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Abstract 

The dynamics of reality is well regulated. What is the mechanism that controls dynamics and what 

rules this mechanism? The models of contemporary physics do not answer these questions. 

In the realm of elementary particles the special habits of quaternions appear to play an essential 

role. In the past physics had a choice between the Maxwell based approach and the quaternionic 

based approach. That choice has a significant influence on how physics equations look. Einstein 

selected the Maxwell approach and in this way physics inherits the spacetime view on the universe in 

which we live. 
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1 Introduction 
Ask a physicist the question “What drives the dynamics of reality?” and a chance exists that he 

answers that one of the operators in the Lagrange equation or some force will do this. The operators 

only describe what is happening and the Lagrange equation at the utmost defines the restrictions 

under which the behavior occurs, but it does not explain the origin of that behavior. Forces are 

usually related to potentials and potentials are reflecting the influence of more fundamental 

processes. Thus, the origin of the behavior must be sought in these more fundamental processes. 

2 Progression 
At the start of quantum physics two different methods were in use in order to store the parameter 

that represents progression. The first method was introduced by Schrödinger and places time 

dependence into the state of the considered object. This approach uses static operators. The second 

method was introduced by Heisenberg and stores time dependence in operators and uses a static 

object state. Later Paul Dirac showed that the Schrödinger picture and the Heisenberg picture 

describe the same reality. In fact a more general view exists that puts progression as a parameter in 

the complete separable Hilbert space. In that view progression steps along a sequence of separable 

Hilbert spaces that each describe a static status quo of the model. 

2.1 Space and progression 
The development of quantum physics and the development of relativity theory are strongly 

influenced by the way that Maxwell equations describe the transfer of information. This is most 

expressively described by the wave equation. The intriguing fact here is that alternatives exist for the 

Maxwell equations that offer a slightly different wave equation. Both wave equations describe how 

information is transferred. The alternative equations are formed by the differential equations of 

quaternionic functions. This approach delivers a space-progression model that has a Euclidean 

signature. The Maxwell equations offer a spacetime model that has a Minkowski signature. 

In the quaternionic model space and progression are located at mutually perpendicular axes. In this 

model our common notion of time is a mixture of space and progression and is represented by a 

quaternion with non-zero real part and non-zero imaginary part, while progression is represented by 

the real part of the quaternion and space is represented by the imaginary part. 

3 Coherence 
The dynamics of reality is not chaotic. The behavior of reality appears to occur according to certain 

rules that determine that its dynamics is quite coherent. The lowest level players in this game are the 

elementary particles. These objects feature particle behavior and wave behavior. As a particle they 

appear to be point-like objects. This seems to conflict with the wave behavior. The word “seems” is 

correct. In large sets, point-like objects can behave such that they simulate wave patterns. 

4 Storing properties 
Another problem is that a point-like object does not have many means to store the properties that 

are attached to elementary particles. At every instance, they only can own properties that 

correspond to the dynamics of a point. These properties are position, speed, acceleration and so on. 

Observed over a period, these data can create a history. However, the point object itself has no 

means to change the basic properties: position, speed, acceleration. If those data change, then it is 

caused by an external mechanism. 



The mechanism can work in a continuous or in a stepwise fashion. If it works in a stepwise fashion, 

then the mechanism can be viewed as recreating the particle at every subsequent progression step. 

It means that the particle is hopping along a hopping path. If that is done in a coherent fashion then 

the locations form a coherent swarm. That swarm and the path characterize the particle. The 

relocation can be thought to be controlled by a stochastic process. After a while the statistical 

characteristics of the swarm stabilize and the swarm can then be described by a continuous location 

density distribution. That distribution will come close to the squared modulus of the wave function of 

the particle. This on itself is an astonishing conclusion! It means that the wave function represents a 

smoothed reflection of a spatial map of the hectic fine grain behavior of the corresponding point-like 

object. 

