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PREFACE 
 
 
 
 
 
In this book authors for the first time introduce a new 
method of building algebraic structures on the interval  
[0, n). This study is interesting and innovative. However, 
[0, n) is a semigroup under product, × modulo n and a 
semigroup under min or max operation. Further [0, n) is a 
group under addition modulo n.  
 

We see [0, n) under both max and min operation is a 
semiring. [0, n) under + and × is not in general a ring. We 
define S = {[0, n), +, ×} to be a pseudo special ring as the 
distributive law is not true in general for all a, b  S. 
When n is a prime, S is defined as the pseudo special 
interval domain which is of infinite order for all values of 
n, n a natural integer.  
 

Several special properties about these structures are 
studied and analyzed in this book. Certainly these new 
algebraic structures will find several application in due 
course of time. All these algebraic structures built using 
the interval [0, n) is of infinite order. Using [0, n) matrices 
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are built and operations such as + and × are performed on 
them. It is important to note in all places where 
semigroups and semirings and groups find their 
applications these new algebraic structures can be replaced 
and applied appropriately.  
 

The authors wish to acknowledge Dr. K Kandasamy 
for his sustained support and encouragement in the writing 
of this book.  

 
  

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

 



 
 
Chapter One 
 
 

 
 
INTRODUCTION 
 
 
 
In this book we for the first time study algebraic structures built 
using the interval [0, n). 
 

 We see Zn = {0, 1, 2, …, n – 1} is always a proper subset of 
[0, n).  This study gives many new concepts for we get pseudo 
interval rings of infinite order.  The semigroups can be built 
using [0, n) under  or max or min operations. 
 
 Each enjoys a special property.  Matrices are built using  
[0, n) and the operations  or max or min are defined.  Only in 
case  and min we have zero divisors.  This study gives several 
nice properties.  If Zn  [0, n) is a Smarandache semigroup then 
so is [0, n) under .  However under max or min such concept 
cannot sustain.   
 

We see R = {[0, n), +, } is a pseudo ring.  Study on these 
pseudo rings is carried out in a systematic way. We have studied 
the finite ring Zn; Zn  [0, n) but when we include or transform 
the whole interval into a pseudo ring, the notion of this concept 
is interesting and innovative.  

 
Why was study of this form was not done and what is the 

real problem faced in studying this [0, n) structure?   
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We see when p is a prime we do not get an interval integral 
domain.  For decimals cannot have inverses in [0, p) under 
product . 

 
 Using Smax = {[0, n), max} we get a semigroup which is 
idempotent and this semigroup has no greatest element and the 
least element is 0 as max {0, t} = t for all t  [0, n) \ {0}. 
 
 Likewise Smin = {[0, n), min} has no greatest element and 0 
is the least element so that min {x, 0} = 0 for all x  [0, n). 
 
 This gives an idempotent semigroup of infinite order and it 
has several interesting features.  We study S = {(0, n), }; this 
gives a number of zero divisors and units. 
 
 If n is a prime we do not have even a single zero divisor or 
idempotent only (n–2) units.  These semigroups are of infinite 
order and this study is an interesting one. 
 
 Now R = {[0, n), +, } be the pseudo  ring as the 
distributive laws are not true in general in R.  R is of infinite 
order if n = p, p a prime then R is not a pseudo integral domain 
of infinite order.  R has units, zero divisors and idempotents.  If 
n is not a prime R has zero divisors and R is not an integral 
domain, R is only a commutative pseudo ring with unit.   
 

If Zn  [0, n) is a Smarandache pseudo ring so is the pseudo 
ring R = {[0, n), +, }  (n, prime or otherwise); infact if n is a 
prime R is always a pseudo S-ring.  
 
 Study of pseudo ideals in case of R = {[0, n), +, } is an 
interesting problem.   
 

If a matrix is built using this R, we see R has zero divisors, 
units and idempotents.  We see R has finite subrings also; but 
those finite subrings are not ideals. Here these pseudo rings 
contains subrings which are not pseudo subrings. 



 
 
 
 
 
  
Chapter Two 
 
 

 
 
ALGEBRAIC STRUCTURES USING THE 
INTERVAL [0, n) UNDER  
SINGLE BINARY OPERATION  
 
 

 
 
 

Here we use the half closed open interval [0, n), n < ; n an 
integer.  On [0, n) four operations can be given so that under + 
mod n, [0, n) is the special interval group.  [0, n) under  mod n 
is only a special interval semigroup and under max (or min)  
[0, n) is a special interval semigroup.   
 

Study of this is innovative and interesting. This study 
throws light on how the interval [0, n) behaves under product 
and sum +; several special features about them are analysed.   
 

Let S = {[0, 9), +} be the group under addition modulo 9.   
0 is the additive inverse.   

 
For every x  [0, 9) there is a unique y  [0, 9) such that  

x + y  9  0 (mod 9); so x is the inverse of y with respect to ‘+’ 
and vice versa. 
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 If x = 3.029  S; then y = 5.971  [0, 9) and  x + y = 3.029 
+ 5.971  [0, 9) is such that x + y = 3.029 + 5.971 = 9  0 (mod 
9) so x is the additive inverse of y and vice versa. 
 
 We will illustrate this situation by some examples. 
 
Example 2.1:  Let S = {[0, 4), +} be the special interval group.  
This group has also finite subgroups. For P = {0, 1, 2, 3}  S is 
a subgroup of S under +. 
 
 We call S as the special interval group. 
 
 T = {0, 2}  S is a special interval subgroup of S. 
 
Example 2.2:  Let S = {[0, 12), +} be the special interval group.  
T = {0, 6}  S is a special interval subgroup of S.   
 

P = {0, 2, 4, 6, 8, 10}  S is also a special interval subgroup 
of S. 
 
 M = {0, 4, 8}  S is also a special interval subgroup of S. 
 
DEFINITION 2.1:  Let S = {[0, n), n  2, n an integer; +} be the 
special interval group under addition modulo n.  S is a group; 
for if a, b  S. 
 

(1) a + b (mod n)  S. 
(2) 0  S = [0, n) is such that for all a  S, a + 0 = 0 + a 

= a. 
(3) For every a  S there exist a unique b in S such that  

a + b   n = 0 (mod n), b is called the additive inverse 
of a and vice versa. 

(4) a + b = b + a for all a, b  S. 
 
 Thus (S, +) is an abelian group under ‘+’, defined as the 
special natural group on interval [0, n) under ‘+’  or special 
interval group. 
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 Clearly o(S) =  for any n  N. This interval [0, n) give a 
group of infinite order under ‘+’ modulo n.  
 
 We will give examples of them. 
 
Example 2.3:  Let S = {[0, 11), +} be the special natural group 
on interval [0, 11).  o(S) =  and S is a abelian.  S has many 
finite order subgroups.   
 
 The subgroup generated by 0.1 = {0, 0.1, 0.9, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 1, 1.1, 1.2, …, 1.18, 1.9, 2, 2.1, …, 10.9}  S 
is a finite subgroup of S under + modulo 11. 
 
 The subgroup generated by T = 1 is such that o(T) = 11 
and so on.  However [0, t);  t < 11 is not a subgroup under +. 
 
Example 2.4:  Let S = {[0, 7), +} be the special natural interval 
group.   
 

T1 = {0, 1, 2, 3, 4, 5, 6}  S is a subgroup of finite order. 
 
 S has only one group of finite order.   
 

Can S have other subgroups?   
 
T2 = {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, …, 6, 6.5}  S is 

again a subgroup of finite order.   
 

T3 = {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, …, 6.2, 6.4, 6.8, 6.6} 
 S is again a subgroup of finite order.  

 
 Thus this is a special natural interval group which has many 
finite special natural interval subgroups. 
 
 Now [0, 7) 


  [0, 7], 7 is prime yet we have subgroups for 

S = {[0, 7), +}. 
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Example 2.5:  Let S = {[0, 16), +} be a special interval group 
under +. 
 
 T1 = {0, 8} is a subgroup of  S.  T2 = {0, 4, 8, 12} is again a 
subgroup of S.   
 

Consider T3 = {0, 2, 4, 6, 8, 10, 12, 14}  S is again a 
subgroup of S. 

 
 T4 = {0, 1, 2, …, 15}  S is also a subgroup of S.  Further 
T4   Z16.   
 

Now we consider  
T5 = {0, 0.0001, 0.0002, …, 15, 15.0001, …,  15.9999}  S. T5 
is a subgroup of S of finite order. 

 
 Now having seen subgroups of finite order we proceed on to 
build algebraic groups using [0, n) under the operation +. 
 
Example 2.6:  Let S = {(a1, a2, a3) | ai  [0, 30), +} be the 
special interval group of infinite order.   
 

This is of infinite order and is commutative.  This has both 
subgroups; of finite and infinite order.   
 

We will just illustrate this by the following. 
 

 T1 = {(a1, 0, 0) | ai  [0, 30), +}  S is a subgroup of infinite 
order.   
 

T2 = {(0, a1, 0) | a1  [0, 30), +}  S and  
 
T3 = {(0, 0, a1) | a1  [0, 30), +}  S are also subgroups of 

infinite order.   
 

We see Ti  Tj = {(0, 0, 0)} if i  j, 1  i, j  3. 
 

 Consider P1 = {(a1, 0, 0) | a1  {0, 1, 2, …, 29}, +}  S is a 
subgroup of S.  We see P1 is a finite subgroup and of order 30.   
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 P2 = {(0, a1, 0) | a1  {0, 2, 4, 6, 8, 10, …, 28}, +}  S is a 
finite subgroup of order 15. 
 
 P3 = {(0, 0, a1) | a1  {0, 10, 20}, +}  S is a finite 
subgroup of order 3. 
 
 P4 = {(a1, a2, a3) | a1, a2, a3  {0, 5, 10, 15, 20, 25}, +}  S 
is a finite subgroup of order 216.    
 

Thus S has finite number of finite subgroups.  
 
 B = {(a1, a2, a3) | ai  {0, 10, 20}, 1  i  3, +}  S is a 
special interval subgroup of S of finite order. 
 
 B = {(a1, a2, 0) | a1, a2  [0, 30), +}  S is a subgroup of S 
of infinite order. 
 
 We can have subgroups of both finite and infinite order.  
 
 B  B = {(a1, a2, 0) | a1, a2 = {0, 10, 20}} and  
 

B  B = {(a, b, c) | a, b  [0, 30) and c  {0, 10, 20}} are 
again subgroups of S. 
 
Example 2.7:  Let  
 
 

S = 

1

2

8

a

a

a

 
 
    


 ai  [0, 19); 1  i  8} 

 
 

be the special interval group of infinite order.   
 

S has finite number of subgroups.  
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T1 = 

1a

0

0

 
 
    


 a1  [0, 19)} 

 
is the special interval subgroup.  
 
 

T2 = 

1

2

0

a

a

0

0

 
 
 
 
 
 
 
 
  



 a1, a2  [0, 19)} 

 
be the special interval subgroup of infinite order. 

T3 = 1

0

0

0

a

0

0

0

 
 
 
 
 
        



 a1  [0, 19)}  S 

 
be the special interval subgroup of infinite order. 
 

P1 = 

1

2

9

a

a

a

 
 
    


 ai  {0, 1, 2, …, 18}; 1  i  9}  S 
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be the finite special interval subgroup of S. 
 
Let  

 
 

B = 

1

2

3

4

5

a

0

a

0

a

0

a

0

a

 
 
 
 
 
         

 ai  [0, 19); 1  i  5}  S 

 
 

be the special interval subgroup of S of infinite order. 
 
 

B1 = 

1

2

3

4

5

a

0

a

0

a

0

a

0

a

 
 
 
 
 
         

 ai  [0, 19); 1  i  5}  S 

 
 

be the special interval subgroup of S of infinite order. 
 
 S has several finite subgroups as well as infinite subgroups. 
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Example 2.8:  Let  
 

S = 

1 2 3

4 5 6

13 14 15

a a a

a a a

a a a

 
 
    

  
 ai  [0, 8); 1  i  15} 

 
be the special interval group of infinite order. 
 
 Take  
 

P1 = 

1a 0 0

0 0 0

0 0 0

 
 
    

  
 a1  {0, 2, 4, 6}}  S; 

 
P1 is a special interval subgroup of order 4. 
 

P2 = 

20 a 0

0 0 0

0 0 0

 
 
    

  
 a2  {0, 2, 4, 6}}  S 

 
is a special interval subgroup of order 4. 

 
We have atleast 15 subgroups of order 4. 

 
Let  

T1 = 

1 2a a 0

0 0 0

0 0 0

 
 
    

  
 a1, a2  {0, 4}}  S 
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be another special interval subgroup of order 4. 
 

T1 = 

0 0 0 4 0 0 0 4 0 4 4 0

0 0 0 0 0 0 0 0 0 0 0 0
, , ,

0 0 0 0 0 0 0 0 0 0 0 0

        
        
                                 

           
  S 

 
is of order 4.  

 

T2 = 

1 20 a a

0 0 0

0 0 0

 
 
    

  
 a1, a2  {0, 4}}  S 

 
 

is the special interval subgroup. 
 
 

T3 = 

1 2a 0 a

0 0 0

0 0 0

 
 
    

  
 a1, a2  {0, 4}}  S 

 
 

is the special interval subgroup.  o(T3) = 4. 
 
 

T4 = 

1

2

a 0 0

a 0 0

0 0 0

 
 
    

  
 a1, a2  {0, 4}}  S 

 
be the special interval  subgroup.  o(T3) = 4 and so on. 
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T15 = 

1 2

0 0 0

0 0 0

0 a a

 
 
    

  
 a1, a2  {0, 4}}  S 

 
be the special interval  subgroup.  o(T15) = 4. 

 

W1 = 

1 2 3a a a

0 0 0

0 0 0

 
 
    

  
 ai  {0, 4}, 1  i  3}.  

 

o(W1) = 

4 0 0 0 0 0 0 4 0 0 0 4

0 0 0 0 0 0 0 0 0 0 0 0
, , , ,

0 0 0 0 0 0 0 0 0 0 0 0

       
       
                            

           
 

 
 

4 4 4 0 4 4 4 0 4 4 4 0

0 0 0 0 0 0 0 0 0 0 0 0
, , ,

0 0 0 0 0 0 0 0 0 0 0 0

       
       
                            

           
  S 

 
is a special interval subgroup of order 8.   
 

We can find several subgroups of finite order.  We see S has 
infinite subgroups also. 
 
Example 2.9:  Let  
 

S= 1 2 3 4 5 6 7

8 9 10 11 12 13 14

a a a a a a a

a a a a a a a

 
 
 

 ai  [0, 12),1  i  14} 
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be the special interval group.   
 

S has several subgroups of finite order.   
 

For P1 = 1a 0 0 0 0 0 0

0 0 0 0 0 0 0

 
 
 

 a1  [0, 6)}  S, 

 

P2 = 10 a 0 0 0 0 0

0 0 0 0 0 0 0

 
 
 

 a1  [0, 6)}  S, …,  

 

P14 = 
1

0 0 0 0 0 0 0

0 0 0 0 0 0 a

 
 
 

 a1  [0, 6)}  S  

 
are 14 subgroups of order two. 
 
 Take  
 

B1 = 1 2a a 0 ... 0

0 0 0 ... 0

 
 
 

 a1, a2  {0, 6}}  S, 

 

B2 = 1 2a 0 a 0 0 0

0 0 0 0 0 0

 
 
 

 a1, a2  {0, 6}}  S, 

 

B3 = 1 2a 0 0 a 0 0

0 0 0 0 0 0

 
 
 

 a1, a2  {0, 6}} 

 
and so on are all subgroups of S. 
 

B1 = 
0 0 0 ... 0 6 0 0 ... 0

, ,
0 0 0 ... 0 0 0 0 ... 0
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6 6 0 ... 0 0 6 0 ... 0
,

0 0 0 ... 0 0 0 0 ... 0

   
   
   

  S 

 
is a subgroup of order 4.  There are atleast 66 subgroups of 
order 4.   
 

We can get 
 

D1 = 1 2 3a a a 0 0 0

0 0 0 0 0 0

 
 
 

 a1, a2, a3  {0, 6}}  S 

 
be the subgroup of order eight. 
 

D1 = 
0 0 0 0 0 0 6 0 0 0 0 0

, ,
0 0 0 0 0 0 0 0 0 0 0 0

   
   
   

 

 
0 6 0 0 0 0 0 0 6 0 0 0

, ,
0 0 0 0 0 0 0 0 0 0 0 0

   
   
   

 

 
6 6 0 0 0 0 6 0 6 0 0 0

, ,
0 0 0 0 0 0 0 0 0 0 0 0

   
   
   

 

 

0 6 6 0 0 0 6 6 6 0 0 0
,

0 0 0 0 0 0 0 0 0 0 0 0

   
   
   

  S 

 
be the subgroup of order 8. 
 

D2 = 1 2 3a 0 a a 0 0

0 0 0 0 0 0

 
 
 

 a1, a2, a3  {0, 6}}  S, 

 

…,  Dt = 
1 2 3

0 0 0 0 0 0

0 0 0 a a a

 
 
 

 a1, a2, a3  {0, 6}}  S 
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are t (< ) special interval subgroups of order 8 (t = 220). 
 
 Likewise we can find subgroups of finite order. 
 
 S has also subgroups of infinite order for take 
 

M1 = 1a 0 ... 0

0 0 ... 0

 
 
 

a1  [0, 12)}  S, …, 

 

M12 = 
1

0 0 ... 0

0 0 ... a

 
 
 

a1  [0, 12)}  S  

 
are all subgroups of infinite order. 
 

N1 = 1 2 3 4a a a a 0 0

0 0 0 0 0 0

 
 
 

a1, a2, a3, a4  [0, 12)}  S, 

 

N2 = 1 2 3 4a 0 a a a 0

0 0 0 0 0 0

 
 
 

a1, a2, a3, a4  [0, 12)}  S,  

 

…,  Nr = 
1 2 3 4

0 0 0 0 0 0

0 0 a a a a

 
 
 

ai  [0, 12), 1  i  4}  S 

 
(r < ) are all subgroups of infinite order. 
 

We have atleast 495 such subgroups and so on. 
 

 Thus we have more number of finite subgroups than that of  
infinite subgroups (prove or disprove)! 
 
 Take  

L1 = 1a 0 0 ... 0

0 0 0 ... 0

 
 
 

a1  {0, 2, 4, 6, 8, 10}}  S 
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be the subgroup of S.   
 

We see o(L1) = 6.  We have 12 subgroups of order 6.   
 

L2 = 1 2a a 0 0 0 0

0 0 0 0 0 0

 
 
 

a1, a2  {0, 2, 4, 6, 8, 10}}  S 

 
be the subgroup of S of finite order.  o(L2) = 36.   
 

L2 = 
0 0 ... 0

,
0 0 ... 0

 
 
   

 
2 0 0 0 0 0 4 0 ... 0 6 0 ... 0

, , ,
0 0 0 0 0 0 0 0 ... 0 0 0 ... 0

     
     
     

 

 
8 0 ... 0 10 0 ... 0 0 2 0 ... 0

, , ,
0 0 ... 0 0 0 ... 0 0 0 0 ... 0

     
     
     

 

 
0 4 0 ... 0 0 6 0 ... 0 0 8 0 ... 0

, ,
0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0

     
     
     

, 

 
0 10 0 ... 0 2 2 0 0 0 0 4 4 0 ... 0

, , ,
0 0 0 ... 0 0 0 0 0 0 0 0 0 0 ... 0

     
     
     

 

 
6 6 0 ... 0 8 8 0 ... 0

,
0 0 0 ... 0 0 0 0 ... 0

   
   
   

, 
10 10 0 ... 0

0 0 0 ... 0

 
 
 

, 

 
2 4 0 ... 0 4 2 0 ... 0 2 6 0 ... 0

, ,
0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0

     
     
     

, 

 
6 2 0 ... 0 2 8 0 ... 0 8 2 0 ... 0

, , ,
0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0
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2 10 0 ... 0 10 2 0 ... 0 4 6 0 ... 0
, ,

0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0

     
     
     

, 

 
6 4 0 ... 0 4 8 0 ... 0

, ,
0 0 0 ... 0 0 0 0 ... 0

   
   
   

 

 
8 4 0 ... 0 4 10 0 ... 0 10 4 0 ... 0

, , ,
0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0

     
     
     

 

 
6 8 0 ... 0 8 6 0 ... 0 6 10 0 ... 0

, , ,
0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0

     
     
     

 

 

10 6 0 ... 0 8 10 0 ... 0 8 10 0 ... 0
, ,

0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0

     
     
     

. 

 
 

Clearly o(L2) = 36.  We have atleast 66 such subgroups of 
order 36.   

 
Likewise we can find  
 

W1 =  1 2 3 4a a a a 0 0

0 0 0 0 0 0

 
 
 

ai   {0, 2, 4, 6, 8, 10},  

1  i  4 }  S  
 

 
to be subgroup of finite order.   
 

We have atleast 495 subgroups of this type.   
 
Further we using the subgroup {0, 3, 6, 9}; get finite order 

special interval subgroups of S. 
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Example 2.10:  Let  
 

S = 
1 2

11 12

a a

a a

 
 
 
  

  ai   [0, 13); 1  i  12, +} 

 
be the special interval group of infinite order. 
 
 Clearly [0, 13) has finite subgroups under addition say  
F = {0, 1, 2, 3, …, 12}.   
 

We can get atleast S12 = 12C1 + 12C2 + … + 12C12 number of 
special interval subgroups finite order using F. 

 
 We have at least S12 = 12C1 + 12C2 + … + 12C11 number of 
subgroups of infinite order.  
 
THEOREM 2.1:  Let  
S = {n  m matrices with entries from [0, t)} (t a prime) be the 
special interval group of infinite order. 
 

(i) S has atleast St = nmC1 + nmC2 +  … + nmCnm 
number of finite subgroups where the matrix takes 
its entries from F = {0, 1, 2, …, t–1} (m  n = mn). 

(ii) S has atleast St – 1 number of subgroups of infinite 
order. 

 
Proof is direct and hence left as an exercise to the reader. 

 
THEOREM 2.2:  Let S = {Collection of n  m matrices with 
entries from [0, t); t not a prime} be the special interval group 
under addition. 
 
 [0, t) has subgroups of finite order and these contribute to 
special interval subgroups of S of finite order apart from the 
finite groups mentioned in theorem 2.1. 
 
 Proof is left as an exercise to the reader. 
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 Now, can we have any other group under + using intervals 
of the form [0, n)? 
 
 This is answered by examples. 
 
Example 2.11:  Let S = {[0, 3)  [0, 7), +} be a special interval 
group of infinite order.  
 
 Take P = {{0, 1, 2}  {0, 1, 2, 3, 4, 5, 6}}  S, P is a 
special interval subgroup of S of finite order.   
 

T = {{0, 1, 2}  {0}}  S is a subgroup of S of finite order. 
 

 W = {{0}  {0, 1, 2, 3, 4, 5, 6}}  S is again a subgroup of 
S of finite order.   
 

We have many finite groups.   
 
L = {[0, 3)  {0}} is a subgroup of infinite order and  

M = {{0}  [0, 7)}  S is again a subgroup of infinite order. 
 

 Thus S has both subgroups of finite and infinite order.  
 
Example 2.12:  Let S = {[0, 6)  [0, 10)  [0, 12)  [0, 20) = 
(a1, a2, a3, a4) where a1  [0, 6), a2  [0, 10), a3  [0, 12) and  
a4  [0, 20)} be the special interval group of infinite order.  S 
has subgroups of finite order as well as of infinite order. 
 
 (0, 0, 0, 0) acts as the additive identity.  Let x = (3.5, 5.9, 
10.2, 5)  S the additive inverse of x is y = (2.5, 4.1, 1.8, 15)  
S for x + y = (0, 0, 0, 0).   
 

Now let x = (5.2, 7.39, 10.4, 15.9) and y = (3.5, 4.8, 5.1, 
8.2)  S. 

 
 We find x + y = (5.2, 7.39, 10.4, 15.9) + (3.5, 4.8, 5.1, 8.2) 
 = (2.7, 2.89, 5.5, 4.1)  S. 
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 This is the way ‘+’ operation is performed on S. 
 
 Thus by using the direct product of groups notion, we are in 
a position to get more and more special interval groups.  As 
these groups are of infinite order and under the operation ‘+’ 
and as they are commutative we are not in a position to study 
several other properties. 
 
Example 2.13:  Let S = {[0, 4)  [0,9)  [0, 21)  [0, 7)} be the 
special interval group under ‘+’.  S is commutative. 
 
 Take P1 = {([0, 4)  {0}  {0}  {0}) = {(a, 0, 0, 0)} where 
a  [0, 4)}  S is a subgroup of infinite order in S. 
 
 Now P2 = {(0, a, 0, 0) | a [0, 9)}  S is again a subgroup 
of infinite order in S. 
 
 P3 = {(0, 0, a, 0) | a  [0, 21)}  S is a subgroup of infinite 
order in S.   
 

P4 = {(0, 0, 0, a) | a  [0, 7)}  S is a subgroup of infinite 
order in S. 

 
 Thus S has several subgroups of infinite order. 
 
 Consider M4 = {(a, 0, 0, 0) | a  {0, 1, 2, 3}}  S: M4 is a 
subgroup of S of finite order.   
 

We see S has several subgroups of finite order.  Also S has 
several subgroups of infinite order.  Infact S = P1 + P2 + P3 + P4 
is a direct sum of subgroups.   

 
We see Pi  Pj = {(0, 0, 0, 0)} if i  j; 1  i, j  4 for every 

element a  S has a unique representation from P1, P2, P3 and 
P4. 
 
