these subs-tasks occur in sync. 

2.5 Adding continuums 
Every infinite dimensional separable Hilbert space owns a Gelfand triple2. Continuums can be 

supported by adding the Gelfand triple to the Hilbert space. The Gelfand triple can be used to check 

the coherence. This is done by embedding the subsequent Hilbert spaces into a common Gelfand 

triple. As a consequence progression steps along the Hilbert spaces and it flows inside the common 

Gelfand triple. This allows the embedding process to control both the dynamic as well as the spatial 

coherence.  

                                                           
2 The name Gelfand triple indicates a non-separable (rigged) Hilbert space.  
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The embedding process already puts many restrictions that at least partly ensure the dynamical 

coherence. 

The embedding of discrete objects in their surrounding continuums appears to be a very delicate 

process. It is not yet fully supported by dedicated mathematical theory. 
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3 Modular construction 
Thus, if the orthomodular lattice is considered as the foundation of the model, then the separable 

Hilbert space is the next level of extension of the model. The foundation can be considered as part of 

a recipe for modular construction. Closed subspaces of an infinite dimensional separable quaternionic 

Hilbert space represent the modules. What is missing are the binding mechanism and a way to hide 

part of the relations that exist inside the modules from the outside of the modules. These ingredients 

are delivered by the superposition principle and by the embedding mechanism. 

The modular construction recipe is certainly the most influential rule that exists in the generation 

of reality. Even without intelligent design it achieved the construction of intelligent species. 

4 Exploiting the model 

4.1 Conformance to the foundation 
We can now reformulate the foundation as follows: 

 At every used progression instant, each discrete construct in this model is supposed to 

expose the skeleton relational structure that is defined as an orthomodular lattice. 

 At each used progression instant, every discrete construct in this model can be represented 

by a closed subspace of a single infinite dimensional separable quaternionic Hilbert space. 

This does not mean that every closed subspace represents a discrete object. It also does not mean 

that a unique “ top-subspace” exists that contains all closed subspaces, which represent discrete 

objects of the model. On the other hand this means that a collection of system subspaces exists that 

are the disjunction of closed subspaces, which represent discrete objects and that themselves are 

not contained in another closed subspace that represents a discrete object. Each of these composites 

represents a modular system. 

4.2 Embedding of discrete objects 
The closed subspace that represents a discrete object can be spanned by eigenvectors of a location 

operator, but this does not mean that these eigenvalues must form a coherent set. However, if they 

form a coherent set, then the collection of eigenvalues might characterize the discrete object. This 

set of locations is characterized by its size, its statistical characteristics and by its discrete symmetry 

set.  

Not all Hilbert space vectors that span a Hilbert subspace will be re-embedded into the Gelfand triple 

at every progression step. For atomic Hilbert subspaces3 at the utmost one eigenvector of the 

location operator is embedded at each progression step. Spanning the subspace with these 

eigenvectors takes a series of discrete embedding occurrences. During a regeneration cycle4 of the 

corresponding discrete object that eigenvector is used only once. The embedding lasts no more than 

that progression step. The next embedding of the atomic object concerns a different eigenvector and 

a different eigenvalue. 

Thus, per discrete embedding the embedding itself only lasts a very small instance. It is quickly 

replaced by another embedding occurrence. What stays are the consequences of these very short 

embedding occurrences. These consequences will only appear in the embedding continuum. 

                                                           
3 An atomic Hilbert subspace represents an atom of the orthomodular lattice. 
4 See next section 
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However, the eigenvalue of the embedded eigenvector stays stored in the Hilbert space. During the 

regeneration cycle these eigenvalues form a swarm or some other geometrical configuration. 

The fact that the embedding itself only takes a single progression step, does not mean that at every 

progression step the discrete object is re-embedded. Zero or more progression steps may separate 

the embedding occurrences. The embedding occurrences may, but must not be evenly distributed 

over the complete regeneration cycle. 

Due to the transfer of the embedding locations into the continuum, the statistical characteristics of 

the set of original eigenvalues lose their sense and are replaced by integral characteristics of the 

representing continuum. However, the discrete symmetry characteristics are preserved. In fact the 

discrete symmetries of the embedded object can become mixed with the symmetry set of the 

embedding continuum and this mixture appears to be a requirement for becoming a discernable 

discrete object. 

4.3 Modularization, dimension and duration 
Filling a subspace with eigenvectors of a suitable location operator takes a number of embedding 

occurrences. That number equals the dimension of the subspace. Such subspaces represent 

construction modules. If subspaces must be combined in higher level modules, then the generation 

periods must be synchronized. With other words, the components of a modular system all are 

synchronized on some basic generation cycle and all these cycles are synchronized. 

If the subspaces that participate in the generation of a composite differ in dimension then there must 

exist a common cycle period in which all participating subspaces are filled. The filling of a subspace 

with appropriate eigenvectors is a stepwise action. The eigenvalues are generated one by one and at 

every progression instant only one eigenvalue is the current value that characterizes the owner of 

the subspace.  

Thus, not only categories of subspaces exist that belong to different subspace dimensions. Also 

several cycle periods might exist5. Atomic discrete objects exist in classes that all have the same 

generation cycle. Only class types that own generation cycles that are compatible in period as well in 

synchronization can join in a composite and only compatible composites can join in a modular 

system. 

Duration is measured in basic progression steps. However, the fill duration need not equal the 

dimension of the subspace. It is also not required that the embedding occurrences are evenly 

distributed over the duration. 

Thus, duration takes a significant and at the same time complicated role in this model. During this 

period the dynamics of the considered point-like object are mapped into a spatial structure that 

takes the form of a location swarm or some other geometric configuration. The set of locations also 

corresponds to a set of hops that connect the subsequent locations. Thus, the hops form a micro-

path. These hops also correspond to eigenvalues and the corresponding eigenvectors might be 

shared by the location operator and the displacement operator. The locations and the hops form 

                                                           
5 In contemporary physics elementary particles types exist that have different rest masses and 

elementary particle types exist in different generations. Later it will be shown that rest mass relates 

to subspace dimension 
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duals. The hop operator forms a dual with the location operator. The shared eigenvectors span a 

single subspace that represents the owner of the swarm. 

Together the locations and hops that are contained in the swarm can be described by a quaternionic 

distribution of hops, in which the locations act as discrete parameter values. The coherence of the 

swarm makes it possible to describe this discrete function as a quaternionic function. The real part of 

this function describes the continuous location density distribution. The imaginary part describes the 

corresponding displacement density distribution. The symmetry properties of this function will 

correspond to the symmetry properties of the coherent swarm. 

Thus the discrete part of the model is regenerated in several different ways. Each of these ways 

corresponds to a modular system wide clock and quite probably these clocks are in sync with the 

highest frequency clock, but mutually they may differ in their frequency. 

4.4 Speed of information transfer 
The spatial map of the dynamic behavior of the discrete object is restricted by the current value of 

the speed of information transfer. Thus a change of the size of the basic progression step translates 

via this speed into a proportional isotropic change of the spatial map. 

4.5 Categories of subspaces 
It is clear that not all closed subspaces figure as discrete objects in the model. Only subspaces that 

are spanned by eigenvectors of the selected location operator will do that. Inside a modular system, 

the durations and the synchronization of the fill of subspaces must fit. 

The geometrical structures that are contained in the eigenvalues and represent the discrete objects 

will reflect these restrictions. In fact they represent the fine grain behavior of the discrete object 

rather than its spatial structure. 

4.6 Embedding the most elementary objects 
For simplicity we suspect that all model wide clocks and modular system wide clocks operate in sync 

with the highest frequency clock. The clock with the highest frequency controls progression. Not all 

steps of this clock need to be used by some action.  

Embedding may occur at the pace of this highest frequency clock, but not all ticks must correspond 

to an actual embedding. Only in this way the generation of objects belonging to subspaces with 

different dimensions can be synchronized, such that they can be combined into composites. 

This means that the discrete objects can be considered to be prepared in advance of their usage in 

the modular construction process6.  

The embedding of a discrete object lasts very short and is quickly replaced by a subsequent 

embedding at a slightly different location. Only the consequences of the embedding last and will 

appear in the embedding continuum. However, the fact that the embedding took place is registered 

in the separable Hilbert space. Its location is represented by an eigenvector of a location operator 

and by the corresponding eigenvalue. 

