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A mathematical model of reality 
Abstract 

It is possible to derive a model from well selected first principles that shows many similarities with 

what we know from observing reality.  

The presented model is based on first principles that formulate a recipe for modular construction and 

this foundation is mathematically known as an orthocomplemented weakly modular lattice. When 

starting from this foundation it is mathematically inescapable evident  that this model confines to a 

quaternionic space-progression model that proceeds with model-wide progression steps through an 

ordered sequence of static sub-models that each represent a static status quo of the whole model.  

The model is a hybrid construct that consists of a sub model that treats all discrete objects and a 

continuum based model that embeds the discrete objects.  

Despite the fact that the target of the model is to reach a level in which it shows many features and 

phenomena that we know from observing reality, this model is not claimed to be a model of physics. 

The reason for this restriction is that many of its aspects cannot be observed. Physicists tend to deny 

completely or largely deduced models. 

 

By J.A.J. van Leunen 

 

 

 

If the model introduces new science, then it has fulfilled its purpose. 
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1 Generating the model 

1.1 First principles 
We use a paginated space progression model that emerges from a skeleton relational structure. This 

structure can mathematically be characterized as an orthocomplemented weakly modular lattice1. 

Another name for this lattice is orthomodular lattice. Quantum logic has this lattice structure. 

Classical logic has a slightly different lattice structure. It is an orthocomplemented modular lattice. 

For our purpose it is better to interpret the elements of the orthomodular lattice as construction 

elements rather than as propositions. The ~25 axioms that define an orthomodular lattice form the 

first principles on which the whole model will be built. Only trustworthy, mostly mathematical 

methods will be used to extend this model until a level is reached in which it shows many features 

and phenomena that we recognize from observing reality. 

1.2 The next level 
The set of closed subspaces of an infinite dimensional separable Hilbert space is also an 

orthomodular lattice. The Hilbert space adds extra functionality to this orthomodular lattice. This 

extra functionality concerns the superposition principle and the possibility to store data in 

eigenspaces of normal operators. In the form of Hilbert vectors the Hilbert space features a finer 

structure than the orthomodular lattice has. 

The Hilbert space can only handle members of a division ring for specifying superposition 

coefficients, for the eigenvalues of its operators and for the values of its inner products. Only three 

suitable division rings exist: the real numbers, the complex numbers and the quaternions. 

Quaternions enable the storage of 1+3D data that have an Euclidean geometric structure. 

Thus, selecting a skeleton relational structure that is an orthomodular lattice as the foundation of the 

model already puts significant restrictions to the model. On the other hand, this choice promotes 

modular construction and in this way it significantly reduces the relational complexity of the final 

model. 

1.3 Adding dynamics 
This primitive model does not provide means to control dynamics and it does not support the 

representation of continuums.  

Dynamics can be added by using an ordered sequence of the models that can represent a static 

status quo. This choice makes the model paginated. The model proceeds with model-wide 

progression steps. All discrete objects in the model can be considered to be regenerated at every 

progression step. 

With this decision, an extra mechanism must be added that ensures sufficient coherence between 

subsequent elements of the sequence. The coherence must not be too stiff, otherwise no dynamics 

occurs. On the other hand it must be sufficient restrictive, otherwise the result is dynamical chaos. 

In order to reach sufficient coherence the next sequence member must not differ much from the 

considered member. 

                                                           
1 See the appendix 
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This mechanism shares many aspects with a real time operating system. The RTOS schedules 

subtasks and it ensures that these subs-tasks occur in sync. 

1.4 Adding continuums 
Continuums can be supported by adding the Gelfand triple to the Hilbert space. The Gelfand triple 

can be used to check the coherence. This is done by embedding the subsequent Hilbert spaces into a 

common Gelfand triple. As a consequence progression steps along the Hilbert spaces and it flows 

inside the Gelfand triple. This allows the embedding process to control the dynamic as well as the 

spatial coherence.  

The embedding process already puts many restrictions that at least partly ensure the dynamical 

coherence. 
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2 Modular construction 
Thus, if the orthomodular lattice is considered as the foundation of the model, then the separable 

Hilbert space is the next level of extension of the model. The foundation can be considered as part of 

a recipe for modular construction. What is missing are the binding mechanism and a way to hide part 

of the relations that exist inside the modules from the outside of the modules. These ingredients are 

delivered by the superposition principle and by the embedding mechanism. 

3 Exploiting the model 
At every progression instant, each discrete construct in this model is supposed to expose the 

skeleton relational structure that is defined as an orthomodular lattice. 

At each progression instant, every discrete construct in this model can be represented by a closed 

subspace of a single separable Hilbert space. 

