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Abstract. The so-called ‘Schwarzschild solution’ is not Schwarzschild’s solution, but a corruption, due to David Hilbert 

(December 1916), of the Schwarzschild/Droste solution, wherein m is allegedly the mass of the source of an associated 

gravitational field and the quantity r is said to be able to go down to zero (although no proof of this claim has ever been 

advanced), so that there are two alleged ‘singularities’, one at r = 2m and another at r = 0. It is routinely claimed that r = 

2m is a ‘coordinate’ or ‘removable’ singularity which denotes the so-called ‘Schwarzschild radius’ (event horizon) and 

that a ‘physical’ singularity is at r = 0. The quantity r in the so-called ‘Schwarzschild solution’ has never been rightly 

identified by the physicists, who, although proposing many and varied concepts for what r denotes, effectively treat it as 

a radial distance from a source of the gravitational field at the origin of coordinates. The consequence of this is that the 

intrinsic geometry of the metric manifold has been violated. It is easily proven that the said quantity r is in fact the 

inverse square root of the Gaussian curvature of a spherically symmetric geodesic surface in the spatial section of the 

‘Schwarzschild solution’ and so does not in itself define any distance whatsoever in the that manifold. With the correct 

identification of the associated Gaussian curvature it is also easily proven that there is only one singularity associated 

with all Schwarzschild metrics, of which there is an infinite number that are equivalent. Thus, the standard removal of the 

singularity at r = 2m is, in a very real sense, removal of the wrong singularity, very simply demonstrated herein. In 

addition, the ‘field equations’ Rµν = 0 define a spacetime that contains no matter, and since the ‘Principle of 

Superposition’ does not apply in General Relativity, it is impossible for Schwarzschild black holes to persist and 

mutually interact in a mutual spacetime that by construction contains no matter. Consequently, there are no black holes 

associated with the equations Rµν = 0 and therefore no related gravitational waves. 
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INTRODUCTION  

 
It is reported almost invariably in the literature that Schwarzschild’s solution for Rµν = 0 is (using c = 1, G = 1), 
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where it is asserted by inspection that r can go down to zero in some way, producing an infinitely dense point-

mass singularity there, with an event horizon at the ‘Schwarzschild radius’ at r = 2m a black hole. Contrast this 

metric with that actually obtained by K. Schwarzschild in 1915 (published January 1916), 
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where α is an undetermined constant. There is only one singularity in Schwarzschild’s solution, at r = 0, to which 

his solution is constructed. Contrary to the usual claims Schwarzschild did not set α = 2m where m is mass; he 

did not breathe a single word about the bizarre object that is called a black hole; he did not allege the so-called 

‘Schwarzschild radius’; he did not claim that there is an ‘event horizon’ (by any other name); and his solution 

clearly forbids the black hole because when Schwarzschild’s r = 0, his R = α, and so there is no possibility for 

his R to be less than α let alone take the value R = 0. All this can be easily verified by simply reading 

Schwarzschild’s original paper (Schwarzschild, 1916a), in which he constructs his solution so that the 

singularity occurs at the “origin” of coordinates. Thus, eq. (1) for 0 ≤ r < 2m is inconsistent with 

Schwarzschild’s true solution, eq. (2). It is also inconsistent with the intrinsic geometry of the line-element, 

whereas eq. (2) is geometrically consistent, as demonstrated below. Thus, eq. (1) for 0 ≤ r < 2m is meaningless. 

 

In the usual interpretation of Hilbert’s (Abrams, 1989; Antoci, 2001; Loinger, 2002) version, eq. (1), of 

Schwarzschild’s solution, the quantity r therein has never been properly identified. It has been variously and 

vaguely called “the radius” of a sphere (Mould, 1994; Dodson and Poston, 1991; Carroll, 1997), the “radius of a 

2-sphere” (Bruhn, 2008), the “coordinate radius” (Wald, 1984), the “radial coordinate” (Carroll and Ostile, 

1996; Misner, Thorne and Wheeler, 1970), the “radial space coordinate” (Zel’dovich and Novikov, 1996), the 

