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Abstract

Extension of Maxwell’s equations is proposed to realize charge creation and annihilation. The

proposed equations includes Nakanishi-Lautrup (NL) field, which was introduced to construct

Lorentz covariant electromagnetic field model for quantum electrodynamics (QED). The necessity

of the extension of Maxwell’s equations is shown by the comparison of current values given

by Maxwell’s and the proposed equations in the simple structure consisting of a silicon sphere

surrounded by SiO2. Maxwell’s equations give unreasonable currents in SiO2, although the

proposed equations give reasonable result. The electromagnetic field energy density is increased

by existence of NL field.
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I. INTRODUCTION

Maxwell’s equations have been believed as the fundamental equations to describe elec-

tromagnetic field since J. C. Maxwell found the equations in 1865[1]. In early 1930s, E.

Fermi proposed modified electromagnetic field model for quantum electrodynamics (QED)

[2–4], where he assumed that 4-D vector potential satisfy d’ Alembert equation even in

the case except Lorenz gauge condition. Gupta and Bleuler gave subsidiary conditions to

Fermi’s model in 1950[5, 6]. In 1960s, Nakanishi and Lautrup proposed the auxiliary field

called Nakanishi-Lautrup (NL) field[7–10] to construct Lorentz covariant electromagnetic

field model for QED. It is now included in the model of QED and Yang-Mills theory[11–14].

However, these models have not been reflected to classical electromagnetism. Recently, we

found that the electromagnetic field model including a Lorentz scalar field, which is equiva-

lent to NL field with Feynman gauge, can easily treat creation and annihilation of positive

and negative charge pairs, although it is difficult for Maxwell’s equations to treat them[15–

17]. In this paper, the necessity of the extension of Maxwell’s equations is shown by the

comparison of current values given by Maxwell’s and the proposed equations with a simple

structure.

Maxwell’s equations are given by

J = ∇×H− ε
∂E

∂t
, (1)

ρ = ε∇E, (2)

∇× E+ µ
∂H

∂t
= 0, (3)

∇H = 0, (4)

where J and ρ are current and charge density, ε and µ are permittivity and permeability,

E and H are electric and magnetic field, respectively. Eqs. (1) and (2) directly give the

following equation of the charge conservation,

∇J+
∂ρ

∂t
= 0. (5)

The creation and annihilation of positive and negative charge pairs are ordinarily described

by the following equation, which is given by semiconductor physics[18–20],

∇Jp +
∂ρp
∂t

= −∇Jn −
∂ρn
∂t

= G, (6)
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where ρp and ρn are positive and negative charge concentration, Jp and Jn are positive and

negative charge current density, and G is charge creation-annihilation rate. Since Maxwell’s

equations satisfy the principle of superposition[21], positive and negative charges must in-

dividually satisfy Eqs. (1) and (2). Therefore, positive charges satisfy

Jp = ∇×Hp − ε
∂Ep

∂t
, (7)

and

ρp = ε∇Ep, (8)

where Ep andHp denote electric and magnetic field induced by positive charges, respectively.

Eqs. (7) and (8) directly give

∇Jp +
∂ρp
∂t

= 0, (9)

which contradicts (6) in the case of G ̸= 0. Since this situation is same for negative charges,

it is difficult for Maxwell’s equations to treat creation and annihilation of charge pairs.

II. MODIFICATION OF MAXWELL’S EQUATIONS

In order to solve the above problem, we introduce Nakanishi-Lautrup field B and a gauge

parameter α. The Lagrangian density of the electromagnetic field LEM is given by[10]

LEM = −1

4
F νλFνλ +B∂νAν +

1

2
αB2 − µJνAν , (10)

where Jν and Aν denote 4-D current (cρ,J) and 4-D vector potential (ψ/c,A), respectively,

and F νλ is given by

F νλ = ∂νAλ − ∂λAν . (11)

The above Lagrangian density gives the following equations.

