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Extremely efficient acceptance-rejection method for simulating uncorrelated

Nakagami fading channels
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Abstract

Multipath fading is one of the most common distortions in wireless communications. The simulation

of a fading channel typically requires drawing samples from a Rayleigh, Rice or Nakagami distribution.

The Nakagami-m distribution is particularly important due to its good agreement with empirical channel

measurements, as well as its ability to generalize the well-known Rayleigh and Rice distributions. In this

paper, a simple and extremely efficient rejection sampling (RS) algorithm for generating independent

samples from a Nakagami-m distribution is proposed. This RS approach is based on a novel hat

function composed of three pieces of well-known densities from which samples can be drawn easily

and efficiently. The proposed method is valid for any combination of parameters of the Nakagami

distribution, without any restriction in the domain and without requiring any adjustment from the final

user. Simulations for several parameter combinations show that the proposed approach attains acceptance

rates above 90% in all cases, outperforming all the RS techniques currently available in the literature.

Index Terms

Multipath fading, Nakagami random variables, rejection sampling.

I. INTRODUCTION

The Nakagami-m probability density function (PDF) was proposed in 1960 by Nakagami as

an empirical model for the amplitude of the received samples in wireless radio communications
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subject to multipath fading [1]. This PDF is characterized by two parameters: the fading or shape

parameter, m, which indicates the fading depth, and the average received power, Ω. Nakagami’s

fading model has been widely used to describe the wireless fading channel due to its good

agreement with empirical channel measurements for some urban multipath environments [2],

[3]. Moreover, the Nakagami PDF can be used to generalize or approximate several situations

and densities common in wireless communications: worse-than-Rayleigh fading for 0.5 ≤ m < 1

[4], [5], Rayleigh fading for m = 1, and less severe fading (e.g., Rice fading) for m > 1, which

corresponds to cases where a line of sight (LOS) path or a specular component exists, with

no fading at all when m → ∞. Furthermore, for m > 1 the Nakagami PDF is a very good

approximation of the Rice density with a ratio between the power received via the LOS path

to the power contribution of NLOS paths given by K = [m−
√
m(m− 1)]/

√
m(m− 1), and

can even be used to approximate the log-normal PDF (widely used to simulate shadowing)

with a small σ over a specific domain. For this reason, obtaining an efficient algorithm for

drawing samples from a Nakagami distribution is extremely important for the simulation and

characterization of wireless channels.

On the one hand, several schemes for simulating the correlated Nakagami fading channel

have been proposed [6]–[10], but all of them present limitations that may restrict their use in

some practical situations. For instance, the decomposition method proposed in [6] is valid for

arbitrary values of m, but it becomes inaccurate when m 6= n/2, with n ∈ N. More accurate

methods have been proposed by Yip et al. [7] as well as Beaulieu and Cheng [8], but the first

one is only valid for m < 1, whereas the second one requires a different set of coefficients

for each value of m, determined numerically or through curve fitting. More recently, a new

cumulative distribution function (CDF) mapping approach based on the inverse discrete Fourier

transform (IDFT) has been proposed [9], as well as a novel generation method for the spatially

and temporally correlated multiple-input multiple-output (MIMO) fading channel [10]. However,

all of the previous schemes focus on the generation of correlated Nakagami random variables

(RVs) and their computational cost is excessive for generating independent Nakagami RVs.

On the other hand, the generation of independent Nakagami RVs is also frequently required,

e.g., to simulate the performance of channel estimators, systems operating under slow fading con-
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ditions or independent fading branches in diversity systems [11]. Moreover, several approaches

for the generation of bivariate or multivariate Nakagami random variables (RVs) are based on

drawing a sequence of independent samples first and then performing some transformation [10],

[12]. Independent Nakagami RVs can be generated from Gaussian random variables, but this

direct or brute force approach [13], based on the squared root of the sum of squares of n

zero-mean identically distributed Gaussian RVs, is only valid when m = n/2, with n ∈ N.

Hence, several simple acceptance-rejection methods using different hat functions with increasing

accuracy have been recently proposed [11], [14]–[16].1 Currently, the best results for an arbitrary

value of m and Ω are provided by [15] using a Gaussian PDF as the hat density. This approach

achieves acceptance rates close to one for small values of m, that fall down to 70% for m ≥ 4

without truncation and 80% truncating the hat density in the range [0, 4Ω]. Unfortunately, this

truncation prevents their approach from drawing samples from the tail of the Nakagami PDF,

which can be important for some applications, such as co-channel interference problems [8].