“areal radius” (Wald, 1984; Ludvigsen, 1999), the “reduced circumference” (Taylor and Wheeler, 2000), and 

even “a gauge choice: it defines the coordinate r” (‘t Hooft, 2008). In the particular case of r = 2m = 2GM/c2 it is 

almost invariably referred to as the “Schwarzschild radius” or the “gravitational radius”. However, none of 

these various and vague concepts of what r is are correct because the irrefutable geometrical fact is that r, in the 

spatial section of Hilbert’s version of the Schwarzschild/Droste line-element, is the inverse square root of the 

Gaussian curvature of a spherically symmetric geodesic surface in the spatial section (Levi-Civita, 1977; 

Schwarzschild, 1916b; Crothers, 2005), and as such it does not of itself determine the geodesic radial distance 

from the centre of spherical symmetry located at an arbitrary point in the related pseudo-Riemannian metric 

manifold. It does not of itself determine any distance at all in the spherically symmetric metric manifold. It is the 

radius of Gaussian curvature merely by virtue of its formal geometric relationship to the Gaussian curvature. It 

must also be emphasized that a geometry is completely determined by the form of its line-element (Tolman, 

1987). 

 

Since r in eq. (1) can be replaced by any analytic function Rc(r) (Abrams, 1989; Loinger, 2002; Levi-Civita, 

1977; Crothers, 2005; Eddington, 1960) without disturbing spherical symmetry and without violation of the field 

equations Rµν = 0, which is very easily verified, satisfaction of the field equations is a necessary but insufficient 

condition for a solution for Einstein’s static vacuum ‘gravitational’ field. Moreover, the admissible form of Rc(r) 

must be determined in such a way that an infinite number of equivalent metrics is generated thereby (Crothers, 

2005; Eddington, 1960). In addition, the identification of the origin of coordinates and the properties of points 

must also be clarified in relation to the non-Euclidean geometry of Einstein’s gravitational field. In relation to eq. 

(1) it has been routinely presumed that geometric points in the spatial section (which is non-Euclidean) have the 

very same properties of points in the spatial section (Euclidean) of Minkowski spacetime. However, it is easily 

proven that the non-Euclidean geometric points in the spatial section of Einstein’s non-Euclidean gravitational 

field do not possess the same characteristics of the Euclidean geometric points in the spatial section of 

Minkowski spacetime (Crothers, 2005; Brillouin, 1923). This should not be surprising, since the indefinite 

metric of Einstein’s Theory of Relativity admits of other geometrical oddities, such as null vectors, i.e. non-zero 

vectors that have zero magnitude and which are orthogonal to themselves (Foster and Nightingale, 1993). 

 
3-D SPHERICALLY SYMMETRIC METRIC MANIFOLDS  

 
A line-element or squared differential element of arc-length, in spherical coordinates, for 3-dimensional 

Euclidean space is, 

( )222222 sin ϕθθ ddrdrds ++=                                                        (3) 

∞<≤ r0  

The scalar r can be construed, by calculation, as the magnitude of the radius vector r from the origin of the 

coordinate system, the said origin coincident with the centre of the associated sphere. All the components of the 

metric tensor are well-defined, and related geometrical quantities are fixed by the line-element. Indeed, the 

radius Rp(r) of the associated sphere (θ = const., φ = const.) is given by, 
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Consider the generalisation of eq. (3) to a non-Euclidean 3-dimensional spherically symmetric metric manifold 

by the line-element, 

( ) ( ) ( ),sinsin 22222222222 ϕθθϕθθ ddRdRRddRdRds ccccp ++Ψ=++=                     (4)                                             

Rc = Rc(r),      Rc(0) ≤ Rc(r) < ∞, 
where both Ψ(Rc(r)) and Rc(r) are a priori unknown analytic functions. Since neither Ψ(Rc(r)) nor Rc(r) are 

known, eq. (4) may or may not be well-defined at Rc(0) one cannot know until Ψ(Rc(r)) and Rc(r) are somehow 

specified. With this proviso, there is a one-to-one point-wise correspondence between the manifolds described 

by eqs. (3) and (4), i.e. a mapping, as the differential geometers have explained (Levi-Civita, 1977). If Rc(r) is 

constant, eq. (4) reduces to a 2-dimensional spherically symmetric geodesic surface described by, 

( ).sin 22222 ϕθθ ddRds c +=                                                        (5) 

If r is constant, eq. (3) reduces to the 2-dimensional spherically symmetric surface described by, 

( )22222 sin ϕθθ ddrds += .                                                       (6) 

A surface is a manifold in its own right. It need not be considered in relation to an embedding space. Therefore, 

quantities appearing in its line-element must be identified in relation to the surface, not to any embedding space 

it might be in: 

 

 

 

 

 

Note that eqs. (3) and (4) have the same metrical form and that eqs. (5) and (6) have the same metrical form. 