3.1 Embedding the most elementary objects 
The embedding process gives every elementary building block an actual location. At the next 

progression step that location will differ. At each progression step the elementary building block will 

hop to the next location. The next location is not known in advance. It is determined by a stochastic 

process. 

At each progression instant, every discrete building block in this model owns an exact hopping value 

and an exact location that together form a dual. Both members of the dual share the same real part, 

which stores the progression value.  

Other elementary objects exist that have an exact location at a series of progression steps. Also these 

objects hop from the current location to the next location. The location and the hop form a dual. 

The duals form the most elementary objects in the model. On themselves they do not have any other 

characteristic than their quaternionic value. Only as sets these duals become extra significance. Extra 

data are obtained from the statistics of the set or from the symmetry properties of the set. The hops 

form a path and this path adds its own characteristics. 

The set can have one of three forms: 

 A coherent swarm 

 A closed path 

 An open path string 

3.2 Swarms 
The swarm differs from the two other forms in the fact that it can be characterized by a density 

distribution. The swarm is a coherent set. Two interpretations are possible: 

 The swarm is generated by an ongoing stochastic process. After a while the statistic 

characteristics of the swarm stabilize. 

 The swarm is prepared in advance. Its elements are used one by one. The currently active 

element is obtained by random selection from the set of not yet used elements. When all 

elements are used, then the swarm is regenerated. 

Here we take the second interpretation. We do this because it is easier to understand. It means that 

the swarm is generated by a cyclic stochastic process. The swarm contains a huge number of 
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elements. The swarm can be described by a normalized continuous location density distribution2. 

This continuous distribution has a Fourier transform. As a consequence the swarm owns a 

displacement generator. Thus, at first approximation the swarm moves as one unit.  

These measures are part of the task of the mechanism that must ensure sufficient coherence 

between the elements of the sequence of static sub-models that together form the dynamic model.  

The swarm includes a closed path. We suppose that the statistics of the planned swarm are stable. 

Under the mentioned conditions, the swarm is at rest. It means that the sum of all hops equals zero. 

In this condition the swarm has a fixed number of elements. 

3.3 Moving the swarm 
Adding extra duals to the swarm causes a movement of the extended set. Adding particular sets of 

hops may cause an oscillation of the swarm. This occurs in typical oscillation modes. These extra sets 

form cycles. They are closed path objects. Adding or retrieving such sets must be done in sync with 

the swarm regeneration process. The sets that leave the oscillating swarm are open path strings. 

Such open path strings can also enter the free swarm or an already oscillating swarm. In principle the 

oscillations keep the swarm on average at the same location. 

Adding a more arbitrary set of duals or an open path string that does not fit for establishing an 

oscillation, will cause a translation of the possibly oscillating swarm. An entering string can be broken 

into one or more fitting open path strings and a translation set. The translation set increases the 

kinetic energy of the composite. 

3.3.1 Synchronization 
However, adding duals to the swarm itself will disturb the regeneration synchronization of higher 

order constructs. The generation of the swarm represents a cycle period that is used in the 

construction of composites. The composites are generated by parallel process that all act within the 

same cycle period. 

Thus the addition of series of duals that cause movement of the swarm occurs in a parallel process 

and the action of the members of the series are spread over the cycle period. This gives these extra 

duals a different character than the duals that form the swarm. The extra duals act on the full swarm 

and can be considered as incremental displacement generators in configuration space. They can be 

seen as superposition coefficients in Fourier (=momentum) space. 

In order to explain this a mathematical intermezzo is inserted. 

  

                                                           
2 The normalized continuous location density distribution corresponds to the squared modulus 

of the wave function that characterizes elementary particles in contemporary physics. 
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4 Mathematical intermezzo 
The equations in this intermezzo are based on application in a flat continuum. In practice this only 

holds under special conditions. In general the embedding continuum is curved. Later we treat the 

influence of curvature. 

4.1 Functions as Hilbert space operators 
By using bra-ket notation, operators that reside in the Hilbert space and correspond to continuous 

functions, can easily be defined starting from an orthogonal base of vectors.  

 

Let {𝑞𝑖} be the set of rational quaternions and {|𝑞𝑖〉} be the set of corresponding base vectors. 

|𝑞𝑖〉𝑞𝑖〈𝑞𝑖| is the configuration parameter space operator.  

 

Let 𝑓(𝑞) be a quaternionic function. 

|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖| defines a new operator that is based on function 𝑓(𝑞). 

 

In the Gelfand triple, the continuous function 𝑓(𝑞) can be defined between a continuum eigenspace 

that acts as target space and the eigenspace of the reference operator |𝑞〉𝑞〈𝑞| that acts as 

parameter space. 

In the Gelfand triple the dimension of a subspace loses its significance. Thus a function that is derived 

from the representation of a coherent swarm in Hilbert space has a dimension in Hilbert space, but 

loses that characteristic in its representation in the Gelfand triple. 