The embedding process gives every elementary building block an actual location in the embedding 

continuum. At a later progression step that location will differ. At each actively used progression step 

the elementary building block will hop to the next location. For most discrete objects the next 

                                                           
6 This is just a view. It is possible that the embedding is an ongoing process. 
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location is not known in advance. In that case it is supposed to be determined by a stochastic 

process. 

At each used progression interval, every discrete building block in this model owns an exact hopping 

value and an exact location that together form a dual. Both members of the dual share the same real 

part, which stores the progression value of the landing instant.  

The embedded locations may form a swarm, but also other elementary objects exist that have an 

exact location at a series of progression steps. Also these objects hop from the current location to 

the next location. Such objects form another kind of geometrical construct.  

4.7 Sets 

4.7.1 Duals  
In all cases, the location and the hop form a dual. A hop connects two locations. In the dual, one of 

these two locations, here we select the landing position, is connected to the hop. The duals form the 

most elementary objects in the model. On themselves they do not have any other characteristic than 

their quaternionic value. Only as sets these duals become extra significance. Extra data are obtained 

from the statistics of the set or from the symmetry properties of the set. The hops form a path and 

this path adds its own characteristics. 

Duals can also appear as spurious objects. 

4.7.2 Forms 
The set can have one of four forms: 

 A coherent swarm 

 A closed path string 

 An open path string 

 Spurious duals 

The swarms contain a folded hopping path string. 

Later we will encounter single quaternions that act as rotators. They act on every element of a 

swarm. 

4.7.3 Swarms 
The swarm differs from the other forms in the fact that swarms can be characterized by a density 

distribution. The swarm is a coherent set. It represents the spatial map of the fine grain behavior of 

the discrete object during a given cycle period.  

Two interpretations are possible: 

 The swarm is generated by an ongoing stochastic process. After a while the statistic 

characteristics of the swarm stabilize. 

 The swarm is prepared in advance. Its elements are used one by one. The currently active 

element is obtained by random selection from the set of not yet used elements. When all 

elements are used, then the swarm is regenerated. 

Here we take the second interpretation. We do this because it is easier to understand and to handle. 

Both interpretations mean that the swarm is generated by a cyclic stochastic process. The swarm 

contains a huge number of elements.  
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These measures are part of the task of the mechanism that must ensure sufficient coherence 

between the elements of the sequence of static sub-models that together form the dynamic model.  

The swarm includes a closed path. That path is strongly folded. We suppose that the statistics of the 

planned swarm are stable. Under the mentioned conditions, the swarm is at rest. It means that the 

sum of all hops equals zero. In this condition the swarm has a fixed number of elements. 

The swarm translates the fine grain dynamics of its owner into a spatial structure. In this way 

dynamical coherence translates into spatial coherence.  

With respect to the swarm, three levels of coherence exist. 

1. The first level is always present in the representation of the discrete object. In this level all 

elements of a swarm must belong to a quaternionic number system that has a given 

symmetry flavor. Due to the four dimensions of quaternions, quaternionic number systems 

exist in sixteen versions (symmetry flavors) that only differ in their discrete symmetry set. 

 This condition is used by nature in order to create the diversity of elementary 

particles 

2. The second level concerns the extra restriction that the swarm of discrete locations can be 

described by a normalized continuous location density distribution7. 

 This condition leads to the existence of the wave function. 

 The normalized continuous location density distribution corresponds to the squared 

modulus of the wave function that characterizes elementary particles in 

contemporary physics. 

3. The third level concerns the additional restriction that this continuous location density 

function has a Fourier transform. If this condition is fulfilled, then the swarms owns a 

displacement generator and this means that at first approximation the swarm moves as one 

unit. 

 In addition, this condition is used by nature in order to let elementary particles 

behave like wave-like objects. They are not waves. They are not even wave packages, 

but they can form detection patterns that look wave-like. 

4.8 Moving the swarm 
Adding extra duals to the swarm causes a movement of the extended set. This may result in the fact 

that the sum of all hops is no longer closed. As a consequence the swarm moves. 

Adding particular sets of hops may cause an oscillation of the swarm. This occurs in typical oscillation 

modes. These extra sets form cycles. They are closed path objects. Adding or retrieving such sets 

must be done in sync with the swarm regeneration process. The sets that leave the oscillating swarm 

are open path strings. Such open path strings can also enter the free swarm or an already oscillating 

swarm. The oscillations keep the swarm on average at the same location. 

Adding a more arbitrary set of duals or an open path string that does not fit for establishing an 

oscillation, will cause a translation of the possibly oscillating swarm. An entering string can be broken 

into one or more fitting open path strings and a translation set. The translation set increases the 

kinetic energy of the composite. 

                                                           
7 The normalized continuous location density distribution corresponds to the squared modulus 

of the wave function that characterizes elementary particles in contemporary physics. 
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4.8.1 Synchronization 
However, adding duals to the swarm itself will disturb the regeneration synchronization of higher 

order constructs. The generation of the swarm represents a cycle period that is used in the 

construction of composites. The composites are generated by parallel process that all act within the 

same cycle period. So all constituents of the composite must be extended in the same sense. 

Thus the addition of series of duals that cause movement of the swarm occurs in well synchronized 

parallel processes and the possibly the action of the members of the series are spread over the cycle 

period. This gives these extra duals a different character than the duals that form the swarm that was 

at rest. The extra duals act on the full swarm and can be considered as incremental displacement 

generators in configuration space. They can be seen as superposition coefficients in Fourier 

(=momentum) space. 

In order to explain this a mathematical intermezzo is inserted. 
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5 Mathematical intermezzo 
The equations in this intermezzo are based on application in a flat continuum. In practice this only 

holds under special conditions. In general the embedding continuum is curved. Later we treat the 

influence of curvature. 

5.1 Functions as Hilbert space operators 
Paul Dirac introduced the bra-ket notation that eases the formulation of Hilbert space habits. By 

using bra-ket notation, operators that reside in the Hilbert space and correspond to continuous 

functions, can easily be defined starting from an orthogonal base of vectors.  

Let {𝑞𝑖} be the set of rational quaternions and {|𝑞𝑖〉} be the set of corresponding base vectors. 

|𝑞𝑖〉𝑞𝑖〈𝑞𝑖| is the configuration parameter space operator.  

 

Let 𝑓(𝑞) be a quaternionic function. 

|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖| defines a new operator that is based on function 𝑓(𝑞). 

 

In a non-separable Hilbert space, such as the Gelfand triple, the continuous function 𝑓(𝑞) can be 

defined between a continuum eigenspace that acts as target space and the eigenspace of the 

reference operator |𝑞〉𝑞〈𝑞| that acts as parameter space. |𝑞〉𝑓(𝑞)〈𝑞| defines a curved continuum. 

In the Gelfand triple in general the dimension of a subspace loses its significance. Thus a function 

that is derived from the representation of a coherent swarm in Hilbert space has a dimension in 

Hilbert space, but loses that characteristic in its continuous representation in the Gelfand triple. 

The continuums that appear as eigenspaces in the Gelfand triple can be considered as quaternionic 

functions that also have a representation in the corresponding infinite dimensional separable Hilbert 

space. 

5.2 Quaternion geometry and arithmetic 

Quaternions and quaternionic functions offer the advantage of a very compact notation of items that 

belong together. 

Quaternions can be considered as the combination of a real scalar and a 3D vector that has real 

coefficients. This vector forms the imaginary part of the quaternion. Quaternionic number systems 

are division rings. Other division rings are real numbers and complex numbers. Octonions do not 

form a division ring. In many cases complex numbers can be considered to be embedded in the 

number system of the quaternions. Quaternions feature a far richer symmetry than complex 

numbers. 

 

Bi-quaternions exist whose parts exist of a complex scalar and a 3D vector that has complex 

coefficients. Bi-quaternions do not form division rings. This model does not use them. 

5.2.1 Notation 

We indicate the real part of quaternion 𝑎 by the suffix 𝑎0. 
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We indicate the imaginary part of quaternion 𝑎 by bold face 𝒂. 

 

𝑎 = 𝑎0 + 𝒂 

5.2.2 Conjugation 

 

𝑎∗ = 𝑎0 − 𝒂 

5.2.3 Sum 

 

𝑐 = 𝑐0 + 𝒄 = 𝑎 + 𝑏 

 

𝑐0 = 𝑎0 + 𝑏0 

 

𝒄 = 𝒂 + 𝒃 

5.2.4 Product 

𝑓 = 𝑓0 + 𝒇 = 𝑑 𝑒 

 

𝑓0 = 𝑑0𝑒0 − ⟨𝒅, 𝒆⟩ 

 

𝒇 = 𝑑0𝒆 + 𝑒0𝒅 ± 𝒅 × 𝒆 

 

The ± sign indicates the influence of right or left handedness of the number system8.  

