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It was recently detected an unidentified emission line in the stacked X-ray spectrum of galaxy clusters. 
Since this line is not catalogued as being the emission of a known chemical element, several hypotheses 
have been proposed, for example that it is of a known chemical element but with an emissivity of 10 or 
20 times the expected theoretical value. Here we show that there is a divergence in the Stefan-Boltzmann 
equation at high energy density conditions. This divergence is related to the correlation between 
gravitational mass and inertial mass, and it can explain the increment in the observed emissivity.   
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1. Introduction  
 
        The recent detection of an unidentified 
emission line in the stacked X-ray spectrum 
of galaxy clusters [1] originated several 
explanations for the phenomenon. It was 
proposed, for example that the unidentified 
emission line, spite to be non-catalogued, it 
is of a known chemical element but with 
intensity (emissivity) of 10 to 20 times the 
expected value.  
          Here we show that there is a 
divergence in the Stefan-Boltzmann 
equation at high energy density conditions. 
This divergence is related to the correlation 
between gravitational mass and inertial 
mass, and it can explain the increment in the 
observed emissivity.   
 
2. Theory 
 
          The quantization of gravity shows that 
the gravitational mass mg and inertial mass 
mi are not equivalents, but correlated by 
means of a factor χ , which, under certain 
circumstances can be negative. The 
correlation equation is [2] 

( )10ig mm χ=

where  is the rest inertial mass of the 
particle.    
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          The expression of χ  can be put in the 
following forms [2]:  
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where  is the density of electromagnetic 
energy on the particle ( ; 

W
)kgJ / D  is the 

radiation power density; ρ  is the matter 
density of the particle ( )3mkg ;  is the 
index of refraction, and is the speed of 
light. 
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          Equations (2) and (3) show that only 
for 0=W  or 0=D  the gravitational mass is 
equivalent to the inertial mass ( 1= )χ . Also, 
these equations show that the gravitational 
mass of a particle can be significtively 
reduced or made strongly negative when the 
particle is subjected to high-densities of 
electromagnetic energy.   
         Another important equations obtained 
in the quantization theory of gravity is the 
new expression for the kinetic energy of a 
particle with gravitational mass mg and 
velocity V, which is given by [2]  
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Only for 1=χ  the equation above reduces to 
the well-known expression 2

02
1 VmE ikinetic = .     

          The thermal energy for a single 
particle calculated starting from this equation 
is 2

02
1 VmTk iB = [3], where the line over the 

velocity term indicates that the average value 
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is calculated over the entire ensemble; 

 is the Boltzmann 
constant.  

KJkB /1038.1 23−×=

          Now, this expression can be rewritten 
as follows ( ) 2

2
12

02
1 VmVmTk giB == χχ . We 

have put χ  because  is always positive, 
and 

TkB

χ  can be positive and negative. Thus, 
we can write that  
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Only for 1=χ  the expression of  
reduces to .    

thermalE
TkB

           In the derivation of the Rayleigh-Jeans 
law, the assumption that , and 
that each radiation mode can have any energy 

TkE Bthermal =

E  led to a wrong expression for the 
electromagnetic radiation emitted by a black 
body in thermal equilibrium at a definite 
temperature, i.e., Since the continuous 
Boltzmann probability distribution shows 
that 
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One can conclude that the average energy per 
mode is 
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This result was later corrected for Planck, 
which postulated that the mode energies are 
not continuously distributed, but rather they 
are quantized and given by 

, where  is the number 
of photons in that mode. Thus 
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and the average energy per mode can be 
calculated assuming over only the discrete 
energies permitted instead integrating over 
all energies, i.e.,  
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Note that only for , this expression 
reduces to 

Tkhf B<<

TkE B=  (the classical 
assumption that breaks down at high 
frequencies). Equation (9) is therefore the 
quantum correction factor, which transforms 
the Rayleigh-Jeans equation ( )222 ckTf  into 
the Planck’s equation, i.e.,  
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However, in the derivation of the Planck’s 
law the wrong assumption that TkE Bthermal =  
was maintained. Now, Eq. (5) tells us that we 
must replace  for TkB TkBχ . Then the 
Planck’s equation must be rewritten as  

( ) ( )11
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χ

( )TfI ,  is the amount of energy per unit 
surface area per unit time per unit solid angle 
emitted at a frequency  by a black body at 
temperature T. 

f

          Starting from Eq. (11) we can write the 
expression of the power density D  
(watts/m2) for emitted radiation  

( ) (12,
0 ∫∫ Ω==
∞

ddfTfI
A
PD ) 

To derive the Stefan–Boltzmann law, we 
must integrate Ω  over the half-sphere and 
integrate  from 0 to ∞. Furthermore, f
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because black bodies are Lambertian (i.e. 
they obey Lambert's cosine law), the 
intensity observed along the sphere will be 
the actual intensity times the cosine of the 
zenith angle ϕ , and in spherical coordinates, 

. Thus, θϕϕ ddd sin=Ω
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Then Eq. (13) gives 
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The integral above can be done in several 
ways. The result is, 154π  [4]. Thus, we get 
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where is the 
Stefan-Boltzmann’s constant.  