4.2 Quaternion geometry and arithmetic 

Quaternions and quaternionic functions offer the advantage of a very compact notation of items that 

belong together. 

Quaternions can be considered as the combination of a real scalar and a 3D vector that has real 

coefficients. This vector forms the imaginary part of the quaternion. Quaternionic number systems 

are division rings. 

 

Bi-quaternions exist whose parts exist of a complex scalar and a 3D vector that has complex 

coefficients. Bi-quaternions do not form division rings. This model does not use them. 

4.2.1 Notation 

We indicate the real part of quaternion 𝑎 by the suffix 𝑎0. 

We indicate the imaginary part of quaternion 𝑎 by bold face 𝒂. 

 

𝑎 = 𝑎0 + 𝒂 (1) 
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4.2.2 Sum 

𝑐 = 𝑐0 + 𝒄 = 𝑎 + 𝑏 

 

𝑐0 = 𝑎0 + 𝑏0 

 

𝒄 = 𝒂 + 𝒃 

4.2.3 Product 

𝑓 = 𝑓0 + 𝒇 = 𝑑 𝑒 

 

𝑓0 = 𝑑0𝑒0 − ⟨𝒅, 𝒆⟩ 

 

𝒇 = 𝑑0𝒆 + 𝑒0𝒅 ± 𝒅 × 𝒆 

 

The ± sign indicates the influence of right or left handedness of the number system3.  

 

⟨𝒅, 𝒆⟩ is the inner product of 𝒅 and 𝒆. 

𝒅 × 𝒆 is the outer product of 𝒅 and 𝒆. 

4.2.4 Norm 

|𝑎| = √𝑎0𝑎0 + 〈𝒂, 𝒂〉 

4.2.5 Rotation 

Quaternions are often used to represent rotations. 

 

𝑐 = 𝑎𝑏/𝑎 

 

rotates the imaginary part of 𝑏 that is perpendicular to the imaginary part of 𝑎4. 

 

4.3 Quaternionic functions 

4.3.1 Norm 
Square-integrable functions are normalizable. The norm is defined by: 

                                                           
3 Quaternionic number systems exist in 16 symmetry flavors. Within a coherent set all 

elements belong to the same symmetry flavor. 
4 See Q-FORMULÆ 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(1) 

(1) 

http://vixra.org/abs/1210.0111
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‖𝜓‖2 = ∫ |𝜓|2 𝑑𝑉
𝑉

 

= ∫ {|𝜓0|2 + |𝝍|2 }𝑑𝑉
𝑉

 

 

= ‖𝜓0‖2 + ‖𝝍‖2 

 

4.3.2 Differentiation 
If 𝑔 is differentiable then the quaternionic nabla 𝛻𝑔 of 𝑔 exists. 

The quaternionic nabla 𝛻 is a shorthand for 𝛻0 + 𝜵 

 

𝛻0 =
𝜕

𝜕𝜏
 

 

𝛁 = {
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
} 

 

ℎ = ℎ0 + 𝒉 = ∇𝑔 

 

ℎ0 = ∇0𝑔0 − ⟨𝛁, 𝒈⟩ 

 

𝒉 = ∇0𝒈 + 𝛁𝑔0 ± 𝛁 × 𝒈 

 

𝜙 = 𝛻𝜓 ⇒ 𝜙∗ = (𝛻𝜓)∗ 

 

(𝛻𝜓)∗ = ∇0𝜓0 − ⟨𝛁, 𝝍⟩ − ∇0𝝍 − 𝛁𝜓0 ∓ 𝛁 × 𝝍 

 

𝛻∗𝜓∗ =  ∇0𝜓0 − ⟨𝛁, 𝝍⟩ − ∇0𝝍 − 𝛁𝜓0 ± 𝛁 × 𝝍 

Similarity of these equations with Maxwell equations is not accidental. In Maxwell equations 

several terms in the above equations have been given special names. 

4.3.3 Gauge transformation 
For a function 𝜒 that obeys 

 

(1) 

(3) 

(4) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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∇∗∇χ = ∇0∇0𝜒 + ⟨𝛁, 𝛁𝜒⟩ = 0 

 

the value of 𝜙 in 

 

𝜙 = 𝛻𝜓 

 

does not change after the gauge transformation5 

 

𝜓 → 𝜓 + ξ =  𝜓 + ∇∗𝜒 

 

𝛻𝜉 = 0 

 

Thus in general: 

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁𝜓⟩ = 𝜌 ≠ 0 

 

𝜌 is a quaternionic function. 

Its real part 𝜌0 represents an object density distribution. 

Its imaginary part 𝝆 represents a current density distribution. 

 

∇∗∇𝜒0 = 0 

 

∇∗∇𝝌 = 0 

 

 

Equation (5) forms the basis of the Huygens principle. 