A continuous working mechanism cannot so easily reach this result and no known continuous 

mechanism can simulate the stochastic nature of the wave function. Thus, the suggestion that the 

mechanism works in a stepwise stochastic fashion might be justified. 

5 Wave behavior 
It is known that the wave function has a Fourier transform, thus the same might hold for the 

normalized location density distribution. If that is true, then the stabilized swarm has a displacement 

generator. On its turn this means that in first approximation this swarm moves as one unit. As a 

consequence the swarm, like its point-like owner, has many characteristics of a particle. But, it also 

means that the density distribution can be considered as a wave package. Again this only holds in 

first approximation. The reason is that the swarm is continuously regenerated. Thus, even if the 

swarm moves, it keeps its wave package shape. With other words, even if the swarm moves, its 

“wave package” does not disperse. The swarm keeps its statistical characteristics and it keeps its 

symmetry properties. This set of properties classify elementary particle types. 

The Fourier transform of the normalized continuous location density distribution can be interpreted 

as a mapping quality characteristic where the swarm acts as a point spread function. Thus, the 

dynamics of the particle can be treated as an imaging process. The environment of the particle acts 

as the imaging device. In order to understand the result of the imaging process the mapping quality 

characteristic of the particle must be multiplied with the Optical Transfer Function (OTF) of the 

imaging device. This result describes the Fourier transform of the resulting swarm. This procedure 

holds between two progression instants.  

Thus the kinematics of elementary particles can be determined if its mapping quality function is 

known and if the OTF of the passed environment is available. 

The mapping quality characteristic of the resulting swarm can become a wave-like interference 

pattern. 

If a set of similar occasions of such swarms are detected, then the result is a wave-like interference 

pattern. It is not constituted by waves. It is a detection pattern that looks like an interference 

pattern. 

6 Traces 
The location swarm and the hopping path form reflections of the behavior of the point-like particle. 

However, each time that a temporary location is left this fact has become history. If nothing else 

happens, then nothing would show a trace of the temporary implanting of the point-like particle in 

the embedding continuum. 



Mathematics might request that the current location and the corresponding hop together with the 

value of progression are stored as eigenvalues of operators that reside in a separable Hilbert space. 

However, reality does not own a Hilbert space. So it has no means for storing these data. Still the 

event of embedding may leave some trace in the form of a message whose information is sent in all 

directions. For example the embedding may go together with the emission of an isotropic wave front 

that proceeds in the embedding continuum. The ripple of the wave front will slightly fold and thus 

curve that continuum. The amplitude of the ripple will quickly diminish as function of the distance 

from the source. Thus, the curvature will behave accordingly. 

A similar phenomenon may happen with the embedding of the hop. However, in this case the wave 

front will act in only one dimension, which has the direction of the hop. Such wave fronts do not 

affect the curvature of the embedding continuum. Both kinds of wave fronts are originators of 

corresponding potentials. 

7 Foundation 
The fact that reality does not own a Hilbert space does not mean that a mathematical model of 

reality cannot make use of this Hilbert space1. A proper mathematical model must offer a convincing 

reason why it uses a Hilbert space as a structured storage medium. An acceptable strategy is to select 

a solid foundation from which the Hilbert space will automatically emerge. Such a foundation exists 

and is formed by the axioms that define the skeleton relational structure that since 1936 is known as 

quantum logic. This same relational structure is present in a separable Hilbert space in the form of 

the set of its closed subspaces. 

The relational structure of quantum logic is quite similar to the relational structure of classical logic 

and that is the reason that its discoverers gave quantum logic its name. However, the elements of 

quantum logic can better not be interpreted as logic propositions. Instead they are better interpreted 

as construction elements of a modular system. But this means that at least a subset of the subspaces 

of a separable Hilbert space represent modules of a modular system. It also means that the Hilbert 

space might house several of these modular systems. 

The modular structure appears to be typical for the relational structure of reality. This means that 

the Hilbert spaces that implement this structure are also characteristic for the relational structure of 

reality. 