Metrics of the same form share the same fundamental relations between the components of their respective 

metric tensors. For example, consider eq. (4) in relation to eq. (3). For eq. (4), the radial geodesic distance (i.e. 

the proper radius) from the point at the centre of spherical symmetry (θ = const., φ = const.) is, 
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the circumference Cp of a great circle (θ = π/2,  Rc(r) = const.) is, 
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the area Ap of the spherically symmetric geodesic surface (Rc(r)  = const.) is, 
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``And in any case, if the metric form of a surface is known for a certain system of 

intrinsic coordinates, then all the results concerning the intrinsic geometry of this 

surface can be obtained without appealing to the embedding space.'' (Efimov, 1980) 
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and the volume Vp of the geodesic sphere is, 
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In the case of the 2-dimensional metric manifold given by eq. (5) the Riemannian curvature associated with eq. 

(4) (which depends upon both position and direction) reduces to the Gaussian curvature K (which depends only 

upon position), and is given by (Levi-Civita, 1997; Crothers, 2007; Crothers, 2008; Kay, 1998; Kreyszig, 1991; 

McConnell, 1957; Pauli, 1981; Struik, 1988), 
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where R1212 is a component of the Riemann tensor of the 1st kind and g = g11g22 =  gθθgφφ (because the metric 

tensor of eq. (5) is diagonal). Now recall from elementary differential geometry and tensor analysis that 
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 = φ. Applying expressions (7) and (8) to expression 

(5) gives, 
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so that Rc(r) is the inverse square root of the Gaussian curvature, i.e. the radius of Gaussian curvature, and hence, 

in eq. (6) the quantity r therein is the radius of Gaussian curvature because this Gaussian curvature is intrinsic to 

all geometric surfaces having the form of eq. (5) (Levi-Civita, 1977), and a geometry is completely determined 

by the form of its line-element (Tolman, 1987). Indeed, any 2-dimensional surface has an intrinsic Gaussian 

curvature.  Note that according to eqs. (3), (6) and (7), the radius calculated for (3) gives the same value as the 

associated radius of Gaussian curvature of a spherically symmetric surface in the space of eq. (3). Thus, the 

Gaussian curvature (and hence the radius of Gaussian curvature) of the spherically symmetric surface in the 

space of (3) can be associated with the calculated radius, from eq. (3). This is a consequence of the Euclidean 

nature of the space of eq. (3), which describes the spatial section of Minkowski spacetime. However, this is not a 

general relationship. The radius of Gaussian curvature does not directly determine any distance at all in 

Einstein’s gravitational manifold but in fact determines the Gaussian curvature of the spherically symmetric 

geodesic surface through any point in the spatial section of the gravitational manifold, as proven by expression 

(9). Thus, the quantity r in eq. (1) is the inverse square root of the Gaussian curvature (i.e. the radius of Gaussian 

curvature) of a spherically symmetric geodesic surface in the spatial section, not the radial geodesic distance 

from the centre of spherical symmetry of the spatial section or any other distance, of itself, in the manifold. This 

simple geometric fact subverts most of the usual claims made for eq. (1). 

 
THE STANDARD DERIVATION  

 
The usual derivation

a
 begins with the following metric for Minkowski spacetime (using c = 1), 

( )2222222 sin ϕθθ ddrdrdtds +−−=                                                    (10) 

and proposes a generalisation thereof as or equivalent to, 

                                                 
a (See references marked with *.) 
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( )2222222 sin ϕθθβλ ddRdredteds +−−=                                               (11) 

where λ, β and R are all unknown functions of only r, to be determined, and so that the signature of (10) is 

maintained. The form of R(r) is then assumed so that R(r) = r, to get, 

( )2222222 sin ϕθθβλ ddrdredteds +−−= .                                              (12) 

It is then required that e
λ
 and e

β
 be determined

b
 so as to satisfy Rµν = 0. Now note that eq. (12) not only retains 

the signature -2, but also retains the signature (+,–,–,–), because eλ > 0 and eβ > 0. Thus, neither eλ nor eβ can 

change sign. 