 

⟨𝒅, 𝒆⟩ is the inner product of 𝒅 and 𝒆. 

𝒅 × 𝒆 is the outer product of 𝒅 and 𝒆. 

5.2.5 Norm 

|𝑎| = √𝑎0𝑎0 + 〈𝒂, 𝒂〉 

5.2.6 Rotation 

Quaternions are often used to represent rotations. 

 

                                                           
8 Due to the four dimensional structure of quaternions, quaternionic number systems exist in 

16 symmetry flavors. Within a coherent set all elements belong to the same symmetry flavor. 

(1) 

(1) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 
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𝑐 = 𝑎𝑏/𝑎 

 

rotates the imaginary part of 𝑏 that is perpendicular to the imaginary part of 𝑎 over an angle 2𝜃, 

where 𝑎 =  𝑒𝑥𝑝(2𝜋𝒊𝜃) 9. 

 

  

                                                           
9 See Q-FORMULÆ 

(1) 

http://vixra.org/abs/1210.0111
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5.3 Quaternionic functions 

5.3.1 Norm 
Square-integrable functions are normalizable. The norm is defined by: 

 

‖𝜓‖2 = ∫ |𝜓|2 𝑑𝑉
𝑉

 

= ∫ {|𝜓0|2 + |𝝍|2 }𝑑𝑉
𝑉

 

 

= ‖𝜓0‖2 + ‖𝝍‖2 

 

5.3.2 Differentiation 
If 𝑔 is differentiable then the quaternionic nabla 𝛻𝑔 of 𝑔 exists. 

The quaternionic nabla 𝛻 is a shorthand for 𝛻0 + 𝜵 

 

𝛻0 =
𝜕

𝜕𝜏
 

 

𝛁 = {
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
} 

 

ℎ = ℎ0 + 𝒉 = ∇𝑔 

 

ℎ0 = ∇0𝑔0 − ⟨𝛁, 𝒈⟩ 

 

𝒉 = ∇0𝒈 + 𝛁𝑔0 ± 𝛁 × 𝒈 

 

𝜙 = 𝛻𝜓 ⇒ 𝜙∗ = (𝛻𝜓)∗ 

 

(𝛻𝜓)∗ = ∇0𝜓0 − ⟨𝛁, 𝝍⟩ − ∇0𝝍 − 𝛁𝜓0 ∓ 𝛁 × 𝝍 

 

𝛻∗𝜓∗ =  ∇0𝜓0 − ⟨𝛁, 𝝍⟩ − ∇0𝝍 − 𝛁𝜓0 ± 𝛁 × 𝝍 

 

(1) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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Similarity of these equations with Maxwell equations is not accidental10. In Maxwell equations several 

terms in the above equations have been given special names and special symbols. Similar equations 

occur in other branches of physics. Apart from these differential equations also integral equations 

exist. 

5.3.3 Gauge transformation 
For a function 𝜒 that obeys the quaternionic wave equation11 

 

∇∗∇χ = ∇0∇0𝜒 + ⟨𝛁, 𝛁𝜒⟩ = 0 

 

the value of 𝜙 in 

 

𝜙 = 𝛻𝜓 

 

does not change after the gauge transformation12 

 

𝜓 → 𝜓 + ξ =  𝜓 + ∇∗𝜒 

 

𝛻𝜉 = 0 

 

 𝜒 = 𝜒0 + 𝝌 

 

Thus in general: 

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁𝜓⟩ = 𝜌 ≠ 0 

 

𝜌 is a quaternionic distribution. 

Its real part 𝜌0 represents an object density distribution. 

                                                           
10 See section: Difference with Maxwell-like equations  
11 Be aware, this is the quaternionic wave equation. This is not the common form of the wave 

equation, which is complex number based. 

12The qualification gauge transformation is usually given to a transformation that leaves the Laplacian 
untouched. Here we use that qualification for transformations that leave the quaternionic 

differential untouched. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6 
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Its imaginary part 𝝆 = 𝒗 𝜌0 represents a current density distribution. 

Equation (1) forms the basis of the generalized (quaternionic) Huygens principle13.  

 

∇∗∇𝜒0 = 0 

Equation (7) has 3D isotropic wave fronts as its solution. 𝜒0 is a scalar function. By changing to polar 

coordinates it can be deduced that a general solution is given by: 

 

𝜒0(𝑟, 𝜏) =
𝑓0(𝒊𝑟 − 𝑐𝜏)

𝑟
 

 

Where 𝑐 = ±1 and 𝒊 represents a base vector in radial direction. In fact the parameter 𝒊𝑟 − 𝑐𝜏 of 𝑓0 

can be considered as a complex number valued function. 

 

∇∗∇𝝌 = 0 

 

Here 𝝌 is a vector function. 

Equation (9) has one dimensional wave fronts as solutions: 

 

𝝌(𝑧, 𝜏) = 𝒇(𝒊𝑧 − 𝑐𝜏) 

 

Again the parameter 𝒊𝑧 − 𝑐𝜏 of 𝒇 can be interpreted as a complex number based function. 

The imaginary 𝒊 represents the base vector in the 𝑥, 𝑦 plane. Its orientation 𝜃 may be a function of 𝑧. 

That orientation determines the polarization of the wave front. 

 

∂

∂𝜏
𝒇 = 𝑐𝒇′ 

∂2𝒇

∂𝜏2
= 𝑐

∂

∂𝜏
𝒇′ = 𝑐2𝒇′′ 

∂𝒇

∂𝑧
= 𝒊𝒇′ 

∂2𝒇

∂𝑧2
= 𝒊

∂

∂𝑧
𝒇′ = −𝒇′′ 

                                                           
13 The papers on Huygens principle use the complex number based wave equation, which 

differs from the quaternionic wave equation. 

(7) 

(8) 

(9) 

(10) 

(11) 
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∂2𝒇

∂𝜏2
+

∂2𝒇

∂𝑧2
= (𝑐2 − 1)𝒇′′ 

 

If 𝑐 = ±1, then 𝒇 is a solution of the quaternionic wave equation. 

 

5.3.4 Displacement generator 
The definition of the differential is 

 

Φ = 𝛻𝜓  

 

In Fourier space the nabla becomes a displacement generator.  

 

Φ̃ = ℳ�̃� 

 

ℳ is the displacement generator 

A small displacement in configuration space becomes a multiplier in Fourier space. 

In a paginated space-progression model the displacements are small and the displacement 

generators work incremental. The multipliers act as superposition coefficients. 

5.3.5 The coupling equation 
The coupling equation follows from peculiar properties of the differential equation. We start with 

two normalized functions 𝜓 and 𝜑 and a normalizable function Φ = 𝑚 𝜑.  

 

‖𝜓‖ = ‖𝜑‖ = 1 

 

These normalized functions are supposed to be related by: 

 

Φ = 𝛻𝜓 = 𝑚 𝜑 

 

Φ = 𝛻𝜓 defines the differential equation. 

 

𝛻𝜓 = Φ formulates a continuity equation. 

 

𝛻𝜓 = 𝑚 𝜑 formulates the coupling equation.  

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 
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It couples 𝜓 to 𝜑. 𝑚 is the coupling factor. 

 

𝛻𝜓 = 𝑚1 𝜑 

 

𝛻∗𝜑 = 𝑚2 𝜁 

 

∇∗𝛻𝜓 = 𝑚1 ∇∗𝜑 = 𝑚1𝑚2𝜁 = 𝜌 

 

Each double differentiable quaternionic function corresponds to a normalized density 

distribution. 

5.3.5.1 In Fourier space 

The Fourier transform of the coupling equation is: 

 

ℳ�̃� = 𝑚�̃� 

 

ℳ is the displacement generator 

(6) 

(7) 

(8) 

(1) 
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6 What happens to the continuum? 