 Let M3 = {(0, a, 0, 0) | a  {0, 1, 2, 3, 4, …, 8}}  S is also 
a subgroup of S and o(M3) = 9.   
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Likewise M2 = {(0, 0, a, 0) | a  {0, 1, 2, 3, …, 20}}  S is 
a subgroup of S and o(M2) = 21  and M1 = {(0, 0, 0, a) | a  {0, 
1, 2, …, 6}}  S is a subgroup of order 7.   
 

Clearly Mi  Mj  = {(0, 0, 0, 0)} if i j; 1  i, j  4 but  
M1 + M2 + M3 + M4  S and M1 + M2 + M3 + M4 = {(a, b, c, d) | 
a  {0, 1, 2, 3}, b  {0, 1, 2, 3, 4, …, 8}, c  {0, 1, 2, 3, 4, …, 
20} and d  {0, 1, 2, …, 6}}  S is a subgroup of finite order in 
S. 

 
 Now N1 = {(a, b, 0, c) | a  {0, 1, 2, 3}, b  {0, 1, 2, 3, …,  
8} and c  {0, 1, 2, 3, …, 6}}  S is a subgroup of finite order 
in S. 
 
 N2 = {(a, b, 0, 0) | a  {0, 2}, b  {0, 3, 6}}  S is again a 
subgroup of finite order in S. P = {(a, 0, b, 0) | a  [0, 4) and  
b  [0, 21)}  S is again a subgroup of infinite order.   
 

Thus we can have groups constructed using different 
intervals [0, ai) where ai are integers and ai’s different.   
 

We will proceed onto give some more examples. 
 

Example 2.14: Let  
 

S = 

1

2

3

4

5

6

7

a

a

a

a

a

a

a

 
 
 
 
 
 
 
 
 
  

a1   [0, 8), a2  [0, 3),  

 
a3 [0, 12) and a4, a5, a6, a7  [0, 48)} 

 
be the special interval group under  addition. 
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Let x = 

3.3

1

10

5.7

7.8

12.1

40.4

 
 
 
 
 
 
 
 
 
  

 and y = 

7

2

5.1

44.5

38.6

40.2

30

 
 
 
 
 
 
 
 
 
  

  S, 

 
 

x + y = 

3.3

1

10

5.7

7.8

12.1

40.4

 
 
 
 
 
 
 
 
 
  

 + 

7

2

5.1

44.5

38.6

40.2

30

 
 
 
 
 
 
 
 
 
  

 

 
 
 

= 

3.3 7(mod8)

(1 2)(mod3)

(10 5.1)(mod12)

(5.7 44.5)(mod 48)

(7.8 38.6)(mod 48)

(12.1 40.2)(mod 48)

(40.4 30)(mod 48)

 
  
 
  
 
 

 
  

 =  

2.3

0

3.1

4.2

46.4

4.3

22.4

 
 
 
 
 
 
 
 
 
  

  S. 

 
 
 

This is the way addition is performed on S. 
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Let  

x = 

6.3

2.1

10.7

46.3

3.5

7.8

9.62

 
 
 
 
 
 
 
 
 
  

  S 

 
the additive inverse of x is y  S where  
 

y = 

1.7

0.9

1.3

1.7

44.5

40.2

38.38

 
 
 
 
 
 
 
 
 
  

  S is such that x + y = 

0

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

; 

 
the additive identity of x in S. 
 

S has both infinite and finite order special interval 
subgroups. 

 

Let T1 = 

a

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

a  [0, 8)}  S; 

 

T1 is a subgroup of S of infinite order. 
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Let  

M1 = 

a

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

a  {0, 1, 2, 3, …, 7}  [0, 8)}  S 

 
be a subgroup of S of order 8. 
 

Consider  
 

T2 = 

0

a

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

a  [0, 3)}  S, 

 
T2 is a subgroup of infinite order. 

  
 

M2 = 

0

a

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

a  {0, 1, 2}}  S 
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is a subgroup of finite order and o(M2) = 3.  
 
 

x = 

0

2

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

 and y = 

0

1

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

  S  are such that 

 
 
 

x + y = 

0

2

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

 + 

0

1

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

 = 

0

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

. 

 
 

M3 = 

0

0

a

0

0

0

0

 
 
 
 
 
 
 
 
 
  

a  [0, 12)}  S 

 
is an infinite special interval subgroup of S. 
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T3 = 

0

0

a

0

0

0

0

 
 
 
 
 
 
 
 
 
  

a  {0, 1, 2, 3, …, 11}}  S 

 
is a subgroup of S order 12.   
 

M2 has no subgroups but T3 has subgroups given by 
 
 

1
3T  = 

0

0

a

0

0

0

0

 
 
 
 
 
 
 
 
 
  

a  {0, 3, 6, 9}}  T3, 

 
 

2
3T  = 

0

0

a

0

0

0

0

 
 
 
 
 
 
 
 
 
  

a  {0, 6}}  T3 , 
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3
3T  = 

0

0

a

0

0

0

0

 
 
 
 
 
 
 
 
 
  

a  {0, 2, 4, 6, 8, 10}}  T3  and 

 
 

4
3T  = 

0

0

a

0

0

0

0

 
 
 
 
 
 
 
 
 
  

a  {0, 4, 8}}  T3 

 
are the four subgroups of the subgroup T3 of S. 
 

Let  
 
 

B1 = 1

0

0

0

a

0

0

0

 
 
 
 
 
 
 
 
 
  

a1  [0, 48)}  S 

 
 

be the special interval subgroup of S under ‘+’ of infinite order.  
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B2 =  

1

0

0

0

0

a

0

0

 
 
 
 
 
 
 
 
 
  

a1  [0, 48)}  S 

 
is a subgroup of S different from B1.   
 
 

B3 = 

1

0

0

0

0

0

a

0

 
 
 
 
 
 
 
 
 
  

a1  [0, 48)}  S  

 
 

be the subgroup of S different from B1 and B2 of infinite order. 
 
 

      B4 = 

1

0

0

0

0

0

0

a

 
 
 
 
 
 
 
 
 
  

a1  [0, 48)}  S 

 
is a subgroup of S of infinite order. 



Algebraic Structures using the interval [0, n) …  35 
 

Clearly  

Bi  Bj = 

0

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

, for i  j, 1  i, j  4. 

 
Let  
 

     D1 = 1

0

0

0

a

0

0

0

 
 
 
 
 
 
 
 
 
  

a1  {0, 24}}  S 

 
be a subgroup of order two in S. 
 

          D2 = 

1

0

0

0

0

a

0

0

 
 
 
 
 
 
 
 
 
  

a1  {0, 12, 24, 36}}  S 

 
is again a subgroup of order four in S. 

 
We have subgroups of order 2, 3, 4, 6, 8, 12 and so on in S.  
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Example 2.15:  Let  
 

S = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

 
 
    

ai  [0, 8), 1  i  16, +} 

 
be a special interval group.   
 

S has several subgroups of infinite order and also several 
subgroups of finite order.  
 

P1 = 

1a 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
    

a1  [0, 8), +}  S 

 
is an infinite special interval subgroup of S. 
 

M1 = 

1a 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
    

a1  {0, 2, 4, 6}, +}  S 

 
is a finite special interval subgroup of S. 
 

P2 = 

10 a 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
    

a1  [0, 8), +}  S 

 
is an infinite subgroup of S. 
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M2 = 

10 a 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
    

a1  {0, 2, 4, 6},  +}  S 

 
is a finite subgroup of S. 
 

P3 = 

10 0 a 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
    

a1  [0, 8),  +}  S 

 
is a subgroup of S of infinite order. 
 

M3 = 

10 0 a 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
    

a1  {0, 2, 4, 6},  +}  S 

 
 
is a subgroup of finite order. 
 
 

P4 = 

10 0 0 a

0 0 0 0

0 0 0 0

0 0 0 0

 
 
    

a1  [0, 8),  +}  S 

 
 
be the subgroup of S of infinite order. 
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M4 = 

10 0 0 a

0 0 0 0

0 0 0 0

0 0 0 0

 
 
    

a1  {0, 2, 4, 6},  +}  S 

 
is a subgroup of finite order. 
 

P5 = 1

0 0 0 0

a 0 0 0

0 0 0 0

0 0 0 0

 
 
    

a1  [0, 8),  +}  S 

 
be the subgroup of S is of infinite order. 
 

M5 = 1

0 0 0 0

a 0 0 0

0 0 0 0

0 0 0 0

 
 
    

a1  {0, 2, 4, 6},  +}  S 

 

is a subgroup of order four and so on with  
 

P16 = 

16

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 a

 
 
    

a16  [0, 8),  +}  S 

 
is a subgroup of infinite order and  
 

M16 = 

16

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 a

 
 
    

a1  {0, 2, 4, 6},  +}  S 
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is a subgroup of order four. 
 
 Now  
 
 

N1,2 = 

1 2a a 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
    

a1, a2  [0, 8),  +}  S 

 
is a subgroup of infinite order. 
 

R1,2 = 

1 2a a 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
    

a1, a2  [0, 2, 4, 6}}  S 

 
is a subgroup of finite order and so on. 
 

R1,16 = 

1

16

a 0 0 0

0 0 0 0

0 0 0 0

0 0 0 a

 
 
    

a1, a16  {0, 2, 4, 6}}  S 

 
is a subgroup of finite order. 
 

N1,16 = 

1

16

a 0 0 0

0 0 0 0

0 0 0 0

0 0 0 a

 
 
    

a1, a16  [0, 8)}  S 

 
is a subgroup of infinite order. 
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R5,12 = 1

12

0 0 0 0

a 0 0 0

0 0 0 a

0 0 0 0

 
 
    

a1, a12  {0, 2, 4, 6}}  S 

 
is a subgroup of finite order. 
 

N5,12 = 5

12

0 0 0 0

a 0 0 0

0 0 0 a

0 0 0 0

 
 
    

a5, a12  [0, 8)}  S 

 
is a subgroup of infinite order. 
 

N3,15 = 

1

15

0 0 a 0

0 0 0 0

0 0 0 0

0 0 a 0

 
 
    

a1, a15  [0, 8)}  S 

 
is a subgroup of S of infinite order. 
 
 
 Let  
 

R3,15 = 

1

15

0 0 a 0

0 0 0 0

0 0 0 0

0 0 a 0

 
 
    

a1, a15  {0, 2, 4, 6}}  S 

 
 

be a subgroup of S of finite order. 
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 Likewise  
 
 

T1,5,8 = 

1

5 8

a 0 0 0

a 0 0 a

0 0 0 0

0 0 0 0

 
 
    

a1, a5, a8  {0, 2, 4, 8}}  S 

 
is a subgroup of finite order.  
 

J1,5,8 = 

1

5 8

a 0 0 0

a 0 0 a

0 0 0 0

0 0 0 0

 
 
    

a1, a5 , a8  {0, 2, 4, 8}}  S 

 
is a subgroup of finite order. 
 
  

W7,12,14 = 7

12

14

0 0 0 0

0 0 a 0

0 0 0 a

0 a 0 0

 
 
    

a7, a12, a14  {0, 2, 4, 8}}  S 

 
is a subgroup of finite order and so on. 
 
 Let  

E1, 2, 5, 7, 11, 16 = 

1 2

5 7

11

16

a a 0 0

a 0 a 0

0 0 a 0

0 0 0 a

 
 
    

a1, a2, a5, 

 
a7, a11, a16  [0, 8)}}  S 
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be a special interval subgroup of infinite order. 
 

F1,2,5,7,11,16 = 

1 2

5 7

11

16

a a 0 0

a 0 a 0

0 0 a 0

0 0 0 a

 
 
    

a1, a2, a5, 

 
a7, a11, a16  {0, 2, 4, 6}}  S  

 
is a subgroup of finite order.  
 

This S has several but finite number  of finite subgroups and 
infinite subgroups. 
 
Example 2.16:  Let  
 

S = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
        

 ai  [0, 19); 1  i  32, +} 

 
be a special interval group of infinite order. 
 
 Let  
 

T1 =  

1a 0 0 0

0 0 0 0

0 0 0 0

 
 
    

   
 a1  [0, 19)}  S 
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be a subgroup of infinite order. 
 

T7 = 1

0 0 0 0

0 0 a 0

0 0 0 0

 
 
    

   
 a1  [0, 19)}  S 

 
is a subgroup of infinite order. 
 
 

T10 = 1

0 0 0 0

0 0 0 0

0 a 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 
 
 
  

   

 a1  [0, 19)}  S 

 
be a subgroup of infinite order. 
 
 

T15 = 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 a 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 
 
 
 
  

   

 a1  [0, 19)}  S 

 
 

be a subgroup of infinite order. 
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T26 =

26

0 0 0 0

0 0 0 0

0 0 0 0

0 a 0 0

0 0 0 0

 
 
 
 
 
 
 
 
  

   
 a26  [0, 19)}  S 

 
 

be a subgroup of infinite order. 
 
 

T31 = 

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 a 0

 
 
  
 
 
  

     a1  [0, 19)}  S 

 
be a subgroup of infinite order. 
 
 

Q3,11 = 

3

11

0 0 a 0

0 0 0 0

0 0 a 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 
 
 
  

   

 a1, a3  [0, 19)}  S 

 
 
be a subgroup of infinite order. 
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Q7,20 = 

7

20

0 0 0 0

0 0 a 0

0 0 0 0

0 0 0 a

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
        

   
 a7, a20  [0, 19)}  S 

 
be a subgroup of infinite order. 
 

Y3,10,17,31 = 

3

10

17

31

0 0 a 0

0 0 0 0

0 a 0 0

0 0 0 0

a 0 0 0

0 0 a 0

 
 
 
 
 
 
 
 
 
  

   

 a3, a10, a17, 

 
a31  [0, 19)}  S  

 
is a subgroup of infinite order. 
 
 S has subgroups of infinite order.  S can have subgroups of 
finite order also. 
 
Example 2.17:  Let  
 

S = 
1 2 9

10 11 18

19 20 27

a a ... a

a a ... a

a a ... a

 
 
 
  

ai [0, 15), 1  i  27} 

 
be the special interval group. 
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 This has subgroups of both finite and infinite order. 
 

A1 = 
1a 0 ... 0

0 0 ... 0

0 0 ... 0

 
 
 
  

a1 {0, 5, 10}}  S 

 
is a special interval subgroup of order three. 
 

A7 = 
70 0 0 0 0 0 a 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

 
 
 
  

a7 {0, 5, 10}}  S 

 
is a special interval subgroup of order three and so on. 
 

A19 = 

19

0 0 ... 0

0 0 ... 0

a 0 ... 0

 
 
 
  

a19 {0, 5, 10}}  S 

 
is a subgroup of order three and  
 

A27 = 

27

0 0 ... 0

0 0 ... 0

0 0 ... a

 
 
 
  

a27 {0, 5, 10}}  S 

 
is a subgroup of order three. 
 
 

Let P1 = 
1a 0 ... 0

0 0 ... 0

0 0 ... 0

 
 
 
  

a1 [0, 15)}  S 

 
be a subgroup of infinite order. 
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P2 = 
20 a 0 ... 0

0 0 0 ... 0

0 0 0 ... 0

 
 
 
  

a2 [0, 15)}  S 

 
 
is again a subgroup of S of infinite order and so on. 
 
 

P26 = 

26

0 0 ... 0 0

0 0 ... 0 0

0 0 ... a 0

 
 
 
  

a26 [0, 15)}  S 

 
is a subgroup of infinite order in S. 
 
 
 Suppose  
 

A3,5,9 = 
3 5 90 0 a 0 a ... a

0 0 0 0 0 ... 0

0 0 0 0 0 ... 0

 
 
 
  

a3, a5, a9 [0, 15)}  S 

 
is a special interval a subgroup of infinite order in S. 
 

F3,5,9 = 
3 5 90 0 a 0 a ... a

0 0 0 0 0 ... 0

0 0 0 0 0 ... 0

 
 
 
  

a3, a5, 

 
a9  {0, 5, 10}}  S  

 
 
is a special interval subgroup of infinite order in S.   
 

Thus S has both finite and infinite order subgroups in S. 
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 Let  
 

2r
V  =  1 2 9

0 0 ... 0

a a ... a

0 0 ... 0

 
 
 
  

ai {0, 5, 10}, 1  i  9}  S 

 
be the subgroup of S.  

2r
V  is of finite order. 

 

2r
W  = 1 2 9

0 0 ... 0

a a ... a

0 0 ... 0

 
 
 
  

ai  [0, 15), 1  i  9}  S 

 
be the subgroup of S of infinite order. 
 

3r
W = 

1 2 9

0 0 ... 0

0 0 ... 0

a a ... a

 
 
 
  

ai  [0, 15), 1  i  9}  S 

 
be the subgroup of S of infinite order.  
 

3r
V = 

1 2 9

0 0 ... 0

0 0 ... 0

a a ... a

 
 
 
  

ai  {0, 5, 10}, 1  i  9}  S 

 
is a subgroup of S of finite order. 
 

5CE = 
1

2

3

0 0 0 0 a 0 ... 0

0 0 0 0 a 0 ... 0

0 0 0 0 a 0 ... 0

 
 
 
  

ai[0, 15),1  i  3}  S 

 
 
is a subgroup of S of infinite order. 
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5CD = 
1

2

3

0 0 0 0 a 0 ... 0

0 0 0 0 a 0 ... 0

0 0 0 0 a 0 ... 0

 
 
 
  

ai  {0, 3, 6, 9, 

 
12}, 1  i  3}  S  

 
 
is a finite subgroup of S.  
 

We can have using the 9 columns; 9 subgroups of finite 
order and 9 subgroups of infinite order. 

 
Thus we have several subgroups of finite order and infinite 

order in S. 
 
Example 2.18:  Let  
 
 

S = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
         

 ai  [0, 23); 1  i  27} 

 
 
be the special interval super matrix group under +.  S is of 
infinite order and is commutative.   
 

To the best of authors knowledge S has subgroups of finite 
order.  However S has several subgroups of infinite order. 
 



50 Algebraic Structures using  [0, n)  
 

 
 
 Consider  
 
 

1r
P = 

1 2 3a a a

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
         

    ai  [0, 23); 1  i  3}  S 

 
 

1r
P is a subgroup of S of infinite order.   

 
 

T1 = 

1a 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
         

    ai  [0, 23)}  S 

 
 
 

is a special interval subgroup of infinite order. 
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T7 = 

1

0 0 0

0 0 0

a 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
         

 a1  [0, 23)}  S 

 
 
is a subgroup of infinite order. 
 
 
 

T18 = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 a

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
         

 a  [0, 23)}  S 

 
 
 
is a subgroup of infinite order of S. 
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 Now  

T26 = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 a 0

 
 
 
 
 
 
         

 a  [0, 23)}  S 

 
 
is a subgroup of S of infinite order. 
 
 

1cW  = 

1

2

3

4

5

6

7

8

9

a 0 0

a 0 0

a 0 0

a 0 0

a 0 0

a 0 0

a 0 0

a 0 0

a 0 0

 
 
 
 
 
 
         

 ai  [0, 23), 1  i  9}  S 

 
 
is a subgroup of S of infinite order. 
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1 7 11 18 27a ,a ,a ,a ,aL  = 

1

7

11

18

27

a 0 0

0 0 0

a 0 0

0 a 0

0 0 0

0 0 a

0 0 0

0 0 0

0 0 a

 
 
 
 
 
 
         

 a1, a7, a11, 

 
a18, a27  [0, 23)}  S  

 
is a subgroup of S of infinite order.  

 
S has finitely many subgroups infinite order and finite 

order. 
 
  
Example 2.19:  Let  
 

S = 

1 2 3 4

5 8

9 12

13 16

17 20

21 24

25 28

a a a a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

 
 
 
 
 
 
 
 
 
  

 ai  [0, 6); 1  i  28, +} 

 
be the special interval group of infinite order.   
 

This group has several subgroups of finite order and several 
subgroups of infinite order. Z6, {0, 2, 4} and {0, 3} are 
subgroups of [0, 6) which help in getting finite subgroups. 
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Let  
 

T =  

1 2 3 4

5 8

9 12

13 16

17 20

21 24

25 28

a a a a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

 
 
 
 
 
 
 
 
 
  

 ai  {0, 3}, 1  i  28}  S 

 
is a finite subgroup of S. 
 
 Likewise  
 

P = 

1 2 3 4

5 8

9 12

13 16

17 20

21 24

25 28

a a a a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

 
 
 
 
 
 
 
 
 
  

 ai  {0, 2, 4}, 1  i  28}  S 

 
is a finite subgroup of S.  
 
 Let  

M1,2,3 = 

1 2 3a a a 0

0 ... ... 0

0 ... ... 0

0 ... ... 0

0 ... ... 0

0 ... ... 0

0 ... ... 0

 
 
 
 
 
 
 
 
 
  

 a1, a2, a3  [0, 6)}  S 
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is a subgroup of S of infinite order. 
 

W1,2,3 = 

1 2 3a a a 0

0 ... ... 0

0 ... ... 0

0 ... ... 0

0 ... ... 0

0 ... ... 0

0 ... ... 0

 
 
 
 
 
 
 
 
 
  

 a1, a2, a3  {0, 2, 4}}  S 

 
is a subgroup of finite order in S.   
 

Thus S has only finite number of subgroups of finite order. 
 
 Let us now give one or two examples of special interval 
super row matrix groups (super column matrix) groups. 
 
Example 2.20:  Let  
 

S = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 
  
 
 
 
 
 
 
  

 ai  [0, 13); 1  i  40, +} 

 
be the special interval group of infinite order.   
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S has several or equivalently n = 13C1 + 13C2 + … + 13C13 
number of subgroups all of them are of infinite order. 
 
 

A1 = 

1a 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 
  
 
 
 
 
 
 
  

 a1  [0, 13)}  S 

 
 

be the subgroup of S of infinite order so on. 
 
 

A27 = 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 a 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 
  
 
 
 
 
 
 
  

 a  [0, 13)}  S 

 
 
is a subgroup of S of infinite order. 
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A39 = 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 a 0

 
 
 
 
 
 
  
 
 
 
 
 
 
  

 a  [0, 13)}  S 

 
 
is a special interval subgroup of the special interval super 
column matrix subgroup of S of infinite order and so on. 
 
 

5r
B  = 1 2 3 4

2 3 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

a a a a

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 a a a

 
 
 
 
 
 
  
 
 
 
 
 
 
  

 ai  [0, 13), 1  i  4}  S 

 
 
is a special interval super column matrix subgroup of S of 
infinite order. 
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B10 = 

1 2 3 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

a a a a

 
 
 
 
 
 
  
 
 
 
 
 
 
  

 ai  [0, 13), 1  i  4}  S 

 
is again a special interval super column matrix subgroup of 
infinite order. 
 
 Now consider  
 
 

1cD = 

1

2

3

4

5

6

7

8

9

10

a 0 0 0

a 0 0 0

a 0 0 0

a 0 0 0

a 0 0 0

a 0 0 0

a 0 0 0

a 0 0 0

a 0 0 0

a 0 0 0

 
 
 
 
 
 
  
 
 
 
 
 
 
  

 ai  [0, 11), 1  i  10}  S 

 
 
 
is a subgroup of S of infinite order. 
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3CD  = 

1

2

3

4

5

6

7

8

9

10

0 0 a 0

0 0 a 0

0 0 a 0

0 0 a 0

0 0 a 0

0 0 a 0

0 0 a 0

0 0 a 0

0 0 a 0

0 0 a 0

 
 
 
 
 
 
  
 
 
 
 
 
 
  

 ai  [0, 13), 1  i  10}  S 

 
 
is a subgroup of S of infinite order. 
 

So we can have 14 such subgroups given by 
iCD  and 

jr
B ;  

1  i  4 and 1  j  10, however these subgroups will find their 
place in the n subgroups mentioned. 
 
Example 2.21:  Let  
 

S = 
1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

 
 
 
  

 

 
ai  [0, 11), 1  i  27, +}  

 
 
be the special interval row matrix group.   
 

S is of infinite order S has only subgroups of infinite order 
barring  
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Q = 
1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

 
 
 
  

  

 
ai  {0, 1, 2, …, 10}}, ai  [0, 11) }  S  

 
is a subgroup of infinite order.   We have 27 such subgroups.  
Each Ti  {[0, 11), +} that is Ti is isomorphic with the special 
interval group, for 1  i  27. 
 
 
 Let  

2CP = 
1

2

3

0 a 0 0 0 0 0 0 0

0 a 0 0 0 0 0 0 0

0 a 0 0 0 0 0 0 0

 
 
 
  

 a1, a2,  

 
a3  [0, 11), + }  S 

 
be a subgroup of infinite order we have 9 such subgroups.  
 

2r
B = 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0

a a a a a a a a a

0 0 0 0 0 0 0 0 0

 
 
 
  

 ai  [0, 11), 

 
1  i  9}  S  

 
is a subgroup of infinite order.  We have 3 such subgroups.   
 

Now we give polynomial groups using intervals. 
 

Example 2.22:  Let  
 

S = i
i

i 0

a x







  ai  [0, 17)} 
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under + be the special interval group of polynomials of infinite 
order. 
 
Example 2.23:  Let  
 

S = i
i

i 0

a x







  ai  [0, 22), +} 

 
be a group.  S is of infinite order.  S has finite subgroups. 
 
 For take  
 

M = 
10

i
i

i 0

a x





  ai  {0, 11}, 0  i  10, +}  S 

 
is a finite subgroup of S.   
 

p(x)  M has coefficients either 0 or 11 only and each p(x) 
 M is such that p(x) + p(x) = (0); zero polynomial as 11 + 11  
0 (mod 22). 
 

So S has subgroups of order two, three and so on.  S has 
also subgroups of infinite order.   

