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A three dimensional Green’s function is derived mathematically by using the two dimensional Green’s function, which is obtained as a 
result of the modified theory of physical optics’ algorithm. The integration of the three dimensional Green’s function leads to the two 
dimensional one when there spatial symmetry in the scatterer’s geometry and the incident wave. In order to obtain the three dimensional 
function, the two dimensional Green’s function is mathematically transformed into an infinite integral according to z′. The derived 
Green’s function is generalized and expressed in a scattering integral for soft and hard surfaces.  

 
The scattering process of waves is generally investigated 
by the methods of physical optics (PO) or Kirchhoff’s 
diffraction integral. For continuous surfaces, e.g. whole 
plane, these methods yield the exact solution. However 
the PO and Kirchhoff’s diffraction integral will give 
incorrect wave expressions if the scatterer has 
discontinuities like edges [1]. In 2004, we showed that it 
was possible to obtain the exact solution of the diffraction 
problem of waves by a perfectly conducting half-plane 
with the PO method [2]. The new theory, modified theory 
of physical optics (MTPO), is based on three axioms. We 
directly obtained a novel two dimensional (2D) Green’s 
function by the application of these axioms to the edge 
diffraction problem. The function was in the same 
structure with the one that was heuristically introduced 
by Gori [3]. The 2D Green’s function is directional, since it 
has its maximum radiation in one direction and zero 
emission in the opposite side. However most of the 
scattering problems are three dimensional (3D). For this 
reason there is a request in the literature for the 
extension of MTPO into 3D form [4]. The first step in the 
extension of the improved PO theory is the determination 
of a 3D Green’s function that satisfies the Helmholtz 
equation in the spherical coordinates. The motivation of 
this letter is to mathematically derive a 3D directional 
Green’s function that will yield directly to the 2D one of 
MTPO for spatially symmetric problems. In the literature, 
3D Huygens’ sources exist [5]. These are derived by the 
radiation integrals of electric and magnetic dipoles that 
are places perpendicularly according to each other [6]. 
However, the radiated waves from these 3D Huygens’ 
sources do not satisfy the Helmholtz equation. A time 
factor exp(jωt) is suppressed throughout the paper. ω is 
the angular frequency. 

We consider the diffraction problem of waves by a soft 
(total field is equal to zero on the surface) or hard (normal 
derivative of the total field is equal to zero on the surface) 
half-plane. The geometry is given in Fig. 1. The half-
screen is located at the plane y=0. The problem is 
symmetric according to z′. The coordinates with primes 
show the integration point. P and Q are the points of 
observation and integration (scattering) respectively. α is 
the angle of incidence at the integration point. β shows the 
angle of scattering.   The total field can be written as 
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Fig. 1.  (Color online) Scattering of waves by a perfectly 
conducting half-plane. 
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where ui is the incident wave [2, 7]. Plus and minus signs 
are valid for hard and soft surfaces respectively. k 
represents the wavenumber. R1 is the distance between 
the points of observation and scattering and equal to 
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Equation (1) gives the exact scattered waves by the 
perfectly conducting half-plane. The form of the 2D 
Green’s functions, in Eq. (1), can be given by 
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for ρ and φ are the polar coordinates. Q is at the origin for 
G2, in Eq. (3). G2 satisfies the Helmholtz equation as 
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in the cylindrical coordinates. 
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Fig. 2.  (Color online) The variation of G2 versus φ. 

Figure 2 shows the variation of G2 with respect to φ 
for a constant value of ρ. It can be seen that the maximum 
radiation occurs at 00. The radiated field is equal to zero at 
1800 which is in the opposite direction of 00. This behavior 
is similar to a cardioid shape [5]. 

