Prove Beal's Conjecture by Fermat's Last Theorem

Zhang Tianshu
Zhanjiang city, Guangdong province, P.R.China.
Email: tianshu_zhang507@aliyun.com

Abstract

In this article, we will prove the Beal's conjecture by certain usual mathematical fundamentals with the aid of proven Fermat's last theorem, and finally reach a conclusion that the Beal's conjecture is tenable.

Keywords

Beal's conjecture, Inequality, Indefinite equation, Fermat's last theorem, Mathematical fundamentals, Odd-even attribute of A, B and C.

The proof

The Beal's Conjecture states that if $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}}=\mathrm{C}^{\mathrm{Z}}$, where $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{X}, \mathrm{Y}$ and Z are all positive integers, and X, Y and Z are greater than 2 , then A, B and C must have a common prime factor.

We regard limits of values of above-mentioned $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{X}, \mathrm{Y}$ and Z as known requirements, hereinafter.

First, we must remove following two kinds from $A^{X}+B^{Y}=C^{Z}$ under the known requirements.

1. If A, B and C are all positive odd numbers, then $A^{X}+B^{Y}$ is an even number, yet C^{Z} is an odd number, evidently there is only $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}} \neq \mathrm{C}^{\mathrm{Z}}$ under the known requirements according to an odd number \neq an even number.
2. If any two of A, B and C are positive even numbers, yet another is a
positive odd number, then when $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}}$ is an even number, C^{Z} is an odd number, yet when $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}}$ is an odd number, C^{Z} is an even number, so there is only $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}} \neq \mathrm{C}^{\mathrm{Z}}$ under the known requirements according to an odd number \neq an even number.

Thus, we reserve merely two kinds of indefinite equation $A^{X}+B^{Y}=C^{Z}$ under the known requirements plus each qualification as listed below.

1. A, B and C are all positive even numbers.
2. A, B and C are two positive odd numbers and a positive even number.

For indefinite equation $A^{X}+B^{Y}=C^{Z}$ under the known requirements plus aforementioned each qualification, in fact, it has many sets of solutions of positive integers. Let us instance following four concrete equations to explain such a viewpoint.

When A, B and C are all positive even numbers, if let $A=B=C=2, X=Y=3$, and $Z=4$, then indefinite equation $A^{X}+B^{Y}=C^{Z}$ is exactly equality $2^{3}+2^{3}=2^{4}$. Evidently $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}}=\mathrm{C}^{\mathrm{Z}}$ has a set of solutions of positive integers $(2,2,2)$ here, and A, B and C have common even prime factor 2 .

In addition, if let $\mathrm{A}=\mathrm{B}=162, \mathrm{C}=54, \mathrm{X}=\mathrm{Y}=3$, and $\mathrm{Z}=4$, then, indefinite equation $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}}=\mathrm{C}^{\mathrm{Z}}$ is exactly equality $162^{3}+162^{3}=54^{4}$. Evidently $A^{X}+B^{Y}=C^{Z}$ has a set of solutions of positive integers $(162,162,54)$ here, and A, B and C have two common prime factors, i.e. even 2 and odd 3. When A, B and C are two positive odd numbers and a positive even number, if let $\mathrm{A}=\mathrm{C}=3, \mathrm{~B}=6, \mathrm{X}=\mathrm{Y}=3$, and $\mathrm{Z}=5$, then, indefinite equation
$A^{X}+B^{Y}=C^{Z}$ is exactly equality $3^{3}+6^{3}=3^{5}$. Evidently $A^{X}+B^{Y}=C^{Z}$ has a set of solutions of positive integers $(3,6,3)$ here, and A, B and C have common prime factor 3 .

In addition, if let $\mathrm{A}=\mathrm{B}=7, \mathrm{C}=98, \mathrm{X}=6, \mathrm{Y}=7$, and $\mathrm{Z}=3$, then, indefinite equation $A^{X}+B^{Y}=C^{Z}$ is exactly equality $7^{6}+7^{7}=98^{3}$. Evidently $A^{X}+B^{Y}=C^{Z}$ has a set of solutions of positive integers $(7,7,98)$ here, and A, B and C have common prime factor 7 .