 

The Standard analysis then obtains the solution given by eq. (1), wherein the constant m is claimed to be the 

mass generating the alleged gravitational field. By inspection of (1) the Standard analysis asserts that there are 

two singularities, one at r = 2m and one at r = 0. It is claimed that r = 2m is a removable coordinate singularity, 

and that r = 0 a physical singularity. It is also asserted that r = 2m gives the event horizon (the ‘Schwarzschild 

radius’) of a black hole and that r = 0 is the position of the infinitely dense point-mass singularity of the black 

hole, produced by irresistible gravitational collapse. 

 

However, these claims cannot be true. First, the construction of eq. (12) to obtain eq. (1) in satisfaction of Rµν = 0 

is such that neither e
λ
 nor e

β
 can change sign, because e

λ
 > 0 and e

β
 > 0. Therefore the claim that r can take values 

less than 2m is false; a contradiction by the very construction of the metric (12) leading to metric eq. (1). 

Furthermore, since neither e
λ
 nor e

β
 can ever be zero, the claim that r = 2m is a removable coordinate singularity 

is also false. In addition, the true nature of r in both eqs. (12) and (1) is entirely overlooked, and the geometric 

relations between the components of the metric tensor, fixed by the form of the line-element, are not applied, in 

consequence of which the Standard analysis fatally falters. To highlight further, rewrite eq. (11) as, 

( ) ( ) ( )2222222 sin ϕθθ ddRdRRBdtRAds cccc +−−=                                        (13) 

where A( Rc), B( Rc), Rc(r) > 0. The solution for Rµν = 0 then takes the form, 
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Rc =Rc(r), 
where α is a constant. It remains to determine the admissible form of Rc(r), which, from the foregoing, is the 

inverse square root of the Gaussian curvature of a spherically symmetric geodesic surface in the spatial section 

of the manifold associated with eq. (14), owing to the metrical form of eq. (14). From above, the proper radius 

for a metric of the form of eq. (14) is, 
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where k is a constant. Now for some ro, Rp(ro) =  0. Then by (15) it is required that Rc(ro) =  α and k = - αln√α so 

( ) ( )












 −+
+−=

α

α
αα cc

ccp

RR
RRrR ln                                       (16) 

Rc =Rc(r), 
It is thus also determined that the Gaussian curvature of the spherically symmetric geodesic surface of the spatial 

section ranges not from ∞ to 0, as it does for Euclidean 3-space, but from α-2 to 0. This is an inevitable 

consequence of the non-Euclidean geometry described by eq. (14).   

 

Schwarzschild’s true solution, eq. (2), must be a particular case of the general expression sought for Rc(r). 

Brillouin’s solution (Abrams, 1989; Brillouin, 1923) must also be a particular case, viz., 
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and Droste’s solution (Droste, 1917) must as well be a particular solution, viz., 
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These particular solutions must all be particular cases in an infinite set of equivalent metrics (Eddington, 1923). 

The only admissible form for Rc(r) is (Crothers, 2005; Crothers, 2005b; Crothers, 2005c), 
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where ro and n are entirely arbitrary constants. So the solution for Rµν = 0 is, 
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Then if ro = 0, r > ro, n = 1, Brillouin’s solution eq. (17) results. If ro = 0, r > ro, n = 3, then Schwarzschild’s 

actual solution eq. (2) results. If ro = α, r > ro, n = 1, then Droste’s solution eq. (18) results, which is the correct 

solution in the particular metric of eq. (1). In addition the required infinite set of equivalent metrics is thereby 

obtained, all of which are asymptotically Minkowski spacetime. Furthermore, if the constant α is set to zero, eq. 

(20) reduces to Minkowski spacetime, and if in addition ro is set to zero, that the usual Minkowski metric of eq. 

(10) is obtained. 

 

It is clear from expression (20) that there is only ever one singularity, at the arbitrary constant ro, where Rc(ro) =  

α  for all ro for all n and Rp(ro) =  0 for all ro for all n, and that all components of the metric tensor are affected by 

the constant α. Hence, the “removal” of the singularity at r = 2m in eq. (1) is fallacious, and, in a very real sense, 

is a removal of the wrong singularity, because it is clear from expression (20) and the form of the line-element at 

eq. (13), in accordance with the intrinsic geometry of the line-element as given in above and the generalisation at 

eq. (11), that there is no singularity at r = 0 in eq. (1) and that 0 ≤ r ≤ 2m therein is meaningless. The Standard 

claims for eq. (1) violate the geometry fixed by form of its line-element and contradict the generalisations at eqs. 