6.1 Description of embedding 
An almost continuous quaternionic function describes the continuum in which a dual is 

embedded. The place where the dual is embedded is a target value of this function and is related 

to the parameter value of this position. The embedding of duals is almost instantaneously and is 

immediately released. However, the result of the embedding survives. The embedding of a dual 

concerns two quaternionic data. The first relates to the jump from the previous location to the 

new location. The second relates to the new location. Both data are stored in eigenvalues and the 

corresponding eigenvectors of matching operators. As a result of the embedding, wave fronts are 

transmitted from the new location. These wave fronts keep running and thereby form the traces 

of the embedding event in the continuum. Embedding of a hop causes the emission of a 1D wave 

front in the direction of the hop. Embedding of a location causes the emission of a 3D wave front. 

6.2 Embedding 
The embedding process of a single dual in a continuum can be split in three phases and two 

occurrences.  

 The first phase treats the situation before the embedding takes place.  

 At the start of the second phase the hop is embedded. 

 The second phase describes the situation during which the hop is embedded.  

 At the start of the third phase the embedding of the hop is released and the location is 

embedded. 

 The third phase describes the situation after the release of the embedding of the location.  

The third phase is the first phase of the next embedding process. 

In the previous chapter only mathematical formulas were listed. Here we give these formulas an 

interpretation in the model. 

The quaternionic differential equation 

 

𝜙 = 𝛻𝜓 

 

can be interpreted as a continuity equation. It describes how a coherent set of discrete objects are 

embedded in a continuum. 

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁𝜓⟩ = 𝜌 ≠ 0 

 

∇∗∇χ = ∇0∇0𝜒 + ⟨𝛁, 𝛁𝜒⟩ = 0 

 

These are the inhomogeneous and the homogeneous quaternionic wave equations. 𝜓 describes the 

embedding continuum including the added coherent swarm of objects in the form of a discrete 

quaternionic distribution 𝜌. In each embedding only a single dual is involved. Influencers, such as 

rotators and superposition coefficients, act on every element of the swarm. 

(1) 

(2) 

(3) 
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χ may describe the embedding continuum without the swarm. 

The embedding of a discrete object only lasts very shortly and is quickly replaced by another 

embedding occurrence.  

The quaternionic function χ may describe how the embedding continuum reacts on the 

embedding when the embedding itself is resolved again. 

 

∇∗∇𝜒0 = 0 

 

𝜒0 is a scalar function . Equation (4) forms the basis of the Huygens principle in quaternionic format. 

For each temporary embedding of the location part of a dual a 3D wave front is generated at that 

location that keeps moving away from that location. 

 

∇∗∇𝝌 = 0 

 

In a similar way equation (5) forms the basis of the emission of a 1D wave front during the 

embedding of a discrepant displacement in the continuum. The direction of the displacements is 

coupled to the direction of the emitted 1D wave front. Here 𝝌 is a vector function. 

For each temporary embedding of the displacement part of a dual a 1D wave front is generated 

at the landing location of the hop. The wave front keeps moving away from that location.  

For this case the formula can also be considered in a local complex number based context. In the 

3D environment, the angular distribution of the 1D wave fronts depends on the angular 

distribution of the hops. 

Only a discrepancy in the symmetry flavors that are coupled leads to the singularity that causes 

the emission of a wave front that goes together with the embedding of a discrete object into an 

embedding continuum. 

The local situation between two subsequent embedding occurrences fits in existing field theory. 
What occurs during embedding is not yet covered by available mathematics. 

6.3 Superposition 
The coupling equation shows that an incremental displacement in configuration space 

corresponds to a multiplication factor in Fourier space. 

 

𝛻𝜓 = 𝑚 𝜑 

 

ℳ�̃� = 𝑚�̃� 

 

This multiplication factor can be interpreted as a superposition coefficient. 

(4) 

(5) 

(1) 

(2) 
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6.4 Symmetry flavors 
Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, 𝒊, 𝒋 and 𝒌; with 𝒊𝒋 =

𝒌 

• Members of coherent sets {𝑎𝑖} of quaternions all feature the same symmetry flavor. 

• Continuous quaternionic functions 𝜓(𝑞) do not switch to other symmetry flavors.  

• If the real part is ignored, then still 8 symmetry flavors result 

• Symmetry flavors are marked by special indices, for example 𝒂④ 

• They are also marked by colors 𝑁, 𝑅, 𝐺, 𝐵, �̅�, �̅�, �̅�, 𝑁 

• Half of them is right handed, R  

• The other half is left handed, L 

• 𝜓⓪ is the reference symmetry flavor of function 𝜓 

• The colored rectangles reflect the directions of the axes 

Symmetry flavors of members of coherent sets: 

       

 Symmetry flavors of continuous functions: 

       

 

Also continuums feature a symmetry flavor. The reference symmetry flavor of a continuous function 

is the symmetry flavor of the parameter space. The parameter space is a flat continuum. It is a 

coherent set  

If the continuous quaternionic function describes the density distribution of a set {𝑎𝑖} of discrete 

objects 𝑎𝑖, then this set can be attributed with the same symmetry flavor. 

6.4.1 Symmetry flavor conversion tools 
Quaternionic conjugation 

(𝜓𝑥)∗ = 𝜓(7−𝑥); 𝑥 = ⓪, ①, ②, ③, ④, ⑤, ⑥, ⑦ 

 

Via quaternionic rotation, the following normalized quaternions 𝜚𝑥 can shift the indices of symmetry 

flavors of coordinate mapped quaternions and for quaternionic functions: 

 

𝜚① =
1 + 𝒊

√2
; 𝜚② =

1 + 𝒋

√2
; 𝜚③ =

1 + 𝒌

√2
; 𝜚④ =

1 − 𝒌

√2
; 𝜚⑤ =

1 − 𝒋

√2
; 𝜚⑥ =

1 − 𝒊

√2
 

 

𝒊𝒋 = 𝒌;   𝒋𝒌 = 𝒊;   𝒌𝒊 = 𝒋 
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𝜚⑥ = (𝜚①)
∗
 

 

For example 

 

𝜓③ = 𝜚①𝜓②/𝜚① 

 

𝜓③𝜚① = 𝜚①𝜓② 

 

𝜓⓪ = 𝜚𝑥𝜓⓪/𝜚𝑥; 𝜓⑦ = 𝜚𝑥𝜓⑦/𝜚𝑥  

 

Also strings of symmetry flavor convertors change the index of symmetry flavor of the multiplied 

quaternion or quaternionic function. The convertors can act on each other. 

For example: 

𝜚①𝜚② = 𝜚②𝜚③ = 𝜚③𝜚① =
1 + 𝒊 + 𝒋 + 𝒌

2
 

 

The result is an isotropic quaternion. This means: 

 

𝜚①𝜓②/𝜚𝑥 = 𝜚②𝜓③/𝜚𝑥 = 𝜓(𝑥+1) 

 

Here (𝑥 + 1) means 𝒊 → 𝒋 → 𝒌 → 𝒊 → 𝒋 → 𝒌, or ①→②→③→①→②→③ and so on. 

6.5 Influence of symmetries 
The embedding process is controlled by the symmetry flavors of the embedded object and the 

embedding continuum. Quaternions number systems as well as continuous quaternionic functions 

exist in 16 symmetry flavors. Even when the real parts are ignored this results in a variety of 8×8=64 

different embedding products. Enough to cover all first generation members of the standard model. 

For example the Dirac equation for the free electron in quaternionic format runs: 

 

𝛻𝜓 = 𝑚𝑒 𝜓∗ 

 

And the Dirac equation for the positron runs: 

 

𝛻∗𝜓∗ = 𝑚𝑒 𝜓 

(1) 

(2) 
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Thus 

 

𝛻∗𝛻𝜓 = 𝑚𝑒𝛻∗ 𝜓∗ = 𝑚𝑒
2 𝜓 

 

For electrons 𝜓 represents its own normalized object density distribution. 

𝜓∗ and 𝜓 are symmetry flavors of the same base function. 

Other elementary particles couple different symmetry flavors {𝜓𝑥, 𝜓𝑦} of their shared base function: 

 

𝛻𝜓𝑥 = 𝑚𝑥𝑦 𝜓𝑦 

 

And for the antiparticle: 

 

𝛻∗(𝜓𝑥)∗ = 𝑚𝑥𝑦 (𝜓𝑦)∗ 

 

The difference in the symmetry flavors between the members of the pair {𝜓𝑥 , 𝜓𝑦} can be related to 

the electric charge, color charge and spin of the corresponding elementary particle. 

Fermions appear to couple to the reference symmetry flavor 𝝍⓪. 

• Continuous quaternionic functions do not switch to other symmetry flavors.  