In this paper we build on this work, designing an extremely efficient acceptance-rejection

method for Nakagami RVs using a piecewise monotonic hat function composed of three different

pieces: two truncated Gaussian PDFs and a decaying exponential PDF. The resulting hat density

is based on well-known PDFs, from which samples can be easily and efficiently drawn [19],

is valid for arbitrary average power and fading factors, and provides a very good fit of the

target PDF, obtaining acceptance rates above 90% in all cases, which are the best ones ever

reported in the literature. Furthermore, unlike previous approaches (e.g., [11], [15]), we attain

this high acceptance rate without any truncation (i.e., drawing samples from the newly proposed

hat density provides truly Nakagami RVs) and without requiring any adjustment from the final

user (i.e., the algorithm proceeds automatically once the parameters of the Nakagami distribution

are provided).

The rest of the paper is organized as follows. First of all, Section II briefly reviews the standard

RS algorithm and the Nakagami PDF, introducing the novel hat function. Then, Section III

1In the rejection sampling literature, the normalized counterpart of the hat function is also known as the trial, instrumental or

proposal density [17], [18]. In the sequel we will always use the term hat function when referring to the unnormalized version

and hat density or PDF when dealing with the normalized one.
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details the construction of the hat function and the procedure followed to draw samples from its

normalized counterpart, and provides a lower bound for the acceptance probability. Section IV

shows numerical results for several parameters of the Nakagami target PDF. Finally, Section V

provides the conclusions and future lines.

II. ACCEPTANCE-REJECTION ALGORITHM FOR NAKAGAMI RANDOM VARIABLES

A. Rejection Sampling

Rejection sampling (RS) is a classical technique for generating samples from an arbitrary

target PDF, po(x) = Cpp(x), known up to a normalizing or proportionality constant Cp, using

an alternative simpler hat PDF, π̃(x) = Cππ(x), such that Kπ(x) ≥ p(x) for some K > 0. RS

works by drawing samples from the hat density, x′ ∼ π(x),2 and accepting or rejecting them

on the basis of the ratio p(x′)/[Kπ(x′)]. The standard RS algorithm, which allows us to draw

samples exactly from the target PDF, is the following [18]:

1) Draw x′ ∼ π(x) and w′ ∼ U([0, 1]).

2) If w′ ≤ p(x′)
Kπ(x′)

, then x′ is accepted. Otherwise, x′ is discarded.

3) Repeat steps 1–2 until the desired number of samples has been obtained from the target.

The key performance measure for RS is the mean acceptance rate (i.e., the average number of

candidate samples accepted out of the total number of samples generated), ηa, which depends

on how close the hat density is to the target PDF, as shown in Section III-D. The acceptance rate

determines the efficiency of an RS algorithm, since the number of samples required on average

to obtain N valid samples is Na = N/ηa. Hence, low values of ηa lead to a large number of

samples being required on average, thus wasting time and computational resources.

B. Nakagami Target PDF

In this work we concentrate on developing an extremely efficient RS algorithm for generat-

ing independent unidimensional Nakagami-m random variables. The Nakagami target PDF is

2The notation x′ ∼ π(x) will be used to denote that x′ is a sample from a random variable distributed according to a proper

PDF, πo(x) ∝ π(x), regardless of whether π(x) is normalized (i.e., the integral of π(x) over its whole domain is one) or not.
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po(x) = Cp p(x), with normalizing constant

Cp =
2mm

ΩmΓ(m)
, (1)

and unnormalized target function

p(x) = x2m−1 exp

(
−mx

2

Ω

)
for x ≥ 0, (2)

where Γ(x) indicates the gamma function [20], Ω = E{x2} > 0 (with E{·} denoting the

mathematical expectation) represents the average received power, and m = Ω2/Var{x2} ≥ 0.5

with (Var{·} denoting the variance) is a fading parameter that characterizes the fading depth of

the channel; the smaller the value of m the higher the fading depth.