Thus it can seen that by above-mentioned four concrete examples, we have proved that indefinite equation $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}}=\mathrm{C}^{\mathrm{Z}}$ under the known requirements plus aforementioned each qualification can exist, but A, B and C have at least one common prime factor.

If we can prove that there is only $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}} \neq \mathrm{C}^{\mathrm{Z}}$ under the known requirements plus the qualification that A, B and C have not any common prime factor, then, we precisely proven that there is only $A^{X}+B^{Y}=C^{Z}$ under the known requirements plus the qualification that A, B and C must have a common prime factor.

Since when A, B and C are all positive even numbers, A, B and C have common prime factor 2, therefore, for these circumstances that A, B and C have not any common prime factor, they can only occur under the prerequisite that A, B and C are two positive odd numbers and a positive even number.

If A, B and C have not any common prime factor, then any two of them
have not any common prime factor either. Because on the supposition that any two of them have a common prime factor, namely $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}}$ or $\mathrm{C}^{\mathrm{Z}}-\mathrm{A}^{\mathrm{X}}$ or $\mathrm{C}^{\mathrm{Z}}-\mathrm{B}^{\mathrm{Y}}$ have the prime factor, yet another has not it, then, this will lead to $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}} \neq \mathrm{C}^{\mathrm{Z}}$ or $\mathrm{C}^{\mathrm{Z}}-\mathrm{A}^{\mathrm{X}} \neq \mathrm{B}^{\mathrm{Y}}$ or $\mathrm{C}^{\mathrm{Z}}-\mathrm{B}^{\mathrm{Y}} \neq \mathrm{A}^{\mathrm{X}}$ according to the unique factorization theorem for a positive integer.

Such being the case, provided we can prove that there is only inequality $A^{X}+B^{Y} \neq C^{Z}$ under the known requirements plus the qualification that A, B and C have not any common prime factor, then the Beal's conjecture is surely tenable, otherwise it will be negated.

Unquestionably, following two inequalities together can wholly replace $A^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}} \neq \mathrm{C}^{\mathrm{Z}}$ under the known requirements plus the qualification that A, B and C have not any common prime factor.

1. $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}} \neq 2^{\mathrm{Z}} \mathrm{G}^{\mathrm{Z}}$ under the known requirements plus the qualification that A, B and 2 G have not any common prime factor, where $2 \mathrm{G}=\mathrm{C}$.
2. $A^{X}+2^{Y} D^{Y} \neq C^{Z}$ under the known requirements plus the qualification that $\mathrm{A}, 2 \mathrm{D}$ and C have not any common prime factor, where $2 \mathrm{D}=\mathrm{B}$. We again divide $A^{x}+B^{Y} \neq 2^{Z} G^{Z}$ into two kinds, i.e. (1) $A^{X}+B^{Y} \neq 2^{Z}$, when $\mathrm{G}=1$, and (2) $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}} \neq 2^{\mathrm{Z}} \mathrm{G}^{\mathrm{Z}}$, where G has at least an odd prime factor >1. Likewise divide $A^{X}+2^{Y} D^{Y} \neq C^{Z}$ into two kinds, i.e. (3) $A^{X}+2^{Y} \neq C^{Z}$, when $\mathrm{D}=1$, and (4) $\mathrm{A}^{\mathrm{X}}+2^{\mathrm{Y}} \mathrm{D}^{\mathrm{Y}} \neq \mathrm{C}^{\mathrm{Z}}$, where D has at least an odd prime factor >1. We will prove that aforesaid four inequalities under the known requirements plus their qualifications are on the existence.

On purpose of the citation for convenience, let us first prove $E^{P}+F^{V} \neq 2^{M}$, where E and F are two positive odd numbers without any common prime divisor, and P, V and M are integers >2. Since E and F have not any common prime factor, so there is $\mathrm{E}^{\mathrm{P}} \neq \mathrm{F}^{\mathrm{V}}$ according to the unique factorization theorem for a positive integer, then let $\mathrm{F}^{V}>\mathrm{E}^{\mathrm{P}}$.

In other words, let us Prove that indefinite equation $\mathrm{E}^{\mathrm{P}}+\mathrm{F}^{V}=2^{M}$ has not a set of solutions of positive integers, where P, V and M are integers >2.

We know that when P is an integer >2, indefinite equation $\mathrm{E}^{\mathrm{P}}+1^{P}=2^{P}$ has not a set of solutions of positive integers according to proven Fermat's last theorem [REFERENCES], thus E is not a positive integer.