• If the real part is ignored, then still 8 symmetry flavors result 

• Symmetry flavors are marked by special indices, for example 𝝍④ 

• They are also marked by colors 𝑁, 𝑅, 𝐺, 𝐵, �̅�, �̅�, �̅�, 𝑁 

• Half of them is right handed, R  

• The other half is left handed, L 

• 𝝍⓪is the reference symmetry flavor 

• The colored rectangles reflect the directions of the axes 

Symmetry flavors 𝜓𝑥 

 

      

Result of coupling 𝜓𝑥 to 𝜓⓪ 

 

      

 

(3) 

(4) 

(5) 
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Fermions have half integer spin. Their “color” structure becomes noticeable. Quarks have “partial” 

electric charge. Up-quarks have electric charge + ⅔e. Down-quarks have electric charge - ⅓ e. 

Bosons couple to other sign flavors. Bosons have integer spin. 

For bosons the spin axis may be coupled to the polar axis. The polar angle runs from 0 through 2π. 

For fermions the spin axis may be coupled to the azimuth axis. The azimuth angle runs from 0 

through π. 

Massive bosons are observable as 𝑊+, 𝑊− and 𝑍 particles. Their “color” structure cannot be 

observed. Until now, quark-like bosons are not observed. This may be due to color confinement. 

6.6 Coupling properties 
Discrepancies between the coupled symmetry flavors determine the properties of the coupling 

result. For example electric charge depends on the number of dimensions in which symmetry flavors 

differ. Also the direction in which they differ is important. Further is important whether handedness 

switches. Color charge also changes with the number of dimensions in which symmetry flavors differ. 

Spin appears to depend on the fact whether the embedding continuum has the reference flavor. 

Like spin, electric charge and color charge do not depend on the number of duals that form the 

swarm.  

Electric charge is related to the electrostatic potential. In that respect the location of the electric 

charge seems to coincide with the estimated location of the complete swarm. 

6.7 The Palestra 
One way to explain the existence of massive bosons, is the suggestion of the existence of a bundle of 

sixteen embedding continuums. The members of this bundle differ in their symmetry flavor. One of 

them has the reference flavor. The bundle is called Palestra. According to this suggestion, the 

complete bundle represents our curved living space. 

However in this way the potential diversity of elementary particles grows too high. It will result in 

8×8=64 potential elementary particles and as many anti-particles. The standard model does not 

contain that many first generation members. 

On the other hand sticking to the reference member of the bundle produces too little diversity. It can 

only generate the eight elementary first generation fermions and the corresponding antiparticles. 

Where elementary fermions couple to the reference member of the Palestra, will massive 

elementary bosons couple to (colorless) composites. This results in the 𝑊± and 𝑍 bosons.  

Photons and gluons have their own story. 

6.8 Curvature 
In contrast to spin, electric charge and color charge, the influence of the swarm on local curvature 

does depend on the number of duals that is involved in the swarm. The location of the sources of the 

gravitation potential appear to be spread over the whole swarm. However, the center location 

coincides with the location of the source of the electric potential. 

In practice the emission of 3D wave fronts will cause a local folding and thus a curvature of the 

embedding continuum. This effect is the basis of the gravitation potential, which represents the 

averaged effects of these wave fronts. 
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In a curved environment the quaternionic nabla must be replaced by a differential that is constituted 

of 16 partial derivatives. 

Where the 3D wave fronts decrease their amplitude with distance from the source, will the 

amplitude of the 1D wave fronts stay constant. As a consequence the 1D wave fronts do not curve 

the embedding continuum. Depending on the angular distribution of the hops that generated them, 

the influences of 1D wave fronts combine and average for electrons to a to 3D potential. In 

contemporary physics this potential is known as electromagnetic potential. The messengers keep the 

amplitude of their 1D wave fronts. 

Curvature affects the map of the swarm onto the curved embedding continuum. The overall map 𝒫 

produces a blurred target. It is described by the convolution of a sharp continuous quaternionic 

allocation function ℘ and a stochastic spatial spread function 𝒮.  

 

𝒫 = ℘ ∘ 𝒮 

 

The allocation function has a flat parameter space. It describes the history of the path of the 

concerned particle. At the same time it describes the form of the curved embedding continuum. 

The stochastic spatial spread function 𝒮 produces a blurred image 𝜓 of the owner of a swarm. The 

swarm is produced by the combination of a Poisson process and a binomial process. The spread 

function implements the binomial process. 𝒮 has progression as its single real parameter. The Fourier 

transform �̌� of the density distribution 𝜓 that describes this swarm acts as a mapping quality 

characteristic. 

6.9 Metric 
The differential of the sharp allocation function defines a kind of quaternionic metric. 

 

𝑑𝑠(𝑞) = 𝑑𝑠𝜈(𝑞)𝑒𝜈 = 𝑑℘ = ∑
𝜕℘

𝜕𝑞𝜇
𝑑𝑞𝜇

𝜇=0…3

= 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

𝑞 is the quaternionic location. 

𝑑𝑠 is the metric. 

𝑐𝜇 is a quaternionic function. 

 

Pythagoras: 

 

𝑐2𝑑𝑡2 = 𝑑𝑠 𝑑𝑠∗ = 𝑑𝑞0
2 + 𝑑𝑞1

2+𝑑𝑞2
2+𝑑𝑞3

2 

 

Minkowski: 

(1) 

(2) 
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𝑑𝑞0
2 = 𝑑𝜏2 = 𝑐2 𝑡2 − 𝑑𝑞1

2−𝑑𝑞2
2−𝑑𝑞3

2 

 

In flat space: 

 

∆𝑠𝑓𝑙𝑎𝑡 = ∆𝑞0 + 𝒊 ∆𝑞1 + 𝒋 ∆𝑞2 + 𝒌 ∆𝑞3 

 

In curved space: 

∆𝑠℘ = 𝑐0 ∆𝑞0 + 𝑐1 ∆𝑞1 +  𝑐2 ∆𝑞2 + 𝑐3 ∆𝑞3 

 

 

𝑑℘ is a quaternionic metric 

It is a linear combination of 16 partial derivatives 

7 Energy 
In the model the energy of a composite is directly related to the number of duals that constitute the 

composite. It is also directly related to the dimension of the subspace that represents the composite. 

In the open path objects energy is related to the number of hops that constitute the object. This is 

also equal to the number of 1D wave fronts that constitute the object. 

Oscillations that are internal to a composite are represented by closed path objects. The enclosed 

extra hops add to the energy of the composite. 

(3) 

(4) 

(5) 
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8 Potentials 
In this model potentials form the averages over a small period of progression and over a region of 

space of the wave fronts that are emitted during the embedding of particles. 

8.1 The location potential 
The wave fronts that are emitted during the embedding of the location members of the duals are 

isotropic 3D wave fronts. Their spreading is controlled by the 3D version of the Huygens principle. 

This means that their amplitude decreases with the distance from the source as 1/𝑟. 

Here we consider a simplified situation. With an isotropic density distribution 𝜌0(𝑟) in the swarm the 

scalar potential 𝜑0(𝑅) can be estimated as: 

 

𝜑0(𝑅) = ∫ 𝜌0(𝑟)𝑑𝑟
𝑅

0

 

 

R is the distance to the center of the swarm.  

If the density distribution approaches a 3D Gaussian distribution, then this integral equals14: 

 

𝜑0(𝑅) = Erf(𝑅)/𝑅 

 

 

 

We suppose that this distribution is a good estimate for the structure of the swarm of a free electron. 

It is remarkable that this potential has no singularity at 𝑅 = 0. At the same time, already at a short 

distance of the center the function very closely approaches 1/𝑅.  

                                                           
14 http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density 
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8.1.1 Moving swarm 
The swarm can be described by a continuous density distribution. This function has a Fourier 

transform. Thus, the swarm owns a displacement generator. This means that at first instance the 

swarm can be considered to move as one unit.  

If the swarm moves with uniform speed 𝒗 than this conforms to a vector potential 𝝋(𝑅) : 

 

𝝋(𝑅) = ∫ 𝒗 𝜌0(𝑟)𝑑𝑟 = 𝒗 
𝑅

0

𝜑0(𝑅) 

Now we use  

 

𝔈 = 𝛻𝜑 = ∇0𝜑0 − ⟨𝛁, 𝝋⟩ + ∇0𝝋 − 𝛁𝜑0 ∓ 𝛁 × 𝝋 

 

An acceleration of the swarm goes together with an extra vector field 𝔈: 

 

𝕰 ≈  𝛻0 𝝋(𝑅)  =  �̇� 𝜑0 (𝑅) 

 

Other terms are small.  