C. Hat Density

For the hat density we consider a simple piecewise monotonic approximation composed of

three PDFs from which samples can be easily drawn. The motivation behind this hat function

comes from the shape of the Nakagami PDF, which can be seen in Figure 3. On the one

hand, the Nakagami target PDF is unimodal, but asymmetric w.r.t. the mode. Thus, we use two

different pieces for the hat PDF on the left and right hand side of its mode in order to better

accommodate the different decay rates of the target on both sides. On the other hand, providing

a good hat density for the tail is critical in order to obtain a good acceptance probability [19].

Hence, we introduce a third piece of the hat PDF that provides a good fit of the target as

x → ∞. From Figure 3, it can be seen that the number of intervals (three) is not arbitrarily

chosen, but corresponds to the natural choice given the shape of the target, thus providing the

optimal trade-off between performance and computational cost. The full hat PDF is then given

by π̃(x) = Cππ(x), with

π(x) = π1(x)I1(x) + π2(x)I2(x) + π3(x)I3(x), (3)

where πi(x) (1 ≤ i ≤ 3) belong to the exponential class of functions,

πi(x) = βi exp (−αi(x− µi)γi) , (4)
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and Ii(x) (1 ≤ i ≤ 3) are indicator functions, that determine whether x belongs to the interval

Ei = [ei−1, ei) or not, i.e.,

Ii(x) =


1, x ∈ Ei,

0, x /∈ Ei.
(5)

The intervals used for the target PDF are the left hand side of the mode, E1 = [0, e1), its right

hand side, E2 = [e1, e2), and the tail, E3 = [e2,∞). In the first two intervals, we use a truncated

Gaussian density (i.e., γ1 = γ2 = 2), whereas in the third interval we use a decaying exponential

(i.e., γ3 = 1). The determination of the interval limits (e1 and e2), the remaining parameters (αi,

βi and µi for 1 ≤ i ≤ 3), and the normalizing constant, Cπ, in such a way that we obtain a

suitable hat function for K = 1 (i.e., π(x) ≥ p(x)) is detailed in the following section.

III. HAT DENSITY: CONSTRUCTION AND SAMPLING

A. Hat PDF around the mode

First of all, note that, since the first two pieces of the hat PDF are two truncated Gaussian

densities defined in E1 = [0, e1) and E2 = [e1, e2), the optimum choice for e1 is clearly the mode

of the Nakagami target PDF. Differentiating p(x) and equating it to zero, it is straightforward

to show that this mode is given by

xmax =

√
Ω(2m− 1)

2m
, (6)

and we set e1 = xmax. Then, in order to have π(x) as close as possible to p(x) within E1 and E2,

while ensuring that π(x) ≥ p(x), we must have π1(xmax) = π2(xmax) = p(xmax). This implies

setting µ1 = µ2 = xmax and

β1 = β2 = p(xmax) = exp

(
−2m− 1

2

)(
Ω(2m− 1)

2m

) 2m−1
2

. (7)

Finally, in order to specify completely the hat function within the first two intervals we need to

determine α1 and α2. This can be easily done by noting that, π(x) ≥ p(x) within E1 and E2

implies that

ln πi(x) = ln p(xmax)− αi(x− xmax)2 ≥ ln p(x), (8)
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for any x ∈ Ei with i ∈ {1, 2}. Hence, in order to obtain a valid hat function we must choose

αi ≤ L(x), (9)

for any x ∈ Ei with i ∈ {1, 2}, and

L(x) =
1

(x− xmax)2
ln
p(xmax)

p(x)
=

(2m− 1) ln(xmax/x)

(x− xmax)2
+
m

Ω

x+ xmax

x− xmax

. (10)

It is easy to check that L(x) is a strictly decreasing function, with L(0) → ∞ and L∞ =

limx→∞ L(x) = m/Ω. Therefore, in order to obtain the best possible fit between the hat and the

target PDFs (while ensuring that π(x) ≥ p(x)) within the range covered by each piece of the hat

function, we must set α1 = L(e1) and α2 = L(e2). Regarding α1, and recalling that e1 = xmax,

with xmax given by (6), it can be obtained explicitly as

α1 = lim
x→xmax

L(x) = lim
x→xmax

(2m− 1)[lnxmax − lnx] + m
Ω

(x2 − x2
max)

(x− xmax)2
. (11)

Applying L’Hôpital’s rule twice to remove the indeterminacies in this limit, (11) becomes

α1 = lim
x→xmax

−2m−1
x

+ 2mx
Ω

2(x− xmax)
= lim

x→xmax

2m− 1

2x2
+
m

Ω
=

2m

Ω
.