Separable Hilbert spaces are only structured storage media for discrete data. They cannot handle 

continuous data. As number systems the separable Hilbert spaces can only handle members of a 

division ring. Only three suitable division rings exist: the real numbers, the complex numbers and the 

quaternions. (bi-quaternions do not form a division ring!). 

Each infinite dimensional separable Hilbert space owns a non-separable Hilbert space in the form of a 

Gelfand triple. The Gelfand triple features operators that possess continuums as eigenspaces. Thus in 

this way the mathematical model offers storage media for discrete as well as continuous data sets. 

Quaternions can store progression and 3D spatial data in a single Euclidean geometric structure that 

can act as the eigenvalue of a normal operator. Progression steps in the separable Hilbert space and 

it flows in the non-separable Hilbert space. 

                                                           
1 See: http://vixra.org/abs/1409.0050  

http://vixra.org/abs/1409.0050


8 Controlling dynamical coherence 
Up to so far the model can register dynamic geometric data, but it offers no means to regulate the 

coherence of that dynamics. Thus the model must be completed with a mechanism that controls 

dynamical coherence. That mechanism must also control the binding of modules into composites and 

it must properly schedule corresponding parallel tasks. Thus, this mechanism shows similarity with 

the activity of a real time operating system. It uses a real time model wide clock that registers the 

progression of the model. It regulates the recurrent embedding of the separable Hilbert space into its 

non-separable companion. 

The fact that the separable Hilbert space must fit into the non-separable Hilbert space severely 

restricts the activity of the mechanism. The mechanism uses this restriction in order to control 

temporal and spatial coherence. 

9 Swarms 
Due to the restrictions of the embedding process the location swarms that represent elementary 

building blocks will show spatial and dynamic coherence. Three levels of coherence can be 

distinguished. 

1. Due to the four dimensions of quaternions, quaternionic number systems and continuous 

quaternionic functions exist in sixteen versions that differ only in their discrete coordinate 

related symmetry properties. Thus, all elements of a coherent location swarm and the 

corresponding hopping path must belong to a single quaternionic symmetry flavor2. 

2. A second coherence level location swarm can be described by a continuous location density 

distribution. The quaternionic distribution that describes the hops must reflect the symmetry 

flavor of the swarm. 

3. The third coherence level requests that this continuous location density distribution must 

own a Fourier transform. 

The third restriction has two consequences. It means that the swarm owns a displacement generator 

and as its consequence at first approximation the swarm moves as one unit. It also means that at 

every progression instant the continuous descriptor can be viewed as a wave package and it means 

that the pattern of the swarm can take the form of an interference pattern. 

The fact that the Fourier transform of the continuous location density distribution acts as a mapping 

quality characteristic offers the possibility to compute the behavior of the moving swarm in non-

uniform conditions in which the embedding continuum is curved in an arbitrary way. 

9.1 Uncertainty 
The swarm represents a spatial spread and at the same time it reflects the dynamics of a point-like 

object during a given period. At every progression instant only one element of the swarm represents 

the current location of the point-like object. Locations that were used before that instance can be 

thought to be stored as eigenvalues of a location operator that resides in the separable Hilbert space. 

These locations are precisely determined. Future locations are not yet known and will be generated 

by a stochastic process. Thus this part of the swarm represents uncertainty. This view interprets the 

generation of the actual locations as an ongoing process. It is also possible to interpret the swarm’s 

generation process as a being prepared in advance. In that case, after the generation of the virtual 

swarm, a second stochastic process selects the order of the actual mapping locations in a random 

                                                           
2 See the section on symmetry flavors. 



fashion. After completion of a full swarm generation cycle no difference exists between the results of 

the two interpretations.  

The spread of the resulting swarm corresponds to a statistical spread. The Fourier transform of the 

continuous location density distribution that describes the resulting swarm will also show a 

corresponding spread. Both spreads represent the base of Heisenberg’s uncertainty relation. 

