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Abstract

Standard mathematics involves such notions as infinitely small/large, con-
tinuity and standard division. However, some of these notions are treated dif-
ferently in traditional and constructive versions. This mathematics is usually
treated as fundamental while finite mathematics is treated as inferior. Standard
mathematics has foundational problems (as follows, for example, from Gödel’s
incompleteness theorems) but people usually believe that this is less important
than the fact that it describes many experimental data with high accuracy. We
argue that the situation is the opposite: standard mathematics is only a special
case of finite one in the formal limit when the characteristic of the ring or field
used in finite mathematics goes to infinity. Therefore foundational problems in
standard mathematics are not fundamental.
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Standard mathematics involves such notions as infinitely small/large, con-
tinuity and standard division. However, some of these notions are treated differently
in traditional and constructive versions. These notions arose from a belief based on
everyday experience that any macroscopic object can be divided into arbitrarily large
number of arbitrary small parts. However, the very existence of elementary parti-
cles indicates that those notions have only a limited meaning. Indeed, consider the
gram-molecule of water having the mass 18 grams. It contains the Avogadro number
of molecules 6 · 1023. We can divide this gram-molecule by ten, million, billion, but
when we begin to divide by numbers greater than the Avogadro one, the division op-
eration loses its meaning and we cannot obtain arbitrarily small parts. This example
shows that mathematics involving the set of all rational numbers has only a limited
applicability.

As a consequence, any description of macroscopic phenomena using con-
tinuity and differentiability can be only approximate. Water in the ocean can be de-
scribed by differential equations of hydrodynamics but this is only an approximation
since matter is discrete. The above remarks show that using standard mathematics
in quantum physics is at least unnatural.
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A problem arises whether standard mathematics can be substantiated as
an abstract science. A detailed description of the problem of substantiating standard
mathematics can be found in numerous textbooks and monographs (see e.g. Ref. [1]).

As it was shown by Russell and other mathematicians, the Cantor set
theory contains several fundamental paradoxes. To avoid them several axiomatic set
theories have been proposed and the most known of them is the ZFC theory developed
by Zermelo and Fraenkel. However, the consistency of ZFC cannot be proven within
ZFC itself and it was shown that the continuum hypothesis is independent of ZFC.
Gödel’s incompleteness theorems state that no system of axioms can ensure that all
facts about natural numbers can be proven and the system of axioms in traditional
mathematics cannot demonstrate its own consistency.

Brouwer proposed constructive mathematics in order to avoid foundational
problems of traditional mathematics. Here there is no law of the excluded middle and
it is required that any proof of existence be algorithmic. That is why constructive
mathematics is treated such that, at least in principle, it can be implemented on a
computer. Here ”in principle” means that the number of steps might be not finite.
With this meaning constructive mathematics, as well as traditional one, assumes that
one can operate with any desired amount of resources and it is theoretically possible
to consider an idealized case when a computer can operate with any desirable number
of bits.

The absolute majority of mathematicians prefer the traditional version.
Physics is also based only on traditional mathematics. Hilbert was a strong opponent
of constructive mathematics. He said: ”No one shall expel us from the paradise that
Cantor has created for us” and ”Taking the principle of excluded middle from the
mathematician would be the same, say, as proscribing the telescope to the astronomer
or to the boxer the use of his fists”.

Let us look at mathematics from the point of view of philosophy of quan-
tum theory. According to this philosophy, there should be no statements accepted
without proof. The theory should contain only those statements that can be verified,
where by ”verified” physicists mean an experiment involving only a finite number of
steps.

Let us pose a problem of whether 10+20 equals 30. Then we should
describe an experiment which should solve this problem. Any computer can operate
only with a finite number of bits and can perform calculations only modulo some
number p. Say p = 40, then the experiment will confirm that 10+20=30 while if
p = 25 then we will get that 10+20=5. So the statements that 10+20=30 and even
that 2 · 2 = 4 are ambiguous because they do not contain information on how they
should be verified. We believe the following observation is very important: although
standard mathematics is a part of our everyday life, people typically do not realize
that standard mathematics is implicitly based on the assumption that one can have
any desirable amount of resources. So standard mathematics (including traditional
and constructive versions) is based on the implicit assumption that we can consider
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a formal limit p→∞ and the correctness of the limit can be substantiated.
While Gödel’s works on the incompleteness theorems are written in highly

technical terms of mathematical logics, the fact that standard mathematics has foun-
dational problems is clear from the philosophy of quantum theory. For instance, the
first incompleteness theorem says that not all facts about natural numbers can be
proven. However, from the philosophy of quantum theory this seems to be clear be-
cause if the number of numbers is not finite then we cannot verify that a + b = b + a
for any a and b.

The famous Kronecker’s expression is: ”God made the natural numbers,
all else is the work of man”. However only two operations are always possible in
the set of natural numbers: addition and multiplication. In order to make addition
reversible, we introduce negative integers and then we can work with the ring of
integers Z. The next step is the transition to the field of rational numbers in which
all four operations except division by zero are possible. However, if, instead of all
natural numbers, we consider only a set Fp of p numbers 0, 1, 2, ... p − 1 where p
is prime and the operations are defined as usual but modulo p then we get a field
without adding new elements.