In the light of the same reason, when V is an integer >2, indefinite equation $\mathrm{F}^{\mathrm{V}}-1^{\mathrm{V}}=2^{\mathrm{V}}$ has not a set of solutions of positive integers, so F is not a positive integer either.

Next, two sides of equal-sign of $E^{P}+1^{P}=2^{P}$ added respectively to two sides of equal-sign of $\mathrm{F}^{\mathrm{V}}-1^{\mathrm{V}}=2^{\mathrm{V}}$ make $\mathrm{E}^{\mathrm{P}}+\mathrm{F}^{\mathrm{V}}=2^{\mathrm{P}}+2^{\mathrm{V}}$.

For indefinite equation $\mathrm{E}^{\mathrm{P}}+\mathrm{F}^{\mathrm{V}}=2^{\mathrm{P}}+2^{\mathrm{V}}$, when $\mathrm{P}=\mathrm{V}, 2^{\mathrm{P}}+2^{\mathrm{V}}=2^{\mathrm{P}+1}$, so $\mathrm{E}^{\mathrm{P}}+\mathrm{F}^{\mathrm{V}}=2^{\mathrm{P}+1}$. Let $\mathrm{P}+1=\mathrm{M}$, there is $\mathrm{E}^{\mathrm{P}}+\mathrm{F}^{\mathrm{V}}=2^{\mathrm{M}}$, but E and F at here are not two positive integers according to preceding two conclusions. If enable E and F into two positive odd numbers, then, there is only $\mathrm{E}^{\mathrm{P}}+\mathrm{F}^{\mathrm{V}} \neq 2^{\mathrm{M}}$.

However, when $\mathrm{P} \neq \mathrm{V}, 2^{\mathrm{P}}+2^{\mathrm{V}} \neq 2^{\mathrm{M}}$, then $\mathrm{E}^{\mathrm{P}}+\mathrm{F}^{\mathrm{V}}=2^{\mathrm{P}}+2^{\mathrm{V}} \neq 2^{\mathrm{M}}$, i.e. $\mathrm{E}^{\mathrm{P}}+\mathrm{F}^{\mathrm{V}} \neq 2^{\mathrm{M}}$, where E and F at here are not two positive integers according to preceding two conclusions. If let E and F turn into two positive odd
numbers, then, whether multiply $E^{P}+F^{V}$ by a corresponding no positive integer such as μ, or E^{p} added to a corresponding no positive integer such as ζ, and F^{\vee} added to a corresponding no positive integer such as ξ, so whether must multiply $2^{\mathrm{P}}+2^{\mathrm{V}}$ by μ, or $2^{\mathrm{P}}+2^{\mathrm{V}}$ must add to $\zeta+\xi$ on another side of the equality. Then, a result on another side can only be $\left(2^{\mathrm{P}}+2^{\mathrm{V}}\right) \mu$ or $2^{\mathrm{P}}+2^{\mathrm{V}}+\zeta+\xi$, and either result $\neq 2^{\mathrm{M}}$, thus when E and F are two positive odd numbers, there is still $\mathrm{E}^{\mathrm{P}}+\mathrm{F}^{\mathrm{V}} \neq 2^{\mathrm{M}}$.

In a word, we have proven $\mathrm{E}^{\mathrm{P}}+\mathrm{F}^{\mathrm{V}} \neq 2^{\mathrm{M}}$, where E and F are two positive odd numbers without any common prime divisor, and P, V and M are integers >2.

On the basis of proven $\mathrm{E}^{\mathrm{P}}+\mathrm{F}^{\mathrm{V}} \neq 2^{\mathrm{M}}$, we just set to prove aforementioned four inequalities, one by one, thereinafter.

Firstly, let $A^{X}=E^{P}, B^{Y}=F^{V}$, and $2^{Z}=2^{M}$ for proven $E^{P}+F^{V} \neq 2^{M}$, we get $A^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}} \neq 2^{\mathrm{Z}}$ under the known requirements, where 2 is a value of C .

Secondly, let us successively prove $A^{X}+B^{Y} \neq 2^{Z} G^{Z}$ under the known requirements plus the qualification that A, B and 2 G have not any common prime factor, where $2 \mathrm{G}=\mathrm{C}$, and G has at least an odd prime factor >1.