With respect to α2, it is obtained similarly, evaluating L(x), as given by (10), at x = e2:

α2 = L(e2) =
1

(e2 − xmax)2
ln
p(xmax)

p(e2)
, (12)

with e2 given by (20), as discussed in the sequel. Note that the conditions for αi, given by (9)

and (10), were derived in [15]. However, in [15] a single Gaussian is used for the hat function,

π(x) = p(xmax) exp(−α(x− xmax)2). Hence, in order to obtain a valid hat density they need to

set α = L∞ = m/Ω, thus achieving a much looser fit of the target and lower acceptance rates.

In order to improve the efficiency of their approach, they propose to truncate the target PDF

within the range [0, 4Ω]. This allows them to use α = L(4Ω), thus improving the efficiency of

the RS approach at the expense of generating truncated Nakagami random variables, which may

produce misleading results in the simulation of wireless communication channels, especially for

large values of m and small values of Ω. As an alternative, here we introduce a third piece in

the hat function that allows us to attain higher acceptance rates without resorting to truncation.
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B. Hat PDF for the tail

The last piece, the truncated exponential PDF, is used to obtain a good approximation of the

tail of the Nakagami target PDF. The hat function considered is based on the fact that

V (x) = ln p(x) = (2m− 1) lnx− m

Ω
x2, (13)

is convex for any m ≥ 0.5 and Ω > 0, since V̈ (x) = −2m−1
x2 − 2m

Ω
< 0 for x ≥ 0, with

V̈ (x) denoting the second derivative of V (x). Furthermore, setting β3 = 1 we have ln π3(x) =

−α3(x−µ3) for x ≥ e2, and we can guarantee that π3(x) ≥ p(x) for x ≥ e2 simply by adjusting

lnπ3(x) to become the tangent line to V (x) at x = e2. It is straightforward to show that this

tangent line is obtained setting

α3 = −V̇ (e2) = −2m− 1

e2

+
2m

Ω
e2, (14)

with V̇ (e2) indicating the first derivative of V (x) evaluated at x = e2, and

α3µ3 = V (e2)− V̇ (e2)e2 = (2m− 1)(ln e2 − 1) +
m

Ω
e2

2, (15)

so that finally

µ3 =
(2m− 1)(ln e2 − 1) + m

Ω
e2

2
2m−1
e2
− 2m

Ω
e2

. (16)

The last element required for the complete definition of the hat density is the limit between the

second and third intervals, e2. The optimum value for e2, e∗2, can be obtained by minimizing the

discrepancy between the target and the hat function within E2 and E3. Since π(x) ≥ p(x) ∀x > 0

by construction, and p(x) is fixed, e∗2 is given by (see the Appendix)

e∗2 = arg max
e2

{ηa(e2)}

= arg min
e2

{A2(e2) + A3(e2)}

= arg min
e2

{
p(xmax)

2

√
π

α2

erf (
√
α2(e2 − xmax)) +

1

α3

exp(−α3(x− µ3))

}
, (17)

where ηa(e2) denotes the average acceptance rate expressed as a function of e2, A2(e2) and

A3(e2) are the areas of the second and third pieces of the hat function given by (23) and (24)

respectively, and erf (x) denotes the well-known error function [13], [20]:

erf (x) =
2√
π

∫ x

0

exp(−t2) dt. (18)
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Unfortunately, a closed-form expression for e∗2 cannot be found, since several parameters (α2,

α3 and µ3) depend on e2. An approximately optimal solution can be found numerically through

grid search, but this procedure may be too complicated for practical application. However, a

good sub-optimal approximation can be easily obtained by noting that:

1) The point e2 should correspond to the beginning of the tail of the Nakagami PDF.

2) The right hand side tail of a density is necessarily convex by definition.