(11) and (12) from which it has been obtained by the Standard method. There is therefore no black hole 

associated with eq. (1) since there is no black hole associated with eq. (2) and none with eq. (20), of which 

Schwarzschild’s actual solution, eq. (2), Brillouin’s solution, eq. (17), and Droste’s solution, eq. (18), are just 

particular equivalent cases.  Consequently, there can be no gravitational waves generated by black holes since 

the latter are fictitious. 

 

The usual form of eq. (1) in isotropic coordinates is, 
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where it is again usually alleged that r can go down to zero. This expression has the very same metrical form as 

eq. (13) and so shares the very same geometrical character. Now the coefficient of dt
2
 is zero when r = m/2, 

which, according to the physicists marks the ‘radius’ or ‘event horizon’ of a black hole, and where m is the 

alleged point-mass of the black hole singularity located at r = 0, just as in eq. (1). This further amplifies the fact 

that the quantity r appearing in both eq. (1) and its isotropic coordinate form is not a distance in the manifold 

described by these line-elements. Applying the intrinsic geometric relations detailed above it is clear that for the 

isotropic coordinate metric, 
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Hence, Rc(m/2) = 2m, and Rp(m/2) = 0, which are scalar invariants necessarily consistent with eq. (20). 

Furthermore, applying the same geometrical analysis leading to eq. (20), the generalised solution in isotropic 

coordinates is (Crothers, 2006), 
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wherein ro and n are entirely arbitrary constants. Then, 
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and so 

Rc(ro) = α,    Rp(ro) = 0,    nro ∀∀  

which are scalar invariants, in accordance with eq. (20). Clearly in these isotropic coordinate expressions r does 

not in itself denote any distance in the manifold, just as it does not in itself denote any distance in eq. (20) of 

which eqs. (1) and (2) are particular cases. It is a parameter for the Gaussian curvature of the spherically 

symmetric geodesic surface in the spatial section and for the proper radius (i.e. the radial geodesic distance from 

the point at the centre of spherical symmetry of the spatial section). 

 

Doughty (1981) has shown that the radial geodesic acceleration a of a point in a manifold described by a line-

element with the form of eq. (14) is given by 
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and so the radial geodesic acceleration is infinite at r = 2m, where, according to the usual interpretation of eq. 

(1), there is no matter! But it is plain from eq. (20) that the acceleration is given by, 
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and this is infinite at Rc(ro) = α, precisely where Rp(ro) = 0, irrespective of the values of ro and n.  

 

For eq. (1), when 2m < r < ∞, the signature of eq. (1) is (+,–,–,–). But if 0 < r < 2m in eq. (1), then 
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So the signature of eq. (1) changes to (–,+,–,–). Thus the rôles of t and r are interchanged. According to Misner, 

Thorne and Wheeler (1970), 
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To amplify this, set t = -r* and r = -t*, so that for 0 < r < 2m, eq. (1) becomes, 
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But this is now a time-dependent metric since all the components of the metric tensor are functions of the time 

t*, and so this metric bears no relationship to the original time-independent problem to be solved. In other words, 

this metric is a non-static solution to a static problem:- contra-hype! Thus, in eq. (1), 0 ≤ r ≤ 2m is meaningless. 

Both Droste (1917) and Brillouin (1923) drew particular attention to this consequence. 

 

It is also frequently claimed (Misner, Thorne and Wheeler, 1970; Kruskal, 1960; d’Inverno, 1992) in relation to 

eq. (1) that since the Riemann tensor scalar curvature invariant (the Kretschmann scalar) is finite at r = 2m, the 

latter is a ‘coordinate singularity’ or ‘removable singularity’. But it has never been proven that Einstein’s theory 

requires a singularity where the Kretschmann scalar is unbounded. In fact, it is not required. The Kretschmann 

scalar is not an independent curvature invariant. Although the Kretshmann scalar depends upon the components 

of the metric tensor, all the components of the metric tensor are functions of the Gaussian curvature of the 

spherically symmetric geodesic surface in the spatial section, owing to the form of the line-element, in 

consequence of which the Kretschmann scalar is constrained by the intrinsic Gaussian curvature of the 

spherically symmetric geodesic surface in the spatial section. Recall that the Kretschmann scalar f is, 

f = Rαβγδ R
αβγδ

. 
Then by eq. (20), 
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Furthermore, Hagihara (1931) proved, in relation to eq. (1), that all geodesics that do not run into the boundary at 

r = 2m are complete. The boundary at r = 2m is the boundary marked by the point at the centre of spherical 

symmetry of the spatial section of the manifold, precisely where the radial geodesic distance is Rp = 0.  