To begin with, multiply each term of proven $E^{P}+F^{V} \neq 2^{M}$ by G^{M} is $E^{P} G^{M}+F^{V} G^{M} \neq 2^{M} G^{M}$.

For any positive even number, either it is able to be expressed as $A^{\mathrm{x}}+\mathrm{B}^{\mathrm{Y}}$,
or it is unable. No doubt, $\mathrm{E}^{\mathrm{P}} \mathrm{G}^{\mathrm{M}}+\mathrm{F}^{\mathrm{V}} \mathrm{G}^{\mathrm{M}}$ is a positive even number. If $E^{P} G^{M}+F^{V} G^{M}$ is able to be expressed as $A^{X}+B^{Y}$, then there is $A^{X}+B^{Y} \neq 2^{M} G^{M}$.

If $E^{P} G^{M}+F^{V} G^{M}$ is unable to be expressed as $A^{X}+B^{Y}$, then it has nothing to do with proving $A^{X}+B^{Y} \neq 2^{M} G^{M}$.

Under this case, there are still $E^{P} G^{M}+F^{V} G^{M} \neq A^{X}+B^{Y}$ and $E^{P} G^{M}+F^{V} G^{M} \neq$ $2^{M} G^{M}$, so let $E^{P} G^{M}+F^{V} G^{M}$ equals $A^{X}+B^{Y}+2 b$ or $A^{X}+B^{Y}-2 b$, where b is a positive integer. Also use sign " \pm " to denote sign "+" and sign "-" hereinafter, then we get $A^{X}+B^{Y} \pm 2 b \neq 2^{M} G^{M}$, i.e. $A^{X}+B^{Y} \neq 2^{M} G^{M} \pm 2 b$.

Since $2 b$ can express every positive even number, then $2^{M} G^{M} \pm 2 b$ can express all positive even numbers except for $2^{\mathrm{M}} \mathrm{G}^{\mathrm{M}}$.

For a positive even number, either it is able to be expressed as $2^{\mathrm{K}} \mathrm{N}^{\mathrm{K}}$, or it is unable, where K is an integer >2, and N is a positive integer which has at least an odd prime factor >1.

On the one hand, where $2^{M} G^{M} \pm 2 b=2^{K} N^{K}$, there is $A^{X}+B^{Y} \neq 2^{K} N^{K}$. On the other hand, where $2^{\mathrm{M}} \mathrm{G}^{\mathrm{M}} \pm 2 \mathrm{~b} \neq 2^{\mathrm{K}} \mathrm{N}^{\mathrm{K}}, 2^{\mathrm{M}} \mathrm{G}^{\mathrm{M}} \pm 2 \mathrm{~b}$ has nothing to do with proving $A^{X}+B^{Y} \neq 2^{K} N^{K}$.

That is to say, for $E^{P} G^{M}+F^{V} G^{M} \neq 2^{M} G^{M}$, if $E^{P} G^{M}+F^{V} G^{M}$ is unable to be expressed as $A^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}}$, we can deduce $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}} \neq 2^{\mathrm{K}} \mathrm{N}^{\mathrm{K}}$ too, elsewhere.

Hereto, we have proven $A^{X}+B^{Y} \neq 2^{M} G^{M}$ or $A^{X}+B^{Y} \neq 2^{K} N^{K}$ on the existence. Since either M or K is to express an integer >2, also either G or N is a positive integer which has at least an odd prime factor >1, therefore both
can represent from each other.

Thirdly, we proceed to prove $A^{X}+2^{Y} \neq C^{Z}$ under the known requirements plus the qualification that A and C are two positive odd numbers without any common prime factor, where 2 is a value of B.

In the former passage, we have proven $E^{P}+F^{V} \neq 2^{M}$, where $F^{V}>E^{P}$, so let F^{V} $=C^{Z}$, then there is $E^{P}+C^{Z} \neq 2^{M}$.