It is the reason of the emission of a 3D wave front during the process of embedding of a discrepant 

object at a given location in a continuum. 

 

                                                           
5 The qualification gauge transformation is usually given to a transformation that leaves the 

Laplacian untouched. Here we use that qualification for transformations that leave the 

quaternionic differential untouched. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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In a similar way equation (6) forms the basis of the emission of a 1D wave front during the 

embedding of a discrepant displacement in the continuum. The direction of the displacements is 

coupled to the direction of the emitted 1D wave front. 

 

Small displacements can be treated in a local complex number based sub-model. 

In a complex number based model the 3D gauge transformation becomes a 1D gauge 

transformation.  

4.3.4 Displacement generator 
The definition of the differential is 

 

Φ = 𝛻𝜓  

 

In Fourier space the nabla becomes a displacement generator.  

 

Φ̃ = ℳ�̃� 

 

ℳ is the displacement generator 

A small displacement in configuration space becomes a multiplier in Fourier space. 

In a paginated space-progression model the displacements are small and the displacement 

generators work incremental. The multipliers act as superposition coefficients. 

4.3.5 The coupling equation 
The coupling equation follows from peculiar properties of the differential equation. We start with 

two normalized functions 𝜓 and 𝜑 and a normalizable function Φ = 𝑚 𝜑.  

 

‖𝜓‖ = ‖𝜑‖ = 1 

 

These normalized functions are supposed to be related by: 

 

Φ = 𝛻𝜓 = 𝑚 𝜑 

 

Φ = 𝛻𝜓 defines the differential equation. 

 

𝛻𝜓 = Φ formulates a continuity equation. 

 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 
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𝛻𝜓 = 𝑚 𝜑 formulates the coupling equation.  

 

It couples 𝜓 to 𝜑. 𝑚 is the coupling factor. 

 

𝛻𝜓 = 𝑚1 𝜑 

 

𝛻∗𝜑 = 𝑚2 𝜁 

 

∇∗𝛻𝜓 = 𝑚1 ∇∗𝜑 = 𝑚1𝑚2𝜁 = 𝜌 

 

Each double differentiable quaternionic function represents a normalized density distribution. 

4.3.5.1 In Fourier space 

The Fourier transform of the coupling equation is: 

 

ℳ�̃� = 𝑚�̃� 

 

ℳ is the displacement generator 

  

(5) 

(6) 

(7) 

(8) 

(1) 
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5 What happens to the continuum? 

5.1 Embedding 
In the previous chapter only mathematical formulas were listed. Here we give these formulas an 

interpretation in the model. 

The quaternionic differential equation 

 

𝜙 = 𝛻𝜓 

 

can be interpreted as a continuity equation. It describes how a coherent set of discrete objects are 

embedded in a continuum. 

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁𝜓⟩ = 𝜌 ≠ 0 

 

𝛻𝜒 = 0 

 

∇∗∇χ = ∇0∇0𝜒 + ⟨𝛁, 𝛁𝜒⟩ = 0 

 

Here 𝜓 describes the embedding continuum including the added coherent swarm of objects 𝜌 in the 

form of a normalized continuous quaternionic density distribution. χ describes the embedding 

continuum without the swarm. 

The quaternionic function χ describes how the embedding continuum reacts on the embedding. 

Formula (4) is used by the Huygens principle. For each embedding of the location part of a dual 

a 3D wave front is generated at that location.  

For each embedding of the displacement part of a dual a 1D wave front is generated at the 

landing location of the hop. For this case the formula can better be considered in a local complex 

number based context. The angular distribution of the 1D wave fronts depends on the angular 

distribution of the hops. 

Only a discrepancy in the symmetry flavors that are coupled leads to the singularity that causes 

the emission of a wave front that goes together with the embedding of a discrete object into an 

embedding continuum. 

5.2 Superposition 
The coupling equation shows that an incremental displacement in configuration space 

corresponds to a multiplication factor in Fourier space. 

 

𝛻𝜓 = 𝑚 𝜑 

 

(1) 

(2) 

(3) 

(4) 

(1) 
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ℳ�̃� = 𝑚�̃� 

 

This multiplication factor can be interpreted as a superposition coefficient. 

5.3 Quaternionic function symmetry flavors 
Continuous quaternionic functions do not switch to other symmetry flavors.  

• If the real part is ignored, then still 8 symmetry flavors result 

• They are marked by special indices, for example 𝝍④ 

• 𝝍⓪is the reference symmetry flavor 

• They are also marked by colors 𝑁, 𝑅, 𝐺, 𝐵, �̅�, �̅�, �̅�, 𝑁 

• Half of them is right handed, R  

• The other half is left handed, L 

 

The colored rectangles  

reflect the directions of the axes 

 

Also continuums feature a symmetry flavor. The reference symmetry flavor is the symmetry flavor of 

the parameter space. The parameter space is a flat continuum.  

