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Gravity cannot be quantized 
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Abstract  Besides the common difficulties for gravity quantization, this work shows that the gravitational fermion associated to the gravitational field 

does not exist. Consequently, the graviton does not exist either. Therefore, gravity cannot be quantized. 
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1. Introduction 

  All nongravitational forces are described in terms of 

quantum mechanics (QM), that is, in terms of quantum field 

theory (QFT). There are some justifications for the necessi-

ty of a quantum formulation of gravity. One of them, for 

example, is directly linked to the Big Bang theory and has 

to do with the description of matter in the beginning of the 

universe. 

 Although for classical weak gravitational fields New-

tonian gravity (NG) is the most used theory, the most gen-

eral theory of gravity is general relativity (GR). However, a 

quantum mechanical formulation of gravity should yield 

both NG and GR in their appropriate limits. 

 Some relevant literature on quantum gravity (QG) is 

presented below within the discussion of the difficulties for 

obtaining QG. 

 This paper is an updated version of the preprint [1]. 

 

2. The Spacetime Background Dependence of 
Quantum Gravity 

 Both NG and QM, and also relativistic quantum me-

chanics (RQM), have fixed spacetime backgrounds. In the 

case of RQM Minkowski spacetime is its fixed spacetime 

background, and as for NG and QM the fixed spacetime 

 

*Corresponding author:  

mariodesouza.ufs@gmail.com 

Published online at http://journal.sapub.org/xxx 

Copyright © year Scientific & Academic Publishing. All Rights Reserved 

 

 

background is Euclidean spacetime. On the other hand GR 

has no fixed spacetime background. Thus, a quantum for-

mulation of gravity has to solve this difficult conundrum. 

An important theoretical effort in this direction is loop 

quantum gravity [2,3,4,5] which is a spacetime background 

independent theory. The reader can find a detailed discus-

sion on the above mentioned conundrum in the introduction 

of reference [3]. 

 The basis of loop quantum gravity is the assumption 

that spacetime has an elementary quantum granular struc-

ture at the Planck scale. However, let us recall that quantum 

states are states of fermions, and the mediation between any 

two of them is carried on by bosons. For example, nuclear 

states in nuclei are quantum states of nucleons or quantum 

states in solids, liquids and gases are states of electrons (ei-

ther directly or indirectly). Therefore, the quantum states of 

spacetime have to be associated to fermionic states of one 

or more fermionic gravitational charge carriers.  An effort 

towards towards this direction is the work by Morales-

Técoti and Rovelli [6]. Some difficult problems of this pa-

perin my view are: i) the definition of a scalar field as a 

clock for measuring the physical time for studying the evo-

lution of the fermion-gravity system; ii) lack of identifica-

tion of a gravitational charge associated to the fermions; iii) 

the action of the Einstein-Weyl system contains the vector 

field at  with affine parameter t  without any physically 

plausible justification for such a field.  

  

 

3. Nonrenormalizability of Quantum Gravity 
 

 It is well known that when gravity is treated as a 

particle field it is not renormalizable [7]. That is, the infinite 
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quantities due to the interactions of the gravitational 

particles cannot be removed.  

Contrary to quantum electrodynamics, QG needs an 

infinite number of independent parameters, such as charge, 

mass etc. A way out of this is string theory in which new 

symmetry principles reduce the number of parameters to a 

finite set, but string theory has many drawbacks, among 

which is the assumption of mysterious extra dimensions for 

spacetime.  

 

 
4. The Gravitational Fermionic Charge 
 

It is well known that the curvature of spacetime 

around a massive body depends strongly on the body’s 

mass. In NG the gravitational field produced by a massive 

body around it depends also on its mass. Thus, the gravita-

tional charge has to be proportional to mass (rest mass). Of 

course this is already a drawback since rest mass is not al-

ways conserved.  

On the other hand the quantization of gravity has to be 

valid in either curved spacetime or flat spacetime. For ex-

ample, it is expected that immediately after a supernova 

explosion we should observe gravitational fermions propa-

gating through space, carrying gravitational charges.  