Moreover, let $2^{\mathrm{M}}>2^{3}$, then there is $2^{\mathrm{M}}=2^{\mathrm{M}-1}+2^{\mathrm{M}-1}$.
So there is $\mathrm{E}^{\mathrm{P}}+\mathrm{C}^{\mathrm{Z}}>2^{\mathrm{M}-1}+2^{\mathrm{M}-1}$ or $\mathrm{E}^{\mathrm{P}}+\mathrm{C}^{\mathrm{Z}}<2^{\mathrm{M}-1}+2^{\mathrm{M}-1}$.
Namely, there is $\mathrm{C}^{\mathrm{Z}}-2^{\mathrm{M}-1}>2^{\mathrm{M}-1}-\mathrm{E}^{\mathrm{P}}$ or $\mathrm{C}^{\mathrm{Z}}-2^{\mathrm{M}-1}<2^{\mathrm{M}-1}-\mathrm{E}^{\mathrm{P}}$.
In addition, there is $A^{X}+E^{P} \neq 2^{M-1}$ according to proven $E^{P}+F^{V} \neq 2^{M}$.
Then, we deduce $2^{M-1}-E^{P}>A^{X}$ or $2^{M-1}-E^{P}<A^{X}$ from $A^{X}+E^{P} \neq 2^{M-1}$.
Therefore, there is $\mathrm{C}^{\mathrm{Z}}-2^{\mathrm{M}-1}>2^{\mathrm{M}-1}-\mathrm{E}^{\mathrm{P}}>\mathrm{A}^{\mathrm{X}}$ or $\mathrm{C}^{\mathrm{Z}}-2^{\mathrm{M}-1}<2^{\mathrm{M}-1}-\mathrm{E}^{\mathrm{P}}<\mathrm{A}^{\mathrm{X}}$.
Consequently, there is $\mathrm{C}^{\mathrm{Z}}-2^{\mathrm{M}-1}>\mathrm{A}^{\mathrm{X}}$ or $\mathrm{C}^{\mathrm{Z}}-2^{\mathrm{M}-1}<\mathrm{A}^{\mathrm{X}}$.
In a word, there is $\mathrm{C}^{\mathrm{Z}}-2^{\mathrm{M}-1} \neq \mathrm{A}^{\mathrm{X}}$, i.e. $\mathrm{A}^{\mathrm{X}}+2^{\mathrm{M}-1} \neq \mathrm{C}^{\mathrm{Z}}$.
For $A^{X}+2^{M-1} \neq C^{Z}$, let $2^{M-1}=2^{Y}$, we get $A^{X}+2^{Y} \neq C^{Z}$.

Fourthly, let us last prove $A^{X}+2^{Y} D^{Y} \neq C^{Z}$ under the known requirements plus the qualification that $\mathrm{A}, 2 \mathrm{D}$ and C have not any common prime factor, where $2 \mathrm{D}=\mathrm{B}$, and D has at least an odd prime factor >1.

For the sake that distinguish between differing cases, we need to start using another inequality $\mathrm{H}^{\mathrm{U}}+2^{\mathrm{Y}} \neq \mathrm{K}^{\mathrm{T}}$ in the light of proven inequality $\mathrm{A}^{\mathrm{X}}+2^{\mathrm{Y}} \neq \mathrm{C}^{\mathrm{Z}}$, where H and K are two positive odd numbers without any
common prime factor, and U, Y and T are integers >2.
Then, there is $K^{T}-H^{\mathrm{U}} \neq 2^{\mathrm{Y}}$. Like that, multiply each term of $\mathrm{K}^{\mathrm{T}}-\mathrm{H}^{\mathrm{U}} \neq 2^{\mathrm{Y}}$ by D^{Y} is $K^{T} D^{Y}-H^{U} D^{Y} \neq 2^{Y} D^{Y}$.

For any positive even number, either it is able to be expressed as $\mathrm{C}^{\mathrm{Z}}-\mathrm{A}^{\mathrm{X}}$, or it is unable. Undoubtedly, $\mathrm{K}^{\mathrm{T}} \mathrm{D}^{\mathrm{Y}}-\mathrm{H}^{\mathrm{U}} \mathrm{D}^{\mathrm{Y}}$ is a positive even number.

If $K^{T} D^{Y}-H^{U} D^{Y}$ is able to be expressed as $C^{Z}-A^{X}$, then there is $C^{Z}-A^{X} \neq 2^{Y} D^{Y}$, i.e. $A^{X}+2^{Y} D^{Y} \neq C^{Z}$.

