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Abstract: In previous papers [1,2] relating to the Combined Gravitational Action (CGA), we have exclusively 

studied the orbital motion without spin. In the present paper we apply the CGA to any self-rotating material body, 

i.e., axially spinning massive object, which itself may be locally seen as a gravitorotational source because it is 

capable of generating the gravitorotational acceleration field, which seems unknown in the previously existing 

gravity theories. The consequences of such an acceleration field are very interesting particularly for the compact 

stellar objects.  
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1. Introduction 

We have previously [1,2] shown that the Combined Gravitational Action (CGA) as an alternative gravity 

theory is very capable of predicting and explaining some old and new gravitational phenomena. For 

example, in [2], we have investigated the CGA-spin-orbit coupling precession and applied CGA to large-

scale structures and the problem of galactic rotation curves has been resolved. Also the Modified 

Newtonian Dynamics (MOND) [3,4,5,6] as an alternative theory to the dark matter (DM) paradigm 

became by means of CGA [2] an additional support for DM! 

 

Conceptually, the CGA is basically founded on the concept of the combined gravitational potential 

energy (CGPE) defined by the expression 
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where GMmk  ; G  being the Newton’s gravitational constant; M and m  are the masses of the 

gravitational source A and the moving test-body B ; 
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distance between A  and B ; 222

zyx vvvv  is the velocity of the test-body B relative to the inertial 

reference frame of source A ; and w  is a specific kinematical parameter having the physical dimensions 

of a constant velocity defined by 
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where 0c  is the light speed in local vacuum and escv  is the escape velocity at the surface of the 

gravitational source A.  
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Hence, starting from the CGPE and using only the very familiar tools of classical gravitomechanics and 

and Euler-Lagrange equations, we have established the CGA-formalism [1,2]. The main consequence of 

CGA is the dynamic gravitational field (DGF),Λ , which is phenomenologically an induced field, it is 

more precisely a sort of gravitational induction due to the relative motion of material body in the vicinity 

of the gravitational source[1,2]. The magnitude of DGF is of the form  
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Eq.(3) means that DGF may play a double role, that is to say, when perceived/interpreted as an extra-

gravitational acceleration, 0Λ  , or an extra-gravitational deceleration, 0Λ , (see Ref. [1] for a detailed 

discussion).  

 

In previous papers [1,2], we have focused our interest on the orbital motion  and gravitational two-body 

problem. In the present paper, we shall apply CGA to any self-rotating (spinning) material body, i.e., axially 

rotating massive object that is itself may be locally seen as a gravitorotational source since it is capable of 

generating the gravitorotational acceleration field, λ ,which seems unknown in the previously existing gravity 

theories. 

 

 

2. Concept of the gravitorotational acceleration field 

 

Phenomenologically speaking, the concept of the gravitorotational acceleration field vector (GRA), λ , is 

very similar to DGF, that is if Λ  is mainly induced by the relative motion of the massive test body in the 

vicinity of the principal gravitational source, the GRA is intrinsically generated by any massive body in 

rotational motion independently of the principal gravitational source, which itself may be characterized 

by its proper GRA during its axial-rotation, therefore, the gravitorotational acceleration field is, in fact, a 

combination of gravity and rotation. 

 

 

3. Expression of GRA 

 

In order to derive an explicit expression for GRA, let us first rewrite Eq.(3) for the case when 0Λ  , 

that is   
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and considering a massive body of mass M and radius R , which is intrinsically in axial-rotation in its 

proper reference frame at rotational velocity of magnitude Rv Ωrot  independently of the presence of 

any other gravitational source. Therefore, according to the concept of GRA, in which a case, the rotating 

massive body should be locally seen as a gravitorotational source when λ λΛ  as Rr  , 

rotvv   and 0cw  , thus (4) becomes after substitution  
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Since 12Ω  P , where P is the rotational period, hence we get after substitution in (5) the expected 

expression of GRA 
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It is clear from Eq.(6), GRA Ȝ  depends exclusively on the mass and rotational period, therefore, 

mathematically may be treated as a function of the form 

  

                                                                                       PMλλ , .                                                                                           (7) 

  

The structure of Eq.(6) allows us to affirm that for any astrophysical massive object, the magnitude of λ  

should be infinitesimally small for slowly rotating massive stellar object and enormous for rapidly 

rotating ones. Further, in order to confirm numerically our affirmation, we have selected seven well-

known (binary) pulsars and calculated their GRAs, and compared them with the Sun’s GRA. The values 

are listed in Table 1.  