 

 

5. The Gravitational Fermion 
 

Despite the drawback of the nonconservation of rest 

mass, let us admit that the gravitational fermion exists, and 

let us call it masson.  Admitting that it is a 1/2 spin  

fermion, in flat spacetime a free masson has to satisfy Dirac 

equation  

 

  0i mc

       (1) 

where m is its rest mass. Associated to the masson there 

should exist a mass current whose expression should 

depend on the nature of the gravitational field.  

 In the considerations below for the different types of 

currents, symmetric tensors are out, of course, and as it was 

discussed above it is expected that the currents are 

proportional to mass. 

 

 

5.1 Vectorial mass current 
 

 In this case 

 
j mc      (2) 

but from Dirac equation we have   

 

i mc

      

 

which  multiplied from the left by   yields  

 
i mc  

         (3) 

Since     is also a solution of Dirac equation we obtain 

 

   i mc  

         (4) 

and 

 

 i mc  

      .   (5) 

Summing up equations (3) and (5), and using 

 

2g           

 

we obtain 

  

 i g mc 

         (6) 

where 
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 Therefore, we obtain the mass current 

 

j i g i g  

          (7) 

which depends on the metric g  . 

 

 In curved spacetime we can always choose a small 

region where spacetime is approximately flat. Hence, we 

can extend the meaning of  g  to include curved 

spacetime. We take the orthogonal metric such as 
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and consider that we are in a very small region of curved 

spacetime, that is, without large curvature. Thus, we can 



 Journal Heading Year; Vol. (No.): page range  3 
 

make 00 001g f   ,  11 111g f   ,  22 221g f   , and 
33 331g f   , and thus we obtain for small ijf   
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aj i e D  

       (9) 

  

where 
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and thus j  is a mass current directly acquired from 

curvature. The change from 
ae D

    was done because 

in curved spacetime Dirac equation is given by [8,9] 

 

0a

ai e D mc

     

 

where 
ae  is the vierbein and D  is the covariant derivative 

defined as 

 

4

ab

ab

i
D        

 

in which  
ab  is the commutator of Dirac matrices 

 

[ , ]
2

ab a b

i
     

 

and 
ab

   are the spin connection components. 

 

 

5.2 Pseudovectorial mass current 
 

Now we have the current 

5j mc       (10) 

and from Dirac equation we have   

 
i mc

       (11) 

from which we obtain  

 

5 5i mc  

           

and 

 

5 5i mc  

            (12) 

As     is also a solution of Dirac equation we obtain 

 

   i mc  

         

and thus 

 
i mc  

        

which multiplied by 5  becomes 

5 5i mc  

           

from which we obtain  

5 5i mc  

         .   (13) 

Summing up equations (12) and (13), and using 

 

2g           

 

we obtain 

 

5 5i g mc 

          (14) 

and the mass current 

 
5j i g 

     

 

which depends on the metric g  , and thus, there is the 

acquisition from curvature of the mass current 

 
5 a

aj i e D  

        (15) 

 

5.3 Scalar mass current 
  

 In the case of a scalar mass current 

 
j mc   (16) 

and from Dirac equation we obtain 

 
i mc

    .  (17) 

As     is also a solution of Dirac equation we obtain 

 

   i mc  

      .  

Multiplying this equation from the left by   and taking 
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into account that 4

    we have 

 
4i mc mc  

            .  (18) 

And multiplying Eq. (17) by 

   we obtain 

 
4i mc mc  

            . (19) 

Summing up equations (18) and (19) yields 

 

  8i mc   

            (20) 

but as 2g          Eq. (20) becomes  

 

4i g mc

      

 

and thus the mass current  

 

1

4
j i g

       (21) 

which also depends on the metric. And thus curved 

spacetime yields the additional mass current 

 

1

4

a

aj i g e D 

   . 

 

 

5.4 Pseudoscalar mass current 
 

 In such a case we have the mass current 

5j mc  .  (22) 

The derivation is similar to those above and yields the mass 

current 

51

4
j i g

         (23) 

which also depends on the metric. Thus in curved spacetime 

curvature produces the additional mass current  

51

4

a

aj i g e D 

      .   (24) 

 

5.5 Antisymmetric tensorial mass current 
 

 For this case the current is given by 

 
j mc      (25) 

where  
2

i          . 