Therefore, we argue that e∗2 must satisfy the inequality e∗2 ≥ xin, with xin denoting the largest

inflection point in the Nakagami PDF, which guarantees that p(x) is convex for x > xin. This

point can be easily found as the largest solution of d2p(x)/dx2 = 0 and is given by

xin =
1

2

√
Ω(4m+

√
16m− 7− 1)

m
. (19)

Moreover, although setting e2 = xin provides satisfactory results, we have found empirically

that a better approximation of the optimal value e∗2 is given by

e2 = ê∗2 = xin +
Ω

4m
+ amb + c, (20)

with a = −0.8, b = 0.1 and c = 1.2. This approximation is simple enough to be used in practice,

provides an improvement in acceptance probability of 4 – 9 % w.r.t. using e2 = xin and the

loss w.r.t. the approximately optimal solution derived numerically is usually less than 2 %.3

Nevertheless, since the cost function to be minimized, J(e2) = A2(e2) + A3(e2), is convex, the

optimal acceptance rate can always be attained through a gradient descent minimization algorithm

[21], [22]. Mathematically, we can find an extremely close approximation to e∗2 iteratively as

ê2[n+ 1] = ê2[n]− ρn∇J(ê2[n]), (21)

where ρn is the step size parameter and ∇J(ê2[n]) denotes the gradient of J(e2) evaluated at

e2 = ê2[n], which is provided in the Appendix. Note that, although the expressions for this

gradient are quite involved, this process has to be performed only once, during the initialization

stage of the algorithm. Therefore, the increase in acceptance rate obtained may be worth the

3Indeed, we have only noticed differences above 2 % for very large values of Ω and small values of m, e.g., Ω = 100 and

m ≤ 2, where the difference in acceptance probability can rise up to 4 % (see Figure 2).
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effort when a large number of samples have to be drawn, as it often happens in the evaluation

of wireless communication systems under fading conditions.

Fig. 1 shows two examples of the performance of the gradient descent algorithm using ê2[0] =

xin and ρn = 0.2×0.999n. In both cases the optimum value of e2 (obtained numerically through a

grid search) is attained after a moderate number of iterations (around 500 and 1600 respectively

for a stopping condition |ê2[n + 1] − ê2[n]| < 10−5). On the one hand, in the first case the

acceptance rate is only improved marginally w.r.t. using the value of e2 given by (20) (0.02 %

improvement), as shown in Fig. 2(a), so the optimization is not worth the effort. On the other

hand, in the second case the acceptance rate is improved substantially w.r.t. using e2 = ê∗2 (3.85

% improvement), as shown in Fig. 2(b), so the optimization is clearly worth the effort when the

number of samples to be drawn is large enough. Note that in both cases the improvement in

acceptance rate of using either e2 = ê∗2 or the gradient descent w.r.t. setting e2 = xin as given

by (19) is remarkable: around 6.71 % in the first case and up to 7.73 % in the second one.

50 100 150 200 250 300 350 400 450 500

1.3

1.4

1.5

1.6

1.7

1.8

Iteration (n)

ê 2
[n

]

(a)

200 400 600 800 1000 1200 1400 1600
12

13

14

15

16

17

18

19

20

Iteration (n)

ê 2
[n

]

(b)

Fig. 1. Convergence of the gradient descent algorithm using ê2[0] = xin and ρn = 0.2 × 0.999n (continuous line) to the

optimum value e∗2 obtained numerically through a grid search (dashed line). (a) m = 1.5 and Ω = 1. (b) m = 0.8 and Ω = 100.
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Fig. 2. Average acceptance rate as a function of e2 and acceptance rates obtained using e2 = xin as given by (19) [square],

e2 = ê∗2 as given by (20) [triangle] and the e2 obtained iteratively using the gradient descent algorithm shown in (21) [circle].

(a) m = 1.5 and Ω = 1. (b) m = 0.8 and Ω = 100.

C. Drawing samples from the hat PDF

First of all, we recall that the unnormalized hat PDF is given by

π(x) =


π1(x) = β1 exp(−α1(x− µ1)γ1), 0 ≤ x < e1;

π2(x) = β2 exp(−α2(x− µ2)γ2), e1 ≤ x < e2;

π2(x) = β3 exp(−α3(x− µ3)γ3), x ≥ e2.

(22)

The parameters required to construct this hat function, which have been derived in the previous

sections, are summarized in Table I.4 Note that all the parameters can be easily calculated and

stored, the whole process is automatic (i.e., it can be performed automatically given the values of

m and Ω, without requiring the user to adjust manually any parameter) and has to be performed

only once before drawing all the samples required. As an example, Fig. 3 shows the target, p(x),

our hat PDF, π(x), and the hat density used in [15] for an unbounded domain, which fits the

target PDF in a much looser way, thus leading to worse acceptance rates.