Heisenberg’s relation is just a mathematical correspondence. It does not add extra uncertainty. The 

uncertainty is already generated by the stochastic process that generates the not yet established 

locations. 

10 Mapping to a curved continuum 
The embedding of the point-like objects into an embedding continuum represents a map onto a 

curved manifold. In the mathematical model this manifold is represented by a quaternionic function. 

That same function represents the map. The swarm can be described by the convolution of this 

mapping function and a stochastic spatial spread function. The individual locations form a micro-

path, but also the swarm as a whole will follow a path. If the swarm moves with uniform speed, then 

the curved path can be characterized by a Frenet-Serret frame. This frame describes the path in three 

mutually perpendicular directions. The fact that this is possible represents a further restriction to the 

behavior of the point-like object. The frame is characterized by three mutually orthonormal vectors 

and two scalar characteristics3.  

Via variational calculus the Euler-Lagrange equations can be derived4. 

11 Gravitation and electrostatic potential. 
The origin and the existence of the gravitation potential is now explained by the smoothed and 

averaged influences of the isotropic wave fronts that are emitted at the embedding events. Together 

the pinches combine in a wider pitch that no longer has the form of a local singularity. This view also 

shows how the gravitation potential executes its attractive action. The size of the gravitation 

potential depends on the number of elements in the swarm. The shape of the local gravitation 

potential depends on the spread of the swarm. 

Where the gravitation potential combines the actions of the separate swarm elements, will the 

embedding of the hops not result in such individual element action. The electrostatic potential 

reflects the symmetry properties rather than the location density distribution of the swarm. Any 

stochastic spread of hop directions is hidden by the temporal and spatial averaging and smoothing 

process. However the coordinate related discrete symmetry is not affected. These symmetries are 

determined with respect to the symmetry that exists in the parameter space. These symmetry 

properties hold for the swarm as a whole. Still the location of the charge or source of the 

electrostatic potential coincides with the statistical center location of the swarm. This is why 

electrons and quarks have charges that reflect their symmetry. Electrons and positrons have 

coordinate related isotropic symmetry and quarks show coordinate related anisotropy. The direction 

of the anisotropy is indicated by the color charge of the quark. The size of the electric charge 

indicates how many dimensions are covered. The sign of the charge indicates the differences of the 

direction within these dimensions. 

                                                           
3 See: http://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas  
4 See: http://mathsci.ucd.ie/~onaraigh/ACM_20150_sept_2013.pdf  

http://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas
http://mathsci.ucd.ie/~onaraigh/ACM_20150_sept_2013.pdf


12 Quaternion habits 
Quaternions offer a very compact and at the same time elegant way to describe dynamics and 

Cartesian coordinate related symmetry. 

By now it may have become clear that especially in the realm of the elementary particles the special 

habits of quaternions play a crucial role. These habits play an essential role in the properties and in 

the behavior of the elementary particles. Together these characteristics determine the diversity of 

the elementary particles. 

12.1 Coupling equation 
The coupling equation follows from peculiar properties of the differential of quaternionic functions. 

We start with two normalized functions 𝜓 and 𝜑 and a normalizable function Φ = 𝑚 𝜑.  

 

‖𝜓‖ = ‖𝜑‖ = 1 

 

These normalized functions are supposed to be related by: 

 

Φ = 𝛻𝜓 = 𝑚 𝜑 

 

Φ = 𝛻𝜓 defines the differential equation. 

 

𝛻𝜓 = Φ formulates a continuity equation. 

 

𝛻𝜓 = 𝑚 𝜑 formulates the coupling equation.  

12.2 Dirac equation 
For example the Dirac equation for the free electron in quaternionic format is a special form of this 

coupling equation: 

 

𝛻𝜓 = 𝑚𝑒 𝜓∗ 

 

And the Dirac equation for the positron runs: 

 

𝛻∗𝜓∗ = 𝑚𝑒 𝜓 

 

Thus 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 

(2) 



𝛻∗𝛻𝜓 = 𝑚𝑒𝛻∗ 𝜓∗ = 𝑚𝑒
2 𝜓 

 

For electrons 𝜓 represents its own normalized object density distribution. 