 
From Dirac equation we have   

i mc

    .  

Multiplying this equation by           we obtain 

 

   i mc        

                (26) 

that is, 

 

i mc  

       

 

and thus the current 

 
j i  

       (27) 

which does not depend on the metric. In curved spacetime 

Eq. (27) becomes 

 
a

aj i e D  

   . 

 

 It is worth having in mind that 5 5

4I , , ,       and 

   form a basis for the space of all 4 4  matrices, and 

thus, any other tensor   can be written in terms of a 

linear combination of these 16 matrices. 

 As it was shown above the only possibility for the 

gravitational fermion is to be associated to an antisymmetric 

tensorial field. This result is not a surprise and agrees well 

with GR. Misner, Thorne and Wheeler [10] who have 

proven that the classical gravitational field is an 

antisymmetric tensorial field. 

 Unfortunately, as it is shown below, such a 1/2 spin 

fermion is incompatible with the graviton. 

 

 

5.6 The spin prohibition 
 

 Bosons and fermions related to the same fundamental 

interaction work together. As it is shown below any fermion 

is incompatible with the graviton which is supposed to be a 

spin 2 massless boson. 

 Since it is massless its spin projections are -2, -1, 1, 2. 

Each one of these projections should correspond to 

differences between two spin projections of the 

corresponding fermionic states. For example, we should 

have  

 

2 12 s sm m      (28) 

where  1sm  and 2sm   are the spin projections of the initial 

and final fermionic states. Of course, 1sm  and 2sm  of the 

fermions are the fractional numbers 1 2, 3 2, 5 2,...     

Thus, for a hypothetical 5/2 spin fermion we would have, 
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for example, the results for allowed transitions (for 2zS    

of the graviton) 

 

 

 

 

 

2 3 2 1 2

2 1 2 3 2

2 5 2 1 2

2 1 2 5 2

    

    

    

    

  

 

but, for example, the fermionic transitions yielding the 

results 

 

 

 

 

 

3 2 3 2 3

3 2 3 2 3

1 2 1 2 1

1 2 1 2 1

    

    

    

    

  

 

would be mysteriously forbidden. And for a 1/2 spin 

fermion we would  have only the two possibilities below for 

allowed transitions 

 

1 1 2 ( 1 2)

1 1 2 ( 1 2)

    

    
  

 

and thus, no fermionic transitions would produce the 

graviton spin projections -2 and +2. 

 

 

5.7 The prohibition due to the constitution of 
matter 
 

 Any known ordinary matter is not constituted by such 

gravitational fermions and all masses involved in ordinary 

matter have been accounted for.  

 

 

5.10 The photonic prohibition 
 

 It is well known that, according to GR, the motion of a 

photon in the gravitational field of a massive body is 

described by the geodesic equation 

 

0
dp

p p
d


  




     (29) 

where p  is the four-momentum of the photon,   is an 

affine parameter and 


  is the Christoffel symbol of the 

second kind.  Eq. (29) has been experimentally proven for a 

photon in the gravitational field of the Sun.  In this case a 

photon suffers a deflection given by [11] 

 

1 .75(R / )S b     

where 
SR  is the Sun’s radio and b  is the impact parameter.  

How to obtain the same result with a quantum mechanical 

formulation?  

 From a quantum mechanical point of view this would 

only be  possible if the photon would interact with a virtual 

masson, and thus there would exist a virtual sea of  such 

fermions and their corresponding antifermions. And, of 

course, we would also have the real counterparts of such 

virtual particles in the world. But such particles have not 

been seen anywhere.  

Besides this above drawback, an interaction between a 

photon and massons continuously yielding a photon in the 

final state (for following a geodesic) would only be possible 

if the masson had spin equal to 1/2, but as it was shown 

above, this is not possible.  

6. Conclusion 

 Besides other difficulties faced by QG, we have shown 

above that the gravitational fermion does not exist. And as 

fermions and bosons of a fundamental interaction work 

together, the graviton does not exist either.  

Therefore, gravity cannot be quantized. 
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