4Note that we have used e2 = ê∗2, but this can be easily substituted by the value obtained from the gradient descent algorithm,

as discussed in the previous section.
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i βi αi µi γi ei

1 x2m−1
max exp

“
−mx2

max
Ω

”
2m
Ω

xmax 2 xmax

2 x2m−1
max exp

“
−mx2

max
Ω

”
1

(e2−xmax)2
ln p(xmax)

p(e2)
xmax 2 xin + Ω

4m
− 0.8m0.1 + 1.2

3 1 - 2m−1
e2

+ 2m
Ω
e2

(2m−1)(ln e2−1)+ m
Ω e2

2
2m−1

e2
− 2m

Ω e2
1 —

TABLE I

PARAMETERS REQUIRED TO CONSTRUCT THE HAT FUNCTION FOR THE REJECTION SAMPLING ALGORITHM.

e1 e2

p(x)

π(x)

m = 1
Ω = 1

(a)

p(x)

π(x)

e1 e2

m = 2
Ω = 1

(b)

Fig. 3. Target function p(x) (continuous line), our hat function π(x) (dashed line) and the hat function used in [15] for an

unbounded domain (dotted line). (a) Construction for m = 1 and Ω = 1. (b) Construction for m = 2 and Ω = 1.

Once the hat PDF, πo(x) ∝ π(x), has been defined, one of the three truncated PDFs with

non-overlapping supports must be selected with probabilities proportional to their areas,5 which

can be easily obtained in a closed form. For the first region we have

A1 =

∫ e1

0

π1(x) dx

= p(xmax)

∫ xmax

0

exp(−α1(x− xmax)2) dx

=
p(xmax)

2

√
π

α1

erf (
√
α1xmax) , (23)

5Let us remark that the three portions of the hat PDF are not normalized, so their areas will not be equal to one in general.
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where erf (x) denotes again the error function. Similarly, for the second region we have

A2(e2) =

∫ e2

e1

π2(x) dx

= p(xmax)

∫ e2

xmax

exp(−α2(x− xmax)2) dx

=
p(xmax)

2

√
π

α2

erf (
√
α2(e2 − xmax)) , (24)

where we have emphasized the dependenc on e2, and for the last region,

A3(e2) =

∫ ∞
e2

π3(x) dx

=

∫ ∞
e2

exp(−α3(x− µ3)) dx

=
1

α3

exp(−α3(e2 − µ3)). (25)

Finally, samples must be drawn from the selected piece of the hat density. For the truncated

Gaussians there are many techniques available in the literature (see e.g. [23]–[25]) that allow

us to draw samples efficiently. In particular, here we propose using the inversion method [23],

since it can also be used to obtain samples easily and efficiently from the truncated exponential

[17]–[19]. Hence, the full RS approach is the following:

1) Given m and Ω, obtain the parameters required to construct the hat function, given by (22),

using Table I and the gradient descent approach to optimize e2 if desired. Store them.

2) Compute the selection probabilities for each of the pieces of the hat function, Pi = Ai/(A1+

A2 + A3) for 1 ≤ i ≤ 3, and store them.

3) Select the i-th interval of the hat function (1 ≤ i ≤ 3) with probability Pi.

4) Draw x′ ∼ πi(x) and w′ ∼ U([0, 1]).

5) If w′ ≤ p(x′)
πi(x′)

, then x′ is accepted. Otherwise, x′ is discarded.

6) Repeat steps 3–5 until the desired number of samples has been obtained from the target.

Therefore, we need to calculate and store 8 different real numbers during the initialization stage.

Then, at each iteration of the algorithm we just need to draw two uniform random variables,

obtain a sample from the hat density using the inversion method and evaluate p(x′)/πi(x
′).

Consequently, the operations performed at each iteration of the algorithm are essentially the
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same as in [15], but the acceptance rate is much higher, thus leading to an important reduction

in the computational cost, as shown in Section IV.