This is an in-homogeneous wave equation. 

12.3 Maxwell versus quaternionic wave equation 
The transfer of information occurs via waves or strings of wave fronts. These are solutions of the 

homogeneous wave equation. A significant difference exist between the Maxwell based wave 

equation and the quaternionic wave equation.  

In Maxell-Minkowski format the wave equation uses coordinate time 𝑡. It runs as: 

𝜕²𝜓/𝜕𝑡² − 𝜕²𝜓/𝜕𝑥² − 𝜕²𝜓/𝜕𝑦² − 𝜕²𝜓/𝜕𝑧² = 0 

Papers on Huygens principle work with this formula or it uses the version with polar coordinates. 

For 3D the general solution runs: 

𝜓 = 𝑓(𝑟 − 𝑐𝑡)/𝑟, where 𝑐 = ±1; 𝑓 is real 

For 1D the general solution runs: 

𝜓 = 𝑓(𝑥 − 𝑐𝑡), where 𝑐 = ±1; 𝑓 is real 

 

For the Hamilton-Euclidean version, which uses proper time 𝜏, we use the quaternionic nabla 𝛻:  

𝛻 = {
𝜕

𝜕𝜏
,

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
} = 𝛻0 + 𝛁; 

𝛻∗ = 𝛻0 − 𝛁 

𝛻𝜓 =  𝛻0 𝜓0 – (𝛁, 𝝍) + 𝛻0 𝝍 +  𝛁 𝜓0  ±  𝛁 × 𝝍 

The ± sign reflects the choice between right handed and left handed quaternions. 

In this way the Hamilton-Euclidean format of the wave equation runs: 

𝛻∗𝛻𝜓 =  𝛻₀𝛻₀𝜓 + (𝛁, 𝛁)𝜓 = 0 

𝜕²𝜓/𝜕𝜏² + 𝜕²𝜓/𝜕𝑥² + 𝜕²𝜓/𝜕𝑦² + 𝜕²𝜓/𝜕𝑧² = 0 

Where 𝜓 =  𝜓0 + 𝝍 

For the general solution holds: 𝑓 =  𝑓0 + 𝒇 

For the real part 𝜓0 of 𝜓:  

𝜓0  = 𝑓0 (𝒊 𝑟 − 𝑐 𝜏)/𝑟, where 𝑐 = ±1 and 𝒊 is an imaginary base vector in radial direction 

For the imaginary part 𝝍 of 𝜓: 

𝝍 = 𝒇(𝒊 𝑧 − 𝑐 𝜏), where 𝑐 = ±1 and 𝒊 =  𝒊(𝑧) is an imaginary base vector in the 𝑥, 𝑦 plane 

The orientation 𝜃(𝑧) of 𝒊(𝑧) in the 𝑥, 𝑦 plane determines the polarization of the 1D wave front. 

 

(3) 



The difference between the Maxwell-Minkowski based approach and the Hamilton-Euclidean based 

approach will become clear when the difference between the coordinate time t and the proper time 

τ is investigated. This becomes difficult when space is curved, but for infinitesimal steps space can be 

considered flat. In that situation holds: 

Coordinate time step vector = proper time step vector + spatial step vector 

Or in Pythagoras format: 

(∆𝑡)2  =  (∆𝜏)2 + (∆𝑥)2+(∆𝑦)2+(∆𝑧)2 

 

The fact that physics has selected the Maxwell approach has caused its preference for a spacetime 

model with Minkowski signature. 

12.4 Symmetry flavors  
Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, 𝒊, 𝒋 and 𝒌; with 𝒊𝒋 =

𝒌 

Quaternions feature a coordinate related discrete symmetry. Due to the four dimensions of 

quaternions the quaternionic number systems and continuous quaternionic functions exist in sixteen 

versions that only differ in their symmetry flavor. 