8.1.2 Inertia 
In the model, universe is coarsely uniformly covered with swarms. These swarms represent a 

location potential 𝜑0(𝑅) that at larger distances deceases as 1/𝑟. Together the most distant swarms 

together deliver the largest contribution. Locally these potentials combine in a scalar potential 𝜙0 : 

 

𝜙0 =  ∫ 𝜑0(𝑅) 𝑑𝑉 

 

A moving swarm will go together with a vector potential 𝝓 . 

 

𝝓 =  ∫ 𝒗 𝜑0(𝑅) 𝑑𝑉 = 𝒗 𝜙0 

 

Now we use  

 

𝔊 = 𝛻𝜙 = ∇0𝜙0 − ⟨𝛁, 𝝓⟩ + ∇0𝝓 − 𝛁𝜙0 ∓ 𝛁 × 𝝓 

 

(1) 

(2) 

(1) 

(2) 
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An accelerating swarm will encounter a vector field 𝔊: 

 

𝕲 ≈ ∇0𝝓 = �̇� 𝜙0 

 

Other terms are small. 

This field counteracts the acceleration. 

  

(3) 
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8.2 The hop potential 
The wave fronts that are emitted during the embedding of the displacement members of the duals 

are planar 1D wave fronts. Their spreading is controlled by the 1D version of the Huygens principle. 

This means that their amplitude does not decrease with distance from the source. As a consequence 

these wave fronts do not curve the embedding continuum. 

For an isotropic swarm the angular distribution of the wave fronts is isotropic. The corresponding 

location distribution may again approach a Gaussian distribution. The sum of all hops is supposed to 

equal zero. The spread of the influences behave similar to the spread of the influences of the location 

related wave fronts. Thus here the same formulas holds as for the location related wave fronts. 

8.3 Electrostatic potentials versus gravitation potentials 
In this model, gravitation potentials are easily understandable. They represent the smoothed and 

averaged influences of the 3D wave fronts that are emitted when locations are embedded. The 

source of the gravitational potential is the sum of the influences of the individual duals that 

constitute the map of the dynamic behavior of the corresponding discrete object, which reflects that 

behavior in a spatial location swarm. 

Comprehension of electrostatic potentials takes a different route. The source of the electrostatic 

potential only relates to the difference of the symmetry flavors between the set of embedded hops 

and the symmetry flavor of the embedding continuum. The corresponding charge does not relate to 

the number of involved duals. On the other hand, the charge appears to be located at the weighted 

center location of the swarm. That weighted center location is determined by the normalized 

continuous density distribution that describes the swarm. This function is a probability density 

distribution. The charge is located at its weighted average value. The function has a Fourier 

transform. This means that the behavior of the owner at this scale is described by a displacement 

generator. At first approximation the density distribution moves as one unit.  

The charge acts as a charge of a quaternionic field. That field obeys quaternionic field equations. The 

symmetry differences not only determine the size and the sign of the charge. They also determine in 

what dimensions the potential acts. 

In fact, due to the hectic fine grain movement of the owner, the location is rather vague. For example 

if all three dimensions take part, then the shape of the Green’s function of the potential will 

resemble the shape of the Green’s function of the gravitation potential. 

If less dimensions are involved, then the Green’s function of the electrostatic potential will differ 

correspondingly. 

9 Cosmos 

9.1 Integral continuity equations 
The integral equations that describe cosmology are: 

 

∫ ∇ 𝜌 𝑑𝑉

𝑉

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

(1) 

(2) 
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∫ ∇0𝜌0 𝑑𝑉

𝑉

= ∫〈𝛁, 𝝆〉 𝑑𝑉

𝑉

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

 

∫ ∇0 𝝆 𝑑𝑉

𝑉

= − ∫ 𝛁𝜌0 𝑑𝑉

𝑉

− ∫ 𝛁 × 𝝆 𝑑𝑉

𝑉

+ ∫ 𝒔 𝑑𝑉

𝑉

 

 

𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+ ∮�̂�𝜌 𝑑𝑆
𝑆

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

 

Here �̂� is the normal vector pointing outward the surrounding surface S, 𝒗(𝜏, 𝒒) is the velocity at 

which the charge density 𝜌0(𝜏, 𝒒) enters volume V and 𝑠0 is the source density inside V. If 𝜌0 is 

stable, then in the above formula 𝜌 stands for 

 

𝜌 =  𝜌0 + 𝝆 =  𝜌0 +
𝜌0𝒗

𝑐
 

 

It is the flux (flow per unit of area and per unit of progression) of 𝜌0 . 𝜏 stands for progression. 

9.2 Space cavities 
A static space cavity is characterized by: 

 

𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉 = 0

𝑉

 

 

All properties of this object depend on the surrounding surface. 

These objects may represent black holes. 

9.3 Inversion surfaces 
An inversion surface 𝑆 is characterized by: 

 

∮�̂�𝜌 𝑑𝑆
𝑆

= 0 

 

(3) 

(4) 

(4) 

(1) 

(1) 
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It is supposed that duals are stopped, but that potentials and their constituting wave fronts can still 

pass this inversion surface. 

The inversion surfaces divide universe into compartments. 
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10 Messengers 

10.1 Observed behavior 
Photons are very special objects that are emitted by oscillating composites when they step down 

from a higher oscillation mode to a lower oscillation mode. Absorption of photons by a composite 

occurs when the composite steps up from a lower oscillation mode to a higher oscillation mode. 

Further photons play a role in the creation and the annihilation of pairs of elementary building 

blocks. The pair consists of a merge of an elementary particle and its antiparticle.  

Photons possess polarization. Photons exist in circular polarized versions and in linear polarized 

versions. 

Photons can travel billions of years and can then still trigger a suitable detector.  

A very particular difference occurs between young and old photons. At recent detection, old photons 

appear to be red-shifted. 

10.2 Representation in the model 
In the model messengers are represented by open chains of duals. Duals are constituted from a 

location and a hop. At embedding the location produces a 3D wave front, whose amplitude quickly 

diminishes and the hop produces a 1D wave front that keeps its amplitude. The 3D wave front 

produces a slight curvature of the embedding continuum. The messengers are the equivalents of 

photons. The emission and the absorption of messengers are controlled by processes that work in 

parallel to the generation of swarms. Locally these processes act in sync. These processing periods 

depend on the number of involved progression steps. It is not probable that the number of involved 

progression steps will change with progression. However, the duration of a single progression step 

may change with progression. 

The 3D wave fronts in the messengers cause a slight space curvature that is spread along the chain 

that represents the messenger. Thus in the model messengers have a linearly spread mass. On the 

other hand the 1D wave fronts represent energy.  

If space extends with increasing progression, then the distance between the wave fronts will grow 

during the travel of the messenger. With constant speed of information transfer, the absorption of a 

string of wave fronts will take longer. If the absorption shutter period is locally fixed, then old 

messengers will not be completely detected and appear to be red-shifted. 

10.3 Polarization 
In the interpretation of a messenger as a chain of 1D wave fronts, polarization means that in the 

plane perpendicular to the direction of the travel of the messenger the subsequent wave fronts WILL 

have a different angular orientation for the direction in which their amplitude extends. Linear 

polarization means that the plane of the lateral extent is stable. In that plane the direction of the 

extent is alternating. 

11 Cosmological photons 
It is a known fact that photons can travel for billions of years and after that can still be detected by a 

suitable detector. It is also known that in that case the frequency of the detected photon appears to 

be red-shifted. 
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Contemporary physics ignores the duration of the emission and absorption processes. It relates the 

energy of the photon to the frequency of the photon and it uses the Doppler effect and space 

expansion as a function of progression as explanations for red-shift. 

The mathematical model relates the energy of the messengers to the number of the wave fronts that 

are contained in the messengers. This model takes the speed of information transfer as a model 

constant. This means that if all messengers feature the same duration, then the relation between 

energy and frequency also holds for the messengers. In that case red-shift will means that part of the 

wave fronts did not fit in the available duration. Again space expansion can be used as explanation. 

During the travel the distance between the wave fronts has increased in space as well as in 

progression. Thus in the available duration less wave fronts will be counted. However, this does not 

mean that the arriving photon contained less wave fronts. The other wave fronts are ignored. They 

might be detected as another photon or the corresponding energy might be converted to kinetic 

energy. 