One can also treat Fp as a set of elements −(p−1)/2,−(p−3)/2, ...0, ...(p−
3)/2, (p − 1)/2. The convenience of this representation is that for elements x ∈ Fp

such that |x| � p addition, subtraction and multiplication are the same as in Z. In
other words, for such elements we do not feel the existence of p. When p increases,
the bigger and bigger part of Fp becomes similar to Z. This important observation
implies that standard mathematics can be treated as a special case of mathematics
modulo p in the formal limit p→∞.

In the general case, division in Fp is not the same as in standard mathe-
matics. For example, 1/2 in Fp equals (p+ 1)/2, i.e. a very large number if p is large.
However, this does not mean that mathematics modulo p cannot describe physics. It
is important to realize that spaces in quantum theory are projective. In Refs. [2, 3] we
have proposed an approach called GFQT where quantum theory is based on a Galois
field with characteristic p. It has been shown that in the formal limit p→∞ GFQT
recovers the predictions of standard continuous theory. Then the fact that standard
mathematics describes many experiments with a high accuracy can be explained as
a consequence of the fact that in real life the number p is very large.

In addition, GFQT gives a new look at many fundamental problems in
physics (see the discussion in Refs. [4, 5]). In particular, GFQT gives a natural
explanation of the existence of antiparticles and of the fact that a particle and its
antiparticle have equal masses and opposite charges. Another striking example is
that gravity can be treated not as an interaction but simply as a manifestation of
the fact that nature is finite and is described by a Galois field of characteristic p.
In this approach the gravitational constant is not a parameter taken from the out-
side (e.g. from the condition that theory should describe experiment) but a quantity
which should be calculated. The actual calculation is problematic because it requires

3



the knowledge of details of wave functions for macroscopic bodies. However, reason-
able qualitative arguments show [5] that the gravitational constant is proportional to
1/lnp. Therefore, gravity is a consequence of the finiteness of nature and disappears
in the limit p→∞. A qualitative estimation based on additional assumptions gives
that lnp is of the order of 1080 and therefore p is a huge number of the order of
exp(1080).

Also as noted above, in quantum theory standard division has a limited
applicability. This might be an indication that (as Metod Saniga pointed out), in the
spirit of Ref. [6], the ultimate quantum theory will be based even on a finite ring and
not a field.

The above discussion has a well-known historical analogy. For many years
people believed that our Earth was flat and infinite, and only after a long period
of time they realized that it was finite and had a curvature. It is difficult to notice
the curvature when we deal only with distances much less than the radius of the
curvature R. Analogously one might think that the set of numbers describing physics
has a ”curvature” defined by a very large number p but we do not notice it when we
deal only with numbers much less than p.

One might argue that introducing a new fundamental constant is not justi-
fied. However, the history of physics tells us that new theories arise when a parameter,
which in the old theory was treated as infinitely small or infinitely large, becomes fi-
nite. For example, from the point of view of nonrelativistic physics, the velocity of
light c is infinitely large but in relativistic physics it is finite. Similarly, from the point
of view of classical theory, the Planck constant h̄ is infinitely small but in quantum
theory it is finite. Therefore, it is natural to think that in the future quantum physics
the quantity p will be not infinitely large but finite. A problem arises whether p is a
constant or is different in various periods of time. Moreover, in view of the problem
of time in quantum theory, an extremely interesting scenario is that the world time
is defined by p.

Regardless of whether or not we accept that the ultimate quantum theory
will be based on finite mathematics with the characteristic p, a problem of what
mathematics should be treated as fundamental still remains. Many physicists and
mathematicians think that standard mathematics is fundamental while finite one
is inferior. Typical reasons are that standard mathematics contains more numbers
than finite one and that the whole history of mankind has proven that standard
mathematics describes reality with an unprecedented accuracy. For those reasons,
the fact that standard mathematics has foundational problems might be treated as
less important.

However, any realistic calculations can involve only a finite number of
numbers and any experiment has a finite accuracy. In standard mathematics there
are no operations modulo p. This fact can be treated such that in the formal limit
p → ∞ such operations disappear. As noted above, the ring of integers Z can be
treated as a special case of a finite ring with the characteristic p in the formal limit
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p → ∞. Therefore, the situation is the opposite: standard mathematics is a special
case of finite one in the formal limit p → ∞, and an illusion of continuity arises
because p is very large.

Hence standard mathematics might be treated only as a technique which in
many cases describes reality with a high accuracy while the fact that this mathematics
has foundational problems indeed does not have a fundamental role. The philosophy
of Brouwer, Cantor, Fraenkel, Gödel, Hilbert, Kronecker, Russell, Zermelo and other
great mathematicians working on foundation of standard mathematics was based
on macroscopic experience in which the notions of infinitely small, infinitely large
and continuity are natural. However, as noted above, those notions contradict the
existence of elementary particles and are not natural in quantum theory.
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