 

N =  
8

i
i

i 0

a x





  ai  [0, 22), 0  i  8}  S 

 
is a subgroup of infinite order S has also infinitely many 
subgroups of finite order. 
 
 S has also infinitely many subgroups of finite order. 
 
Example 2.24:  Let  
 

S = 
27

i
i

i 0

a x





  ai  [0, 19), 0  i  27} 
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be a special interval polynomial group.  S is of infinite order.   
 

The subgroup of finite order being; 
 

P = 
27

i
i

i 0

a x





  ai  {0, 1, 2, 3, 4, 5, …, 18}, 0  i  27}  S. 

 

T = 
10

i
i

i 0

a x





  ai  [0, 19), 0  i  10, +}  S 

 
is a subgroup of infinite order.   
 
 Let M = {a + bx | a, b [0, 19), +}  S is also a subgroup of 
infinite order. 
 
 N = {a + bx + cx2 + dx3 | a, b, c, d  [0, 19), +}  S is a 
subgroup of infinite order. 
 
Example 2.25:  Let  
 

S =
15

i
i

i 0

a x





  ai  [0, 3), 0  i  15, +} 

 
be a special interval group of polynomials of infinite order.   
 

Let  

X1 = 
5

i
i

i 0

a x





  ai  {0, 1, 2}, 0  i  5, +}  S 

 
be a subgroup of finite order.  
 

X2 = 
8

i
i

i 0

a x





  ai  {0, 0.5, 1, 1.5, 2, 2.5}, 0  i  8, +}  S 

 
is also a subgroup of finite order. 
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X3 = 
10

i
i

i 0

a x





  ai  {0, 0.25, 0.50, 0.75, 1, 1.25, 1.50,  

 
1.75, 2, 2.25, 2.50, 2.75}, 0  i  10, +}  S 

 
is a subgroup of finite order. 
 
 Y1 = {a + bx | a, b  [0, 3)}  S  is a subgroup of infinite 
order.   
 

Y2 = {a + bx2 + cx4 | a, b, c  [0, 3), +}  S is a subgroup of 
infinite order. 

 
 Y3 = {a + bx7 + cx10 | a, b, c  [0, 3), +}  S is a subgroup 
of infinite order. 
 
Example 2.26:  Let  
 

S = 
30

i
i

i 0

a x





  ai  [0, 2), 0  i  30} 

 
be the special interval polynomial group of infinite order.  This 
has several finite subgroups.  
 
 Let X1 = {a + bx | a, b  {0, 1}, +}  S be a subgroup of 
finite order |X1| = 4. 
 
 X2 = {a + bx | a, b  {0, 0.5, 1, 1.5}, +}  S is also a 
subgroup of finite order.  
 
 X1  X2.  o(X1) < o(X2) 
 
 X3 = {a + bx | a, b  {0, 0.25, 0.50, 0.75, 1, 1.25, 1.50, 
1.75} +}  S is a subgroup of finite order. 
 
 X1  X2  X3 and o(X3)  o(X2)  o(X1). 
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 X4 = {a + bx | a, b  {0.125, 0.250, 0.375, 0.5, 0.625, 0.750, 
1, 1.125, 1.250, 1.375, 1.5, 1.675, 1.750}, +}  S is a subgroup 
of finite order. 
 
 o(X4) > o(X3) > o(X2) > o(X1) and  
 
 X1  X2  X3  X4. 
 
 We can get a chain of subgroups. 
 
 We have several such chains. 
 
 Let Y1 = {a + bx + cx2 | a, b, c  {0, 0.2, 0.4, 0.6, 0.8, 1, 
1.2, …, 1.8}   [0, 2), +} be a finite subgroup of S. 
 
 Y2 = {a + bx + cx2 | a, b, c  {0, 0.1, 0.2, …, 1, 1.1, …, 
1.9},  +}  S is a finite subgroup of S. 
 
 Infact S has infinitely many finite subgroups.  For let Yn =  
{a + bx | a, b  {0, 0.001, 0.002, 0.003, …, 1.001, …, 1.999}    
[0, 2)  be a subgroup of finite order. 
 
 Thus S has infinitely many finite subgroups. 
 
 It is the main advantage of using the interval [0, p) even if p 
is a prime [0, p) has infinitely many subgroups of finite order 
under ‘+’. 
 
THEOREM 2.3:  Let S = {[0, p), +} be the special interval group 
(p a prime).  S has infinitely many subgroups of finite order. 
 
 Proof follows from the fact Sn = {0.0005 or 0.001 or 0.0002 
or 0.00002} generates a finite subgroup under addition.  
 
Corollary 2.1:  Let p be any composite number in Theorem 2.3.  
Then also S has infinite number of finite subgroups. 
 
Example 2.27:  Let S = {[0, 7), +} be a group under ‘+’; S has 
infinitely many subgroups of finite order. 
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Example 2.28:  Let S = {[0, 15), +} be a group.  S has infinitely 
many subgroups of finite order.  
 
Example 2.29:  Let S = {[0, 3),  [0, 8), +} be a group.  S has 
infinitely many subgroups of finite order. 
 
Example 2.30:  Let S = {[0, 7)  [0, 11)  [0, 29), +} be the 
special interval group of infinite order.  S has infinitely many 
subgroups of finite order. 
 
Example 2.31:  Let S = {(a1, a2, a3) | ai  [0, 3), 1  i  3} be a 
special interval group.  S has infinitely many subgroups of finite 
order. 
 
 We can have the usual notion of group homomorphism , 
kernel of the homomorphism  and other properties.   
 

As the group is under addition and the groups are of infinite 
order it is difficult to arrive more properties about them.   
 

However we see if S = {[0, n), +} be the special interval 
group we get Zn  S as a subgroup of finite order. 

 
 Thus we have the following theorem. 
 
THEOREM 2.4:  Let S = {[0, n), +} be the special interval 
group.  {Zn, +}  S is always a finite subgroup of S. 
  

The proof is direct and hence left as an exercise to the 
reader.  
  
Example 2.32:  Let S = {[0, 7)  [0, 12)  [0, 17)  [0, 36), +} 
be a special interval group.  Clearly T = Z7  Z12  Z17  Z36  S 
is a subgroup of finite order. 
 
 Also P1 = Z7  {0, 3, 6, 9}  Z17  {0, 12, 24}  S is a 
subgroup of finite order. 
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 P2 = Z7  {0}  {0}  {0, 6, 12, 18, 24, 30}  S is a 
subgroup of finite order. 
 
 So in a way we call the special interval group under + as the 
extended modulo integer group under +. 
 
Example 2.33:  Let  
 

S = 

1

2

9

a

a

a

 
 
    


 ai  [0, 15), 1  i  9, +} 

 
be the special interval matrix group. 
 

T = 

1

2

9

a

a

a

 
 
    


 ai  Z15  {0, 1, 2, …, 14}, 1  i  9, +} 

 
be the subgroup of S.  
 
 Infact S has infinite number of subgroups of finite order. 
 
Example 2.34:  Let  
 

S = 
10

i
i

i 0

a x





  ai  [0, 4), 0  i  10, +} 

 
be a group of infinite order.  S has infinite number of subgroups 
of finite order. 
 

P1 = 
10

i
i

i 0

a x





  ai  {0, 2} , 0  i  10, +}  S 
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is a subgroup of finite order.   
 

For all p(x)  P1 we have p(x) + p(x) = 0.   
 

P2 = 
10

i
i

i 0

a x





  ai  {0, 1, 2, 3}, 0  i  10, +}  S 

 
is a subgroup of finite order. 
 
 Let  

T1 = {a + bx | a, b  {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5}; +}  S 
be the finite subgroup of S.   

 
S has infinitely many subgroups of finite order. 

 
 T2 = {a + bx + cx2 | a, b, c  {0, 0.2, 0.4, …, 3, 3.2, 3.4, 3.6, 
3.8}   [0, 4), +}  S. 
 
 T3 = {a + bx2 | a, b  {0, 0.1, 0.2, …, 0.9, 1, 1.1, …, 3.1, …, 
3.9}  [0, 4), +}  S is a subgroup of finite order. 
 
 Let  
 

R = 
3

i
i

i 0

a x





  ai  {0, 0.5, 1, 1.5,  2, 2.5, 3, 3.5}  [0, 4), 

0  i  3}  S  
 

be a subgroup of finite order. 
 
 Infact S has infinitely many subgroups of finite order and 
this infinite groups has infinite number of finite subgroups.  
 

It is an interesting observation for R or Q or Z under 
addition has no finite subgroups. 
 
 We suggest the following problems for the reader. 
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Problems 
 
1. Find some special and interesting properties associated 

with special interval groups  
 G = {[0, a), +, a a positive integer}. 
 
2. If in a problem 1, a is a prime can G have infinite number 

of subgroups? 
 
3. Can G in problem 1 have subgroups of infinite order? 
 
4. Prove if a is a composite number in G given in problem 1 

then G has many subgroups of finite order. 
 
5. Let S = {[0, 11), +} be a special interval group. 
 

(i) Can S have subgroups of infinite order? 
(ii) Can S have infinite number of subgroups of finite  
 order? 
(iii) Can S have infinite number of subgroups of infinite  
 order? 
 

6. Let S = {[0, 18), +} be a special interval group.   
 
 Study questions (i) to (iii) of problem 5 for this S. 
 
7. Let S = {[0, 24), +} be the special interval group.  
 
 Study questions (i) to (iii) of problem 5 for this S. 
 
8. Let S = {[0, p2), p a prime +} be the special interval 

group.  
 
 Study questions (i) to (iii) of problem 5 for this S. 
 
9. Let S1 = {[0, pq), p and q primes, +} be the special 

interval group.   
 
 Study questions (i) to (iii) of problem 5 for this S. 
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10. Let S2 = {[0, 1 2 n
1 2 np ,p ,...,p   ) 1  1, 1  i   n, pj’s prime 

and all of them are distinct 1  j  n} be the special 
interval group.  

 
 Study questions (i) to (iii) of problem 5 for this S2. 
 
11. Let S = {[a1, a2, …, a9] | ai  [0, 19), 1  i  19} be a 

special interval group.  
 
 Study questions (i) to (iii) of problem 5 for this S. 
 
12. Let T = {[0, 13), +} be the special interval group. 
 

(i) Can T have infinite subgroups other than T? 
(ii) Prove T has infinite number of finite subgroups. 
(iii) What is the smallest order of the finite subgroup? 

 
13. Let S = {[0, 12), +} be the special interval group. 
 

(i) Find all infinite  order subgroups of S. 
(ii) Prove S has infinitely many subgroups of finite  
 order. 
(iii) Is two the order of the smallest subgroup of S? 

 
14. Let S = {[0, p), +, p a prime} be the special interval 

group.   
 

(i) Find all infinite order subgroups of S. 
(ii) Prove the order of the smallest subgroup is p. 

 
15. Let S = {[0, 24), +} be the special interval group. 
 

(i) Prove S has finite subgroups of order 2, 3, 4, 6, 8,  
 12 and so on. 
(ii) Can S have finite subgroups of order 5, 7, 9, 11, …,  
 p, p a prime? 
(iii) Can S have infinite order subgroups? 
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16. Let S = {(a1, a2) | ai  [0, 11), 1  i  2} be a special 
interval group under addition +.  

 
 Study questions (i) to (iii) of problem 15 for this S. 
 
 

17. Let S1 = 

1

2

9

a

a

a

 
 
    


 ai  [0, 19); 1  i  9, +}  

 
 be the special interval group.  
 
 
 Study questions (i) to (iii) of problem 15 for this S1. 
 
 

18. Let S2 = 

1 2 12

13 14 24

25 26 36

37 38 48

a a ... a

a a ... a

a a ... a

a a ... a

 
 
    

 ai  [0, 29); 1  i  48,  

 
 +} be the special interval group.  
 
 Study questions (i) to (iii) of problem 15 for this S2. 
 

19. Let S3 = 

1 2 16

17 18 32

33 34 48

49 50 64

a a ... a

a a ... a

a a ... a

a a ... a

 
 
    

 ai  [0, 43); 1  i  64,  

 
 +} be the special interval group.  
 
 Study questions (i) to (iii) of problem 15 for this S3. 
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20. Let M = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

 
 
  
 
 
  

 ai  [0, 30);  

 
 1  i  25, +} be the special interval group.  
 
 Study questions (i) to (iii) of problem 15 for this M. 
 
21. Let V = {(a1, a2, a3, a4, a5) | a1  [0, 5), a2  [0, 11), a3  

[0, 15) a4 [0, 6) and a5  [0, 12), +} be the special 
interval group.  

 
 Study questions (i) to (iii) of problem 15 for this V. 
 

22. Let V1 = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

 
 
    

 a1  [0, 30), a2  [0, 5), a3   

 
 [0, 14), a4 [0, 11), and a5  [0, 15), a6  [0, 19), a7 , a8, 

a9, a10  [0, 25),  a11, a12 [0, 10) +} be the special 
interval group under +.  

 
 Study questions (i) to (iii) of problem 15 for this V1. 
 

23. Let S1 =

1

2

9

a

a

a

 
 
    


 a1, a2, a3  [0, 24); a4, a5, a6  [0, 18) and  

 
 a7, a8, a9  [0, 31), +} be the special interval group.  
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 Study questions (i) to (iii) of problem 15 for this S. 
 
 

24. Let S = 

1

2

3

4

5

6

7

8

9

10

11

12

a

a

a

a

a

a

a

a

a

a

a

a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ai  [0, 41); 1  i  12, +} be the special  

 
 
 interval group.  
 
 Study questions (i) to (iii) of problem 15 for this S. 
 
25. Let S = {(a1 a2 | a3 a4 a5 | a6) | ai  [0, 7), 1  i  6, +} be 

the special interval group.  
 
 Study questions (i) to (iii) of problem 15 for this S. 
 

26. Let S = 
1 2 3 4 5 6 7

8 14

15 21

a a a a a a a

a ... ... ... ... ... a

a ... ... ... ... ... a

 
 
 
  

 ai  [0, 23);  

 
 
 1  i  21, +} be the special interval group.  
 
 Study questions (i) to (iii) of problem 15 for this S. 
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27. Let S = 

1 2 3 4 5 6 7

8 14

15 21

22 28

29 35

36 42

a a a a a a a

a ... ... ... ... ... a

a ... ... ... ... ... a

a ... ... ... ... ... a

a ... ... ... ... ... a

a ... ... ... ... ... a

 
 
 
 
 
 
 
 
  

 ai  [0, 49);  

 
 1  i  42, +} be the special interval group.  
 
 Study questions (i) to (iii) of problem 15 for this S. 
 
 

28. Let S = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
  
 
 
 
 
 
 
  

 ai  [0, 192); 1  i  30, +}  

 
 be the special interval group.  
 
 Study questions (i) to (iii) of problem 15 for this S. 
 
29. Let  
 S = {(a1 | a2  a3 a4 a5 | a6 a7 | a8) | ai  [0, 28), 1  i  8, +} 

be the special interval group.  
 
 Study questions (i) to (iii) of problem 15 for this S. 
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30. Let S = 
1 2 3 4 5 6 7 8

9 16

17 24

a a a a a a a a

a ... ... ... ... ... ... a

a ... ... ... ... ... ... a

 
 
 
  

 ai   

 
 
[0, 28); 1  i  24} be the special interval group.  

 
 Study questions (i) to (iii) of problem 15 for this S. 
 

31. Let S = i
i

i 0

a x







  ai  [0, 121)} be the special interval 

polynomial of group of infinite order.  
 
 Study questions (i) to (iii) of problem 15 for this S. 
 

32. Let S = 
7

i
i

i 0

a x





  ai  [0, 18), 0  i  7}  

 
 be the special interval polynomial of group of infinite 

order.  
 

(i) Prove S has several subgroups of finite order.  
(ii) Is the number of subgroups of S of finite order  
 infinite or finite? 
(iii) Study questions (i) to (iii) of problem 15 for this S. 

 

33. Let S = i
i

i 0

a x







  ai  [0, 36)}  

 
 be the special interval group of polynomials.  
 

(i) Find all subgroups of finite order. 
(ii) Study questions (i) to (iii) of problem 15 for this S. 



 

 

 
 
 
 
 
Chapter Three 
 
 

 
 
SPECIAL INTERVAL SEMIGROUPS ON 
[0,n)  
 
 
 
In this chapter for the first time authors introduce 3 different 
operations on the interval [0, n); n < .   

 
Thus Smin = {[0, n); min}, Smax = {[0, n); max} and S = {[0, 

n), }, (n < ) are semigroups.    
 

 We study the algebraic substructures enjoyed by them and 
derive several interesting properties. 
 
 Let Smin = {[0, n), min} be a semigroup.  Infact Smin is a 
semilattice and is of infinite order.  Smin is commutative and Smin 
is an idempotent semigroup of infinite order.  We call Smin as the 
special interval semigroup.   
 
 We will first give some examples of them. 
 
Example 3.1:  Let Smin = {[0, 24), min} be the semigroup of 
infinite order.  Every singleton element is an idempotent.   
 
 For if x = 9.23  Smin then min {x, x} = x.  Let t1 = 8.92 and 
t2 = 12.03  Smin, then min {t1, t2} = 8.92 = t1 and P = {t1, t2}  
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Smin is a subsemigroup of order two.  Infact we can get 
subsemigroups of order 1, 2, 3, …,  any integer.   
 
 Smin has also subsemigroups of infinite order.   
 
 For T5 = {[0, 5),  min}  Smin is a subsemigroup of infinite 
order and T5 is also an idempotent subsemigroup.  Smin has no 
zero divisors. 
 
Example 3.2:  Let Smin = {[0, 17),  min} be the special interval 
semigroup of infinite order.  Smin has infinite number of 
subsemigroups of finite and infinite order.  Every element in 
Smin is an idempotent.  
 
 Now using Smin we construct semigroups. 
 
Example 3.3:  Let Smin = {(a1, a2, a3) | ai  [0, 4), 1  i  3} be 
the special interval semigroup.  Smin has several semigroups and 
infact zero divisors. 
 
 We call x in Smin to be a zero divisor if there exists a y in 
Smin with min {x, y} = (0, 0, 0).  We see if x = (0.32, 0, 0) and  
y = (0, 0.9, 3.2)  Smin then min {x, y} = (0, 0, 0). 
 
 Infact Smin has infinitely many zero divisors. 
 
 S has subsemigroups of infinite order. 
 
 Let M1 = {(a1, 0, 0) | a1  [0, 4)}  Smin,  
 M2 = {(0, a1, 0) | a1  [0, 4)}  Smin and  
 M3 = {(0, 0, a1) | a1  [0, 4)}  Smin be three distinct 
subsemigroups of Smin.   
 
 We see min {Mi, Mj} = {(0, 0, 0)} if i  j, 1  i, j  3.  
Every element in Smin is an idempotent and hence is a 
subsemigroup. 
 
 However we cannot say every pair of elements in Smin is a 
subsemigroup.  For if x = (0.3, 2, 3.4) and y = (0.1, 3, 0.2)  
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Smin. We see min {x, y} = {(0.3, 2, 3.4), (0.1, 3, 0.2)} =  
(min{0.3, 0.1}, min{2, 3}, min{3.4, 0.2} = (0.1, 2, 0.2)  x or y. 
 
 Thus a pair of elements in Smin in general is not a 
subsemigroup under min operation. 
 
 Let X = {(0, 0, 0) (a, b, c) | a, b, c [0, ,4) and a, b, c are 
fixed}  Smin.  This pair of X is a subsemigroup. 
 
 Thus every pair {x, y} with x = (0, 0, 0) is always a 
subsemigroup of Smin.  Let x = (a, b, c) and y = (d, e, f)  Smin 
we say x min y if min (a, d) = a, min (b, e) = b and min {c, f} = 
c. 
 
 Thus if T = {x1, x2, …, xn} such that  
x1 min x2 min … min xn, then T is a subsemigroup.   
 
 We call this order min as “special min order”.   
 
 Infact Smin is not a special min orderable but T  Smin is 
special min orderable.   
 
 A natural question is can we have subsemigroups in Smin 
which are not special min orderable?   
 
 The answer is yes and Smin itself is not special min 
orderable. 
 
 For take x = (0.2, 1, 2.3) and y = (0.7, 0.9, 1.3)  Smin.   
 
 We see min {x, y} = {(2, 0.9, 1.3)}  x (or y).   
 
 Let min{x, y} = z we see x min  y but  z min x  and z min y 
and M = {x, y, z} is a special interval subsemigroup of Smin. 
 
 Thus a set which is not special min orderable is a 
subsemigroup.  We can only say Smin is a partially special min 
ordered set. 
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 This concept can help to get trees when the subsemigroups  
in Smin are of finite order. 
 
 Let P = {x = (0, 0, 0), x1 = (0.3, 0.7, 1.1), x2 = (0.4, 0.93, 
0.84), x3 = (3, 2, 0.2)}  Smin; min {x, xi} = x for i = 1, 2, 3.  
min{x1, x2} = (0.3, 0.7, 0.84) = x4; min {x1, x3} = (0.3, 0.7, 0.2) 
= x5, min{x2, x3} = (0.4, 0.93, 0.2) = x6 so P is not a 
subsemigroup.   
 
 We see P is partially min ordered set yet P is not a 
subsemigroup.   
 
 P1 = {x, x1, x2, x3, x4, x5, x6}  Smin is a subsemigroup of 
Smin. 
 
 Several interesting properties can be derived on subsets of 
Smin.   
 
 We see if P is only a subset of Smin and not a subsemigroup 
of Smin then we can complete it to get the subsemigroup in a 
finite number of steps if |P| <  and only in infinite number of 
steps if |P| = . 
 
Example 3.4:  Let  
 

Smin = 

1

2

3

4

5

6

7

a

a

a

a

a

a

a

 
 
 
 
 
 
 
 
 
  

 ai [0, 19), 1  i  7} 

 
 
be the special interval semigroup. 
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 Let us consider  
 

M = 

0 0 0.1

0 0.7 0.3

0 3 4

, ,0 2.1 0.2

0 5.0 3.2

0 0.9 0.6

0 1.2 1.2

      
      
      
      
      
      
      
      
      
            

   Smin; 

 
clearly M is not a subsemigroup only a subset as  
 
 

min

0 0.1

0.7 0.3

3 4

,2.1 0.2

5.0 3.2

0.9 0.6

1.2 1.2

    
    
    
    
    
    
    
    
    
        

 = 

0

0.3

3

0.2

3.2

0.6

1.2

 
 
 
 
 
 
 
 
 
  

  M 

 
 

so M is only a subset as min 

0 0.1

0.7 0.3

3 4

,2.1 0.2

5.0 3.2

0.9 0.6

1.2 1.2

    
    
    
    
    
    
    
    
    
        

  M. 
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 Now  
 

W = 

0 0.1 0 0

0 0.3 0.7 0.3

0 4 3 3

, , ,0 0.2 2.1 0.2

0 3.2 5.0 3.2

0 0.6 0.9 0.6

0 1.2 1.2 1.2

        
        
        
        
        
        
        
        
        
                

  Smin 

 
is a special interval subsemigroup of Smin. 
  
 Let  
 
 

T = 1 2 3

0 0.2 6 0.5

0 0.4 9 3

0 5 2 4.3

,x , x , x0 3.8 4 2.7

0 7 4.3 2.5

0 8 3.1 7

0 9 2.5 5

        
        
        
        
                  
        
        
        
                

  Smin. 

 
 

We see min{x1, x2} = 

0.2 6

0.4 9

5 2

,3.8 4

7 4.3

8 3.1

9 2.5

    
    
    
    
    
    
    
    
    
        

 = 

0.2

0.4

2

3.8

4.3

3.1

2.5

 
 
 
 
 
 
 
 
 
  

  W. 
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 min{x1, x3} = min 

0.2 0.5

0.4 3

5 4.3

,3.8 2.7

7 2.5

8 7

9 5

    
    
    
    
    
    
    
    
    
        

 = 

0.2

0.4

4.3

2.7

2.5

7

5

 
 
 
 
 
 
 
 
 
  

  W. 

 
 

 min{x2, x3} = min 

6 0.5

9 3

2 4.3

,4 2.7

4.3 2.5

3.1 7

2.5 5

    
    
    
    
    
    
    
    
    
        

 = 

0.5

3

2

2.7

2.5

3.1

2.5

 
 
 
 
 
 
 
 
 
  

  W. 

 
 Thus if we extend W by  
 

W1 = 

0

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

, x1, x2, x3, 

0.2 0.2 0.5

0.4 0.4 3

2 4.3 2

, ,3.8 2.7 2.7

4.3 2.5 2.5

3.1 7 3.1

2.5 5 2.5

     
     
     
     
     
     
     
     
     
          

  Smin 

 
is a special interval subsemigroup of |W1| = 7. 
 
 If we have a set with 3 distinct elements we can extend W 
to W1 and |W1| = 7.   
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If the 

0

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
  

 is added to W1 we get order of W1 is 7. 

 
 Likewise if V = {x1, x2, x3, x4, x5} such that min {xi, xj}  xi 
or xj if i  j and xi min  xj ; if i  j then V is not a subsemigroup 
we can complete V as follows: 
 
 V  {min {xi, xj}; i  j, 1  i, j  5} = V1; V1 is a 
subsemigroup of Smin; |V1| = 5 + 5C2 = 15.  
 
 Thus if A = {x1, x2, …, xn} with min {xi, xj}  xi or xj if i  j 
then A is not a subsemigroup but we can complete A as A1 and 
|A1| = n + nC2.   
 
 This is true for any finite n (This is true for infinite n also).  
Thus we can in a nice way complete a subset into a 
subsemigroup under min operation. 
 