µJν = �Aν − ∂ν∂
λAλ − ∂νB, (12)

∂νAν + αB = 0, (13)

πν =
∂LEM

∂(∂0Aν)
= (B,−E/c), (14)

where πν denotes 4-D canonical momentum density and � is d’Alembertian defined by

� ≡ ∂20 −∇2.
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Since E and H are written by

E = −∇ψ − ∂A

∂t
, (15)

H =
1

µ
∇×A, (16)

Eqs. (1) and (2) are rewritten by Eqs. (12), (15) and (16) as

J = ∇×H− ε
∂E

∂t
+

1

µ
∇B, (17)

ρ = ε∇E− ε
∂B

∂t
. (18)

Then, the charge creation-annihilation rate is given by

G = ∇J+
∂ρ

∂t
= − 1

µ
�B. (19)

The above relation enable us to treat creation and annihilation of positive and negative

charge pairs. It should be noticed that G = 0 needs not B = 0 but �B = 0. Although

�B = 0 is assumed in QED[12, 13], we assume �B ̸= 0 in the region of G ̸= 0. The above

model is a natural extension from 3-D to 4-D field for the complex electromagnetic field

µH + iE/c. Maxwell’s equations, given by Eqs. (1), (2), (3), (4), (15), and (16), can be

written by using 3-D complex field as
µHx +

i
c
Ex

µHy +
i
c
Ey

µHz +
i
c
Ez

 =


−i∂0 −∂z ∂y −∂x
∂z −i∂0 −∂x −∂y
−∂y ∂x −i∂0 −∂z



Ax

Ay

Az

i
c
ψ

 , (20)

µ


Jx

Jy

Jz

icρ

 =


i∂0 −∂z ∂y

∂z i∂0 −∂x
−∂y ∂x i∂0

∂x ∂y ∂z



µHx +

i
c
Ex

µHy +
i
c
Ey

µHz +
i
c
Ez

 . (21)

The model including NL field, given by Eqs. (3), (4), (13), (15), (16), (17), and (18), can

be written by using 4-D complex field as
µHx +

i
c
Ex

µHy +
i
c
Ey

µHz +
i
c
Ez

−αB

 =


−i∂0 −∂z ∂y −∂x
∂z −i∂0 −∂x −∂y
−∂y ∂x −i∂0 −∂z
∂x ∂y ∂z −i∂0




Ax

Ay

Az

i
c
ψ

 , (22)
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µ


Jx

Jy

Jz

icρ

 =


i∂0 −∂z ∂y −∂x
∂z i∂0 −∂x −∂y
−∂y ∂x i∂0 −∂z
∂x ∂y ∂z i∂0




µHx +

i
c
Ex

µHy +
i
c
Ey

µHz +
i
c
Ez

−B

 . (23)

When the coordinate system has velocity v along x-axis, the Lorentz transformation of

A, ψ,H,E, B,J, and ρ are given by
A′

x

A′
y

A′
z

i
c
ψ′

 =



1√
1−β2

0 0 iβ√
1−β2

0 1 0 0

0 0 1 0

−iβ√
1−β2

0 0 1√
1−β2




Ax

Ay

Az

i
c
ψ

 , (24)


µH ′

x +
i
c
E ′

x

µH ′
y +

i
c
E ′

y

µH ′
z +

i
c
E ′

z

−B′

 =



1 0 0 0

0 1√
1−β2

−iβ√
1−β2

0

0 iβ√
1−β2

1√
1−β2

0

0 0 0 1




µHx +

i
c
Ex

µHy +
i
c
Ey

µHz +
i
c
Ez

−B

 , (25)


J ′
x

J ′
y

J ′
z

icρ′

 =



1√
1−β2

0 0 iβ√
1−β2

0 1 0 0

0 0 1 0

−iβ√
1−β2

0 0 1√
1−β2




Jx

Jy

Jz

icρ

 , (26)

where β denotes v/c. Therefore, A, ψ,H,E, J , and ρ have same transformation as original

Maxwell’s equations, and B is not changed by Lorentz transformation. Although Eq. (13)

does not satisfy the gauge invariance, if a scalar function Λ satisfies �Λ = 0, E, H, and B

are not changed by the transformation of

A′ = A+∇Λ, (27)

ψ′ = ψ − ∂Λ

∂t
. (28)

Next we consider about the electromagnetic field energy including NL field. By using

Eqs. (3), (4), (14), (17) and (18), cJνπν is written by

cJνπν = JE+ c2ρB = −∇
(
E×H− 1

µ
BE

)
− ∂

∂t

(
εE2

2
+
µH2

2
+
B2

2µ

)
. (29)
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Since the above equation is regarded as the continuity equation for energy density, JE+c2ρB

is energy annihilation rate, E×H−BE/µ is the energy flow vector, and (εE2+µH2+B2/µ)/2

is the energy density. The NL field induces the additional energy density of B2/2µ. Recently,

we found that NL field causes confinement of charge creation and annihilation centers, which

means charge conservation for this model[17].