D. Mean acceptance rate of the proposed approach

As mentioned before, the key performance issue for an RS algorithm is the acceptance

probability or mean acceptance rate. In this section, we show the expressions for the acceptance

probability and provide a tight lower bound for our algorithm. First of all, note that the mean

acceptance rate can be expressed as

ηa(e2) =

∫ ∞
0

pa(x)π̃(x) dx

=

∫ ∞
0

p(x)

Kπ(x)
π̃(x) dx

=
Cπ(e2)

K

∫ ∞
0

p(x) dx =
Cπ(e2)

KCp
, (26)

where pa(x) = p(x)
Kπ(x)

denotes the probability of accepting a sample x ∼ π̃(x), K = 1 by design,

since we have constructed π(x) ensuring that π(x) ≥ p(x) for any value of x, Cp is given by

Eq. (1), and

1

Cπ(e2)
=

∫ ∞
0

π(x) dx

=

∫ xmax

0

π1(x) dx+

∫ e2

xmax

π2(x) dx+

∫ ∞
e2

π3(x) dx

= A1 + A2(e2) + A3(e2). (27)

Hence, the mean acceptance rate finally becomes

ηa(e2) =
C−1
p

A1 + A2(e2) + A3(e2)
. (28)

By setting e2 = e∗2 the optimum value of the acceptance rate, ηa(e∗2), would be obtained.

Unfortunately, we cannot obtain an analytical expression for e∗2, but we can easily provide a

lower bound by using e2 = xin, with xin given by (19), or e2 = ê∗2 with ê∗2 given by (20). Fig.

4 displays the optimum acceptance rate and these two lower bounds as a function of m for

different values of Ω, showing that ηa(ê∗2) is quite close to ηa(e∗2), especially for the frequently

used normalized value Ω = 1.
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Fig. 4. Optimum acceptance rate ηa(e∗2) [continuous line] and two lower bounds, ηa(xin) obtained using e2 = xin [dashed

line] and ηa(ê∗2) obtained using e2 = ê∗2 [dotted line], as a function of m for different values of Ω. (a) Ω = 0.1. (b) Ω = 1.

(c) Ω = 10. (d) Ω = 100.

IV. SIMULATION RESULTS

First of all, in order to analyze the performance of the proposed algorithm we have generated

N = 5 · 105 samples using the hat function given by (22). Fig. 5 depicts two examples of the

Nakagami PDF, po(x) ∝ p(x): for m = 0.6 and Ω = 1 in Fig. 5(a), and for m = 2 and Ω = 1 in

Fig. 5(b). Fig. 5 also displays the normalized histogram obtained using the samples generated by

the RS algorithm. In both cases the histogram closely resembles the target density, both around

the mode and the tails, showing that our approach is able to produce samples from the true PDF
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without resorting to a truncated approximation, as required by certain methods to improve the

efficiency (e.g., the ones proposed in [11], [15]). In order to confirm the good performance of

our approach for the tails, Fig. 6 displays the complementary cumulative distribution function

(CCDF), F̄ (x) = 1 − F (x), for the same two examples in logarithmic scale. Fig. 6 shows the

good match between the generated samples and the Nakagami CCDF, with the discrepancies

for F̄ (x) < 10−4 due to the limited number of samples available. Indeed, the RS algorithm

guarantees that samples are drawn from the target PDF as long as π(x) ≥ p(x) for any value of

x [17]–[19]. Thus, in order to obtain a better approximation of the tails, all what is required is

a larger number of samples.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

x

Ω = 1
m = 0.6

po(x) ∝ p(x)

(a)

0 1 2 3 40

0.2

0.4

0.6

0.8

1

1.2

x

m = 2
Ω = 1

po(x) ∝ p(x)

(b)

Fig. 5. Normalized histogram of the generated samples (N = 5 · 105) and the normalized Nagakami PDF, po(x) ∝ p(x). (a)

m = 0.6, Ω = 1. (b) m = 2, Ω = 1.

Then we focus on the average acceptance rate (i.e., the number of samples accepted out of

the total number of samples generated), which is the efficiency measure commonly used to

characterize RS algorithms. Fig. 7 shows the acceptance rate for several values of the fading

parameters (both as a function of m and Ω), comparing it to the approach described in [15],

which is the most efficient one currently available. It can be seen that our technique is extremely

efficient, providing the best results ever reported in the literature, with acceptance rates above

90% in all cases and up to 97% in some cases, whereas the efficiency of [15] falls down to 80%
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Fig. 6. Empirical complementary cumulative distribution function (CCDF) obtained using N = 5 · 105 (continuous line) and

theoretical Nagakami CCDF (dashed line). (a) m = 0.6, Ω = 1. (b) m = 2, Ω = 1.

for m ≥ 4 in the truncated case (not shown), and to 70% without truncation. This means that

in order to generate N samples our approach will never need more than 1.11×N iterations on

average for any combination of the fading parameters, whereas the approach in [15] will need

1.25×N iterations on average for m ≥ 4 in the truncated case, and 1.43×N without truncation.