Example 3.5:  Let  
 

Smin = 

1 2 3

4 5 6

28 29 30

a a a

a a a

a a a

 
 
    

  
 ai [0, 17), 1  i  30} 

 
be a special interval matrix semigroup under min operation. 
 
 Smin has subsemigroups of order 1, 2, 3, 4, …, n; also n is 
infinite.   
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 We can also for any given subset A  Smin complete it to get 
a subsemigroup. 
 
 If A is a subset of Smin with n elements such that min {x, y} 
 x or y and x  y true for every x, y  A, then we can complete 
A to A1 and A1 will be subsemigroup of order n + nC2. 
 
Example 3.6:  Let  
 
 

Smin =   

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
  
 
 
  

 ai [0, 11), 1  i  15} 

 
be the special interval semigroup. 
 
 Let  
 

A = 

0.7 0 0 3.5 0 0 7.8 0 0 2.98 0 0

0 0 0 0 0 0 0 0 0 0 0 0

, , ,0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

        
        
                 
        
        
                

 

 
 Smin. 

 
 
 A is only a subsemigroup. 
 
 A can be completed to A1 only if x in A has a y in A with 
min {x, y} = x or y. 
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B = 

0.2 0.7 0 0.9 0.2 0 0.3 9 0 7 6.8 0

0 0 0 0 0 0 0 0 0 0 0 0

, , ,0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

        
        
                 
        
        
                

  

 
 Smin 

 
is not a subsemigroup.  B can be completed to B1 with |B1|  = 4 
+ 4C2 = 10. 
 

D = 

0.3 0 0 9 0 0 2.5 0 0

4 0 0 2 0 0 9.8 0 0

, , ,8 0 0 9.2 0 0 3.9 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

     
     
          
     
     
          

 

 

   

10.5 0 0 0.07 0 0 4.3 0 0

2.9 0 0 6.16 0 0 7.1 0 0

, ,7.5 0 0 3.9 0 0 6.5 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

     
     
          

     
     
          

  Smin; 

 
be a subset of D and D can be made or completed into a 
subsemigroup D1; |D1| = 6 + 6C2 = 6 + 6.5 / 1.2 = 6 + 15 = 21. 
 Let  
 

E = 

9 0 2 2 0 4.5

0 4.3 0 0 3.7 6.3

,7.1 0 9 9.6 0 9.9

0 3.5 0 0 0 7.2

0.1 0 0.6 6.5 0 0

    
    
         
    
    
        

  Smin, 
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E is only a subset of Smin.  E can be completed to E1 to be a 
subsemigroup of order three.  
 
Example 3.7:  Let  
 

Smin = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

 
 
    

 ai [0, 9), 1  i  16} 

 
be the special interval semigroup. 
 

 Let M = 

8 0.7 5.2 6.9 6 6.3 0.2 0.7

0 0 0 0 0 0 0 0
, ,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

   
   
            

 

 
 

0.5 0.4 0.9 6.1 6.1 0.9 0.4 0.2

0 0 0 0 0 0 0 0
,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

   
   
            

  Smin. 

 
 

M is only a  subset and not a subsemigroup.   
 
 M can be completed to M1 by adjoining all min{x, y}, x  y 
where x, y  M.   
 
 Thus M  {min {x, y}}; x  y, x, y  M} = M1 is a 
subsemigroup of Smin.  |M1| = 4 + 4C2. 
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Example 3.8:  Let  
 

Smin = 

1 2 3 4 5

6 10

11 15

16 20

21 25

a a a a a

a ... ... ... a

a ... ... ... a

a ... ... ... a

a ... ... ... a

 
 
      

 ai [0, 41), 1  i  25} 

 
be a special interval semigroup of infinite order. 
 
 Smin has subsemigroups of all order and also subsets of Smin 
can be completed to get subsemigroups of both finite and 
infinite order. 
 
 We give the following theorem. 
 
THEOREM 3.1:  Let  
Smin = {m  n matrix with entries from [0, s); s an integer; min} 
be the special interval semigroup of infinite order. 
 
 If P = {x1, x2, …, xn}  Smin (n finite or infinite) with min {xi, 
xj}  xi or xj for 1  i, j  n then the subset P can be completed to 
P1 such that P1 = P  {min {xi, xj}; 1  j, 1  i, j  n} and P1 is a 
subsemigroup of Smin. 
  
 Proof follows from the fact that min operation in P1 gives 
the desired subsemigroup. 
 
 Now we proceed onto study Smax = {[0, n), max}.  Smax is 
also an infinite commutative semigroup which an idempotent 
semigroup.   
 
 We give examples of them and study their properties. 
 
Example 3.9:  Let Smax = {[0, 10), max} be the special interval 
semigroup of infinite order.  Smax is an idempotent semigroup.  
We see if T = {x1, x2, x3, x4}  Smax, T is a subsemigroup.   
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 Smax has subsemigroups of order 1, 2, 3, 4, ….   
 
 We see Smax is a chain for any two elements in Smax is max 
orderable that is if any x, y  Smax we have x  max y or y  max x.  
Thus any subset of Smax is a subsemigroup.  This is the special 
feature enjoyed by these special interval max semigroups.  
 
Example 3.10 :  Let Smax = {[0, 231), max} be a special interval 
max semigroup.  Let x = 230.009 and y = 9.32  Smax.   
 T = {x, y} is a subsemigroup.  
 
 Hence these idempotent semigroups are max orderable 
semigroups with 0 as the least element.  However this has no 
maximal or to be more precise the greatest element. 
 
 Now Smax cannot have zero divisors or the concept of units.  
These are semilattices of a perfect type. 
 
Example 3.11:  Let  
Smax = {(a1, a2, a3, a4) | ai  [0, 15); 1  i  4} be the special 
interval semigroup of infinite order. 
 
 Let x = (0.3, 6.9, 9.2, 0.7) and y = (12.1, 3, 4, 5.1)  Smax.  
We see max {x, y} = max {(0.3, 6.9, 9.2, 0.7) (12.1, 3, 4, 5.1)} 
 
 = (max {0.3, 12.1}, max {6.9, 3} max {9.2, 4}, max {0.7, 
5.1}) 
 
 = (12.1, 6.9, 9.2, 5.1)  x or y. 
 
 Thus P = {x, y}  Smax is a subsemigroup.   
 
 However P1 = {x, y, max{x, y}}  S is a subsemigroup.  So 
in general a pair of elements in Smax is not a subsemigroup. 
 
THEOREM 3.2:  Let  
Smax = {m  n matrix with entries from [0, s); max} be the 
special interval semigroup.  
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 If x, y  Smax is such that x max y (y max x) then Smax is a 
subsemigroup.  Conversely if a pair of elements x, y  Smax is a 
subsemigroup, then  x max y (y max x) respectively. 
 
Example 3.12:  Let  
 

Smax =  
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai [0, 18), 1  i  9} 

 
be a special interval semigroup. 
 
 We see for  
 

x = 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 and y = 
1 2 3

4 5 6

7 8 9

b b b

b b b

b b b

 
 
 
  

  Smax 

 
are ordered by max if and only if ai  bi for each i, i = 1, 2, …, 9. 
 
 Take  
 
 

x = 

0.3 7 2

4.2 3.1 11.8

12.3 5.001 7.09

 
 
 
  

 and  

 

y = 

4 11. 4

7.3 10.5 14.07

13.031 17.011 9.028

 
 
 
  

  Smax. 

 
 
 We see x max y as we see each element x is strictly less 
than the corresponding element in y. 
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 Now take  
 

x = 

9.2 2.3 0.3

11.2 1.5 3.92

7.3 17.5 16.5

 
 
 
  

 and y = 

3.7 9.2 10.31

9.73 3.4 1.82

4.7 10.5 17.891

 
 
 
  

  Smax. 

 

 We see max{x, y} = 

9.2 9.2 10.31

11.2 3.4 3.92

7.3 17.5 17.891

 
 
 
  

  x 

 
or y also x max y and y max x. 
 
 So in general in this Smax we cannot order the matrix. 
 
 This is true in general for any x, y, z  Smax.   
 
 If max {x, y}  x or y or z we see {x, y, z} does not form a 
subsemigroup.   
 
 However if {x, y, z}  Smax is such that max{x, y} = z then 
{x, y, z} forms a subsemigroup of Smax. 
 
 We have several subsemigroups in this Smax isomorphic 
with T = {[0, 18), max}. 
 
 Let  
 

A1 = 
1a 0 0

0 0 0

0 0 0

 
 
 
  

 a1[0, 18), max}  T = {[0, 18), max} 

 
be a subsemigroup and is isomorphic with A1.   
 
 We have at least 16 subsemigroup isomorphic to P = {[0, 
18), max}. 
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 Take  
 

A8 = 

0 0 0

0 0 0

0 a 0

 
 
 
  

 a[0, 18)}  Smin ;  

 
A8 is a subsemigroup and is isomorphic to P. 
 
 We see if the matrix in Smin has more than one entry and if 
we have more than one such matrices we see that subset in 
general will not be a subsemigroup so we have to make the 
completion of it. 
 
Example 3.13:  Let  
 

Smax = 

1 2

3 4

19 20

a a

a a

a a

 
 
    

 
 ai [0, 17); 1  i  20} 

 
be a special interval semigroup of infinite order and is 
commutative.  
 
 Let  

P1 = 

1 2

3 4

a a

a a

0 0

 
 
    

 
 a1, a2, a3, a4 [0, 17)}  Smax 

 
be a subsemigroup of infinite order. 
 
 However P1 is not isomorphic to T = {[0, 17), max}. 
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P2 = 

1a 0

0 0

0 0

 
 
    

 
 a1  [0, 17), max}  Smax 

 
is a subsemigroup isomorphic with T = {[0, 17), max}.  P2  T. 
 
 Let  
 

P4 = 

1

2

3

a 0

0 a

0 a

 
 
    

 
 a1, a2, a3 [0, 17); max}  Smax, 

 
P4 is a subsemigroup and is not isomorphic to T. 
 
 Likewise Smax has several subsemigroups which are not 
isomorphic to T. 
 
Example 3.14:  Let  
 

Smax = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
  
 
 
 
 
 
 
  

 ai [0, 27); 1  i  30} 

 
be the special interval super matrix semigroup.   
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 Smax has infinite number of idempotents and infinite number 
of finite subsemigroups, infact infinite number of 
subsemigroups of order 1, order 2 and so on. 
 
 Recall semigroups of S is said to be a Smarandache 
semigroup if it has a subset P such that P under the operations 
of S is a group. 
 
 Clearly Smax in example 3.14 is not a Smarandache 
semigroup.   
 
 Inview of all those we have the following theorem. 
 
THEOREM 3.3: Let Smax or Smin be special interval semigroups.  
Both Smax and Smin are not Samrandache semigroups.   
 
 The proof is direct and hence left as an exercise to the 
reader. 
 
THEOREM 3.4:  Let Smax be a special interval matrix semigroup.   
 

(i) Smax has only a unique minimal element (least 
element)  

(ii) Smax has no maximal element. 
 
 For proof (0), the zero matrix is the minimal element of 
Smax.  
 
 For (0) is the least element as max {(0), X} = X for every X 
 Smax \ {0}. 
 
THEOREM 3.5:  Let Smin be the special  interval matrix 
semigroup. 
 

(i) (0) is the least element of Smin. 
(ii) Smin has no greatest element. 

 
 Proof is direct and hence left as an exercise to the reader. 
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Example 3.15:  Let  
 

Smax =
1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

a a a a a a

a a a a a a

a a a a a a

 
 
 
  

 ai [0, 27); 1  i  18} 

 
be the special interval semigroup of super row matrix. 
 

 (0) = 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 
 
 
  

 is the least element of Smax.   

 
However Smax has no greatest element.   
 
 Further Smax is not a Smarandache semigroup.  |Smax| = ; 
Smax has infinite number of any finite order subsemigroup.  Smax 
also has infinite number of infinite subsemigroup. 
 
Example 3.16:  Let  
 

Smin = 

1 2 5

6 10

11 15

16 20

21 25

a a ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

 
 
  
 
 
  

 ai [0, 49); 1  i  25} 

 
be the special interval semigroup under min operation. 
 

(0) = 

0 0 0 0

0 ... ... 0

0 ... ... 0

0 ... ... 0

0 ... ... 0
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is the least element of Smin and min{x, (0)} = {(0)} for all x  
Smin. 
 
 Now we proceed onto describe semigroups using intervals 
under product. 
  
Example 3.17:  Let  
 

Smin = 
1 2 3 4

37 38 39 40

a a a a

a a a a

 
 
 
  

     ai [0, 25); 1  i  40} 

 
be the special interval semigroup.   
 
 We see max{(0), x} = x for all x  Smax \ {(0)}. 
 
Example 3.18:  Let S = {[0, 13), } be the special interval 
semigroup.   
 
 Let x = 0.001 and y = 2.01  S; x  y = 0.00201  S . 
 
  Let x = 5.002 and y = 0.005  S,  
  x  y = 5.002  0.0005 = 0025010  S. 
 
  We see S has zero divisors. 
 
 We see 1  S  is such that x  1 = x for all x  S. 
 
Example 3.19:  Let  S = {[0, 15), } be the special interval 
semigroup under product . 
 
 Take x = 3 and y = 5  S; we see x  y = 3  5 = 0  
(mod 15). 
 
 Let x = 4  S; x

2 = 4  4 = 1  (mod 15), so x is a unit. 
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 Let x = 2 and y = 8  S; x  y = 2  8 = 16 = 1 (mod 15).  
So  S  has  units. S  has zero divisors for x = 3 and y = 10 in S  
is such that 
 
 x  y = 3  10  0 (mod 15) is a zero divisor. 
 
Example 3.20:  Let S = {[0, 13), } be the special interval 
semigroup.  S has zero divisors.  S has unit for x = 7 and  
y = 2 is such that x  y = 7  2 = 14  1 (mod 13). 
 
Example 3.21:  Let S = {[0, 24), } be the special interval 
semigroup of infinite order. S has units for 5  S is such that 
52 = 1 (mod 24). 7  S is such that 72  49  1 (mod 24) and  
11  S is such that 112 = 1 (mod 24).   
 
 S has zero divisors for take x = 6, y = 4  S, is such that   
x  y = 6  4  0 (mod 24).  
 
 x = 8 and y = 3  S is such that 8  3  0 (mod 24), x = 2 
and y = 12  S is such that x  y = 2  12  0 (mod 24). 
 
 x = 4 and y = 12 is such that x  y = 4  12  0 (mod 24). 
 
 x = 6 and y = 8  S is such that x  y = 6  8 = 0 (mod 24).  
x = 8 and y = 9  S is such that x  y = 8  9 = 0 (mod 24).   
x = 6 and y = 12  S is such that x  y = 6  12 = 72 = 0 (mod 
24) that x  y = 8  12 = 0 (mod 24) and so on. 
 
 S also has idempotents. 
 
 For 9  S is such that 9  9 = 81 = 9 (mod 24) 16  S is 
such that 16  16 = 16 (mod 24).   
 
 Further S also has nilpotent elements for x = 12  S is 
such that x2  0 (mod 12).   
 
 Thus S has units, idempotents, zero divisors and nilpotents 
|S| = .   
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 S also has subgroups, for P1 = {23, 1}  S is a subgroup 
of S so S is a Smarandache semigroup.  P2 = {7, 1}  S is 
also a group under .  P3 = {1, 5}  S is also a group under . 
 
 P3 = {16, 8}  S is also a subgroup and so on. 
 
 Thus S is a S-semigroup.   
 
Example 3.22:  Let S = {[0, 19), } be a special interval 
semigroup under product.  S has units and S has zero divisors.  
S is a S-subsemigroup as P = {1, 2, …, 18}  S is a group 
under . 
 
 Every element in P is invertible and they are the only units 
of S and S has no idempotents. 
 
Example 3.23:  Let S = {[0, 7), } be a special interval 
semigroup under .   
 
 We see 2, 3, 4, 5, 6  S are units but S has no 
idempotents.  S is a Smarandache semigroup for P1 = {1, 6} 
and P2 = {1, 2, 3, 4, 5, 6}  S  are subgroups of S.   
 
 S has infinitely many elements such that they are not units, 
for take x = 0.31  S we see x2 = 0.31  0.31 = 0.0961 and  
x3 = 0.0961  0.31 and so on.  xn  0.   
 
 Take y = 6.1  S; y

2  5.3154142 that as n   yn may 
reach zero.   
 
 Thus S has infinite number of elements which are neither 
units nor idempotents, only finite number of units, has no 
idempotents but has zero divisors. 
 
Example 3.24:  Let S = {[0, 6), } be the special interval 
semigroup.  S has finite number of idempotents for 3 and 4  
S are such that 3  3 = 3 (mod 6) and 4  4 = 4 (mod 6).  Thus 
S has only two non trivial idempotents. 
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 S has zero divisors for 2  3  0 (mod 6)  and 4  3 = 0 
(mod 6).  S has only two zero divisors.  S has only one unit for 
5  S is such that 52 = 1 (mod 6).  
 
 S is a Smarandache semigroup as P = {1, 5}  S is a 
group.  S has infinite number of elements which are not 
idempotents or units.  Infact S contains the semigroup, {Z6, } 
as a proper subset which is a subsemigroup.  
 
Example 3.25:  Let S = {[0, 16), } be a special interval 
semigroup.  S has only finite number of units, zero divisors and 
no idempotents.   
 
 For x = 4  S is a zero divisor as 4  4 = x2 = 0 (mod 16),  
y = 8  S is a zero divisor for 8  8 = 0 (mod 16). 
  
  Also x  y = 0 (mod 16). 
  Further 2  8 = 0 (mod 16). 
  We have 4  8 = 0 (mod 16). 
  12  4 = 0 (mod 16). 
 
  x = 11 and y = 3 in S is such that x  y = 1 (mod 16).  
  7  7 = 1 (mod 16) in S. 
  13  5 = 1 (mod 16) in S. 
  9  9 = 1 (mod 16) in S are some of the units of S. 
  S is a S-semigroup. 
 
Example 3.26:  Let S = {[0, 30), } be a special interval 
semigroup.  S has units, idempotents and zero divisors.  For 6 
 S is such that 6  6 = 6 (mod 30), 10  S; 10  10 = 10 
(mod 30),  
 
   25  25  25 (mod 30), 

 15  15  15 (mod 30),  
 16  16  16 (mod 30) and 
 21  21  21 (mod 30) are some idempotents of S. 
 
 We see 10  3  0 (mod 30), 
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 15  2  0 (mod 30), 
 10  6  0 (mod 30), 
 15  4  0 (mod 30), 
 10  9  0 (mod 30), 
 15  6  0 (mod 30), 
 

and  10  12  0 (mod 30) and so on are all zero divisors of S.  
The units of S are 29  S is such that 29  29  1 (mod 30) 
and 112  1 (mod 3) units in S.  Thus S has only finite number 
of units, idempotents and zero divisors. 
 
Example 3.27:  Let S = {[0, 25), } be the semigroup of the 
special interval [0, 25). 
 
   S has units and zero divisors. 
   For 13  2  1 (mod 25) is a unit 
   17  3  1 (mod 25) is a unit 
   24  24  1 (mod 25) is a unit  and  
   19  4  1 (mod 25) is a unit. 

 
 Consider 52  0 (mod 25) is a zero divisor.   
 
 10  10  0 (mod 25).  152  0 (mod 25) and 20  20  0 
(mod 25) are some of the zero divisors  of S.  However S has 
no nontrivial idempotents. 
 
Example 3.28:  Let S = {[0, 14), } be a special interval 
semigroup. 
 
 7  2  0 (mod 14);  4 7 0 (mod 14); 6 7  0 (mod 14);  
8 7 0 (mod 14); 10  7  0 (mod 14);  and 12  7  0 (mod 
14) are zero divisors of S. 
 
 5  3  1 (mod 14) and  13  13  1 (mod 14) are units of 
S.  72 = 7 (mod 14) and 82 = 8 (mod 14) idempotents of S. 
 
Example 3.29:  Let S = {[0, 10), } be a semigroup of the 
special interval [0, 10).   
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 S has idempotents 52  5 (mod 10) and 62 = 6 (mod 10) are 
idempotents of S.   7  3  1 (mod 10) and 9  9  1 (mod 10) 
are units of S. 
 
 2  5  0 (mod 10), 4  5  0 (mod 10) 6  5  0 (mod 10) 
and 8  5  0 (mod 10) are zero divisors of S. 
 
 So 5 and 6 can be used to construct dual like numbers of S.  
S is a Smarandache semigroup as {1, 9} = P  S is a group. 
 
Example 3.30:  Let S = {[0, 21), } be the special interval 
semigroup.  11  2  1 (mod 21), 13  13  1 (mod 13), 20 20 
 1 (mod 21) 8  8 = 1 (mod 21) 4  16  1 (mod 21) and 17  5 
 1 (mod 21) are units of S. 
 
 72  7 (mod 21) is an idempotent of S.  152  15 (mod 21) 
is an idempotent and both 7, 15 can be used to build special dual 
like numbers of S. 
 
 3 7  0 (mod 21) 6 7  0 (mod 21), 9 7  0 (mod 21), 12 
 7  0 (mod 21) 15 7  0 (mod 21) and 18  7  0 (mod 21) 
are some of the zero divisors of S. 
 
 Now in view of all this we have the following theorem. 
 
THEOREM 3.6:  Let S = {[0, p), } be the special interval 
semigroup.   
 

(i) If p is a prime, S has zero divisors but no 
idempotents and (p–2) number of units. 

(ii) If p is a composite number S has zero divisors, 
units, idempotents and nilpotents. 

(iii) S is always a S-semigroup. 
(iv) S has finite subsemigroups. 

 
 The proof is direct and hence left as an exercise to the 
reader. 
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Example 3.31:  Let S = {[0, 2p), , p a prime} be the special 
interval semigroup.  S has non trivial idempotents. 
 
 Now we describe special interval matrix semigroup under 
product. 
 
Example 3.32:  Let S = {(a1, a2, a3, a4) | ai  [0, 5), 1  i  4, } 
be the special interval row matrix semigroup under product.   
 
 S has zero divisors and idempotents; for x = (0 1 0 1) in S 
is such that x2 = x, (1 1 1 0)  S is also an idempotent.   
 
 We see (1111) is the unit of S. 
 
 S has units, x = (2 3 4 1)  S and y = (3 2 4 1)  S is 
such that x  y = (2 3 4 1) (3 2 4 1) = (1 1 1 1). 
 
 Let x = (0 2 0 0) and y = (0 0 4 3)  S then x  y = (0 2 0 
0)  (0 0 4 3) = (0 0 0 0) is a zero divisor.   
 
 S is of infinite order and S is a Smarandache semigroup.  
Infact S has finite number of finite subsemigroups. 
 
 The interesting feature is [0, 5) is an interval with prime 5 
yet if we take row matrix under product we get S to have 
idempotents, zero divisors and units. 
 
Example 3.33:  Let  
S = {(a1, a2, …, a10) where ai  [0, 40), 1  i  40, } be the 
special interval semigroup of infinite order.  S is commutative 
has zero divisors, units and idempotents.  S is a Smarandache 
semigroup.   
 
 Take M = {(1, 1, …, 1), (39, 39, …, 30)}  S is a group 
under , hence the claim.  
 
 T = {(1, 1, 1, …, 1), (11, 11, …, 11)  S is also a group. 
 W = {(1, 1, …, 1), (9, 9, …, 9)}  S is also a group. 
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 Now x = (0, 7, 10, 4, 8, 0, 5, 20, 10, 15) and y = (9, 0, 4, 10, 
5, 9, 8, 2, 8, 8)  S are such that x  y = (0, 0, …, 0). 
 
Example 3.34:  Let  
 

S = 

1

2

9

a

a

a

 
 
    


 ai [0, 24), 1  i  9, n} 

 
be the special interval column matrix semigroup.  S has 
idempotents, units, zero divisors and nilpotents. 
 

x = 

5

1

23

1

5

23

1

1

5

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  S is such that x2 = 

1

1

1

1

1

1

1

1

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

Clearly

1

1

1

1

1

1

1

1

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  S is the unit of S. 
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Let y = 

8

0

6

12

4

3

9

0

18

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 and z = 

3

11

4

2

6

8

8

19

4

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 S 

 
 
 
We see  
 

y n z = 

8

0

6

12

4

3

9

0

18

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 n 

3

11

4

2

6

8

8

19

4

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 = 

0

0

0

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
is the zero divisor of S.   
 
 Infact S has many zero divisors also. 
 
 We have infinite number of zero divisors. 
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Example 3.35:  Let  
 

S = 

1

2

18

a

a

a

 
 
    


 ai  [0, 23), 1  i  18, n} 

 
be the special interval column matrix.   
 
 S has idempotents which has only entries as 0 and 1 in the 
column matrix 18  1. 
 
 S has zero divisors, units and has no nilpotent element. 
Units are finite in number however zero divisors are infinite in 
number.   
 
 Further number of idempotents is also finite. 
 
Example 3.36:  Let  
 

S = 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai  [0, 12), 1  i  9, n} 

 
be the special interval square matrix.   
 
 S has infinite number of zero divisors but only a finite 
number of idempotents and units.  Infact S  has idempotents. 
 
Example 3.37:  Let  
 

S = 

1 2

3 4

17 18

a a

a a

a a

 
 
    

 
 ai  [0, 15), 1  i  18, n} 
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be the special interval semigroup.   S has units, zero divisors  
and idempotents.   
 
 Only the number of zero divisors is infinite.  Further S is a 
S-semigroup and S has several infinite subsemigroups also 
many finite subsemigroups. 
  