 

                                                                                  

                    OBJECT                                                    P                               M                                         λ                                    REF.                                                          

          Sun + PRS                                 s                            ( M )                     (
-2sm )                                              

          

              Sun                           2.358720
6

10                1                      1.047211
-8

10      
               

                  
                   

            

              B 1913+16                5.903000
-2

10               1.4410  
                 

2.409380
7

10  
          

       a  
             

               

                B 1534+12                  3.790000
-2

10                 1.3400                5.435171
7

10                  b,c 
    

                                       

                B 2127+11C               3.053000
-2

10                 1.3600                8.501044
7

10                  d                      

                B 1257+12                  6.200000
-3

10                 1.4000                2.121932
9

10                   e                      

                J 0737-3039               2.280000
-2

10                 1.3381                1.500000
8

10                   f                                

                B 1937+21                 1.557800
-3

10                  1.4000                3.364000
10

10                  g                      

                J 1748-2446ad          1.395000
-3

10                  1.4000                4.194982
10

10                   h     

   

      Table 1: The values of GRA for seven well-known (binary) pulsars compared with the Sun’s GRA value. 
       Ref.: a) Taylor and Weisberg [7]; b) Arzoumanian  [8]; c) Wolszcan [9]; d) Deich and Kulkarni [10]; e)    

       Konacki and  Wolszcan [11]; f) Kramer and Wex [12]; g) Takahashi et al. [13]; h) Hessels et al. [14]. 

       Note: To calculate these values, we have used  67384.6G
-2-1311

skgm10
 ;  

-1

0 ms299792458c ;      

       
 
MΘ =1.9891× kg10

30
    and  d30.27P .  
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The analysis of Table 1 gives us the following results: 1) The magnitude of the Sun’s GRA, 
-28 ms10047211.1 

 λ , is extremely  weak that’s why its effect on the solar system is unobservable, 
but perhaps only the Sun’s immediate vicinity that should be concerned by it. Since GRA is explicitly 
independent of the radius of rotating massive object, thus the extreme weakness of the Sun’s GRA is 

mainly due to the huge value of the rotational period, s10358720.2 6P , compared with those of the 

pulsars. 2) In spite of the fact that the PSR’s masses are nearly equal, the PSR’s rotational periods show 
a neat inequality between them. Also, the different values of GRA for each celestial object show us how 

the GRA is so sensitive to the variation in rotational period. 

 

4. Mutual dependence between the mass and the rotational period 

 

Since GRA may be treated as a function of the form (7), thus we can show more clearly the existence of 

the mutual dependence between the mass and the rotational period of the same rotating body via GRA. 

For this purpose, we deduce from Eq.(6) the following expression 
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Obviously, Eq.(8) shows us the expected mutual dependence  between the mass and rotational period via 

GRA. Furthermore, because the rotational period is an intrinsic physical quantity, here, according to 

Eq.(8) the  spin of any massive celestial body should vary with mass independently of cosmic time. 

 

 

5. Link between GRA and rotational acceleration 

 

Now, returning to Eq.(6) and showing that GRA and the rotational acceleration  

 

                                                                    Ra
2

rot Ω ,                                                                           (9) 

                                        

 

are in fact proportional, rotaλ  , and the constant of proportionality is precisely the compactness factor 

RcGMε 2

0
 

that characterizes any massive celestial body. To this end, it suffices to multiply and 

divide by the radius, R , the right hand side of Eq.(6) to get the expected expression 

 

                                                                                       rotaελ  .                                                                          (10) 

 

According to the expression (10), GRA is at the same time an old and a new natural physical quantity 

that should play a crucial role, specially, for the compact stellar objects like, e.g., the rotating neutron 

stars and pulsars to which the compactness, ε , has a large value compared to that of normal stellar objects. As 

illustration, the Sun’s compactness has the value 
610926858.4 

 ε . 
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6. Consequences of GRA 

 

In what follows, we will show that, in the context of CGA, the transitional state, stability and instability 

of the uniformly rotating neutron star (NS) depending on the ‘antagonism’ between centrifugal force and 

gravitational force or in energetic terms between rotational kinetic energy (RKE) and gravitational 

binding energy (GBE). 

 

Usually, the physics of NS considered the source of the emitted energy is essentially the RKE, however, 

such a consideration should immediately imply that at least, in the medium term, the gravitational 

binding energy should absolutely dominate RKE and as a result the NS should be prematurely in a state 

of gravitational collapse. Hence, as we will see, the main source of the emitted energy is not the RKE but 

the gravitorotational energy (GRE), a sort of new physical quantity which is a direct consequence of 

GRA.  

 

Now, let us determine the conditions of transitional state, dynamical stability and dynamical instability 

that may be characterized any NS at least in the medium term. To this end, we assume a uniformly 

rotating NS as a homogeneous rigid spherical body of mass M, radius R and rotational velocity 

P/2Ω   , where P is the rotational period. It is RKE and GBE are, respectively, defined by the well-

known formulae: 
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where  52 2
MRI    is the moment of inertia of NS under consideration. 

The total energy is 

                                                                  Grot EEW  ,                                                                       (13) 

   

this puts forward the following conditions: 

 

a) 0W ,   NS is in a state of dynamical stability,         

b) 0W ,   NS is in a state of transition, 

c) 0>W ,   NS is in a state of dynamical instability. 