If the continuous quaternionic function describes the density distribution of a set of discrete objects, 

then this set can be attributed with the same symmetry flavor. 

5.4 Influence of symmetries 
The embedding process is controlled by the symmetry flavors of the embedded object and the 

embedding continuum. Quaternions number systems as well as continuous quaternionic functions 

exist in 16 symmetry flavors. Even when the real parts are ignored this results in a variety of 8×8=16 

different embedding products. Enough to cover all first generation members of the standard model. 

For example the Dirac equation for the free electron in quaternionic format runs: 

 

𝛻𝜓 = 𝑚𝑒 𝜓∗ 

 

And the Dirac equation for the positron runs: 

 

𝛻∗𝜓∗ = 𝑚𝑒 𝜓 

(2) 

(1) 

(2) 
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Thus 

 

𝛻∗𝛻𝜓 = 𝑚𝑒𝛻∗ 𝜓∗ = 𝑚𝑒
2 𝜓 

 

For electrons 𝜓 represents its own normalized object density distribution. 

𝜓∗ and 𝜓 are symmetry flavors of the same base function. 

Other elementary particles couple different symmetry flavors {𝜓𝑥, 𝜓𝑦} of their shared base function: 

 

𝛻𝜓𝑥 = 𝑚𝑥𝑦 𝜓𝑦 

 

And for the antiparticle: 

 

𝛻∗(𝜓𝑥)∗ = 𝑚𝑥𝑦 (𝜓𝑦)∗ 

 

The difference in the symmetry flavors between the members of the pair {𝜓𝑥 , 𝜓𝑦} can be related to 

the electric charge, color charge and spin of the corresponding elementary particle. 

Fermions appear to couple to the reference symmetry flavor 𝝍⓪. 

5.5 Coupling properties 
Discrepancies between the coupled symmetry flavors determine the properties of the coupling 

result. For example electric charge depends on the number of dimensions in which symmetry flavors 

differ. Also the direction in which they differ is important. Further is important whether handedness 

switches. Color charge also changes with the number of dimensions in which symmetry flavors differ. 

Spin appears to depend on the fact whether the embedding continuum has the reference flavor. 

5.6 Curvature 
In practice the emission of 3D wave fronts will cause a local folding and thus a curvature of the 

embedding continuum. This effect is the basis of the gravitation potential, which represents the 

averaged effects of these wave fronts. 

In a curved environment the quaternionic nabla must be replaced by a differential that is constituted 

of 16 partial derivatives. 

Where the 3D wave fronts decrease their amplitude with distance from the source, will the 

amplitude of the 1D wave fronts stay constant. As a consequence the 1D wave fronts do not curve 

the embedding continuum. Depending on the angular distribution of the hops that generated them, 

the 1D wave fronts also combine and average down to an up to 3D potential. In contemporary 

physics this potential is known as electromagnetic potential. The messengers keep their amplitude. 

(3) 

(4) 

(5) 
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Curvature affects the map of the swarm onto the curved embedding continuum. The overall map 𝒫 

produces a blurred target. It is described by the convolution of a sharp continuous quaternionic 

allocation function ℘ and a stochastic spatial spread function 𝒮.  

 

𝒫 = ℘ ∘ 𝒮 

 

The allocation function has a flat parameter space. It describes the history of the path of the 

concerned particle. At the same time it describes the embedding continuum. 

The stochastic spatial spread function 𝒮 produces a blurred image 𝜓 of a swarm. The swarm is 

produced by the combination of a Poisson process and a binomial process. The spread function 

implements the binomial process. 𝒮 has progression as its single real parameter. The Fourier 

transform �̌� of the density distribution 𝜓 that describes this swarm acts as a mapping quality 

characteristic. 

5.7 Metric 
The differential of the sharp allocation function defines a kind of quaternionic metric. 

 

𝑑𝑠(𝑞) = 𝑑𝑠𝜈(𝑞)𝑒𝜈 = 𝑑℘ = ∑
𝜕℘

𝜕𝑞𝜇
𝑑𝑞𝜇

𝜇=0…3

= 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

𝑞 is the quaternionic location. 

𝑑𝑠 is the metric. 

𝑐𝜇 is a quaternionic function. 