Example 3.38:  Let  
 

S = 
1 2 3 4

45 46 47 48

a a a a

a a a a

 
 
 
  

     ai  [0, 33), 1  i  48, n} 

 
be the special interval matrix semigroup of infinite order.    
 
 S has infinite number of subsemigroups and finite number 
of finite subsemigroup.  S is a S-semigroup. S has finite 
number of units and infinite number of zero divisors.  
 
 Next concept, one is interested in studying about these 
semigroups, is the ideals in them. 
 
 We will describe this by some examples. 
 
Example 3.39:  Let  
S = {(a1, a2, a3, a4) | ai  [0, 12), 1  i  4, n} be the special 
interval semigroup.  
  
 P1 = {(a1, 0, 0, 0) | a1  [0, 12), }  S is a special interval 
subsemigroup of S which is also an ideal of S. 

 
 P2 = {(0, a1, 0, 0) | a1  [0, 12), }  S is a subsemigroup 
as well as an ideal of S. 
 
 B1 = {(a1, 0, 0, 0) | a1  {0, 1, 2, …, 11}   S is only a 
subsemigroup of S and is not an ideal of S.  
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 B2 = {(0, a1, a2, 0, 0) | a1 a2  {0, 2, 4,  6, 8, 10}  [0, 12)} 
 S is only a subsemigroup of S and is not an ideal of S.  

 
 B3 = {(0, a1, 0, a2) | a1 a2  {0, 6}  [0, 12)}  S is only a 
subsemigroup of S and is not an ideal of S.  

 
 Thus S  has subsemigroups which are not ideals. 
 
Example 3.40:  Let  
 

S = 

1

2

3

4

5

6

7

a

a

a

a

a

a

a

 
 
 
 
 
 
 
 
 
 
 

 ai  [0, 23), 1  i  7, n} 

 
be the special interval semigroup.   
 
 S is of infinite order has subsemigroups and ideals.   
 
 S has zero divisors, units and idempotents.   
 
 Clearly S has infinite number of zero divisors however the 
number of units and idempotents are finite in number. 
 
 Let  
 

P1 = 

1a

0

0

0

 
 
  
 
 
  


 ai  [0, 23)}  S 
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be a subsemigroup as well as an ideal of S. 
 
 Further P1  {[0, 23), } is a special interval semigroup. 
 

B1 = 

1a

0

0

0

 
 
  
 
 
  


 ai  {0, 1, 2, 3, 4, …, 21, 22}  S 

 
is only a subsemigroup and is not an  ideal of S. 
 

P2 = 

1

2

3

a

a

a

0

0

0

0

 
 
 
 
 
 
 
 
 
  

 ai  [0,23), 1  i  3}  S 

 
is again an ideal of S. 
 

B2 = 

1

2

3

a

a

a

0

0

0

0

 
 
 
 
 
 
 
 
 
  

 ai  {0, 1, 2, 3, …, 22}  [0,23), 1  i  3}  S 

 
is only a subsemigroup of finite order and is not an ideal of S. 
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 P3 = 

1

2

3

0

a

0

a

0

a

0

 
 
 
 
 
 
 
 
 
  

 ai  [0,23), 1  i  3}  S is an ideal of S.   

 
 Thus we can have ideals and subsemigroups which are not 
ideals of S. 
 
Example 3.41:  Let  
 
 

S = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 
 
 
  

 ai  [0, 12), 1  i  24} 

 
 
be the special interval semigroup under the natural product n.  
 
 S has subsemigroups which are not ideals.  
 
 S is an infinite S-semigroup.   
 
 S has finite number of units and idempotents, however S 
has infinite number of zero divisors.   
 
 S has finite number of finite subsemigroups which are not 
ideals of S. 
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 For take  
 

S =  
1 2 3 4

21 22 23 24

a a a a

a a a a

 
 
 
  

     ai  1/2, 1/22, 1/23, …, 

1/2n as n  }  [0, 12)}}  S  
 
is not an ideal of S. 
 
 Now having seen special matrix semigroups which are built 
using [0, n); we proceed onto give one or two examples of 
special interval super matrix semigroups. 
 
Example 3.42:  Let  
 

S = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

31 32 33

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ai  [0, 15), 1  i  33}  S 

 

be the special interval column super matrix semigroup of 
infinite order. 
 

 S has finite number of units and idempotents but infinite 
number of zero divisors. 
 

 S is a S-semigroup.  S has number of infinite 
subsemigroups  which are ideals as well as subsemigroups 
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which are not ideals.  S has finite subsemigroups which are not 
ideals of S. 
 
Example 3.43:  Let  
S = {(a1 | a2 a3 | a4 a5 a6 | a7 a8 a9 a10 a11) |  ai  [0, 7), 1  i  11} 
be a special row super matrix of interval semigroup.  o(S) = .  
S is a S-semigroup.   
 
 S has infinite number of zero divisors, only finite number 
of idempotents and units.   
 
 S has finite subsemigroups which are not ideals and S has 
infinite subsemigroups which are ideals. 
 
Example 3.44:  Let  
 

S = 

1 2 3 4 5

6 10

11 15

16 20

21 25

26 30

31 35

36 40

a a a a a

a ... ... ... a

a ... ... ... a

a ... ... ... a

a ... ... ... a

a ... ... ... a

a ... ... ... a

a ... ... ... a

 
 
 
 
 
 
 
 
 
 
 
  

 ai  [0, 17), 1  i  40}  S 

 
be the special interval semigroup of infinite order.   
 
 S has subsemigroups of finite and infinite order which are 
not ideals.  S has ideals and zero divisors.  S has finite number 
of units and idempotents. 
 
 Next we proceed onto study intervals of these intervals  
[0, n). 
 
Example 3.45:   Let S = {[a, b] | a, b  [0, 9), } be the special 
interval semigroup.  S has zero divisors, units and idempotents. 
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 Let x = [3, 5) and y = [3, 3]  S.  x  y = [0,0]. 
 
 Let x = [2, 8] and y = [5, 8]  S.   
 
 x  y = [2, 8]  [5, 8] = [1, 1] so S has units and [1, 1] is 
the multiplicative identity of S.   
 
 Let x  y = [7, 3]  [0, 6] = [0, 0] is again a zero divisor. 
 
 S is a semigroup of infinite order. 
 
 Suppose x = [6.3, 8.2] and y = [7.2, 5.5]  S.   
 
 Now x  y = [6.3, 8.2]   [7.2, 5.5] = [0.36, 0.10]  S. 
 
 That is why we use only natural class of intervals and the 
product is also a natural product. 
 
Example 3.46:  Let S = {[a, b] | a, b  [0, 13), } be the special 
interval semigroup.  o(S) = .  S is a S-semigroup of infinite 
order.   
 
 S has zero divisors units and no idempotents other than  
[0, 1] and [1, 0] are idempotents apart from [1, 1] and [0, 0] are 
all trivial idempotents of S. 
 
 S has no nontrivial idempotents.  
 
 x = [3, 7]  S has y = [9, 2]  S such that  
 x  y = [3, 7]  [9, 2] = [1, 1] is a unit of S. 
 
 Every element of the form [a, b] with a, b  {1, 2, 3, 4, …, 
12} has inverse.   
 
 However S has infinite number of elements which has no 
inverse.  Elements of the form [a, b] with a, b  [0, 13) \ {0, 1, 
2, 3, ..., 12}  has no inverse and they also do not contribute to 
zero divisors in finite steps. 
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 All elements in T = {[a, 0] | a  [0, 13)}  S and  
Q = {[0, a] | a  [0, 13)}  S are such that x  y = [0, 0];  
 
 for every x  T and every y  Q.  Thus S has infinite 
number of zero divisors. 
 
Example 3.47:  Let S = {[a, b] | a, b  [0, 24), } be the 
special interval semigroup.  
 
 S has idempotents, zero divisors, and units, x = [9, 1]  S 
is such that x2 = [9, 1]  [9, 1] = [9, 1]. 
 
 x = [12, 6] and y = [2, 8] in S are such that x  y = [12, 6] 
 [2, 8] = [0, 0] is a zero divisor. 
 
 S is a S-semigroup as P = {[1, 1], [1, 23], [23, 1], [23, 23]} 
 S is a group of S; hence the claim. 
 
Example 3.48:   Let S = {[a, b] | a, b  [0, 6), } be the special 
interval semigroup of infinite order.   
 
 S is a S-semigroup as P = {[1, 1], [1, 5], [5, 1], [5, 5]}  S 
is a group of S. 
 
 S has idempotents for x = [4, 3]  S is such that  
 x2 = [4, 3]  [4, 3] = [4, 3]  S. 
 
 Let y = [3, 1]  S is such that y2 = y, y2 = [1, 4]  S such 
that y2 = y, y3 = [3, 4]  S is also an idempotent.   
 
 However S has only finite number of idempotents.  S has 
infinite number of zero divisors.   
 
 S has only finite number of units.  
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Example 3.49:   Let  
 

S =

1 1

2 2

8 8

[a ,b ]

[a ,b ]

[a ,b ]

 
 
    


 ai, bi  [0, 12), 1  i  8, } 

 
be the special interval semigroup.  S has infinite number of 
zero divisors.    
 
 S has idempotents.  S has units.  S has infinite number of 
subsemigroups.  
 
 S has finite subsemigroups also. 
 
 Let  

 

T = 

1 1

2 2

8 8

[a ,b ]

[a ,b ]

[a ,b ]

 
 
    


 ai, bi  {0, 1, 2, 3, 4, 5, 6, …, 11}, 

1  i  8}  S. 
 
 
 T is a subsemigroup of S of finite order. 
 
 

T1 =  

1 1

2 2

8 8

[a ,b ]

[a ,b ]

[a ,b ]

 
 
    


 ai, bi  {0, 3, 6, 9} 1  i  8}  S 

 
 
is a subsemigroup of finite order. 
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Example 3.50:  Let  
S = {([a1, b1], [a2, b2], …, [a6, b6]) | ai, bi  [0, 14), 1  i  6} be 
the special interval semigroup.  S has infinite number of 
subsemigroups.   
 
 However S has only finite number of finite subsemigroups.  
S is a S-semigroup.  S has infinite number of zero divisors. 
 
Example 3.51:  Let  
 

S = 

1 1 2 2

3 3 4 4

5 5 6 6

7 7 8 8

[a ,b ] [a ,b ]

[a ,b ] [a ,b ]

[a ,b ] [a ,b ]

[a ,b ] [a ,b ]

 
 
    

 ai, bi  [0, 19), 1  i  8} 

 
be the special interval semigroup.  
 
 S has no non trivial idempotents except those matrices with 
elements [0,1] [1, 0], [1, 1] and [0, 0].  S has units and zero 
divisors.   
 
 Infact S is a S-semigroup.  S has several groups but all of 
them are of finite order.   
 
 S has several subsemigroups of infinite and finite order.  S 
also has ideals. 
 
For  
 
 

P1 = 

1 1[a ,b ] 0

0 0

0 0

0 0

 
 
    

 a1, b1  [0, 19), }   S 
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is a subsemigroup of S which is also an ideal of S.  Clearly  
|P1| = . 
 
Example 3.52:  Let  
 

S=
1 1 2 2 3 3

28 28 29 29 30 30

[a ,b ] [a ,b ] [a ,b ]

[a ,b ] [a ,b ] [a ,b ]

 
 
 
  

    ai,bi [0, 40), 1  i  30} 

 
be a special interval semigroup.   
 
 S is a S-semigroup; has infinite number of zero divisors, 
only finite number of units and idempotents.   
 
 S has ideals, infinite and finite order subsemigroups. 
 
Example 3.53:  Let  
 

S = 

1 1 2 2 3 3 4 4

5 5

9 9

13 13

17 17

21 21

25 25

[a ,b ] [a ,b ] [a ,b ] [a ,b ]

[a ,b ] ... ... ...

[a ,b ] ... ... ...

[a ,b ] ... ... ...

[a ,b ] ... ... ...

[a ,b ] ... ... ...

[a ,b ] ... ... ...

 
 
 
 
 
 
 
 
 
 
 

 ai, bi  [0, 23), 

 
1  i  28} 

 
be the special interval interval semigroup of infinite order.   
 
 S is S-semigroup, has ideals, subsemigroups of finite and 
infinite order.   
 
 S has only finite number of units and idempotents; 
however has infinite number of zero divisors. 
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Example 3.54:  Let  S =  
 

1 1 2 2 3 3 4 4 5 5 6 6 7 7

8 8 9 9 10 10 11 11 12 12 13 13 14 14

15 15 16 16 17 17 18 18 19 19 20 20 21 21

[a ,b ] [a ,b ] [a ,b ] [a ,b ] [a ,b ] [a ,b ] [a ,b ]

[a ,b ] [a ,b ] [a ,b ] [a ,b ] [a ,b ] [a ,b ] [a ,b ]

[a ,b ] [a ,b ] [a ,b ] [a ,b ] [a ,b ] [a ,b ] [a ,b ]

 
 
 
    
 

 ai, bi  [0, 43), 1  i  21}  
 
be the special interval super row matrix semigroup of infinite 
order.  
 
 S has no non trivial idempotents and the idempotent 
matrices in S has only elements from [1, 1] [0, 1] [0, 0] and  
[1, 0].   
 
 S has infinite number of zero divisors and has only finite 
number of units.   
 
 S has both infinite and finite order subsemigroups, 
however ideals of S are of infinite order. 
 
 Now having seen examples of special interval 
subsemigroup we now proceed onto suggest a few problems for 
the reader. 
 
 
Problems: 
 
 
1. Let Smin = {[0, 9), min} be the special interval semigroup 

under min. 
 

(i) Show Smin has infinite number of finite  
 subsemigroups. 
(ii) Show Smin has infinite number of infinite  
 subsemigroups. 
(iii) Show every pair is totally min ordered. 
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2. Let Smin = {(a1, a2, a3, a4, a5) | ai  [0, 12), 1  i  5} be the 
special interval row matrix semigroup.  

 
(i) Study questions (i) to (iii) of problem (1) for this  
 Smin. 
(ii) Show Smin has infinite number of zero divisors. 
 
 

3. Let Smin = 

1

2

12

a

a

a

 
 
    


 ai  [0, 19), 1  i  12}  

 
be the special interval column matrix semigroup. 

 
(i) Study questions (i) to (iii) of problem (1) for this  
 Smin. 
(ii) Show Smin has infinite number of zero divisors. 
(iii) Show Smin is not totally ordered with min. 
(iv) Show every subset of Smin can be completed into a  
 subsemigroup. 

 
 

4. Let Smin = 

1 2 3 4 5 6

7 12

13 18

19 24

25 30

31 36

a a a a a a

a ... ... ... ... a

a ... ... ... ... a

a ... ... ... ... a

a ... ... ... ... a

a ... ... ... ... a

 
 
 
 
 
 
 
 
  

 ai  [0, 93),  

 
1  i  36} be the special interval matrix semigroup.  

 
 Study questions (i) to (iv) of problem (3) for this Smin. 
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5. Let Smin = 
1 2 10

11 12 20

21 22 30

a a ... a

a a ... a

a a ... a

 
 
 
  

 ai  [0, 119), 1  i  30}  

 
be the special interval semigroup.  

 
 Study questions (i) to (iv) of problem (3) for this Smin. 
 
 

6. Let Smin = 

1 2 3 4 5 6 7

8 14

15 21

22 28

29 35

36 42

43 49

a a a a a a a

a ... ... ... ... ... a

a ... ... ... ... ... a

a ... ... ... ... ... a

a ... ... ... ... ... a

a ... ... ... ... ... a

a ... ... ... ... ... a

 
 
 
 
 
 
 
 
 
 
 

 ai   

 
[0, 105), 1  i  49} be the special interval super matrix  
semigroup.  

 
 Study questions (i) to (iv) of problem (3) for this Smin. 
 

7. Let Smin = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

28 29 30

31 32 33

34 35 36

37 38 39

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
  
 
 
 
 
 
 
  

  
 ai  [0, 437), 1  i  39} be  
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the special interval super column matrix semigroup under  
min  operation.  

 
 Study questions (i) to (iv) of problem (3) for this Smin. 
 
8. Let Smax = {[0, 27), max} be the special interval 

semigroup under max operation.  
 
 Study questions (i) to (iii) of problem (1) for this Smax. 
 
 
 

9. Let Smax = 

1

2

3

4

5

6

a

a

a

a

a

a

 
 
 
 
 
 
 
 
  

 ai  [0, 12), 1  i  6} be the special  

 
 
 interval semigroup.  
 

(i) Study questions (i) to (iv) of problem (3) for this  
 Smax. 
 
 

(ii) Show (0) = 

0

0

0

0

0

0

 
 
 
 
 
 
 
 
  

 is the least element of Smax. 
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10. Let Smax = 

1 2 8

9 10 16

17 18 26

27 28 32

33 34 40

41 42 48

49 50 56

57 58 64

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

 
 
 
 
 
        

 ai  [0, 27), 1  i  64}  

 
 be the special interval matrix semigroup under max 

operation.  
 
 Study questions (i) to (iii) of problem (3) for this Smax.   
 
 Show Smax has no zero divisors. 
 
11. Let S = {[0,  18), } be the special interval semigroup. 
 

(i) Find how many idempotents in S exist? 
(ii) Find all units of S. 
(iii) Can S have zero divisors? 
(iv) Prove o(S) = . 
(v) Find finite subsemigroups of S. 
(vi) Can S have ideals? 
(vii) Can S have infinite subsemigroups? 
(viii) Is S a S-semigroup? 

 
12. Find some special and striking features enjoyed by S. 
 
13. Let S = {[0, 43), } be a special interval semigroup.   
 
 Study questions (i) to (viii) of problem 11 for this S. 
 
14. Let S = {[0, 7)  [0, 23), } be the special interval 

semigroup.   
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 Study questions (i) to (viii) of problem (11) for this S. 
 
15. Let S = {[0, p1)  [0, p2)  …  [0, pn)  each pi is a 

distinct prime, 1  i  n, } be the special interval 
semigroup.  

 
 Study questions (i) to (viii) of problem (11) for this S. 
 
16. Let S = {(a1, a2, …, a11) | ai  [0, 12), 1  i  11} be the 

special interval semigroup.  
 
 Study questions (i) to (viii) of problem (11) for this S. 
 
17. Let S = {(a1, a2, …, a9) | ai  [0, 19), 1  i  9} be the 

special interval semigroup.  
 
 Study questions (i) to (viii) of problem (11) for this S. 
 
 

18. Let S = 

1

2

9

a

a

a

 
 
    


 ai  [0, 18), 1  i  9, n} be the special  

 
 interval semigroup.   
 
 Study questions (i) to (viii) of problem (11) for this S. 
 
 

19. Let S = 

1

2

12

a

a

a

 
 
    


 ai  [0, 29), 1  i  12, n} be the  

 
 special interval semigroup.   
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 Study questions (i) to (viii) of problem (11) for this S. 
 
 

20. Let S = 

1

2

18

a

a

a

 
 
    


 ai  [0, 9)  [0, 15), 1  i  18, n} be  

 
 the special interval semigroup.   
 
 Study questions (i) to (viii) of problem (11) for this S. 
 
21. Let S = {(a1, a2, …, a12) | ai  [0, 3)  [0, 11)  [0, 23);  

1  i  12} be the special interval semigroup.   
 
 Study questions (i) to (viii) of problem (11) for this S. 
 
 

22. Let S = 

1 2 8

9 10 16

57 58 64

a a ... a

a a ... a

a a ... a

 
 
    

  
 ai  [0, 43), 1  i  64,  

 
 n} be the special interval semigroup.   
 
 Study questions (i) to (viii) of problem (11) for this S. 
 

23. Let S = 

1 2 10

11 12 20

21 22 30

31 32 40

41 42 50

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

 
 
  
 
 
  

 ai  [0, 48), 1  i  50,  

 
 n} be the special interval semigroup.   
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 Study questions (i) to (viii) of problem (11) for this S. 
 
24. Let  
 
 

 S = 

1 2 3 4

5 6 7 8

77 78 79 80

a a a a

a a a a

a a a a

 
 
    

   
 ai  [0, 10)  [0, 18)   

 
 [0, 24), 1  i  80, n} be the special interval semigroup.   
 
 Study questions (i) to (viii) of problem (11) for this S.   
 
 
25. Let  
 S = {(a1 a2 | a3 | a4 a5 a6 | a7 a8 | a9) | ai  [0, 40)  [0, 83);  
 
 1  i  9, } be the special interval semigroup.   
 
 Study questions (i) to (viii) of problem (11) for this S. 
 
 
26. Let  

 

 S = 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

a a a a a a a a a a

a a a a a a a a a a

 
 
 

  

 
 ai  [0, 27), 1  i  20, n} be the special interval  
 semigroup.   

 
 Study questions (i) to (viii) of problem (11) for this S.   
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27. Let S = 

1

2

3

4

5

6

7

8

9

10

11

12

a

a

a

a

a

a

a

a

a

a

a

a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ai  [0, 48), 1  i  12, n}  

 
 be the special interval semigroup.   
 
 Study questions (i) to (viii) of problem (11) for this S.   
 
 

28. Let S = 

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ai  [0, 31)  [0, 6), 1  i  24, n}  
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 be the special interval semigroup.   
 

(i) Study questions (i) to (viii) of problem (11) for this  
 S. 

 
(ii) Enumerate any of the special features enjoyed by  
 this S. 

 
29. Let S = {[a, b] | a, b [0, 29), } be the special interval 

semigroup.   
 

(i) Study all the special properties associated with this  
 S. 
(ii) Prove S has infinite number of subsemigroups. 
(iii) Prove S has finite subsemigroups. 
(iv) Find the total number of finite subsemigroups in S. 
(v) Prove S has infinite number of zero divisors. 
(vi) Prove S has units. 
(vii) Can S have idempotents (if so find them)? 
(viii) Find all ideals of S. 

 
30. Let S = {[a, b] | a, b  [0, 18)  [0, 43), } be the special 

interval semigroup.      
 
 Study questions (i) to (viii) of problem (29) for this S. 
 
31. Let  
 S = {[a1, b1], [a2, b2], [a3, b3] | ai, bi  [0, 119), 1  i  3,  
 
 } be the special interval semigroup.      
 
 Study questions (i) to (viii) of problem (29) for this S. 
 
32. Let S = {[a1, b1], [a2, b2], …, [a12, b12] | ai, bi  [0, 248),  

 
1  i  12, } be the special interval semigroup.      

 
 Study questions (i) to (viii) of problem (29) for this S. 
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33. Let S = {[a1, b1], [a2, b2], …, [a9, b9] | ai, bi  [0, 7)  [0, 

27), 1  i  9} be the special interval semigroup.   
 
 Study questions (i) to (viii) of problem (29) for this S. 
 

34. Let S = 1 1 2 2 7 7

8 8 9 9 14 14

[a ,b ] [a ,b ] ... [a ,b ]

[a ,b ] [a ,b ] ... [a ,b ]

 
 
 

 ai  [0, 33),  

 
1  i  14} be the special interval semigroup.   

 
 Study questions (i) to (viii) of problem (29) for this S. 
 
 

35. Let S = 

1 1

2 2

9 9

[a ,b ]

[a ,b ]

[a ,b ]

 
 
    


 ai  [0, 30), 1  i  9, n} be the  

 
 special interval semigroup.   
 
 Study questions (i) to (viii) of problem (29) for this S. 
 
 

36. Let S = 

1 1

2 2

18 18

[a ,b ]

[a ,b ]

[a ,b ]

 
 
    


 ai  [0, 91)  [0, 28), 1  i  18,  

 
 n} be the special interval semigroup.   
 

(i) Study questions (i) to (viii) of problem (29) for this  
 S. 
(ii) Enumerate any of the striking features of this S. 
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37. Let 
 
 

  S = 

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

[a ,b ]

[a ,b ]

[a ,b ]

[a ,b ]

[a ,b ]

[a ,b ]

[a ,b ]

[a ,b ]

[a ,b ]

[a ,b ]

[a ,b ]

[a ,b ]

[a ,b ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ai bi  [0, 12), 1  i  13, n} be  

 
 
  the special interval semigroup.   
 

(i) Study questions (i) to (viii) of problem (29) for this  
 S. 

 
(ii) Does this enjoy other special properties? 

 
 
38. Let S = {[a1, b1], [a2, b2] | [a3, b3] | [a4 b4]) | ai, bi  [0, 3)  
 
  [0, 48), 1  i  4} be the special interval semigroup.   
 
 
 Study questions (i) to (viii) of problem (29) for this S. 
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39. Let S = 

1 1 2 2 3 3

4 4 5 5 6 6

7 7 8 8 9 9

10 10 11 11 12 12

13 13 14 14 15 15

17 17 18 18 19 19

20 20 21 21 22 22

23 23 24 24 25 25

[a ,b ] [a ,b ] [a ,b ]

[a ,b ] [a ,b ] [a ,b ]

[a ,b ] [a ,b ] [a ,b ]

[a ,b ] [a ,b ] [a ,b ]

[a ,b ] [a ,b ] [a ,b ]

[a ,b ] [a ,b ] [a ,b ]

[a ,b ] [a ,b ] [a ,b ]

[a ,b ] [a ,b ] [a ,b ]

[a26 26 27 27 28 28

29 29 30 30 31 31

31 31 32 32 33 33

,b ] [a ,b ] [a ,b ]

[a ,b ] [a ,b ] [a ,b ]

[a ,b ] [a ,b ] [a ,b ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ai bi  [0, 5)  

 
  [0, 12), 1  i  33, n} be the special interval 

semigroup.  
 
 Study questions (i) to (viii) of problem (29) for this S. 
 
40. Let S = {[0, 3)  [0, 22)  [0, 17)  [0, 40)  [0, 256)  

[0, 27), } be the special interval semigroup.  
 