42810675 KmwattsB °×= − /.σ

          Note that, for 1=χ (gravitational mass 
equal to inertial mass), Eq. (14) reduces to 
the well-known Stefan-Boltzmann’s equation. 
However, at high energy density conditions 
the factor  can become much greater than 
1 (See Eqs. (2) and (3)). This divergence, 
which is related to the 

4χ

correlation between 
gravitational mass and inertial mass, can 
explain the increment of 10 to 20 times in the 

recently observed emissivity. In this case, 
we would have  20104 to=χ 2−≅→ χ . 
          If we put 2−≅χ  and 0

2 μBW =  into 
Eq. (2) the result is 
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For example, in the case of a intergalactic 
plasma with and 3.1 −<< mkgρ 1≅rn , Eq. 
(15) gives 
 

( )16103.5 5TeslaB ×<<

 
Magnetic fields with these intensities are 
relatively common in the Universe, and even 
much more intense as for example, the 
magnetic field of neutron stars (  to 

Tesla) and of the magnetars (  to 
Tesla) [

610
810 810
1110 5, 6, 7].  

          In the case of Thermal radiation, 
considering Eq. (14), we can put Eq. (3) in 
the following form 
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For 2−≅χ , we get 
 

( )181008.9 4 2
7
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For and  Eq. (18) gives 3.1 −<< mkgρ 1≅rn
 

( )191008.9 7KT ×<<
 
Temperatures  are relatively 
common in the Universe (close to a star, for 
example).   

KT 610≈

          Thus, we can conclude that there are 
several ways to produce 2−≅χ  in an 
intergalactic plasma (or interstellar plasma) 
in the Universe.  
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          The quantization of gravity shows that the gravitational mass mg and inertial mass mi are not equivalents, but correlated by means of a factor
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          The expression of 
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where 
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 is the density of electromagnetic energy on the particle
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is the speed of light.


          Equations (2) and (3) show that only for 
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. Also, these equations show that the gravitational mass of a particle can be significtively reduced or made strongly negative when the particle is subjected to high-densities of electromagnetic energy.  


         Another important equations obtained in the quantization theory of gravity is the new expression for the kinetic energy of a particle with gravitational mass mg and velocity V, which is given by [2] 
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Only for 
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 the equation above reduces to the well-known expression
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          The thermal energy for a single particle calculated starting from this equation is 
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[3], where the line over the velocity term indicates that the average value is calculated over the entire ensemble; 
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 is the Boltzmann constant. 

          Now, this expression can be rewritten as follows
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Only for 
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           In the derivation of the Rayleigh-Jeans law, the assumption that 
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 led to a wrong expression for the electromagnetic radiation emitted by a black body in thermal equilibrium at a definite temperature, i.e., Since the continuous Boltzmann probability distribution shows that
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One can conclude that the average energy per mode is
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This result was later corrected for Planck, which postulated that the mode energies are not continuously distributed, but rather they are quantized and given by 
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[image: image36.wmf](


)


(


)


(


)


8


exp


÷


÷


ø


ö


ç


ç


è


æ


-


µ


=


T


k


nhf


nhf


P


E


P


B




and the average energy per mode can be calculated assuming over only the discrete energies permitted instead integrating over all energies, i.e., 
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Note that only for
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 (the classical assumption that breaks down at high frequencies). Equation (9) is therefore the quantum correction factor, which transforms the Rayleigh-Jeans equation
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However, in the derivation of the Planck’s law the wrong assumption that 
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 was maintained. Now, Eq. (5) tells us that we must replace 
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 is the amount of energy per unit surface area per unit time per unit solid angle emitted at a frequency 
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          Starting from Eq. (11) we can write the expression of the power density 
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[image: image51.wmf](


)


(


)


12


,


0


ò


ò


W


=


=


¥


d


df


T


f


I


A


P


D




To derive the Stefan–Boltzmann law, we must integrate 
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 over the half-sphere and integrate 
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 from 0 to ∞. Furthermore, because black bodies are Lambertian (i.e. they obey Lambert's cosine law), the intensity observed along the sphere will be the actual intensity times the cosine of the zenith angle 
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Then, by making
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Then Eq. (13) gives
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The integral above can be done in several ways. The result is,
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where 
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is the Stefan-Boltzmann’s constant. 


          Note that, for 
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(gravitational mass equal to inertial mass), Eq. (14) reduces to the well-known Stefan-Boltzmann’s equation. However, at high energy density conditions the factor 
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 can become much greater than 1 (See Eqs. (2) and (3)). This divergence, which is related to the correlation between gravitational mass and inertial mass, can explain the increment of 10 to 20 times in the recently observed emissivity. In this case, we would have 
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          If we put 
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 into Eq. (2) the result is
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For example, in the case of a intergalactic plasma with 
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, Eq. (15) gives
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Magnetic fields with these intensities are relatively common in the Universe, and even much more intense as for example, the magnetic field of neutron stars (

[image: image73.wmf]6


10


 to 

[image: image74.wmf]8


10


Tesla) and of the magnetars (
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          In the case of Thermal radiation, considering Eq. (14), we can put Eq. (3) in the following form
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For 
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, we get
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For 
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 Eq. (18) gives
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Temperatures 
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 are relatively common in the Universe (close to a star, for example).  

          Thus, we can conclude that there are several ways to produce 
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 in an intergalactic plasma (or interstellar plasma) in the Universe. 
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