 

Pythagoras: 

 

𝑐2𝑑𝑡2 = 𝑑𝑠 𝑑𝑠∗ = 𝑑𝑞0
2 + 𝑑𝑞1

2+𝑑𝑞2
2+𝑑𝑞3

2 

 

Minkowski: 

 

𝑑𝑞0
2 = 𝑑𝜏2 = 𝑐2 𝑡2 − 𝑑𝑞1

2−𝑑𝑞2
2−𝑑𝑞3

2 

 

In flat space: 

 

∆𝑠𝑓𝑙𝑎𝑡 = ∆𝑞0 + 𝒊 ∆𝑞1 + 𝒋 ∆𝑞2 + 𝒌 ∆𝑞3 

(1) 

(2) 

(3) 

(4) 
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In curved space: 

∆𝑠℘ = 𝑐0 ∆𝑞0 + 𝑐1 ∆𝑞1 +  𝑐2 ∆𝑞2 + 𝑐3 ∆𝑞3 

 

 

𝑑℘ is a quaternionic metric 

It is a linear combination of 16 partial derivatives 

6 Energy 
In the model the energy of a composite is directly related to the number of duals that constitute the 

composite. It is also directly related to the dimension of the dual subspace that represents the 

composite. 

In the open path objects energy is related to the number of hops that constitute the object. This is 

also equal to the number of 1D wave fronts that constitute the object. 

Oscillations that are internal to a composite are represented by closed path objects. The enclosed 

extra hops add to the energy of the composite. 

  

(5) 
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7 Potentials 
In this model potentials form the averages over a small period of progression and a region of space of 

the wave fronts that are emitted during embedding of particles. 

7.1 The location potential 
The wave fronts that are emitted during the embedding of the location members of the duals are 

isotropic 3D wave fronts. Their spreading is controlled by the 3D version of the Huygens principle. 

This means that their amplitude decreases with the distance from the source as 1/𝑟. 

Here we consider a simplified situation. With an isotropic density distribution 𝜌0(𝑟) in the swarm the 

scalar potential 𝜑0(𝑅) can be estimated as: 

 

𝜑0(𝑅) = ∫ 𝜌0(𝑟)𝑑𝑟
𝑅

0

 

 

R is the distance to the center of the swarm.  

If the density distribution approaches a 3D Gaussian distribution, then this integral equals6: 

 

𝜑0(𝑅) = Erf(𝑅)/𝑅 

 

We suppose that this distribution is a good estimate for the structure of the swarm of a free electron. 

It is remarkable that this potential has no singularity at 𝑅 = 0. At the same time, already at a short 

distance of the center the function very closely approaches 1/𝑅.  

7.1.1 Moving swarm 
If the swarm moves with uniform speed 𝒗 than this conforms to a vector potential 𝝋(𝑅) : 

 

𝝋(𝑅) = ∫ 𝒗 𝜌0(𝑟)𝑑𝑟 = 𝒗 
𝑅

0

𝜑0(𝑅) 

Now we use  

 

𝔈 = 𝛻𝜑 = ∇0𝜑0 − ⟨𝛁, 𝝋⟩ + ∇0𝝋 − 𝛁𝜑0 ∓ 𝛁 × 𝝋 

 

An acceleration of the swarm goes together with an extra vector field 𝔈: 

 

𝕰 ≈  𝛻0 𝝋(𝑅)  =  �̇� 𝜑0 (𝑅) 

                                                           
6 http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density 

(1) 

(2) 

(1) 

(2) 
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Other terms are small.  

7.2 The hop potential 
The wave fronts that are emitted during the embedding of the displacement members of the duals 

are planar 1D wave fronts. Their spreading is controlled by the 1D version of the Huygens principle. 

This means that their amplitude does not decrease with distance from the source. As a consequence 

these wave fronts do not curve the embedding continuum. 

For an isotropic swarm the angular distribution of the wave fronts is isotropic. The corresponding 

location distribution may again approach a Gaussian distribution. The sum of all hops is supposed to 

equal zero. The spread of the influences behave similar to the spread of the influences of the location 

related wave fronts. Thus here the same formulas holds as for the location related wave fronts. 

8 Inertia 
In the model, universe is coarsely uniformly covered with swarms. These swarms represent a 

location potential 𝜑0(𝑅) that at larger distances deceases as 1/𝑟. Together the most distant swarms 

together deliver the largest contribution. Locally these potentials combine in a scalar potential 𝜙0 : 

 

𝜙0 =  ∫ 𝜑0(𝑅) 𝑑𝑉 

 

A moving swarm will go together with a vector potential 𝝓 . 

 

𝝓 =  ∫ 𝒗 𝜑0(𝑅) 𝑑𝑉 = 𝒗 𝜙0 

 

Now we use  

 

𝔊 = 𝛻𝜙 = ∇0𝜙0 − ⟨𝛁, 𝝓⟩ + ∇0𝝓 − 𝛁𝜙0 ∓ 𝛁 × 𝝓 

 

An accelerating swarm will encounter a vector field 𝔊: 

 

𝕲 ≈ ∇0𝝓 = �̇� 𝜙0 

 

Other terms are small. 