𝜓∗ and 𝜓 are symmetry flavors of the same base function. 

Other elementary particles couple different symmetry flavors {𝜓𝑥, 𝜓𝑦} of their shared base function: 

 

𝛻𝜓𝑥 = 𝑚𝑥𝑦 𝜓𝑦 

 

And for the antiparticle: 

 

𝛻∗(𝜓𝑥)∗ = 𝑚𝑥𝑦 (𝜓𝑦)∗ 

 

The difference in the symmetry flavors between the members of the pair {𝜓𝑥 , 𝜓𝑦} can be related to 

the electric charge, color charge and spin of the corresponding elementary particle. We will use 

special indices (𝑥 = ⓪, ①, ②, … in 𝜓𝑥) in order to indicate the symmetry flavor5. 

Fermions appear to couple to the reference symmetry flavor 𝝍⓪. 

• Continuous quaternionic functions do not switch to other symmetry flavors.  

• If the real part is ignored, then still 8 symmetry flavors result 

• Symmetry flavors are marked by special indices, for example 𝝍④ 

• They are also marked by colors 𝑁, 𝑅, 𝐺, 𝐵, �̅�, �̅�, �̅�, 𝑁 

• Half of them is right handed, R  

• The other half is left handed, L 

• 𝝍⓪is the reference symmetry flavor 

• The  colored rectangles reflect the directions of the axes 

                                                           
5 This replaces the matrices and spinors that Dirac uses in his equation for the electron. 

(4) 

(5) 



Symmetry flavors 𝜓𝑥 

 

      

Result of coupling 𝜓𝑥 to 𝜓⓪ 

 

      

 

12.5 Gluons 
Gluons are supposed to play an important role in the binding of quarks into colorless composites. 

Gluons can convert the color charge of a quark. When they act as a quaternionic rotator, then they 

apply this capability to all hops in the complete quark swarm. In that case they can be represented by 

quaternions that have the form of a symmetry flavor convertor: 

𝜚① =
1+𝒊

√2
;  𝜚② =

1+𝒋

√2
; 𝜚③ =

1+𝒌

√2
;  𝜚④ =

1−𝒌

√2
;  𝜚⑤ =

1−𝒋

√2
;  𝜚⑥ =

1+𝒊

√2
 ; 𝒊𝒋 = 𝒌; 

 

Such quaternionic symmetry flavor convertors can shift the indices of symmetry flavors of sets of 

quaternions and continuous quaternionic functions. For example: 

  

𝜓③ = 𝜚①𝜓②/𝜚① 

 

𝜚①𝜓② = 𝜓③𝜚① 

 

It looks as if absorbing a 𝜚① gluon into a 𝜓② flavored function result in the emission of a 𝜚① from 

the resulting 𝜓③ flavored function. This action influences the 1D vector wave fronts that are emitted 

at the embedding of hops. 

The symmetry flavor convertors do not affect the isotropic (=colorless) quaternionic functions 𝜓⓪ 

and 𝜓⑦. 

 

𝜓⓪ = 𝜚①𝜓⓪/𝜚① 

 

Thus gluons only affect quarks and do not affect electrons or positrons. In addition they do not affect 

colorless composites. 



13 Discussion 
This paper discloses that several sensible alternatives exist for the models of contemporary physics. 

The paper indicates that at lower levels reality shows a rather granular structure, while 

contemporary physics tends to view these levels in a more continuous way. 

Einstein guided physics in the direction of a Minkowski spacetime structure while a far simpler 

Euclidean space-progression model exist. Current physics relies on Maxwell based equations while 

quaternionic functions offer a proper alternative. Further, quaternions offer an easy and consistent 

overview of Cartesian coordinate based symmetries that play an essential role in the realm of 

elementary particles. 

These facts are explored in more detail in “A mathematical model of physics”; 

http://vixra.org/abs/1409.0050 . 

http://vixra.org/abs/1409.0050
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