If $K^{T} D^{Y}-H^{U} D^{Y}$ is unable to be expressed as $C^{Z}-A^{X}$, then $K^{T} D^{Y}-H^{U} D^{Y}$ at here has nothing to do with proving $\mathrm{A}^{\mathrm{X}}+2^{\mathrm{Y}} \mathrm{D}^{\mathrm{Y}} \neq \mathrm{C}^{\mathrm{Z}}$. Under this case, there are still $K^{T} D^{Y}-H^{U} D^{Y} \neq C^{Z}-A^{X}$ and $K^{T} D^{Y}-H^{U} D^{Y} \neq 2^{Y} D^{Y}$.

Let $\mathrm{K}^{\mathrm{T}} \mathrm{D}^{\mathrm{Y}}-\mathrm{H}^{\mathrm{U}} \mathrm{D}^{\mathrm{Y}}$ equals $\mathrm{C}^{\mathrm{Z}}-\mathrm{A}^{\mathrm{X}} \pm 2 \mathrm{~d}$, where d is a positive integer.
Then, there is $C^{Z}-A^{X} \pm 2 d \neq 2^{Y} D^{Y}$, i.e. $C^{Z}-A^{X} \neq 2^{Y} D^{Y} \pm 2 d$.
Since 2 d can express every positive even number, then $2^{Y} D^{Y} \pm 2 \mathrm{~d}$ can express all positive even numbers except for $2^{\mathrm{Y}} \mathrm{D}^{\mathrm{Y}}$.

For a positive even number, either it is able to be expressed as $2^{S} R^{S}$, or it is unable, where S is an integer >2, and R is a positive integer which has at least an odd prime factor >1.

On the one hand, where $2^{Y} D^{Y} \pm 2 d=2^{S} R^{S}$, there is $C^{Z}-A^{X} \neq 2^{S} R^{S}$, i.e. $A^{\mathrm{X}}+2^{\mathrm{S}} \mathrm{R}^{\mathrm{S}} \neq \mathrm{C}^{\mathrm{Z}}$. On the other hand, where $2^{\mathrm{Y}} \mathrm{D}^{\mathrm{Y}} \pm 2 \mathrm{~d} \neq 2^{\mathrm{S}} \mathrm{R}^{\mathrm{S}}, 2^{\mathrm{Y}} \mathrm{D}^{\mathrm{Y}} \pm 2 \mathrm{~d}$ has nothing to do with proving $A^{X}+2^{S} R^{S} \neq C^{Z}$.

That is to say, for $K^{T} D^{Y}-H^{U} D^{Y} \neq 2^{Y} D^{Y}$, if $K^{T} D^{Y}-H^{U} D^{Y}$ is unable to be expressed as $C^{Z}-A^{x}$, we can deduce $A^{X}+2^{5} R^{s} \neq C^{Z}$ too, elsewhere.

Thus far, we have proven $A^{X}+2^{Y} D^{Y} \neq C^{Z}$ or $A^{X}+2^{S} R^{S} \neq C^{Z}$ on the existence. Since either Y or S is to express an integer >2, also either D or R is a positive integer which has at least an odd prime factor >1, therefore both can represent from each other.

To sun up, we have proven every kind of $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}} \neq \mathrm{C}^{\mathrm{Z}}$ under the known requirements plus the qualification that A, B and C have not any common prime factor.

Previous, we have proven $A^{X}+B^{Y}=C^{Z}$ under the known requirements plus the qualification that A, B and C have at least a common prime factor, it has certain sets of solutions of positive integers.

Overall, after the compare between $A^{X}+B^{Y}=C^{Z}$ under the known requirements and $A^{X}+B^{Y} \neq C^{Z}$ under the known requirements, we have reached inevitably such a conclusion, namely an indispensable prerequisite of the existence of $\mathrm{A}^{\mathrm{X}}+\mathrm{B}^{\mathrm{Y}}=\mathrm{C}^{\mathrm{Z}}$ under the known requirements is that A, B and C must have a common prime factor.

The proof was thus brought to a close. As a consequence, the Beal conjecture is tenable.

REFERENCES: Modular Elliptic Curves and Fermat's Last Theorem, By Andrew Wiles, Annals of Mathematics, Second Series, Vol. 141, №.3, (May, 1995), pp. 443-551.