 

Einstein’s field equations are non-linear, so the ‘Principle of Superposition’ does not apply. Before one can talk of 

relativistic binary systems it must first be proven that the two-body system is well-defined by General Relativity. 

This can be done in only two ways: (a) Derivation of an exact solution to Einstein’s field equations for two bodies; 

or (b) Proof of an existence theorem. There are no known solutions to Einstein’s field equations for the interaction 

of two (or more) masses. No existence theorem has ever been proven for latent solutions for such configurations of 

matter. The ‘Schwarzschild’ black hole is alleged from a line-element satisfying Rµν = 0. Since Rµν = 0 is by 

“The most obvious pathology at r = 2M is the reversal there of the roles of t and r as 

timelike and spacelike coordinates. In the region r > 2M, the t direction, ∂=∂t, is 

timelike (gtt < 0) and the r direction, ∂=∂r, is spacelike (gtt > 0); but in the region 

 r < 2M, ∂=∂t, is spacelike (gtt > 0) and ∂=∂r, is timelike (gtt < 0). 

 

“What does it mean for r to `change in character from a spacelike coordinate to a 

timelike one'? The explorer in his jet-powered spaceship prior to arrival at r = 2M 

always has the option to turn on his jets and change his motion from decreasing r 

(infall) to increasing r (escape). Quite the contrary in the situation when he has once 

allowed himself to fall inside r = 2M. Then the further decrease of r represents the 

passage of time. No command that the traveler can give to his jet engine will turn back 

time. That unseen power of the world which drags everyone forward willy-nilly from 

age twenty to forty and from forty to eighty also drags the rocket in from time 

coordinate r = 2M to the later time coordinate r = 0. No human act of will, no engine, 

no rocket, no force (see exercise 31.3) can make time stand still. As surely as cells die, 

as surely as the traveler's watch ticks away ‘the unforgiving minutes,’ with equal 

certainty, and with never one halt along the way, r drops from 2M to 0. 

 

 “At r = 2M, where r and t exchange roles as space and time coordinates, gtt vanishes 

while grr is infnite." 
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construction a Universe that contains no matter, a second black hole cannot simply be inserted into the spacetime of 

Rµν = 0 of a given black hole so that the resulting two black holes, each obtained separately from Rµν = 0, mutually 

persist and interact in a mutual spacetime that by construction contains no matter! One cannot simply assert by an 

analogy with Newton’s theory that two black holes can be components of binary systems, collide or merge 

(McVittie, 1978). Moreover, General Relativity has to date been unable to account for the simple experimental fact 

that two fixed bodies will attract one another upon release. The signatures of the black hole, an infinitely dense 

point-mass singularity and an event horizon, have never been identified anywhere, and so no black hole has ever 

been found. The Michell-Laplace dark body is not a black hole (McVittie, 1978). 

 
CONCLUSION 

 
‘Schwarzschild’s solution’ is not Schwarzschild’s true solution. Black holes cannot be obtained from 

Schwarzschild’s actual solution without violation of the intrinsic geometry of his solution. The quantity r appearing 

in ‘Schwarzschild’s solution’ has never been correctly identified by the physicists. It is irrefutably the inverse square 

root of the Gaussian curvature of a spherically symmetric geodesic surface in the spatial section, not a distance of 

any kind in the manifold. The signatures of the black hole, an infinitely dense point-mass singularity and an event 

horizon, have never been identified anywhere, and so no black hole has ever been found.  Since Rµν = 0 is by 

construction a spacetime devoid of all matter, the notion of associated black holes interacting is invalid. Neither 

Newton’s theory nor Einstein’s theory predicts black holes. The black hole is fictitious, and so no gravitational 

waves can be generated by black holes. 
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