III. COMPARISON OF CURRENT VALUES BY MAXWELL’S AND MODIFIED

EQUATIONS

Now we compare the calculation results given by Maxwell’s and the proposed equations

including NL field, using a simple structure. Fig. 1 shows an example structure consisting

of a silicon sphere with radius R surrounded by SiO2 under illumination or in a heating

chamber, where

J = Jp + Jn = 0, (30)

ρ = ρp + ρn = 0, (31)

E = Ep + En = 0, (32)

H = Hp +Hn = 0. (33)

En and Hn denote electric and magnetic field induced by negative charges, respectively.

Since this structure has spherical symmetry, the magnetic field does not exist[21],

Hp = Hn = 0. (34)

R

r

Silicon SiO2

FIG. 1. A silicon sphere with radius R surrounded by SiO2 under illumination or in a heating

chamber.
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Then, the NL fields B and scalar potential ψ also satisfy

B = Bp +Bn = 0, (35)

ψ = ψp + ψn = 0. (36)

where Bp and ψp are induced by holes and Bn and ψp are induced by electrons. It is

assumed that the hole and electron charge density ρp and ρn in the silicon generated by light

or thermal energy increase linearly with time as

ρp = −ρn =

 ρ0(1 +
t
τ
) (r ≤ R)

0 (r > R),
(37)

where the light or the heater is switched on at t = 0, ρ0 is the charge density at t = 0, and the

charge density increases with the charge creation rate of ρ0/τ . Using spherical coordinate

system and Gauss’s law, the electric field has only radial component as

Ep = −En =

 ρ0r
3εSi

(1 + t
τ
) (r ≤ R)

ρ0R3

3εoxr2
(1 + t

τ
) (r > R),

(38)

where εsi and εox are permittivity of silicon and SiO2, respectively. Then ψp and ψn are

given by

ψp = −ψn =


ρ0{(2εSi+εox)R2−εoxr2}

6εSiεox
(1 + t

τ
) (r ≤ R)

ρ0R3

3εoxr
(1 + t

τ
) (r > R),

(39)

In the case of original Maxwell’s equations, the radial component of the current Jp and Jn

out of the sphere are needed by Eqs. (1), (34), and (38) as

Jp = −Jn =

 −ρ0r
3τ

(r ≤ R)

−ρ0R3

3τr2
(r > R).

(40)

The above result does not describe the real condition, because the hole and electron currents

cannot exist in SiO2. Maxwell’s equations cannot increase charge concentration without

current because of the charge conservation of Eq. (5). If we consider the NL field Bp and

Bn for the charge pairs creation with assuming α = 0 and ∇A = 0, they are given by

Bp = −Bn =

 −µρ0{(2εSi+εox)R2−εoxr2}
6εoxτ

(r ≤ R)

−µρ0R3

3τr
(r > R).

(41)
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Since the radial component of the gradient of Bp and Bn are given by

(∇Bp)r = −(∇Bn)r =

 µρ0r
3τ

(r ≤ R)

µρ0R3

3τr2
(r > R),

(42)

the positive and negative charge current density Jp and Jn in and out of the sphere are given

by Eqs. (17), (34), (38), and (41) as

Jp = −Jn = −ε∂Ep

∂t
+

1

µ
(∇Bp)r =

 0 (r ≤ R)

0 (r > R).
(43)

There is no current in and out of the sphere. Then the charge creation-annihiltion rate G is

given by

G = − 1

µ
�Bp =

 ρ0
τ

(r ≤ R)

0 (r > R).
(44)

The electromagnetic field model including NL field gives the reasonable result.

IV. CONCLUSION

In conclusion, the proposed electromagnetic field equations including NL field realizes

charge creation and annihilation. They can be described by quite simple formula using 4D

vectors and differential operator matrices and satisfy Lorentz covariance. The necessity of

the extension of Maxwell’s equations was shown by the comparison of current values given

by Maxwell’s and the proposed equations in a simple structure. The electromagnetic field

energy density is increased by existence of NL field.
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