This field counteracts the acceleration. 

  

(1) 

(2) 

(3) 
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9 Cosmos 

9.1 Integral continuity equations 
The integral equations that describe cosmology are: 

 

∫ ∇ 𝜌 𝑑𝑉

𝑉

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

∫ ∇0𝜌0 𝑑𝑉

𝑉

= ∫〈𝛁, 𝝆〉 𝑑𝑉

𝑉

+ ∫ 𝑠0 𝑑𝑉

𝑉

 

 

 

∫ ∇0 𝝆 𝑑𝑉

𝑉

= − ∫ 𝛁𝜌0 𝑑𝑉

𝑉

− ∫ 𝛁 × 𝝆 𝑑𝑉

𝑉

+ ∫ 𝒔 𝑑𝑉

𝑉

 

 

𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉

𝑉

+ ∮�̂�𝜌 𝑑𝑆
𝑆

= ∫ 𝑠 𝑑𝑉

𝑉

 

 

 

Here �̂� is the normal vector pointing outward the surrounding surface S, 𝒗(𝜏, 𝒒) is the velocity at 

which the charge density 𝜌0(𝜏, 𝒒) enters volume V and 𝑠0 is the source density inside V. In the above 

formula 𝜌 stands for 

 

𝜌 =  𝜌0 + 𝝆 =  𝜌0 +
𝜌0𝒗

𝑐
 

 

It is the flux (flow per unit of area and per unit of progression) of 𝜌0 . 𝜏 stands for progression. 

9.2 Space cavities 
A static space cavity is characterized by: 

 

𝑑

𝑑𝜏
∫  𝜌 𝑑𝑉 = 0

𝑉

 

 

All properties of this object depend on the surrounding surface. 

These objects are known as black holes. 

(1) 

(2) 

(3) 

(4) 

(4) 

(1) 
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9.3 Inversion surfaces 
An inversion surface 𝑆 is characterized by: 

 

∮�̂�𝜌 𝑑𝑆
𝑆

= 0 

 

It is supposed that duals are stopped, but that potentials and their constituting wave fronts can still 

pass this inversion surface. 

The inversion surfaces divide universe into compartments. 

  

(1) 
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10 Messengers 

10.1 Observed behavior 
Photons are very special objects that are emitted by oscillating composites when they step down 

from a higher oscillation mode to a lower oscillation mode. Absorption of photons by a composite 

occurs when the composite steps up from a lower oscillation mode to a higher oscillation mode. 

Further photons play a role in the creation and the annihilation of pairs of elementary building 

blocks. The pair consists of a merge of an elementary particle and its antiparticle.  

A very particular difference occurs between young and old photons. Old photons appear to be red-

shifted. 

10.2 Representation in the model 
In the model messengers are represented by open path objects. They are the equivalents of photons. 

The emission and the absorption of messengers are controlled by processes that work in parallel to 

the generation of swarms. Locally these processes act in sync. These processing periods depend on 

the number of involved progression steps. It is not probable that the number of involved progression 

steps will change with progression. However, the duration of a single progression step may change 

with progression. 

With other words, the emission of an old messenger lasted as long as in those conditions the 

absorption of a messenger lasted, but the emission and absorption of young messengers takes a 

shorter duration. This means that when an old messenger is recently absorbed, then only part of the 

number of wave fronts are detected. With other words the detected old messenger appears to be 

red-shifted. 

11 Interpretation of red shift 
In the model the speed of information transfer is taken as a model constant. This means that 

extension of the progression step goes together with space extension.  

In this paper, red shift of old messengers is explained as extension of the progression step with 

smaller progression values. This is in direct contrast to the interpretation that contemporary physics 

gives to red-shift of old photons. 

This model relates the energy of messengers to the number of contained wave fronts. The model 

considers the duration of the emission, passage and absorption of messengers as a variable that 

decreases with progression. The difference between the emission duration and the absorption 

duration causes the observed red-shift. 

Contemporary physics ignores the duration of these processes. It relates the energy of the photon to 

the frequency of the photon. 

12 Object graininess 
In the model, locally the duration of emission, passage and absorption of messengers is suspected to 

be equal or it depends on the graininess of the emitter. Measuring the duration and the frequency of 

the messenger will reveal the number of wave fronts that is contained in the messenger. 

This is also the case for messengers that are released at pair annihilation. In this case the number of 

contained wave fronts will give information about the number of duals that were contained in the 
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members of the annihilated pair. With other words it will reveal the dimension of the dual subspace 

that represented the annihilated object. 