Our aim is the derive the 3D Green’s function G3 by 
using the identity 
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Note that the 2D Green’s function of the classical PO and 
Kirchhoff’s diffraction integral can be evaluated from the 
relation 
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where H0(2)(x) is the second kind zero order Hankel 
function. R is 
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Equation (5) is inspired from Eq. (6). Now we will express 
G2, given by Eq. (3), in terms of the integral of the 3D 
green’s function G3. Thus the form of G3 will be 
determined, once the integral is constructed. The 
cylindrical wave factor, in G2, satisfies the relation 
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where I represents the integral 
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We define the variable transform ν2=q for the integral. 
Thus I becomes 
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Equation (10) can be arranged as 
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when the relation 
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is taken into account. The integral, in the brackets of Eq. 
(11), reads 
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As a result I yields the expression 
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when Eq. (13) is used in Eq. (11). The 2D Green’s function 
can be evaluated from the equation 

 ( )
( )21

4

2 2
, cos

2 1

j jk

e d e
G d

dk

π
ρ ζ

φ
ρ φ ζ

ρ ζπ

− − +∞

−∞

 
 = −
 +
 
∫ ,(15) 

which is the combination of Eqs. (3) and (8). The relation 
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will be obtained if Eq. (14) is used in Eq. (15). In this step, 
we will transform the integral, in Eq. (16), into the type, in 
Eq. (6). With this aim, the variable transform 
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is defined. R is expressed by 

 2 2'R zρ= + . (18) 

For the sake of simplicity, z is accepted as zero. The 
differential of Eq. (17) leads to the expression 
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Equation (16) can be represented as 
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after the variable transform. As a result, the 3D Green’s 
function is found to be 
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when Eq. (5) and (20) are compared. We used the 
operations, introduced by Clemmow, in order to transform 
Eq. (9) into Eq. (14) [8]. We can write G3 as 
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by taking z instead of z′. This means that the integration 
point (x′,y′,z′) is at the origin. In this case, R becomes r of 
the spherical coordinates (r,θ,φ). It is apparent that Eq. 
(22) represents a 3D Huygens’ source. The relations 

 cosz r θ=  (23) 

and 

 sinrρ θ=  (24) 

can be defined in the spherical coordinates. Equation (22) 
can be rewritten as 
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in this coordinate system. G3 can be arranged as 
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where γ is (π/2)−θ. The 3D Huygens’ source reads 
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after some trigonometric manipulations. The Helmholtz 
equation 
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can be expressed as 
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in the spherical coordinates. The Helmholtz equation 
becomes 
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when Eq. (27) is used in Eq. (29). v is equal to 
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Equation (30) yields 
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for w has the expression 
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It can be verified that the left side of Eq. (32) is equal to 
zero for w, defined in Eq. (33). Thus G3 satisfies the 
Helmholtz equation in the spherical coordinates. 

Now we will introduce the scalar diffraction integral 
for soft and hard surfaces with the aid of G3. The 
geometry, in Fig. 3, is taken into account. The integration 
point is in the 3D space. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  (Color online)3D scattering geometry. 

An arbitrary incident wave is hitting a perfectly 
conducting surface, located at y=0. The scattered ray 
travels from the integration point to the point of 
observation by following the path R. θ0 (α) is the angle 
between the incident ray and the z (x) axis. The angle 
between the scattered ray and the z (x) axis is η (β). The 
3D Green’s function can be introduced by 
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The plus and minus signs are valid for hard and soft 
surfaces respectively. The trigonometric functions of η are 
determined in order to guarantee that the maximum 
value is taken at η=θ0. This criteria is related with the fact 
that the same functions reach their maximum value at 
θ=π/2, in Eq. (27). The total field can be written as 
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where us is the scattered wave, which can be defined by 
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according to Eq. (1). The constant terms, in Eq. (27), are 
not considered at Eq. (34), because Eq. (27) is derived for a 
cylindrical wave factor with unit amplitude. The same 
constant terms come automatically from Eq. (1). 
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Fig. 4.  (Color online)Variation of the G3+ with respect to β for 
different values of η. 

Figure 4 shows the variation of G3+ versus β for 
different values of η. The shape of the Green’s function 
does not change with the various values of η. However, 
the intensity of G3+ is affected. The maximum values of 
intensity occur equally when η is 00 and 900. The intensity 
of the Green’s function decreases till η=450. 

In this letter, we introduced a 3D Green’s function, 
which satisfies the Helmholtz equation in the spherical 
coordinates, other than the spherical wave factor, used in 
PO and the diffraction integral of Kirchhoff for the first 
time in the literature to our knowledge. Our motivation 
was the extension of MTPO for the 3D problems. Our 
future work will be to relate the evaluation of the surface 
currents and 3D Green’s function from the boundary 
conditions and the incident wave. However Eq. (36) gives 
an improved form of the Kirchhoff’s diffraction integral for 
3D scattering problems. 
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