 Study questions (i) to (viii) of problem (29) for this S. 
 
 

41. Let  S =
1 1 2 2 6 6

31 31 32 32 36 36

[a ,b ] [a ,b ] ... [a ,b ]

[a ,b ] [a ,b ] ... [a ,b ]

 
 
 
  

    ai bi   

 
 [0, 24), 1  i  36, n} be the special interval semigroup.   
 
 Study questions (i) to (viii) of problem (29) for this S. 
 
42. Derive some special and unique properties enjoyed by 

special interval semigroup under . 
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43. Is it ever possible to have a special interval semigroup 

under  which is not a S-semigroup? 
 
 

44. Let S = 
1 1 2 2 7 7

29 29 30 30 35 35

[a ,b ] [a ,b ] ... [a ,b ]

[a ,b ] [a ,b ] ... [a ,b ]

 
 
 
  

    ai bi   

 
 [0, 8)  [0, 24)  [0, 35), 1  i  35, n} be the special  
 interval semigroup.   
 
 Study questions (i) to (viii) of problem (29) for this S. 
 
 
45. Suppose we define max operation on S of problem 44 

instead of n, can Smax have zero divisors? 
 

(i) Can that Smax be a S-semigroup? 
(ii) Can that Smax be a S-semigroup free from units? 

 
 

46. Let Smax = 

1 1

2 2

9 9

[a ,b ]

[a ,b ]

[a ,b ]

 
 
    


 ai, bi  [0, 48), 1  i  9, max} be  

 
 the special interval semigroup under max operation.   
 

(i) Can Smax have zero divisors? 
(ii) Can Smax

 have units? 
(iii) Can Smax

  be a S-semigroup? 
(iv) Obtain any other special feature enjoyed by Smax

 . 
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47. Let  
 

 Smin = 

1 1

2 2

9 9

[a ,b ]

[a ,b ]

[a ,b ]

 
 
    


 ai bi  [0, 19), 1  i  9, min} be  

 
 the special interval semigroup be under min operation.    
 
 Study questions (i) to (iv) of problem (46) for this Smin. 
 
 

48. Let Smin = 
1 1 2 2 7 7

8 8 9 9 14 14

15 15 16 16 21 21

[a ,b ] [a ,b ] ... [a ,b ]

[a ,b ] [a ,b ] ... [a ,b ]

[a ,b ] [a ,b ] ... [a ,b ]

 
 
 
  

 ai bi   

 
 [0, 17)  [0, 23), 1  i  21, min} be the special interval 

semigroup.    
 

(i) Study questions (i) to (viii) of problem 29 for this  
 Smin. 

 
(ii) If min is replaced by max compare them. 
 
 

49. Let  
 

 Smax = 
1 1 2 2 8 8

57 57 58 58 64 64

[a ,b ] [a ,b ] ... [a ,b ]

...

[a ,b ] [a ,b ] ... [a ,b ]

 
 
 
  

    ai bi   

 
 [0, 31)  [0, 29)  [0, 73), 1  i  64, max} be the special 

interval semigroup.    
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(i) Study questions (i) to (viii) of problem 29 for this  
 Smax. 

 
 

50. Let Smin = 

1 1 2 2 3 3 4 4

5 5 8 8

9 9 12 12

13 13 16 16

17 17 20 20

21 21 24 24

25 25 28 28

29 29 32 32

33 33

[a ,b ] [a ,b ] [a ,b ] [a ,b ]

[a ,b ] ... ... [a ,b ]

[a ,b ] ... ... [a ,b ]

[a ,b ] ... ... [a ,b ]

[a ,b ] ... ... [a ,b ]

[a ,b ] ... ... [a ,b ]

[a ,b ] ... ... [a ,b ]

[a ,b ] ... ... [a ,b ]

[a ,b ] . 36 36.. ... [a ,b ]

 
 
 
 
 
 
         

 ai bi  

 
  [0, 53)  [0, 83), 1  i  36, min} be the special interval 

semigroup.    
 
 Study questions (i) to (viii) of problem 29 for this Smin. 
 
 
51. Let Smax =  
 

 

1 1 2 2 3 3 4 4 5 5 6 6

7 7

13 13

19 19

[a ,b ] [a ,b ] [a ,b ] [a ,b ] [a ,b ] [a ,b ]

[a ,b ] ... ... ... ... ...

[a ,b ] ... ... ... ... ...

[a ,b ] ... ... ... ... ...

 
 
    

  

 
 ai bi  [0, 11)  [0, 9), 1  i  24, max} be the special 

interval semigroup.    
 
 Study questions (i) to (viii) of problem 29 for this Smax. 
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52. Let Smin =  
 

 

1 1 2 2 3 3 4 4 5 5

6 6

11 11

16 16

21 21

[a ,b ] [a ,b ] [a ,b ] [a ,b ] [a ,b ]

[a ,b ] ... ... ... ...

[a ,b ] ... ... ... ...

[a ,b ] ... ... ... ...

[a ,b ] ... ... ... ...

 
 
  
 
 
  

 ai bi   

 
 [0, 19), 1  i  25, min} be the special interval semigroup.    
 
 Study questions (i) to (viii) of problem 29 for this Smin. 
 
 

53. Let Smax = 
1 1 2 2 9 9

10 10 11 11 18 18

19 19 20 20 27 27

[a ,b ] [a ,b ] ... [a ,b ]

[a ,b ] [a ,b ] ... [a ,b ]

[a ,b ] [a ,b ] ... [a ,b ]

 
 
 
  

 ai bi   

 
 [0, 19), 1  i  27, max} be the special interval 

semigroup.    
 

(i) Study questions (i) to (viii) of problem 29 for this  
 Smax. 
(ii) If Smax is replaced by Smin compare them. 
(iii) If Smax is replaced by S compare them. 

 
54. For any special interval semigroups S and Smin can we 

define a homomorphism between them? 
 
55. Let S = {(a1, a2, a3, a4, a5, a6) | ai  [0, 28), 1  i  6, } 

be the special interval semigroup.    
 

(i) Let  : S  S be a homomorphism find ker  such  
 that ker   empty.  
(ii) What is the algebraic structure enjoyed by ker ? 
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56. Let S = 

1

2

3

9

a

a

a

a

 
 
  
 
 
  


 ai  [0, 43), 1  i  9} be the special  

 
  interval semigroup. Let  
 

 S  = 1 2 6

7 8 12

a a ... a

a a ... a

 
 
 

 ai  [0, 6), 1  i  12} be  

 
 special interval semigroup. 

 
(i) Find  : S  S so that ker  is non empty. 
(ii) Study questions (i) to (viii) of problem 29 for this S  
 and S. 
 

57. Let S = {(a1, a2, …, a9) | ai  [0, 43), 1  i  9,  } be the 
special interval semigroup.  

 
 Smax = {(a1, …, a9) | ai  [0, 43), 1  i  9, max} be special 

interval semigroup under max. 
 

(i) Find  : Smax  S so that ker   = empty. 
(ii) Study questions (i) to (ii) of problem 56 for this  
 Smax  and S. 

 



 
 
 
 
Chapter Four 
 
 

 
 
SPECIAL INTERVAL SEMIRINGS AND 
SPECIAL PSEUDO RINGS USING [0, n) 
 
 
 
In this chapter we for the first time construct semirings and 
special pseudo rings using the continuous interval [0, n),  Such 
study is both innovative and interesting.   
 

These algebraic structures enjoy very many properties 
which are different from the semiring R+  {0} or  Q+  {0} or 
Z+  {0} or from the ring Zn; (n <  ring of modulo integers) Q 
or Z or R.   
 

We bring out several such distinct properties enjoyed by 
these new structures. 

 
 First we define semirings on [0, n) using the min and max 
operators. 
 
DEFINITION 4.1:  Let  
R = {[0, n), min, max; n < ; so n  [0, n)}. {R, min} be a 
semigroup and {R, max} is a semigroup. The min and max 
operations distributes over each other.  Thus R is a semiring of 
infinite order and is commutative. R = {[0, n), min, max} is 
defined as the special interval semiring. 
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 We will first give examples of them. 
 
Example 4.1:  Let R = {[0, 20), min, max} be the special 
interval semiring.  R has subsemirings of order 1, two, three and 
so on. 
 
 P1 = {0, 3} is a subsemiring of order two.  P2 = {6.3215}  
R is a subsemiring of order one.  Every singleton set is a 
subsemiring of order one. 
 
 For that matter take any subset P = {x1, x2, …, xm}  R;  
xi  [0, 20); 1  i  m, P in general is not a subsemiring. 
 
Example 4.2:  Let R = {[0, 120), min, max} be the special 
interval semiring.  R is commutative and is of infinite order.  
Infact R is a special quasi semifield; called the special interval 
semifield.  
 
 R has quasi subsemifields of every order in N; N the natural 
numbers. 
 
Example 4.3:  Let R = {[0, 43), min, max} be a special interval 
semiring of infinite order which  is a special quasi semifield.  R 
has several special quasi subsemifields.  
 
 We say F = {[0, n), min, max} to be a special quasi 
semifield, R has only one identity for min {0, x} = 0 and  
max{0, x} = x. We do see 0 acts as identity with respect to max.   
 

However F has no maximal or greatest element that is why 
we call F as the quasi special semifield. 
 
Example 4.4:  Let R = {[0, 27), min, max} be a special interval 
semiring that is quasi special interval semifield.  R has infinite 
number of finite subsemirings and infinite number of finite 
subsemirings of all orders.  
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 Infact order 1 subsemirings are infinite in number, similarly 
order two, order three and so on.   
 

We can in case of semirings define both the notion of filter 
and ideal.  For ideal we will have zero but in case of filter we 
will not have the greatest element as R does not contain the 
greatest element.   

 
We will illustrate this situation by some examples. 

 
Example 4.5:  Let R = {[0, 12), max, min} be the special 
interval semiring. 
 
 Let P = {[0, 8), max, min}  R be an ideal in R. 
 
 For any x, y  R we have max (x, y)  P;  
further min (p, r)  P for every r  R and p  P.   
 

Hence the claim. 
 
 R has infinite number of ideals. 
 
 It is pertinent to observe that P the ideal is not a filter of R.  
For if r  R and p  P, max (p, r)  P.  
 
 Now consider T = {[a, 12); 0 < a}, T under min operation is 
closed for every x  R and t  T, we see max (r, t)  T as every 
r  R \ T is such that r < a, hence the claim. 
 
 Clearly T is not an ideal of R. 
 
 We see R has infinite number of filters. 
 
 W = {[9, 12)}  R is a filter of R.  M = {[3, 12)}  R is 
also a filter of R. 
 

We see both W and M are not ideals of R. 
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 However we have infinite number of filters and ideals in 
these special interval semirings. 
 
Example 4.6:  Let R = {[0, 29), min, max} be a special  interval 
semiring under max and min operations. 
 
 P = {[0, 20), min, max} is a subsemiring. 
 
 P is an ideal for any p  P and r  R \ {0, 20},  

min {p, r} = p  P.   
 

However P is not a filter for if p  P and r R \ {0, 20}  
max {r, p} = r  P. 

 
 Hence the claim. 
  

Infact Pt = {[0, t); 0 < t < 28; min, max}  R for infinitely 
many t is only an ideal of R and R has infinitely many ideals 
and the cardinality of each Pt is infinite. 

 
 Now consider Bt = {[t, 20), max, min 0 < t < 20}  R, Bt is 
a subsemiring with t as its least element.   
 

Clearly Bt is not an ideal for if b  Bt and r  R \ [0, 20) we 
see min {b, r} = r and is not in Bt. 
 
 However Bt is a filter as for any x  R and b  Bt;  
max {x, b}  Bt. Bt is a filter of infinite order.  R has infinitely 
many such filters.  
 
 We see Bt is a filter and is not an ideal of R. 
 
 Thus R has infinite number of ideals which are not filters 
and infinite number of filters which are not ideals. 
 
Example 4.7:  Let  
R = {(a1, a2, a3, a4) | ai  [0, 42), 1  i  4, max, min} be the 
special interval semiring.  R is commutlative.  R is of infinite 
order.   
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Every singleton is a subsemiring we have  
P = {(0, 0, 0, 0), (a1, a2, a3, a4)}  R to be a subsemiring for 
some fixed a1, a2, a3, a4  [0, 42).  Clearly P is not an ideal or 
filter of R. 

 
 The first important factor to observe is R is not a totally 
ordered set either under max or under min. 
 
THEOREM 4.1:  Let S = {[0, n); 0 < n < ; max, min} be a 
special interval semiring. 
 

(i) S is of infinite cardinality and is commutative. 
(ii) S is totally ordered both by max and min. 
(iii) All subsemirings of the form Pt = [0, t); min, max}  

R are ideals of R and are not filters of R which are 
infinite in number. 

(iv) All subsemirings of the form Bt = {[a, n); 0 < a < n, 
min, max}  R are filters of R and are not ideals of R 
and they are infinite in number and have infinite 
cardinality.  

(v) R has no zero divisors but every element is an 
idempotent both under max and min. 

(vi) Every proper subset T of R is a subsemiring; T may 
be finite or infinite. 

 
The proof is direct and hence left as an exercise to the 

reader. 
 
Example 4.8:  Let R = {[0, 7)  [0, 13)  [0, 27); max, min} be 
the special interval semiring.  R has zero divisors.  R is not 
orderable by max or min. 
 
    If x = (0.3, 5, 19.321). 

and y = (7, 2.4, 5.9)  R then  
 

min {x, y}  = {(0.3, 5, 19.321), (7, 2.4, 5.9)}  
= {(0.3, 2.4, 5.9)} 

and max {x, y}  = {(0.3, 5, 19.321), (7, 2.4, 5.9)} 
     = {(7, 5, 19.321)}. 
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 So P = {x, y} is not closed under max and min. 
 
 Suppose x = (0, 0, 16.321) and  

y = (6.2134. 10.75011, 0)  R then  
 

min {x, y}  = min {(0, 0, 16.321), (6.2314, 10.75011, 0)}  
 

= {(0, 0, 0)}    … I 
 
and  
 

max {x, y}  = max {(0, 0, 16.321), (6.2314, 10.75011, 0)}  
 
= {(6.2134, 10.75011, 16.321)}.  

 
I shows R has zero divisors. Infact R has infinite number of 

zero divisors. 
 
Example 4.9:  Let  
 
 

R = 

1

2

3

4

5

6

7

8

9

a

a

a

a

a

a

a

a

a

 
 
 
 
 
         

ai  [0, 12); 1  i  9} 

 
 

be the special interval semiring under max and min operation. 
 
 R has filters and ideals.   
 



Special Interval Semirings and special … [0, n)   139 
 
 

For take P1 = 

1a

0

0

 
 
    


a1  [0, 12), min, max}  R. 

 
 P1 is an ideal and not a filter. 

For if x = 

11.39

0

0

0

0

 
 
 
 
 
 
 
 
  



  P1 and y = 

2.3

7.5

6.2

1.5

3.7

6.3

1.6

0

10.3

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  R; 

 

min {x, y} = 

11.39

0

0

 
 
 
 
 
 


 is in P1. 

 
 

However max {x, y}  = 

11.39

7.5

6.2

1.5

3.7

6.3

1.6

0

10.3

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  P1.   



140 Algebraic Structures using  [0, n)  
 

Thus  P1 is only an ideal and not a filter.  
 
Example 4.10:  Let  
 

R = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 
 
 
  

ai  [0, 32), 1  i  24, min, max} 

 
be the special interval matrix semiring.  
 
 R has several subsemirings which are ideals and are not 
filters. 
 
 R also has several subsemirings which are filters and not 
ideals.  
 
 R has infinite number of zero divisors and has no units. 
 
 We see if x, y  R  then in general x min y;  y  min x  and y 
 max x.  This R is not totally orderable.   
 

Infact R is partially orderable with respect to max and min.  
 
Example 4.11:  Let  
R = {[a1, a2, …, a10) | ai  [0, 15); 1  i  10; min, max}  be the 
special interval semiring.  We see R has infinite number of zero 
divisors and has no units. 
 

Let x  = (0, 0, 0, 4, 8, 9.1, 0, 0, 0, 7.5), and  
y = (9.8, 11.31, 12.01, 0, 0, 0, 9.11, 8.5, 0.7, 0)  R, we see  
 
min {x, y} = (0, 0, …, 0) and  
max {x,y} = (9.8, 11.31, 12.01, 4, 8, 9.1, 9.11, 8.5, 0.7, 7.5)  

 R.   
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Thus R has zero divisors under min and R has several zero 

divisors infact infinite in number. 
  
Example 4.12:  Let  
 
 

R = 

1 2

3 4

5 6

7 8

9 10

11 12

a a

a a

a a

a a

a a

a a

 
 
 
 
 
 
 
 
  

ai  [0, 8); 1  i  12, min, max} 

 
be the special interval semiring.  R has infinite number of zero 
divisors. 
 

M1 = 

1 2

3 4

11 12

a a

a a

a a

 
 
    

 
ai  [0, 4); 1  i  12, min, max} 

 
be the special interval subsemiring which is also an ideal of M1.  
M1 is not a filter of R. 
 
 

M2 = 

1 2a a

0 0

0 0

 
 
    

 
ai  [0, 8); min, max}  R 

 
be the special interval semiring.   
 

M2 is an ideal of R and is not a filter. 
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 Let  
 

N1 = 

1 2

3 4

11 12

a a

a a

a a

 
 
    

 
ai  [4, 8); 1  i  12, min, max}  R; 

 
N1 is a filter of R but N1 is not an ideal of R.  Thus we have 
several interesting features enjoyed by R. 
 

For if x = 

1

2

3

4 5

a 0

a 0

0 a

0 0

a a

 
 
 
 
 
 
 
 
  

 

  R any y  N1 

 
we see min {x, y}  N1, hence N1 is not an ideal of R.   
 

However for any x  N1 and y  R, max {x, y}  N1 hence 
N1 is a filter of R. 
 
 Still every element in R is an idempotent but any subset T 
in R is not a subsemiring however T can always be completed to 
a subsemiring. 
 
 If T is finite and T is only a subset Tc the completion of T is 
also finite and Tc is a subsemiring.  If T is infinite Tc the 
completion is also an infinite subsemiring. 
 
Example 4.13:  Let  
R = {(a1, a2, a3) | ai  [0, 4), 1  i  3, min, max} be the special 
interval semiring.  
 
 Let P = {x = (0.3, 1.4, 2.1), y = (2.1, 0.5, 1.7)}  R;  
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we see min {x, y} =  
 
   min {(0.3, 1.4, 2.1), (2.1, 0.5, 1.7)} 
      = {(0.3, 0.5, 1.7)}  P. 
 
   max {(0.3, 1.4, 2.1), (2.1, 0.5, 1.7)} 
      = {(2.1, 1.4, 2.1)}  P. 
 
 P is not a subsemiring however Pc the completion of P is  
{x, y, (0.3, 0.5, 1.7), (2.1, 1.4, 2.1)} is a subsemiring which is 
not an ideal  or filter of R.  
 
 Likewise if A = {(0, 0, 3.2), (0.1,  0.87, 2), (3, 2.1, 0)}  R 
to find the completion of A.  
 
 A is not a subsemiring for min {(0, 0, 3.2), (0.1, 0.8, 2)} = 
{(0, 0, 2)}  A. 
 
 
   min {(0, 0, 3.2), (3, 2.1, 0)} 
   = {(0, 0, 0)}  A. 
 

min {(0.1, 0.8, 0), (3, 2.1, 0)} 
   = {(0.1, 0.8, 0)}  A. 
 

max {(0, 0, 3.2), (0.1, 0.8, 2)} 
   = {(0.1, 0.8, 3.2)}  A. 
 

max {(0, 0, 3.2), (3.2, 1, 0)} 
   = {(3.2, 1, 3.2)}  A. 
 

max {(0.1, 0.8, 2), (3.2, 1, 0)} 
   = {(3.2, 1, 2)}  A. 
 
 
 Thus the completion of A, Ac = {A}  {(0, 0, 2), (0, 0, 0), 
(0.1, 0.8, 0), (0.1, 0.8, 3.2), (3.2, 1, 3.2), (3.2, 1, 2)} is a 
subsemiring. 
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Example 4.14:  Let  
 

R = 

1

2

3

4

a

a

a

a

 
 
    

ai  [0, 7); 1  i  4, min, max} 

 
be the special interval semiring.  R is of infinite order.   
 

R has infinite number of zero divisors every element is an 
idempotent and R has no units.  
 

Let A = 

0.7 6.1

3 2
,

4.5 1.5

2.1 4.7

    
    
                 

; min

0.7 6.1

3 2
,

4.5 1.5

2.1 4.7

    
    
                 

 = 

0.7

2

1.5

2.1

 
 
 
 
 
 

 

 

max  

0.7 6.1

3 2
,

4.5 1.5

2.1 4.7

    
    
                 

 = 

6.1

3

4.5

4.7

 
 
 
 
 
 

 

 
both min and max are not in A.   

 
So now we complete A and  

 

Ac = 

6.1 0.7 0.7 6.1

3 2 2 3
, , ,

4.5 1.5 1.5 4.5

4.7 2.1 2.1 4.7

        
        
                                 

  R is a subsemiring.   

 
Thus any finite or infinite subset of a semiring can be 

completed to get a subsemiring. 
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Example 4.15:  Let  
 

R = 1 2 3

4 5 6

a a a

a a a

 
 
 

ai  [0, 12); 1  i  6} 

 
be the special interval semiring. 
 

 Let A = {x = 
0 0.2 7

6.1 5.3 4.1

 
 
 

, y = 
2 0.7 9

3 4 8

 
 
 

 and  

 

z = 
1 2 3

4 5 6

 
 
 

}  R be a subset of R.   

 
 

Clearly A is not closed with respect to the operation min as 
well as max. 
 

 min {x, y} = min 
0 0.2 7 2 0.7 9

,
6.1 5.3 4.1 3 4 8

     
    
     

 

 

= 
0 0.2 7

3 4 4.1

   
  
   

  A. 

 

min {y, z} = min 
2 0.7 9 1 2 3

,
3 4 8 4 5 6

     
    
     

 

 

= 
1 0.7 3

3 4 6

   
  
   

  A. 

 

min {x, z} = min 
0 0.2 7 1 2 3

,
6.1 5.3 4.1 4 5 6
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= 
0 0.2 3

4 5 4.1

   
  
   

  A. 

 
Consider  

 

max {x, y} = max 
0 0.2 7 2 0.7 9

,
6.1 5.3 4.1 3 4 8

     
    
     

 

 

= 
2 0.7 9

6.1 5.3 8

   
  
   

  A. 

 

max {y, z} = 
2 0.7 9 1 2 3

,
3 4 8 4 5 6

     
    
     

 

 

= 
2 2 9

4 5 8

   
  
   

  A. 

 

max {x, z} = 
0 0.2 7 1 2 3

,
6.1 5.3 4.1 4 5 6

     
    
     

 

 

= 
1 2 7

6.1 5.3 6

   
  
   

  A. 

 
Thus the completeness of A is  
 

Ac = 
0 0.2 7 2 0.7 9 1 2 3

, , ,
6.1 5.3 4.1 3 4 8 4 5 6

     
     
     

 

 
 

0 0.2 7 1 0.7 3 0 0.2 3
, , ,

3 4 4.1 3 4 6 4 5 4.1

     
     
     

 

 



Special Interval Semirings and special … [0, n)   147 
 
 

2 0.7 9 2 2 9 1 2 7
, ,

6.1 5.3 8 4 5 8 6.1 5.3 6

     
     
     

  R  

 
is a subsemiring of the semiring R. 
 
Example 4.16:  Let  
 

R = 1 2 3 4 5

6 7 8 9 10

a a a a a

a a a a a

 
 
 

ai  [0, 15); 1  i  10} 

 
be the special interval semiring.   
 
Consider the subset  
 

A = {x = 
0 3.1 14.4 5.1 7

9.7 10.9 13.2 0 8.5

 
 
 

 and 

 

y = 
5 8.4 10.7 7.8 9.2

13.9 11.4 10.11 9.3 0

 
 
 

  R. 

 
Clearly A is not a subsemiring only a subset  
 

min {x, y} = 
0 3.1 10.7 5.7 7

9.7 10.9 10.11 0 0

 
 
 

 and 

 

max {x, y} = 
5 8.4 14.4 7.8 9.2

13.9 11.4 13.2 9.3 8.5

 
 
 

 are not in A. 

 
 
But Ac = {x, y, min {x, y}, max {x, y}}  R is a special interval 
subsemiring. 
 
 Inview of all this we have the following theorem. 
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THEOREM 4.2:  Let  
R = {Collection of all m  s matrix from the interval [0, t), (t < 
), min, max} be the special interval semiring of infinite order.  
Let A  R be a subset of R; A = {x1, x2, …, xn} is only a subset, 
then Ac = {x1, x2, …, xn, min {xj, xi} and max {xi, xj}; i  j, 1  i,  
j  n}  R is a subsemiring (which is the completion of A) of R. 
 
 The proof is direct and hence left as an exercise to the 
reader. 
 
 Note:  n in A can be finite or infinite still the result is true.  
That is why no mention on n was made. 
 
 
Example 4.17:  Let  
 

R = 

1 6 11 16 21

2

3

4

5

a a a a a

a ... ... ... ...

a ... ... ... ...

a ... ... ... ...

a ... ... ... ...

 
 
  
 
 
  

 ai  [0, 45),  

 
1  i  25, max, min} 

 
be the special interval semigroup.   
 