Finally, we note that the average acceptance rate does not provide all the information about

the efficiency of the algorithm, since the generation of samples from different hat function may

require different amounts of complexity. Hence, in order to provide a fair comparison with the

approach of [15], which is the best RS approach currently available in the literature, Table II

shows the time required to generate N = 104 samples using the hat function of [15] and the

newly proposed hat function. In this case, since the samples from all the pieces in our hat

function are generated using the inversion method, just like the samples from the hat function

in [15] (note that their hat function is a single Gaussian truncated at x = 0), our approach has a

similar computational cost per iteration than the approach of [15] (with the only difference due

to having to select one of the three pieces). Hence, the increase in acceptance rate directly leads

to a decrease in computational cost, as shown clearly in Table II, where we can see a decrease
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Fig. 7. Acceptance rates obtained using our hat density (continuous line) and the one from [15] for an unbounded domain

(dashed line). (a) Fixing Ω (Ω ∈ {0.1, 1, 50}) and varying m. (b) Fixing m (m ∈ {0.6, 1, 10}) and varying Ω.

in the time required to draw N = 104 samples up to 28.26 % for large values of m.

m Method Novel Approach

from [15] Ω = 0.1 Ω = 1 Ω = 50

0.6 1.0983 1.0251 0.9927 1.0509

1 1.2074 1.0670 1.0309 1.0805

2 1.3161 1.0712 1.0387 1.0658

5 1.3268 1.0442 1.0158 1.0268

10 1.3305 1.0263 1.0040 1.0035

20 1.3337 1.0139 0.9956 0.9824

40 1.3321 0.9976 0.9662 0.9556

TABLE II

COMPARISON OF THE TIME REQUIRED TO GENERATE N = 104 SAMPLES USING THE HAT FUNCTION OF [15] AND THE

NEWLY PROPOSED HAT FUNCTION.

V. CONCLUSIONS AND FUTURE LINES

In this paper we have proposed an automatic rejection sampling (RS) algorithm to generate

independent samples from Nakagami random variables, which are required for simulating the
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Nakagami-m fading channel, with arbitrary fading parameters. Our approach is based on a

novel hat density composed of three pieces: two truncated Gaussians around the mode and

an exponential for the tail. The resulting algorithm is simple and extremely efficient, providing

acceptance rates above 90% for any value of the fading parameters (m and Ω), which are the best

ones ever reported in the literature. Furthermore, for certain values of m and Ω the proposed RS

scheme attains acceptance rates up to 97%, thus providing virtually exact sampling (i.e., sampling

without any rejection). Moreover, unlike some previous approaches, these high acceptance rates

are obtained without any truncation of the domain (i.e., we always provide samples from the

true target density) and without requiring any adjustment from the final user. Future research

lines include extending the method to the generation of multiple correlated Nakagami RVs and

other distributions commonly used in the simulation of fading/shadowing in wireless channels.

APPENDIX

The cost function that has to be minimized in order to obtain the optimum value of e2, e∗2, is

J(e2) = A2(e2) + A3(e2), (29)

where A2(e2) and A3(e2) are given by (24) and (25) respectively. Hence, the gradient w.r.t. e2

is simply

∇J(e2) = ∇A2(e2) +∇A3(e2). (30)

The first gradient in (30) is given by

∇A2(e2) =
p(xmax)

2

√
π

α2

[
−erf (

√
α2(e2 − xmax))

∇α2(e2)

2α2

+∇erf (
√
α2(e2 − xmax))

]
, (31)

where

∇α2(e2) =
α3(e2)− 2α2(e2 − xmax)

(e2 − xmax)2
(32)

and

∇erf (
√
α2(e2 − xmax)) =

2√
π

(
(e2 − xmax)∇α2(e2)

2
√
α2

+
√
α2

)
exp(−α2(e2 − xmax)2). (33)

Regarding the second gradient, it is given by

∇A3(e2) = −
(

1 +
∇α3(e2)

α2
3

)
exp(−α3(e2 − µ3)), (34)
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where

∇α3(e2) =
2m− 1

e2
2

+
2m

Ω
. (35)
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