                                                                           

It is worth noting that the three suggested conditions a, b and c are taken in the medium term because NS 

may be suddenly in a state of dynamical perturbation or in a state of transition from stability to instability 

and vice versa. 
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7. Critical rotational period 

   

Knowing the critical rotational period (CRP) of NS is highly important thing because CRP should be 

treated as a parameter of reference on which the temporal evolution of NS depending. Furthermore, since 

the change from stability to instability and vice versa should obligatory pass via the transitional state, 

therefore, from the latter we deduce an expression for theoretical period, and we find, after performing a 

simple algebraic calculation  

                                                                
GM

R
RP

3
2c  .                                                                    (14) 

 

We can numerically evaluate the CRP by taking, through this paper, the standard NS mass and radius 

are, respectively:  MM 4.1
 
and km10R , and we get  

 

                                                   
ms2661.010660963.2 4

c  
P ,                                                      (15) 

which is a tiny fraction of the smallest yet observed rotational period, ms3950.1P , of PRS J1748-

2446ab [14] 

 

 

8. Gravitorotational energy 

 

Now, we are arriving at the most important consequence of GRA, namely, the gravitorotational energy 

(GRE), which should qualitatively and quantitatively characterize any massive rotating body. As we will 

see, GRE is quantitatively comparable to the amount of RKE, particularly, for NS and pulsars.  

Since GRE is a direct consequence of GRA, thus GRE should be proportional to GRA, i.e.,
 

λE  or 

equivalently 

                                                                       λțE  .                                                                          (16)  

Let us determine the expression of the proportionality constant, ț , by using the dimensional analysis as 

follows. 

                                                     [ ț ] =
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Remark, the dimensional quantity 2LM has the physical dimensions of the moment of inertia, therefore, 

ț  should take the form RIț and consequently, we find the expected expression for GRE: 

 

                                                                      R

Iλ
E  .                                                                           (17) 

 

In order to show that the amount of GRE E is quantitatively comparable to that of RKE, we use the 

same sample of seven (binary) pulsars plus the Sun listed in Table 1. The numerical values of E are 

listed in Table 2.  
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                                       OBJECT                                                           rotE                                               E                                                                                                         

                                Sun + PRS                                       J                                              (J)                                             

 

                                Sun                                     1.365519
36

10                     5.794993
30

10      
               

                  
                   

          

                                B 1913+16                          6.494783
41

10                     2.764710
41

10  
          

                     
             

               

                                   B 1534+12                             1.465117
42

10                        5.799600
41

10                                
    

                              

                                   B 2127+11C                          2.291561
42

10                        9.206431
41

10                                                     

                                   B 1257+12                            5.719933
43

10                         2.365592
43

10                                                      

                                   J 0737-3039                          4.042638
42

10                        1.597991
42

10                                                                

                                   B 1937+21                            9.060475
44

10                         3.747140
44

10                                                     

                                   J 1748-2446ad                     1.129863
45

10                         4.672774
44

10                                     

   

                  Table 2: comparison between the numerical values of rotE  and  E for the Sun and seven well 

                   known (binary) pulsars.  

 

-Analysis of Table 2: The numerical values listed in Table 2 show us, excepting the Sun’ values, all the 
values of rotE  and E are comparable for the seven (binary) pulsars. This fact is mainly due, at the same 

time, to the rotational period and the compactness. To illustrate this fact, the expression (17) may be 

written as follows: 
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From all that we arrive at the following result: In the context of CGA, the RKE cannot be considered as 

the main source of the emitted energy for rotating NS and pulsars because its own role is to balance, 

approximately, the GBE, at least in the medium term. Therefore, the veritable principal source of the 

emitted energy should be undoubtedly GRE. This affirmation is supposed by GRE’s numerical values 
listed in Table 2, which are quantitatively comparable to those of RKE for pulsars. 

 

 

9. Rotating magnetars      

 

Rotating magnetized NS (magnetars) are also important compact stellar objects, that’s why it is possible 
to exploit GRE as an energetic reservoir for rotating magnetars by assuming that there is a certain 

physical mechanism that can convert all GRE into maximum magnetic energy: 

        

                                                              E 32

maxmax RBE ,                                                                   (19) 

 

this could, of course, produce a maximum magnetic field strength  
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                                                                 3

max

 RB E ,                                                                     (20) 

 

where maxB , E  and R  should be expressed in gauss, erg and cm, respectively. And as illustration, let us 

evaluate the maximum magnetic field strength of radio pulsar B 1931+24. We have according to Ref. 

[15] the following parameters:
 

s813.0P  and G103 12

0 B . By taking, as usual,  MM 4.1
 
and 

km10R , we find for GRE  erg101.375758 46E , and after substitution in (20), we get 

 

                                                              G101.173 14

max B  .                                                               (21) 

 

 

 

10. Conclusion   

 

Basing on our gravity model, Combined Gravitational Action, we have derived an explicit expression for 

the concept of gravitorotational acceleration field (GRA), which is unknown in the previously 

established gravity theories. The most significant result of GRA is the gravitorotational energy (GRE), 

which should qualitatively and quantitatively characterize any massive rotating body. Furthermore, GRE 

should be exploited as an energetic reservoir, particularly, for NS and pulsars.   
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