12 Object graininess 
In the model, locally the duration of emission, passage and absorption of messengers is suspected to 

be equal or it depends on the graininess of the emitter. Measuring the duration and the frequency of 

the messenger will reveal the number of wave fronts that is contained in the messenger. 

This is also the case for messengers that are released at pair annihilation. In this case the number of 

contained wave fronts will give information about the number of duals that were contained in the 

members of the annihilated pair. With other words it will reveal the dimension of the subspace that 

represented the annihilated object. 

In elementary particles, the chain of hops is folded into a coherent swarm of locations. As a 

consequence in the swarm the 3D wave fronts superpose into a significant space curvature. 

If several durations play a role as is suggested by the existence of generations of elementary 

particles, then also generations of photons must exist. Thus muon type elementary particles must 

annihilate into muon type photons. The same should happen for tau types. 

Since quarks differ in rest mass from electrons, also here durations may differ, but in that case quarks 

cannot assembly with electrons into composites. 

13 The dimension of the subspaces 
In the Gelfand triple the dimension of subspaces that correspond to subspaces in Hilbert space is not 

defined. However, the coupling equation can give some indication of a measure that can replace the 

dimension. In the Hilbert space the dimension relates to the number of eigenvalues of the operator 

whose eigenvectors span the subspace. Now consider the eigenvalues that store the values of the 

hops. Compare: 

 

Φ = 𝛻𝜓 = 𝑚 𝜑 

 

‖Φ‖2 = ∫ |Φ|2 𝑑𝑉 =
𝑉

∫ |𝛻𝜓|2 𝑑𝑉 = 𝑚2‖𝜑‖2

𝑉

= 𝑚2 
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Now let us apply this to the swarm by replacing the integral by a summation of squared hop sizes |ℎ𝑖|. 

 

𝑚2 = ∑|ℎ𝑖|2

𝑁

𝑖

= 𝑁|ℎ𝑖|
2̅̅ ̅̅ ̅̅  

 

ℎ𝑖is the quaternionic value of the i-th hop. It includes a fixed size progression hop. The resulting part 

is an imaginary quaternion. 𝑁 is the number of elements in the location swarm.  

Thus 𝑚 is related to the dimension of the subspace in the Hilbert space. 

13.1 Binding energy 
If the dimension of the subspace that represents a composite is smaller than the sum of the 

dimensions of its constituents, then the difference is spent on binding energy. The hops that left have 

gone in the form of messengers or these hops are used to support the oscillations of the constituents 

that occur inside of the composite. At the same time the constituents have lost part of their identity. 

They differ from the free versions of the constituents. 

14 Spurious duals 
The most elementary discrete objects in the model are the location-hop duals. Embedding of a 

location causes a 3D wave front. Embedding of a hop causes a 1D wave front that relates its direction 

to the direction of the hop. Embedding a dual generates both wave fronts. 

Spurious duals cause the generation of spurious wave fronts. The amplitude of the 3D wave front 

diminishes quickly, but these wave fronts curve the embedding continuum a bit. Thus this effect may 

be causing dark “matter”. The 1D wave fronts do not curve the embedding continuum, but they may 

represent “dark energy”. 

14.1 Why swarms ? 
The fact that spurious duals appear in large numbers, raises the question why swarms, which are 

coherent collections of large numbers of duals, also exist. What keeps these duals together. Some 

kind of binding principle must exist. What is even more peculiar is the fact that these swarms have 

fixed statistical properties, while the set elements have the same symmetry flavor. 

The binding can be caused by the common gravity pitch. The embedding of each separate dual 

causes only a small gravitation pinch. The gravitation pinch diminishes with distance 𝑟 as 1/𝑟. The 

swarm contains a huge number of duals and these duals together produce a gravitation pitch that is 

shaped as a much broader 𝐸𝑟𝑓(𝑟)/𝑟 dependence on distance 𝑟. This relatively flat potential covers a 

major part of the swarm. At much larger distances this function also diminishes as 1/𝑟. 

In large numbers spurious duals can still bring a noticeable gravitation contribution that is 

characterized by a very large spread. 

15 Difference with Maxwell-like equations 
The difference between the Maxwell-Minkowski based approach and the Hamilton-Euclidean based 

approach will become clear when the difference between the coordinate time t and the proper time 

τ is investigated. This becomes difficult when space is curved, but for infinitesimal steps space can be 

considered flat. In that situation holds: 
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Coordinate time step vector = proper time step vector + spatial step vector 

Or in Pythagoras format: 

(∆𝑡)2  =  (∆𝜏)2 + (∆𝑥)2+(∆𝑦)2+(∆𝑧)2 

This influence is easily recognizable in the corresponding wave equations: 

In Maxell-Minkowski format the wave equation uses coordinate time 𝑡. It runs as: 

𝜕²𝜓/𝜕𝑡² − 𝜕²𝜓/𝜕𝑥² − 𝜕²𝜓/𝜕𝑦² − 𝜕²𝜓/𝜕𝑧² = 0 

Papers on Huygens principle work with this formula or it uses the version with polar coordinates. 

For 3D the general solution runs: 

𝜓 = 𝑓(𝑟 − 𝑐𝑡)/𝑟, where 𝑐 = ±1; 𝑓 is real 

For 1D the general solution runs: 

𝜓 = 𝑓(𝑥 − 𝑐𝑡), where 𝑐 = ±1; 𝑓 is real 

 

For the Hamilton-Euclidean version, which uses proper time 𝜏, we use the quaternionic nabla 𝛻:  

𝛻 = {
𝜕

𝜕𝜏
,

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
} = 𝛻0 + 𝛁; 

𝛻∗ = 𝛻0 − 𝛁 

𝛻𝜓 =  𝛻0 𝜓0 – (𝛁, 𝝍) + 𝛻0 𝝍 +  𝛁 𝜓0  ±  𝛁 × 𝝍 

The ± sign reflects the choice between right handed and left handed quaternions. 

In this way the Hamilton-Euclidean format of the wave equation runs: 

𝛻∗𝛻𝜓 =  𝛻₀𝛻₀𝜓 + (𝛁, 𝛁)𝜓 = 0 

𝜕²𝜓/𝜕𝜏² + 𝜕²𝜓/𝜕𝑥² + 𝜕²𝜓/𝜕𝑦² + 𝜕²𝜓/𝜕𝑧² = 0 

Where 𝜓 =  𝜓0 + 𝝍 

For the general solution holds: 𝑓 =  𝑓0 + 𝒇 

For the real part 𝜓0 of 𝜓:  

𝜓0  = 𝑓0 (𝒊 𝑟 − 𝑐 𝜏)/𝑟, where 𝑐 = ±1 and 𝒊 is an imaginary base vector in radial direction 

For the imaginary part 𝝍 of 𝜓: 

𝝍 = 𝒇(𝒊 𝑧 − 𝑐 𝜏), where 𝑐 = ±1 and 𝒊 =  𝒊(𝑧) is an imaginary base vector in the 𝑥, 𝑦 plane 

The orientation 𝜃(𝑧) of 𝒊(𝑧) in the 𝑥, 𝑦 plane determines the polarization of the 1D wave front. 

16 Color confinement 
This paper does not in depth touch color confinement. However, it produces some comprehensible 

reasons for its existence. 
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Quarks quickly combine into composites which are color neutral. These composites are hadrons and 

can be distinguished in mesons and baryons. The gravitation potential covers all three dimensions. It 

is suggested by this mathematical model that the electrostatic potential of quarks does not use all 

three available dimensions. In the mathematical model, color neutrality means that all three 

dimensions are covered equally by the corresponding composite. 

Quarks bind into two or three quark particles. The resulting composites are mesons and baryons. As 

a group they are known as hadrons. 

Due to this binding the quarks are packed such that the composite constitutes a single isotropic 

swarm. This swarm corresponds to a rather deep gravitation pitch. As a consequence the binding is 

strong and causes that in general quarks cannot be observed as free particles. This phenomenon is 

known as color confinement. 