13 The dimension of the subspaces 
In the Gelfand triple the dimension of subspaces that correspond to subspaces in Hilbert space is not 

defined. However, the coupling equation can give some indication of a measure that can replace the 

dimension. In the Hilbert space the dimension relates to the number of eigenvalues of the operator 

whose eigenvectors span the subspace. Now consider the eigenvalues that store the values of the 

hops. Compare: 

 

Φ = 𝛻𝜓 = 𝑚 𝜑 

 

‖Φ‖2 = ∫ |Φ|2 𝑑𝑉 =
𝑉

∫ |𝛻𝜓|2 𝑑𝑉 = 𝑚2‖𝜑‖2

𝑉

= 𝑚2 

 

Now let us apply this to the swarm by replacing the integral by a summation of squared hop sizes |ℎ𝑖|. 

 

𝑚2 = ∑|ℎ𝑖|2

𝑁

𝑖

= 𝑁|ℎ𝑖|
2̅̅ ̅̅ ̅̅  

 

ℎ𝑖is the quaternionic value of the i-th hop. It includes a fixed size progression step. The resulting part 

is an imaginary quaternion. 𝑁 is the number of elements in the location swarm.  

Thus 𝑚 is related to the dimension of the subspace in the Hilbert space. 

13.1 Binding energy 
If the dimension of the subspace that represents a composite is smaller than the sum of the 

dimensions of its constituents, then the difference is spent on binding energy. The hops that left have 

gone in the form of messengers or these hops are used to support the oscillations of the constituents 

that occur inside of the composite. At the same time the constituents have lost part of their identity. 

They differ from the free versions of the constituents. 

14 Spurious duals 
The most elementary discrete objects in the model are the location-hop duals. Embedding of a 

location causes a 3D wave front. Embedding of a hop causes a 1D wave front that relates its direction 

to the direction of the hop. Embedding a dual generates both wave fronts. 

Spurious duals cause the generation of spurious wave fronts. The amplitude of the 3D wave front 

diminishes quickly, but these wave fronts curve the embedding continuum a bit. Thus this effect may 

be causing dark “matter”. The 1D wave fronts do not curve the embedding continuum, but they may 

represent “dark energy”. 
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14.1 Why swarms ? 
The fact that spurious duals appear in large numbers, raises the question why swarms, which are 

coherent collections of large numbers of duals, also exist. What keeps these duals together. Some 

kind of binding principle must exist. What is even more peculiar is the fact that these swarms have 

fixed statistical properties, while the set elements have the same symmetry flavor. 

The binding can be caused by the common gravity pitch. The embedding of each separate dual 

causes only a small gravitation pinch. The gravitation pinch diminishes with distance 𝑟 as 1/𝑟. The 

swarm contains a huge number of duals and these duals together produce a gravitation pitch that is 

shaped as a much broader 𝐸𝑟𝑓(𝑟)/𝑟 dependence on distance 𝑟. This relatively flat potential covers a 

major part of the swarm. At much larger distances this function also diminishes as 1/𝑟. 

In large numbers spurious duals can still bring a noticeable gravitation contribution that is 

characterized by a very large spread. 

15 Appendix: History of discoveries 
The concept of "Universe" follows with mathematical inescapable evidence from first principles that 

constitute a recipe for modular construction. These first principles define an orthomodular lattice. This 

is the structure of quantum logic. 

Quantum logic was introduced by Garret Birkhoff and John von Neumann in their 1938 paper. G. 

Birkhoff and J. von Neumann, The Logic of Quantum Mechanics, Annals of Mathematics, Vol. 37, 

pp. 823–843 

The Hilbert space was discovered in the first decades of the 20-th century by David Hilbert and 

others. http://en.wikipedia.org/wiki/Hilbert_space. 

Paul Dirac introduced the bra-ket notation, which popularized the usage of Hilbert spaces. 

In 1843 quaternions were discovered by Rowan Hamilton. 

http://en.wikipedia.org/wiki/History_of_quaternions 

In the sixties Constantin Piron and Maria Pia Solèr proved that the number systems that a separable 

Hilbert space can use must be division rings. “Division algebras and quantum theory” by John Baez. 

http://arxiv.org/abs/1101.5690 

In the sixties Israel Gelfand and Georgyi Shilov introduced a way to model continuums via an 

extension of the separable Hilbert space into a so called Gelfand triple. The Gelfand triple often gets 

the name rigged Hilbert space, which is confusing, because this construct is not a Hilbert space. 

These discoveries are used as foundations by the e-book “The Hilbert Book Model Game”. 

http://vixra.org/abs/1405.0340 . 

http://en.wikipedia.org/wiki/Hilbert_space
http://en.wikipedia.org/wiki/History_of_quaternions
https://www.linkedin.com/redirect?url=http%3A%2F%2Farxiv%2Eorg%2Fabs%2F1101%2E5690&urlhash=aDHk&_t=tracking_disc
http://vixra.org/abs/1405.0340