 

B=

0.5 0 0 0 0 0.2 4 0 0 0

0.9 12 0 0 0 7 8 0 0 0

x , y0 0 0.9 0 0 0 0 11 0 0

0 0 0 44 0 0 0 0 15 0

0 0 0 0 42.7 0 0 0 0 29

    
    
          

    
    
        

 R  

 
 
is such that; B is only a subset  
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min{x, y} = 

0.2 0 0 0 0

0.9 8 0 0 0

0 0 0.9 0 0

0 0 0 15 0

0 0 0 0 29

 
 
 
 
 
 
  

 and 

 
 

max {x, y} = 

0.5 0 0 0 0

7 12 0 0 0

0 0 11 0 0

0 0 0 44 0

0 0 0 0 42.7

 
 
 
 
 
 
  

 are not in B. 

 
 

Now we complete B as  
Bc = {x, y, min {x, y}, max {x, y}}  R is a subsemiring of R. 

 
 Now let R be a special interval matrix semiring or special 
interval super matrix semiring still we can complete the subset 
to the subsemiring.  
 
 Now we proceed onto study the special pseudo interval ring 
or special interval pseudo ring. 
 
 Let [0, n) be a continuous interval.  We define addition 
modulo n as follows: 
 
 If x, y  [0, n) then if x + y = t with t > n then we put  

x + y  (t–n) if x + y = t = n then  
x + y = 0 if x + y = t and t < n then x + y = t. 

 
 Thus {[0, n), +} is an abelian group with respect to ‘+’ and 
‘0’ acts as the additive identity. 
 
 Suppose we have [0, 12) is the given interval define + on 
the interval [0, 12) as follows. 
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 If x = 6.73 and y = 10.927 are in [0, 12) then  
x + y = 6.73 + 10.927 = 17.657 (mod 12) = 5.657  [0, 12). 

 
 Let x = 6.05 and y = 5.95  [0, 12), then  

x + y = 6.05 + 5.95 = 12.00 = 0 (mod 12). 
 
 Thus 6.05 is the additive inverse of 5.95 and vice versa. 
 
 Let x = 0.3125 and y = 3.10312  [0, 12). 
 Now x + y = 0.3125 + 3.10312 = 3.41562  [0, 12). 
 
 Thus {[0, 12), +} is an additive abelian group of infinite 
order. 
 
 Now on [0, n) we define product if x  y  = t then if t < 12 
take x  y as the product if t > 12 then take x  y = t – 12  [0, 
12] and x  y = 0 if and only if one of x or y is zero. 
 
 Take x = 0.31 and y = 5  [0, 12); x  y = 1.55  [0, 12). 
 
 Take x = 11 and y = 11.5  [0, 12) then  

x  y  = 11  11.5 = 12.65 (mod 12)  
= 12.65 – 12 = 0.65  [0, 12). 

 
 Thus {[0, 12), } under product is a semigroup and 1  [0, 
12) acts as the multiplicative identity.   
 

However this semigroup has zero divisors even if n is a 
prime. 

 
 For take [0, 6) and let x = 2 and y = 3  [0, 6) we see  
x  y = 2  3 = 6 (mod 6) = 0 (mod 6) hence is a zero divisor. 
 
 Suppose [0, 7) is the interval under consideration, we see 
for no pair x, y  [0, 7) \ {0}, x  y  = 0. 
 
 We will now claim {[0, n), , +} is not a ring as (a + b) c  
ab + bc in general for all a, b, c  [0, n).  
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Hence we define R = {[0, n), +, } as a special pseudo 
interval ring.   
 

We will give examples and describe the special properties 
enjoyed by them. 
 
Example 4.18:  Let R = {[0, 10), +, } be the pseudo ring of 
special interval [0, 10).  Let x = 9 and y = 6.2  [0, 10]. 
 
   x  y = 9  6.2 = 55.8 (mod 10) = 5.8  R. 
   x + y = 9 + 6.2 = 15.2 
   = 5.2  R. 
 
 Suppose x = 5 and y = 2  R then x  y = 10 (mod 10) = 0 
hence R has zero divisors. 
 
 Let x = 5 and y = 8  [0, 10).  

x  y = 5  8  40 (mod 10) = 0 is a zero divisor in  
R = {[0, 10), , +}. 
 
 However R  = {[0, 17), , +} has zero divisors but has non 
trivial units for take x = 16 we see x  x  = 162  1 (mod 17) is 
a unit in R.   
 

Let x = 2 and y = 9  R then x  y = 2  9   18 (mod 17) = 
1 is a unit in [0, 17).  

 
 We see however large n may be in [0, n) (n < ) then  
R = {[0, n), +, } has only finite number of units infact only  
(n–2) of the elements in R alone are units that too for any finite 
prime number n. 
 
Example 4.19:  Let R = {[0, 23), +, } be a special pseudo 
interval ring.  R has zero divisors.   
 

We have 21 units in R.  R has no idempotents. R has 
subrings viz. P1 = {0, 1, 2, …, 22} as well special pseudo 
subrings. 
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 P2 = {0, 0.5, 1, 1.5, 2, 2.5, …, 22, 22.5}  R is not a subring 
of finite order. 
 
Example 4.20:  Let R = {[0, 24), +, } be the special pseudo 
interval ring of infinite order.  P1 = {0, 2, 4, 6, 8, 10, 12, …, 22} 
 R is again a special interval subring. 
 
 P2 = {0, 4, 8, 12, …, 20}  R is again a special interval 
subring.  P3  = {0, 8, 16}  R is again a special interval subring.  
All the subrings of R are not ideals.  
 
 P4 = {0, 1, 2, …, 23}  R is a special interval subring which 
is not an ideal. 
 
 P5 = {0, 12}  R is a subring. 
 
 P6 = {0, 0.5, 1, 1.5, 2, 2.5, …, 23, 23.5}  R; is not  a  
subring. 
 
 P7 = {0, 0.1, 0.2, …, 23.9}  R is a not subring of R.  R has 
several subrings of very many different orders. 
 
 None of these subrings are ideals of R.  R has zero divisors. 
 
 For x = 2 and y = 12  R is such that x  y = 2  12 = 0.  
 

Let x = 3 and y = 8  R is such that x  y = 3  8 = 0 (mod 
24). 

 
 Let x = 6 and y = 4  R is such that x  y = 6  4 = 0 (mod 
24).  R has only finite number of zero divisors. 
 
   R has finite number of idempotents.    
 

For x = 9  R is such that x2 = x = 9 is an idempotent.  
x = 7  R is a unit as x2 = 1 (mod 24), 5 = y  R is again a unit 
as 52 = 1 (mod 24) y = 16  R is such that 162  16 (mod 24). 
Consider  x = 23  R is such that 232  1 (mod 24). 
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Example 4.21:  Let R = {[0, 11), +, } be a special interval 
pseudo ring.  R has zero divisors.  R is only an infinite pseudo 
interval ring.  R has no idempotents however R has 9 elements 
which are units of R. 
 
 P = {0, 1, 2, 3, …, 10}  R is a subring of R. 
 
Example 4.22:  Let R = {[0, 4), +, } be the special pseudo 
interval ring of infinite order; R is not a pseudo integral domain; 
for x = 2  R is such that x2 = 0 (mod 4). 
 
 y = 3  R is a unit as 32  1 (mod 4) which is the only unit 
of R.  P = {0, 1, 2, 3}  R is a subring of R and P  Z4. 
 
 T = {0, 2}  R is again a finite subring of R. 
 
 Apart from this we are unaware of any other finite subring.  
For if we try to use 0.1, 0.01, 0.001, 0.0001, …, 0.2, 0.02, 
0.004, 0.0016, and so on and the inverses 0.9, 0.99, 0.999, 
0.9999 and so on thus it can be only countably infinite. 
 
Example 4.23:  Let R = {[0, 15), +, } be a special pseudo 
interval ring.  R has finite number of zero divisors.  Finite 
number of units and finite number of idempotents.   
 
 x = 10  R is such that 10  10  10 (mod 15) y = 4  R is 
such that y2 = 1 (mod 15) is a unit in R. x = 6  R is such that  
x2 = 62 = 6 (mod 15) is an idempotent.   
 

x = 11  R is such that x2 = 112 = 1 (mod 15); y = 14  R is 
such that  y2 = 142 = 1 (mod 15).  Thus we have found the units, 
and idempotents of R.   

 
We now work out the zero divisors of R.   
y = 3 and x = 5  R are such that x  y = 10  6 =  

0 (mod 15), x = 10 and y = 9 is such that x  y = 10  9 = 0  
(mod 15), x = 12 and y = 10 is such that x  y = 0 (mod 15); x = 
6 and y = 5 is such that x  y = 30 (mod 15) = 0 (mod 15). 
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 R has finite number of zero divisors. 
 
Example 4.24:  Let R = {[0, 26), +, } be a special pseudo 
interval ring.  x = 2 and y = 13  R is such that x  y = 2  13 = 
0 (mod 26)  
 

x = 4 and y = 13  R is such that x  y = 4  13 = 0 (mod 
26).  13  R is such that 132  13 (mod 26).  
 

14  R is such that 14  14 = 14 (mod 26) so 13 and 14 are 
two idempotent of R.   

 
x = 25  R is such that x2 = 1 (mod 26).  R has units, zero 

divisors and idempotents but all of them are only finite in 
number. 

 
 R has subrings of finite order given by H1 = {0, 13}  R 
and H2 = {0, 2, 4, 6, …, 24} R are subrings of R of finite 
order.   
 
 Next we build more pseudo interval rings using these 
special interval pseudo rings. 
 
Example 4.25:  Let R = {[0, 10)  [0, 19), +, } be the product 
of two special interval pseudo ring.  R is again a special interval 
pseudo ring. 
 
 We see R has infinite number of zero divisors, finite 
number of units and idempotents.  
 
 R is of infinite order and R is commutative. 
 
 x = (5, 0)  R is an idempotent y1 = (5, 1), y2 = (6, 0) and  
y3 = (6, 1) are all idempotents of R. 
 
 x = (9, 3) and y = (9, 13) in R is such that  

x  y = (9, 3)  (9, 13) = (1, 1)  R is the unit of R. 
 
 x = (0, 0.3315) and y = (0.21301, 0)  R are such that  
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x  y = (0, 0) is a zero divisor.   
 

Infact R has infinite number of zero divisors but only finite 
number of units and idempotents.  

 
R contains one subset which is a pseudo integral domain.  R 

also contains a finite subset which is a field.  R has two pseudo 
ideals.  It is left for the reader to find whether R has more 
pseudo ideals. 
 
Example 4.26:  Let R = {[0, 7)  [0, 11)  [0, 43), +, } be the 
special interval pseudo ring of infinite order.  R has infinite 
number of zero divisors.  
 

R has three subsets viz. V1 = {({0}  [0, 11)  {0}}  R 
which is a pseudo interval integral domain. 

 
 V2 = {[0, 7)  {0}  {0}}  R and 

V3 = {{0}  {0} [0, 43)}  R, are three pseudo integral 
domains. 

V4 = {{0}  [0, 11)  [0, 43)}  R,  
V5 = {[0, 7)   [0, 11)  {0}}  R 

 
and V6 = {[0, 7)  {0}   [0, 43)}  R are not pseudo 

integral domains but infinite order pseudo subrings and pseudo  
subrings which are also pseudo ideals of R. 

 
V1, V2 and V3 are not pseudo ideals of R.  R has no 

idempotents only elements of the form (0, 0, 0), (1, 0, 0), (0, 1, 
0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1) are the only 
idempotents of R. However R has several units.   

 
x = (6, 10, 42)  R is such that x2 = (1, 1, 1). 
x = (3, 5, 3) and y = (5, 9, 29)  R are such that  
x  y = (1, 1, 1) is a unit. 

 
R has pseudo subrings which are not pseudo ideals of 

infinite order also. R has pseudo interval subrings whih are not 
subrings. 
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For T1 = {[0, 7)  {0}  {0}} is a pseudo interval subring 
which is a pseudo ideal of R. 

 
T2 = {{0}  {[0, 11)}  [0, 43)}  R is a pseudo interval 

subring which is a pseudo ideal of R.  
 

Both T1 and T2 are of infinite order. 
 
Example 4.27:  Let  
R = {[0, 6)  [0, 12)  [0, 15)  [0, 21), +, } be the special 
interval pseudo ring. 
 
 R has infinite number of zero divisors.  R has no subset 
which is a pseudo integral domain. R has units and idempotents.   
 

Further R has finite subrings which are not ideals. 
 
 R has subsets of infinite order which are pseudo ideals. 
 
 R has subsets of infinite order which are not pseudo ideals 
but subrings or pseudo subrings.  
 
 Let  

T1 = {{0, 2, 4} {0, 6}  {0, 3, 6, 9, 12}  {0, 7, 14}}  R 
be a subring of finite order and is not an ideal of R. 
 
 T2 = {[0, 6)  {0}  {0}  {0}}  R is a pseudo ideal of R;  
however T3 = {[0, 6)  {0}  {0}  {0}}  R is a pseudo ideal 
of R only a pseudo interval subring of infinite order.  
 
 T4 = [0, 6)  [0, 12)  {0}  {0}}  R  is a pseudo ideal of 
R; however T5 = {[0, 6) [0, 12)  {Z15}  {0}}  R is only a 
pseudo interval subring. 
 
 Thus we have commutative special interval pseudo rings of 
infinite order. 
 
 Now we proceed onto describe the notion of special pseudo 
interval matrix ring by some examples. 
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Example 4.28:  Let  
R = {(a1, a2, a3, a4, a5, a6) | ai  [0, 53), 1  i  6, +, } be the 
special interval pseudo ring of infinite order.   
 

R is commutative R has zero divisors and units. 
 
 We have only finite number of units, however has infinite 
number of zero divisors and finite number of idempotents like 
(a1, …, a6) where ai  {0, 1}; 1  i  6. 
 
 Let x = (52, 1, 27, 18, 6, 9)  R we see y = (52, 1, 2, 3, 9, 6) 
 R is such that x  y = (1, 1, 1, 1, 1, 1) is a unit of R. 
 
 T1 = {(a1, 0, 0, 0, 0, 0) | a1  [0, 53)}  R is a pseudo 
interval subring as well as an ideal of infinite cardinality.   
 

T2 = {(a1, 0, 0, 0, 0, 0) | a1  {0, 1, 2, 3, 4, 5, …, 52}  [0, 
53)}  R is a subring of finite order and is not a pseudo ideal of 
R. 

 
 T3 = {(a1, a2, 0, 0, 0, 0) | a1, a2 [0, 53), +, }  R is a  
pseudo interval subring as well as an pseudo ideal of R. 
 
 We see T1 and T2 are not pseudo integral domains. 
 
 T4 = {(0, a1, 0, 0, 0, 0) | a1  [0, 53), +, }  R is again a 
pseudo  interval ideal of infinite order of S. 
 
 T4 = x = (0, 1, 0, 0, 0, 0) that is generated by x is not a 
pseudo ideal. 
 
 Likewise T3 = {(1, 1, 0, 0, 0, 0) = y  is generated by y is 
not a pseudo ideal of R. 
 
 T5 = {(a1, a2, a3, 0, 0, 0) | a1  [0, 53), a2, a3  {0, 1, 2, 3, 4, 
…, 52}  [0,  53)} is only a pseudo interval subring of infinite 
order and is not a pseudo ideal of R. 
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Example 4.29:  Let  
 
 

R = 

1

2

9

a

a

a

 
 
    


 ai  [0, 16), 1  i  9, +, n} 

 
 
be a special interval pseudo ring of infinite order.   
 

Clearly R is a commutative pseudo ring with infinite 
number of zero divisors. 

 
 R does not contain any pseudo subring which is a pseudo 
integral domain.  R has pseudo ideals which are principal. 
 
 For take  
 
 

B1 = 

1

2

3

a

a

a

0

0

0

0

0

0

 
 
 
 
 
         

 a1, a2, a3  [0, 16)}  R 

 
 
is a pseudo subring as well as a pseudo ideal of R. 
 
 



Special Interval Semirings and special … [0, n)   159 
 
 
 M1 generated by  
 
 

1

1

1

0

0

0

0

0

0

  
  
  
  
  
                   

 

 
is only a subring of finite order. 
 
 
 
 Let  
 
 

B2 = 
1

2

3

4

0

0

0

a

a

a

a

0

0

 
 
 
 
 
         

 ai  [0, 16); 1  i  4, +, n}  R; 

 
 
B2 is an infinite pseudo interval subring which is also a pseudo  
ideal of R.   
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M2  generated by 

0

0

0

1

1

1

1

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 is only a subring of finite  

 
order. 

 
 Let  
 
 

B3 = 

1

2

0

0

0

0

0

0

0

a

a

 
 
 
 
 
         

 a1  [0, 16), a2  {0, 1, 2, 3, 4, …, 16}, +, n}  R 

 
 
be a pseudo subring of infinite order but B3 is not a pseudo ideal 
only a pseudo subring.   
 

Thus R has subrings of infinite order which are pseudo 
subrings and are not pseudo ideals of R. 

 
 R has units, zero divisors and idempotents. 
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Let  
 

A1 = 

1

2

3

a

a

0

0

0

0

0

0

a

 
 
 
 
 
         

 ai  [0, 16); 1  i  3, +, n}  R and 

 
 

A2 = 
1

2

3

4

5

0

0

0

a

a

a

a

a

0

 
 
 
 
 
         

 ai  [0, 16); 1  i  5}  R 

 
 
be two pseudo  interval subrings of infinite order which are also 
pseudo interval ideals of R.   
 
 

Clearly every x  A1 is such that for every y  A2 we have  
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x n y = 

0

0

0

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

  
 

Infact  
 

 

A1  A2 = 

0

0

0

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
 
 Thus R has infinite number of zero divisors as |A1| =  and 
|A2| = .   
 

 
Apart from this also R has infinite number of zero divisors. 
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 Let x = 

3

11

13

5

7

9

1

1

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 and y = 

11

3

5

13

7

9

1

1

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  R are such that  

 

x n y = 

1

1

1

1

1

1

1

1

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 which is the unit of R. 

 
Thus R has finite number of units. 
 

x = 

1

0

1

0

1

0

1

0

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  R is such that x n x = x. 
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 R has several idempotents of this form. 
 
Example 4.30:  Let  
R = {(a1, a2, a3, a4, a5, a6, a7) | ai  [0, 30), 1  i  7, +, } be a 
special interval pseudo ring of infinite order.   
 

R is commutative.  R has infinite number of zero divisors.  
R has no pseudo subring which is a pseudo integral domain.  R 
has pseudo interval subrings which are pseudo ideals. 
 
 For take  
B = {(a1, a2, 0, 0, 0, 0, 0) | ai  [0,  30), 1  i  2}  R is a 
pseudo interval subring as well as pseudo interval ideal of R of 
infinite order. 
 
 B2 = {(0, 0, a1, a2, 0, 0, 0) | a1  [0, 30), a2  {0, 1, 2, 3, …, 
29}, +, }  R is a pseudo interval subring of R of infinite 
order.  B2 is not a pseudo ideal of R.  
 
 B3 = {(a1, a2, a3, a4, a5, a7) | ai  {0, 2, 4, 6, 8, …, 28}  [0, 
30), 1  i  6}  R is a pseudo interval subring of R of finite 
order and is not a pseudo ideal of R. 
 
 B4 = {(a1, a2, …, a7) | ai  {0, 10, 20}  {[0, 30)}, +, , 1  
i  7}  R is a subring of finite order which is not a pseudo 
ideal of R. 
 
 B5 = {(a1, 0, a2, 0, a3, 0, a4) | ai  {0, 5, 10, 15, 20, 25}  [0, 
30), 1  i  4, +, }  R is a subring of finite order and is not a 
pseudo ideal of R. 
 
 We see R has idempotents. 
 
 Let x = (6, 10, 1, 0, 15, 16, 6)  R is such that x2 = x.   
 

Thus R has non trivial idempotents.   
 
However the number of idempotents in R is finite. 
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Example 4.31:  Let  
 

R = 

1

2

3

4

5

6

7

a

a

a

a

a

a

a

 
 
 
 
 
 
 
 
 
  

 ai  [0, 13), 1  i  7} 

 
be the special interval pseudo ring under n and +.  R is of 
infinite order and R is commutative.  R has infinite number of 
zero divisors. 
 

 R has units.  

1

1

1

1

1

1

1

 
 
 
 
 
 
 
 
 
  

 acts as the unit or identity element of  

 
R with respect to n. 
 
 

Let x = 

7

9

3

1

10

4

1

 
 
 
 
 
 
 
 
 
  

 and y = 

7

3

9

1

4

10

1

 
 
 
 
 
 
 
 
 
  

  R; 
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clearly x n y = 

1

1

1

1

1

1

1

 
 
 
 
 
 
 
 
 
  

 is a unit or x is the inverse of y and vice 

versa. 
 
 However R has only finite number of inverses, that is finite 
number of units. 
 
Example 4.32:  Let  
 

R = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

 
 
    

 ai  [0, 24), 1  i  16, +, } 

 
be the special interval pseudo ring.  R is non commutative as ‘’ 
is the usual matrix multiplication.   
 

We have zero divisors, units and idempotents in R. 
 

 R has pseudo interval subrings as well as pseudo ideals.   
 

A = 

1a 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
    

 a1  [0, 24)}  R is not a pseudo 

ideal of  infinite order a pseudo subring of R. 
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 Thus R in this case is a non commutative pseudo interval 
ring.   

 

Let A = 

4 4 4 4

4 0 4 4

0 4 4 0

4 4 4 4

 
 
 
 
 
 

 and B = 

6 0 6 0

0 6 0 6

6 6 0 0

0 0 6 6

 
 
 
 
 
 

  R 

 
 

we see A  B = 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 

. 

 

Let A = 

0.312 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 

 and 

 

B = 

0 0 0 0

7.30101 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 

  R. 

 
 

A  B = 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 

 

 
is a zero divisors of R.  R has infinite number of zero divisors. 
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Example 4.33:  Let  
 
 

R = 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai  [0, 19), 1  i  9, +, } 

 
be the non commutative special interval pseudo ring under the 
usual matrix product. 
 
 

 T = 

5 0 0

0 1 0

0 0 1

 
 
 
  

 is the inverse of S = 

4 0 0

0 1 0

0 0 1

 
 
 
  

 as  

 
 
 

T  S = 

1 0 0

0 1 0

0 0 1

 
 
 
  

 identity of R with respect to the usual  

 
product . 
 
 

M = 
1

2

3

a 0 0

0 a 0

0 0 a

 
 
 
  

 ai  [0, 19), 1  i  3}  R 

 
is a pseudo subring of R and pseudo ideal of R.  
 
 
 R has several pseudo subrings which are not pseudo ideals. 
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N = 
1

2

3

a 0 0

0 a 0

0 0 a

 
 
 
  

 ai  {0, 1, 2, 3, 4, 5, …, 18}; 

 
1  i  3}  R  

 
is a subring of finite order and is not a pseudo ideal of R.  Infact 
N is a commutative subring. 
 
Example 4.34:  Let  
 

R = 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai  [0, 12), 1  i  9, +, n} 

 
be the special interval pseudo ring.   
 

R has infinite cardinality.  R is commutative.  R has infinite 
number zero divisors.   
 

R has pseudo ideals and all pseudo ideals are both right and 
left. 

 

 R has idempotents x= 

0 4 0

4 9 4

9 4 1

 
 
 
  

  R is such that  

 
x n x = x.  R has only finite number of idemponents.   
 

R has units and 

1 1 1

1 1 1

1 1 1

 
 
 
  

 is the unit element or identity  

 
with respect to n in R. 
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P1 = 
1a 0 0

0 0 0

0 0 0

 
 
 
  

 a1  [0, 12)}  R. 

 
P1 is a pseudo subring as well as a pseudo ideal of infinite order. 
 

P2 = 
20 a 0

0 0 0

0 0 0

 
 
 
  

 a1  [0, 12)}  R 

 
is a pseudo subring as well as a pseudo ideal of R of infinite 
order. 

Let P3 = 
1 2

3

a 0 a

0 a 0

0 0 0

 
 
 
  

 a1, a2, a3  [0, 12)}  R 

 
is a pseudo subring as well as a pseudo ideal of R of infinite 
order. 
 

P4 = 
1 2 3

4 5

a a a

a a 0

0 0 0

 
 
 
  

 ai  [0, 12), 1  i  5}  R 

 
is a pseudo subring as well as a pseudo ideal of R of infinite 
order. 
 
 Let  

A = 
1 2

3

4

a a 0

0 0 a

0 0 a

 
 
 
  

 ai  {0, 1, 2, 3, 4, 5, …, 11, 

1  i  4}  R  
 

be a subring and is not a pseudo ideal of R.  |A| < . 
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B = 
1

2 3

4 5 6

a 0 0

a a 0

a a a

 
 
 
  

 ai  {0, 1, 2, 3, 4, 5, …, 11}, 

 1  i  6}   R  
 
is only a subring of finite order and B is not a pseudo ideal of R. 
 
Example 4.35:  Let  
 

R = 

1 2 5

6 7 10

11 12 15

16 17 20

21 22 25

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

 
 
  
 
 
  

 ai  [0, 15), 1  i  25, +, n} 

 
be the special interval a pseudo ring of infinite order which is 
commutative. 
 

A = 

1a 0 ... 0

0 0 ... 0

0 0 ... 0

 
 
    

  
 a1  [0, 15), +, n}  R 

 
be the special interval pseudo subring of infinite order which is 
also commutative and is a pseudo ideal of R. 
 

B = 

1 2

3 4 5 6 7

a a 0 ... 0

0 0 0 ... 0

a a a a a

 
 
    

   
 ai  [0, 15), 1  i  7, +, n} 

 
be the special interval pseudo subring of R as well as the pseudo 
ideal of R of infinite order. 
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 Let  
 

M = 

1 2a a 0 ... 0

0 0 0 ... 0

0 0 0 ... 0

 
 
    

   
 a1, a2  {0, 1, 2, 3, 

 
4, …, 14}, +, n}  R  

 
be the special interval pseudo subring and M is of finite order 
and M is not a pseudo ideal of R. 
 