16.1 Gluons 
Gluons are supposed to play an important role in the binding of quarks into colorless composites. 

Gluons can convert the color charge of a quark. When they act as a quaternionic rotator, then they 

apply this capability to all hops in the complete quark swarm. In that case they can be represented by 

quaternions that have the form of a symmetry flavor convertor: 

𝜚① =
1+𝒊

√2
;  𝜚② =

1+𝒋

√2
; 𝜚③ =

1+𝒌

√2
;  𝜚④ =

1−𝒌

√2
;  𝜚⑤ =

1−𝒋

√2
;  𝜚⑥ =

1+𝒊

√2
 ; 𝒊𝒋 = 𝒌; 

 

Such quaternionic symmetry flavor convertors can shift the indices of symmetry flavors of sets of 

quaternions and continuous quaternionic functions. For example: 

  

𝜓③ = 𝜚①𝜓②/𝜚① 

 

𝜚①𝜓② = 𝜓③𝜚① 

 

It looks as if absorbing a 𝜚① gluon into a 𝜓② flavored function result in the emission of a 𝜚① from 

the resulting 𝜓③ flavored function. This action influences the 1D vector wave fronts that are emitted 

at the embedding of hops. 

The symmetry flavor convertors do not affect the isotropic (=colorless) quaternionic functions 𝜓⓪ 

and 𝜓⑦. 

 

𝜓⓪ = 𝜚①𝜓⓪/𝜚① 

 

Thus gluons only affect quarks and do not affect electrons or positrons. In addition they do not affect 

colorless composites. 
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Gluons might be single quaternions. However, the symmetry flavor converters may also appear in 

strings. When abundantly present, such as in a quark gluon plasma, the symmetry flavor converters 

convert each other and keep altering colored particles until they fit together in order to form strongly 

bonded colorless composites. 

17 Nucleons 
Together with massive bosons the hadrons combine into nucleons. This paper does not touch binding 

of colorless composites. 

Here the binding objects are formed by 𝑍 and 𝑊± particles. These massive bosons couple isotropic 

composites. 

18 Determined history and stochastic future 
Swarms are characterized by a history in which discrete symmetry properties, locations and hops are 

precisely determined. In contrast to this the future values of these properties are determined by 

statistical characteristics. The future discrete symmetry properties will be influenced by the presence 

of rotators. The map of the swarm onto the embedding continuum and its movement within that 

continuum is determined by the curvature of that continuum. The existence of the swarm is 

influenced by annihilation conditions. 

19 Discussion 
The acceptance of the first principles that will constitute the foundation of the model leads 

undeniably to a basic model that is based on a combination of an infinite dimensional separable 

quaternionic Hilbert space that owns a corresponding Gelfand triple. Both the Hilbert space and the 

Gelfand triple are just dumb structured storage media that do not contain any means to control the 

coherence of dynamics. Still the discrete part of the model, which is stored in the separable Hilbert 

space, can be considered to be regenerated at the pace of a model wide progression step and 

generations of discrete object types are regenerated according to a series of specific model wide 

progression cycles.  

At that stage of model development, a mechanism is introduced that controls dynamical and spatial 

coherence and schedules parallel tasks. This mechanism is restricted by the fact that it must 

recurrently embed the discrete part of the model into the continuum part of the model. Here a 

significant piece of mathematics still fails. Apart from its embedding control task the mechanism is 

external to the separable and non-separable Hilbert spaces. Nothing inside these Hilbert spaces 

implements the mechanism. 

It seems that discrete objects appear where quaternions are embedded in continuums that belong to 

a different symmetry flavor. When they appear they produce local singularities in the embedding 

continuum. The singularities represent sources of wave fronts. 

The fact that elementary particles are represented by location swarms is very particular. The swarm 

is a spatial representation of the behavior of the elementary particle, which is a point-like object. In 

this way this structure can represent the statistical and symmetric properties of that behavior. In 

addition the swarm can be described by a continuous location density distribution, which has a 

Fourier transform. These smooth descriptors hide much of the fine grain behavior of the owner of 

this continuous location density distribution. It also hides the phenomena that happen during the 

embedding of the locations and the hops in the surrounding continuum. During this embedding 

process the sources of the potentials that attach to the owner of the swarm originate. 
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The most fine grain substances of the model are duals of locations and hops that are stored in two 

quaternions, which share their real part. All discrete objects in the model are represented by such 

duals. At every progression hop their behavior can be represented by a closed subspace of an infinite 

dimensional separable Hilbert space. That subspace is spanned by eigenvectors of a location 

operator that are shared with a displacement operator. 

The model suggests that the embedding process causes the emission of wave fronts. The embedding 

of locations is supposed to cause the emission of 3D wave fronts and these are supposed to curve the 

embedding continuum. The embedding of hops is supposed to cause the emission of 1D wave fronts. 

These emissions only occur when there exist a symmetry flavor discrepancy between the embedded 

quaternions and the embedding quaternionic functions. Probably the 1D wave fronts are only 

emitted in directions in which this discrepancy occurs. This might then explain the partial electric 

charge of quarks. 

20 Next task 
The next task is the precise formulation of the gap that still exist in the mathematical explanation of 

the embedding process. This embedding process is the factual generator of the discrete building 

blocks. The germs of these building blocks are duals that consist of a location and a hop. In the 

embedding process the location and the hop behave differently. The embedding process reacts 

actively when a discrepancy in symmetry flavor exists between the embedded item and the 

embedding continuum. Its activity is controlled by the discrepancy. However, embedding of non-

discrepant symmetry flavors also produces noticeable effects. Neutrinos prove this. 

Embedding of a location quaternion into a discrepant quaternionic continuum is supposed to cause a 

3D wave front that is emitted at the point of embedment. The 3D wave front is supposed to slightly 

fold and thus curve the embedding continuum. The amplitude of the 3D wave front and thus its 

influence diminishes with distance r as 1/r. 

Embedding of a hop quaternion into a discrepant quaternionic continuum is supposed to cause a 1D 

wave front that is emitted at the point of embedment, which is the landing location. The 1D wave 

fronts keep their amplitude and do not curve the embedding continuum. The 1D wave fronts will 

feature the same angular distribution as the hops do. 

The wave fronts are the results of local singularities in the embedding continuum. A proper 

mathematical theory that treats these local singularities still fails. 

Objects exist for which singularities occur while no symmetry flavor differences exist between their 

constituting duals and the embedding continuum. These objects have no electric charge. For example 

photons still contain 1D wave fronts. Z-particles and neutrinos still produce 3D wave fronts. Photons 

and neutrinos behave differently from other elementary particles. 

21 Appendix: History of discoveries 
The concept of "Universe" follows with mathematical inescapable evidence from first principles that 

constitute a recipe for modular construction. These first principles define an orthomodular lattice. This 

is the structure of quantum logic. 

Quantum logic was introduced by Garret Birkhoff and John von Neumann in their 1936 paper. G. 

Birkhoff and J. von Neumann, The Logic of Quantum Mechanics, Annals of Mathematics, Vol. 37, 

pp. 823–843 
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The lattices of quantum logic and classical logic are treated in detail in: 

http://vixra.org/abs/1411.0175 . 

The Hilbert space was discovered in the first decades of the 20-th century by David Hilbert and 

others. http://en.wikipedia.org/wiki/Hilbert_space. 

Paul Dirac introduced the bra-ket notation, which popularized the usage of Hilbert spaces. Dirac also 

introduced its delta function, which is a generalized function. Spaces of generalized functions offered 

continuums before the Gelfand triple arrived. 

In 1843 quaternions were discovered by Rowan Hamilton. 

http://en.wikipedia.org/wiki/History_of_quaternions 

Quaternionic function theory and quaternionic Hilbert spaces are treated in: 

http://vixra.org/abs/1411.0178 . 

In the sixties Constantin Piron and Maria Pia Solèr proved that the number systems that a separable 

Hilbert space can use must be division rings. “Division algebras and quantum theory” by John Baez. 

http://arxiv.org/abs/1101.5690 

In the sixties Israel Gelfand and Georgyi Shilov introduced a way to model continuums via an 

extension of the separable Hilbert space into a so called Gelfand triple. The Gelfand triple often gets 

the name rigged Hilbert space, which is confusing, because this construct is not a separable Hilbert 

space. http://www.encyclopediaofmath.org/index.php?title=Rigged_Hilbert_space . 

These discoveries are used as foundations by the author’s e-book “The Hilbert Book Model Game”. 

http://vixra.org/abs/1405.0340 . 

http://vixra.org/abs/1411.0175
http://en.wikipedia.org/wiki/Hilbert_space
http://en.wikipedia.org/wiki/History_of_quaternions
http://vixra.org/abs/1411.0178
http://arxiv.org/abs/1101.5690
http://www.encyclopediaofmath.org/index.php?title=Rigged_Hilbert_space
http://vixra.org/abs/1405.0340
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