 N = 

1 2 3 4 5a a a a a

0 0 0 0 0

0 0 0 0 0

 
 
    

    
 ai  {0, 3, 6,  

 
9, 12}  [0, 15); 1  i  15, +, n}  R   

 
is a pseudo subring of finite order and is not a pseudo ideal of 
R.   
 

R has several subrings of finite order and none of them are 
ideals of R.  
 

R has several interval pseudo subrings of finite order and 
none of them are pseudo ideals of R. 
 
Example 4.36:  Let  
 

R = 
1 2 7

8 9 14

15 16 21

a a ... a

a a ... a

a a ... a

 
 
 
  

 ai  [0, 200), 1  i  21, +, n} 

 
be the special interval pseudo ring.   
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R is of infinite order and commutative R has infinite 
number of pseudo subrings are pseudo ideals. 
 
 Let  
 

A =  
1 2a a 0 0 ... 0

0 0 0 0 ... 0

0 0 0 0 ... 0

 
 
 
  

 a1  [0, 200), a2  {0, 10, 

 
20, 30, …, 190}, +, n}  R  

 
is a pseudo subring of infinite order and is not a pseudo ideal of 
R. 
 
 Let  
 

B = 
1 2 3a a a 0 ... 0

0 0 0 0 ... 0

0 0 0 0 ... 0

 
 
 
  

 ai  [0, 200), 1  i  3, +, n} 

 
 R is a pseudo subring which is also a pseudo ideal of B.   
 
Clearly B is of infinite order. 
 

C = 
1 2 3a a a 0 ... 0

0 0 0 0 ... 0

0 0 0 0 ... 0

 
 
 
  

 ai  {0, 25, 50, 75, 100, 

 
125, 150, 175}  [0, 200), 1  i  3, +, n}  R  

 
is a subring of R are of finite order.   
 

However C is not a pseudo ideal of R.  Thus R has subrings 
of finite order which are not pseudo ideals of R.  
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Example 4.37:  Let  
 

R = 

1 2 3

4 5 6

28 29 30

a a a

a a a

a a a

 
 
    

  
 ai  [0, 131), 1  i  30, +, n} 

 
be the special interval pseudo ring of R of infinite order which 
is commutative.  
 

R has pseudo subrings of infinite order which are pseudo 
ideals and R has also pseudo subrings of infinite order which 
are not pseudo ideals of R.   
 

R has finite pseudo subrings which are not pseudo ideals.  R 
has infinite number of zero divisors, has only finite number of 
idempotents and finite number of units.  
 

A = 

1 2 3a a a

0 0 0

0 0 0

 
 
    

  
 a1, a2, a3  [0, 131), +, n}  R 

 
be the pseudo subring which is a pseudo ideal of R of infinite 
order. 
 

B = 

1 2 3a a a

0 0 0

0 0 0

 
 
    

  
 a1  [0, 131), a2, a3  [0, 1, 2, 3, 

4, …, 130], +, n}  R  
 
be the pseudo subring which is not a pseudo ideal of infinite 
order. 
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 B is not an ideal of R. 
 

C = 

1 2 3a a a

0 0 0

0 0 0

 
 
    

  
 a1, a2, a3  {0, 1, 2, 3, …, 130},+, n}  R  

 
be the subring which is not a pseudo ideal of R and is of finite 
order. 
 

D = 

1

2

3

4

a 0 0

0 a 0

0 0 a

a 0 0

0 0 0

0 0 0

 
 
 
 
 
 
 
 
 
  

  

 ai  [0, 1, 2, …, 130}, 

1  i  4, +, n}  R  
 
be the pseudo subring of R which is not a pseudo ideal of R. 
 
Example 4.38:  Let  
 

R = 

1 2

3 4

11 12

a a

a a

a a

 
 
    

 
 ai  [0, 48), 1  i  12, +, n} 

 
be the special interval pseudo ring of infinite order and R is 
commutative.   
 

R has infinite number zero divisors but only finite number 
of units and idempotents.  R has only finite number of subrings 
and none of them is a pseudo ideal.   
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R has pseudo subrings of infinite order which are not 
pseudo ideals as well as infinite order pseudo subrings which 
are pseudo ideals. 
 
 Let  
 

M1 = 

1 2

3 4

11 12

a a

a a

a a

 
 
    

 
 ai  [0, 4, 8, 12, 16, 20, 24, …, 40, 44}  

 
[0, 48), 1  i  12}  R  

 
be the subring of finite order.  M1 is not a pseudo ideal of R. 
 
 Let  
 

N1 =   

1

3

6

a 0

a 0

a 0

 
 
    

 
 ai  [0, 48), 1  i  6, +, n}  R 

 
be a pseudo subring of R.  N1 is of infinite cardinality.  N1 is 
also a pseudo ideal of R. 
 
 Let  

 

T1 = 

1

2

3

4

5

6

a 0

a 0

a 0

a 0

a 0

a 0

 
 
 
 
 
 
 
 
  

 a1, a2, a3  [0, 48), a4, a5, a6  {0, 12, 

24, 36}  [0, 48), +, n}  
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be the pseudo subring of R.  |T1| = ; but T1 is not a pseudo 
ideal of R only a subring.   
 

Thus we have pseudo subrings of infinite cardinality which 
are not pseudo ideals of R. 
 
Example 4.39:  Let  
 

R = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

a a a

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
 
  

 ai  [0, 41), 1  i  21, +, n} 

 
be the special interval pseudo ring super column matrices.  |R| = 
.   
 

R has infinite number of zero divisors and only finite 
number of idempotents and only finite number of units and 
idempotents.  R has only finite number of subrings of finite 
order.   

 
R has infinite pseudo subrings which are ideals as well as 

infinite pseudo subrings which are not pseudo ideals of R. 
 

M1 = 

1 2 3a a a

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
 
 
 
  

 ai  [0, 41), 1  i  3, +, n}  R 
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is a special interval pseudo subring which is a pseudo ideal of 
R.  M1 is also of infinite order.  
 

M2 = 1 2 3

4 5 6

0 0 0

0 0 0

0 0 0

a a a

a a a

0 0 0

0 0 0

 
 
 
 
 
 
 
 
 
  

 a1, a2, a3  [0, 41), a3, a5, a6  

 
{0, 1, 2, 3, …, 40}, +, n}  R  

 
is a pseudo subring of R and is of infinite order M2 is not a 
pseudo ideal of R. 
 

For if A = 

0 0 0

0 0 0

0 0 0

7.9 3.1 0

8 1 5

0 0 0

0 0 0

 
 
 
 
 
 
 
 
 
  

  M2 and 

 
 

B =  

9 8 3.1

4.3 3.7 19.1

40.1 4.7 8.19

0 40 0

3.1 2.4 0.14

0 0 0

0.75 0.95 1.98

 
 
 
 
 
 
 
 
 
  

  R. 
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We find A  B = 

0 0 0

0 0 0

0 0 0

0 12.4 0

24.8 2.4 0.70

0 0 0

0 0 0

 
 
 
 
 
 
 
 
 
  

  M2 as 24.8, 

 
2.4 and 0.70  {0, 1, 2, 3, 4, 5, 6, …, 40}  [0, 41).   

 
Hence M2 is of infinite order only a pseudo subring and not 

a pseudo ideal of R. 
 

Let N1 = 

1

2

3

4

5

6

7

a 0 0

0 a 0

0 0 a

a 0 0

0 a 0

0 0 a

a 0 0

 
 
 
 
 
 
 
 
 
  

 ai  [0, 1, 2, …, 40}  [0, 41), 

1  i  7, +, n}  R  
 
is only a subring of finite order and is not a pseudo ideal of R.  
Let  
 

A = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

a a a

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
 
  

 ai  {1, 2, 3, …, 40}  [0, 41), 

1  i  21, +, n}  R,  
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is such that for every x  A there exist a unique y in A such that  
 

x n y = 

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

 
 
 
 
 
 
 
 
 
  

the unit of R. 

 
All units of R in totality be the subset A.  Infact A is not a 

subring.  A is a subgroup of R under n.  A is not closed under 
+. 
 
Example 4.40:  Let  
R = {(a1, a2, a3, a4, a5, a6, a7, a8) | ai  [0, 15)  [0, 21); 1  i  8} 
be the special interval pseudo ring.  R has infinite number of 
zero divisors. 
 
 I = ((1, 1), (1, 1), (1, 1), …, (1, 1)) is the multiplicative 
identity of R and Q = ((0, 0), (0, 0), (0, 0), …, (0, 0)) is the 
additive identity of R. 
 
 A = {(a1, 0), (a2, 0), …, (a8, 0)} and B = {(0, b1), (0, b2), …, 
(0, b8)}  R is such that A  B = ((0, 0), (0, 0), (0, 0), …, (0, 
0))}. 
 
 A = {(a1, …, a8) | ai [0, 15),  {0}, 1  i  8}  R is an 
infinite pseudo subring as well as pseudo ideal of R. 
 
 B = {(a1, a2, …, a8) | ai  {0}  [0, 21), 1  i  8}  R is an 
infinite pseudo subring as well as pseudo ideal of R. 
 
 We see A  B = {((0, 0), (0, 0), (0, 0), …, (0, 0))} 
 
 Thus R has infinite number of zero divisors. 
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 Let M = {(a1, a2, …, a8) | ai  {0, 5, 10}  {0, 7, 14}; 1  i 
 8, +, }  R be a pseudo subring of R of finite order and is 
not a pseudo ideal of R. 
 
 N1 = {(a1, …, a8) | ai  {0, 5, 10}  [0, 21); 1  i  8}  R is 
a pseudo subring of infinite order. 
 
 However N1 is not an ideal of R. 
 
Example 4.41:  Let R = {(a1, a2, a3, a4) | ai  [0, 12)  [0, 7)  
[0, 11); 1  i  4} be the special interval pseudo ring under the 
operation + and .  R is of infinite order.  R has infinite number 
of zero divisors, finite number of units and idempotents. 
 
 The additive identity of R is  
a = ((0, 0, 0), (0, 0, 0) (0, 0, 0) (0, 0, 0)) and the multiplicative 
identity of R is I = ((1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1)).  
 

We see x = {(5, 5, 7), (7, 2, 1), (11, 3, 5), (1, 4, 6))}  R has 
y = {((5, 3, 8), (7, 4, 1), (11, 5, 9), (1, 2, 2))}  R to be the 
unique inverse of x; for  
x  y = {((1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1))}  R.  It is easily 
verified R has only finite number of units. 

 
 x = {((4, 1, 1), (9, 1, 0), (0, 1, 1), (1, 1, 1))}  R is such that 
x2 = x thus x in R is an idempotent of R. 
 
 R has only finite number of idempotents in it. 
 
Example 4.42:  Let  
 

R = 

1

2

3

4

10

a

a

a

a

a

 
 
 
 
 
 
 
 
  



 ai  [0, 40)  [0, 31); 1  i  10, +, n} 
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be the special interval pseudo ring of infinite order.  R is 
commutative.  R has infinite number of zero divisors.   
 

R has ideals, R has finite pseudo subrings none of which are 
pseudo ideals. 
 
 R has also infinite pseudo subrings which are not ideals.  
R has only finite number of units and idempotents. 
 

I = 

(1,1)

(1,1)

(1,1)

(1,1)

  
  
     
  
  
    


  R is the multiplicative identity of R. 

 

(0) = 

(0,0)

(0,0)

(0,0)

(0,0)

  
  
     
  
  
    


  R is the additive identity of R. 

 

Let A = 

1

2

10

(a ,0)

(a ,0)

(a ,0)

 
 
    


 ai  [0, 40); 1  i  10, +, n}  R 

 

is a pseudo ideal of R and is of infinite order. 
 

Let B = 

1

2

10

(0,b )

(0,b )

(0,b )

 
 
    


 bi  [0, 31); 1  i  10, +, n}  R 

 

is a pseudo ideal of R and is of infinite order. 
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A  B = 

(0,0)

(0,0)

(0,0)

(0,0)

  
  
     
  
  
    


 that is for every a  A and every 

b  B we have A  B = 

(0,0)

(0,0)

(0,0)

(0,0)

  
  
     
  
  
    


. 

 

 Let M1 = 

1 2

3

4 5

(a ,a )

(a ,0)

(a ,a )

(0,0)

(0,0)

 
 
 
 
 
 
 
 
  



 a1, a4, a3  [0, 40) and a2, a5  

 [0, 31); +, n}  R  
 
be a pseudo subring of infinite order and M1 also a pseudo ideal 
of R. 
 
 Let  

N1 = 

1

2

3

4

10

a

a

a

a

a

 
 
 
 
 
 
 
 
  



 ai  {0, 10, 20, 30}  [0, 31); 1  i  10, 

+, n}  R  
be a pseudo  subring of R of infinite order.   



184 Algebraic Structures using  [0, n)  
 

N1 is not an ideal of R. 
 

Let P1 = 

1

2

3

4

10

a

a

a

a

a

 
 
 
 
 
 
 
 
  



 a  {0, 4, 8, 12, 16, 20, 24, 28, 32, 36}  

{0, 1, 2, 3, 4, 5, 6, …, 30}; 1  i  10, +, n}  R  
 
is a subring of R of finite order.  Clearly R is not a pseudo ideal 
of R. Let  
 

x = 

1

2

a

a

0

0

 
 
 
 
 
 
  


 and y = 1

2

8

0

0

a

a

a

 
 
 
 
 
 
 
 
  



  R we see x n y = 

0

0

0

 
 
 
 
 
 


  R 

 
is a zero divisor in R. 
 
Example 4.43:  Let  
 

R = 1 2

3 4

a a

a a

 
 
 

 ai  [0, 12)  [0, 9)  [0, 17); 1  i  4 +, n} 

 
be the commutative special interval pseudo ring of infinite 
order. 
 

 The additive identity of R is (0) = 
(0,0,0) (0,0,0)

(0,0,0) (0,0,0)

 
 
 

.   
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The multiplicative identity of R is I = 
(1,1,1) (1,1,1)

(1,1,1) (1,1,1)

 
 
 

  

under the natural product n of matrices. 
 

x = 
(5,8,9) (11,5,7)

(1,5,6) (1,1,1)

 
 
 

 and 

  

y = 
(5,8,9) (11,2,5)

(1,2,16) (1,1,1)

 
 
 

  R is such that  

 

x  y = 
(1,1,1) (1,1,1)

(1,1,1) (1,1,1)

 
 
 

. 

 

Let x = 
(6,0,0) (4,3,2)

(8,6,7) (6,3,5)

 
 
 

 and y = 
(2,8,12) (3,3,0)

(3,3,0) (6,3,0)

 
 
 

 

 

we see x n y = 
(0,0,0) (0,0,0)

(0,0,0) (0,0,0)

 
 
 

 is the zero divisor of R. 

 
 R has infinite number of zero divisors, but only finite 
number of units and idempotents. 
 

M = 1 1 1(a ,b ,c ) (0,0,0)

(0,0,0) (0,0,0)

 
 
 

 (a1, b1, c1)  ([0, 12)  [0, 9) 

 
 [0, 17))}  R is a pseudo subring as well as a pseudo ideal of 
R of infinite order. 
 
 We have also pseudo subrings of infinite order which are 
not pseudo ideals. 
 

 For take N = 1 1 1

2 3

(a ,b ,c ) (0,0,0)

(a ,0,0) (0,0,a )

 
 
 

 (a1, b1, c1)  ([0, 12)  
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 [0, 9)  [0, 17)), a2  {0, 2, 4, 6, 8, 10}  {0}  {0},  a3  {0} 
 {0}  {0, 1, 2, …, 16}}  R is a pseudo subring of infinite 
order and is not a pseudo ideal of R. 
 
 We have seen special types of special interval pseudo 
matrix rings. 
 
 Now we proceed onto study group pseudo rings using these 
special interval pseudo rings. 
 

Example 4.44:  Let RG = 
n

i i
i 0

a g





   n finite where G = {g  = 1, 

g1, …, gn} and ai  R = {[0, 25); 0  i  n} be the group interval 
pseudo ring which will be known as the special interval group 
pseudo ring as R is a special interval pseudo ring. 
 
 RG has zero divisors, RG has torsion elements as R  RG 
and G  RG (1  G and 1  R).  RG has pseudo subrings, 
pseudo ideals and idempotents and units.   
 

RG will be non commutative and if G is non commutative 
and if G is commutlative RG will be commutative. 
 
Example 4.45:  Let R = {[0, 12), +, } be the special interval 
pseudo ring and G = {S3 the symmetric group of degree three}.  
RS3 = RG be the special interval group pseudo ring of the group 
S3 over the special interval pseudo ring R. 
 

 We see S3  RS3 as 1 R and R  RS3 as 1 = 
1 2 3

1 2 3

 
 
 

 of 

S3 is the identity of S3. 
 

 Let x = 3 + 6 
1 2 3

3 2 1

 
 
 

 and y = 4 
1 2 3

2 1 3

 
 
 

 +  

 

8 
1 2 3

1 3 2

 
 
 

 + 4  RS3.   



Special Interval Semirings and special … [0, n)   187 
 
 
 

We see x  y = [3 + 6 
1 2 3

3 2 1

 
 

 
  [4 + 4 

1 2 3

2 1 3

 
 
 

 + 

 

8 
1 2 3

1 3 2

 
 

 
 

 

=  12 + 24 
1 2 3

3 2 1

 
 
 

  + 12 
1 2 3

2 1 3

 
 
 

 + 

 

24 
1 2 3

3 2 1

 
 
 

1 2 3

2 1 3

 
 
 

 + 24
1 2 3

1 3 2

 
 
 

 + 

 

48  
1 2 3

3 2 1

 
 
 

 
1 2 3

1 3 2

 
 
 

 = 0 (mod 12). 

 
Thus RS3 has zero divisors. 

 

Let x = 4 + 9 
1 2 3

2 3 1

 
 
 

 + 9 
1 2 3

3 1 2

 
 
 

  RS3  

 

We find x2 = (4 + 9 
1 2 3

2 3 1

 
 
 

 + 9
1 2 3

3 1 2

 
 

 
   

 

(4 + 9 
1 2 3

2 3 1

 
 
 

 + 9 
1 2 3

3 1 2

 
 

 
 

 

= 4 + 9 
1 2 3

3 1 2

 
 
 

 
1 2 3

2 3 1

 
 
 

 + 9 
1 2 3

2 3 1

 
 
 

1 2 3

3 1 2

 
 
 

. 

 
 

= 4 + 9 + 9 = 10. 
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Thus we have elements x in RS3 \ R which are such that x2 
 R. 

 

Consider y = 6 + 6 
1 2 3

2 1 3

 
 
 

  RS3 

 

y2 = (6 + 6
1 2 3

2 1 3

 
 

 
 (6 + 6 

1 2 3

2 1 3

 
 

 
 = 0;  

 
thus y is a nilpotent element of order two. 
 

Let x = 11 + 5 
1 2 3

1 3 2

 
 
 

  RS3; 

 

x2 = (11 + 5 
1 2 3

1 3 2

 
 

 
  (11 + 5 

1 2 3

1 3 2

 
 

 
 

 

= 1 + 55  2 
1 2 3

1 3 2

 
 
 

 + 1) 

 

= 2 + 2 
1 2 3

1 3 2

 
 
 

 = 2 [1 + 
1 2 3

1 3 2

 
 
 

] 

 
= 2x. 

 
This is also a special condition for in reals other than 2 

cannot be like this. 
 

x = 11 + 5 
1 2 3

1 3 2

 
 
 

 and  

 

y = 10 + 5 
1 2 3

1 3 2

 
 
 

  RS3. 
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We find x  y = (11 + 5 
1 2 3

1 3 2

 
 

 
  (10 + 5

1 2 3

1 3 2

 
 

 
 

 

 = 110 + 50 
1 2 3

1 3 2

 
 
 

 + 55 
1 2 3

1 3 2

 
 
 

 + 1  

 

 = 3 + 9 
1 2 3

1 3 2

 
 
 

. 

 

Let x = 11 + 5 
1 2 3

1 3 2

 
 
 

 and y = 11 + 7 
1 2 3

1 3 2

 
 
 

. 

 

 x  y = [11 + 5 
1 2 3

1 3 2

 
 

 
 [11 + 7 

1 2 3

1 3 2

 
 

 
 

 

= 121 + 55 
1 2 3

1 3 2

 
 
 

 + 77 
1 2 3

1 3 2

 
 
 

 + 11 (mod 12) 

 
= 0. 

 
Thus this gives a zero divisor.  The study of RS3 paves way 

to special properties like elements whose square  is two times it 
and so on.   

 
RS3 is a non commutative infinite special interval pseudo 

group ring. 
 
We have several interesting properties like substructures 

and so on.   
 

Let S = RP1 where P1 = 
1 2 3 1 2 3

,
1 2 3 1 3 2

     
    
     

 be a 

subgroup of S3, we see S is a commutative pseudo subring of 
RS3 which is not a pseudo ideal of RS3. 
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Let P4  = 
1 2 3 1 2 3 1 2 3

, ,
1 2 3 2 3 1 3 1 2

       
      
       

  R is a 

normal subgroup.  RP4 is also a pseudo subring and is a pseudo 
ideal of RP4. 

 
We see RS3 has non commutative pseudo subrings and all 

subrings are only commutative pseudo subrings.  This is a 
special type of pseudo ring which has non commutative pseudo 
subrings also for take TS3 where T = {0, 1, 2, 3, 4, …, 11} is the 
ring of modulo integers Z12. 

 
We see TS3 is of finite order and is a non commutative 

subring.  This subring has zero divisors, units and idempotents. 
 
Example 4.46:  Let RS4 where R = {[0, 19), +, } be the special 
interval pseudo ring and S4 be the symmetric group of degree 
four.   
 

RS4 has pseudo subrings which are both commutative and 
non commutative.   

 
Take PA4 where A4 is the alternative subgroup of S4.  RA4 

is non commutative pseudo subring of RS4.   
 

Consider RP where P = 
1 2 3 4

2 3 4 1

 
 
 

 be the subgroup 

of S4.  
 
RP is a commutative pseudo subring of infinite order.  This 

has both finite and infinite pseudo subrings.  Let S = TP1 where 
T = {0, 1, 2, …, 17, 18} [0, 19);  

 

P1 = 
1 2 3 4 1 2 3 4 1 2 3 4

, ,
1 3 4 2 1 4 2 3 1 2 3 4

       
      
       

  S4; S 

= TP1 is a pseudo subring which is commutative and is of finite 
order.  RS4 has several subrings of both finite and infinite order.  
RS4 is non commutative and has units. 
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Example 4.47:  Let B = RD2,7 be the special interval group 
pseudo ring of the group D2,7 over the special interval pseudo 
ring  R = {[0, 10), +, }. 
 
 We see B has zero divisors, units and idempotents.  B has 
commutative pseudo subrings as well as non commutative 
pseudo subrings.  B has also pseudo ideals.  However B is a non 
commutative pseudo ring. 
 
Example 4.48:  Let  
R = (S3  D2,7  A4) = B where R = {[0, 10) [0, 31)  [0, 48); 
+, } be the special interval pseudo ring, be the group pseudo 
ring.   
 

B has several zero divisors units and idempotents. B has 
pseudo ideals.  B is non commutative and of infinite order. 
 
 We study RG = B when R is an infinite pseudo integral 
domain like R = {[0, p); p a prime, , +} and G any group.  This 
study will be interesting. 
 
 Now we introduce special interval pseudo polynomial rings. 
 

Example 4.49:  Let R[x] = i
i

i 0

a x







 ai  [0, 35); +, } be the 

special interval pseudo polynomial ring where R is the special 
pseudo interval ring viz.  R = [0, 35), +, }.  
 
 R[x] has zero divisor. 
 Let p(x) = 7 + 21x + 14x2 and q (x) = 5 + 10x3  R[x] 
 
 p(x) q(x) = (7 + 21x + 14x2)  (5 + 10x3) 
 = 35 + 105x + 70x2 + 70x3 + 210x + 140x2 (mod 35) 
 = 0.   
 

Thus R[x] has zero divisors, as R is not a pseudo integral 
domain. 
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Example 4.50:  Let R[x] = i
i

i 0

a x







 ai  [0, 41); +, } be the 

special interval pseudo polynomial ring over the special interval 
pseudo ring R = {[0, 41), +, }. 
 
 Since R is a interval ring R[x] has zero divisor. 
 
 How to solve equations in R[x]?  We cannot use the 
formula to solve the quadratic equations with real coefficients. 
 
   Let p(x) = 6x2 + 19x + 34  R[x];  
   now p(x) = 6x2 + 19x + 34  
   = (3x + 40) (2x + 7) = 0. 
   Hence 3x + 40 = 0. 
   and 2x + 7 = 0 
 
   Now 3x = 1, x = 14. 

2x + 7 = 0 implies 2x = 34;  
x = 34  21 (mod 41). (As 2-1 = 21) 

 
 Thus x = 17 and x = 14 are the two roots of the equation 
6x2 + 19x + 34 = 0. 
 
 However if the coefficients of the polynomials are decimals 
we work for the roots in the following way. 
 
   Suppose p(x) = 14.775x2 + 25119x + 6.834 
   = (2.01 + 5.91x) (3.4 + 2.5x) = 0 
   Thus 5.91 x + 2.01 = 0 and 
   2.5 x + 3.4 = 0. 
 
 As these elements have no inverse we take 5.91x = 38.99;  
2.5x = 37.6 
 
 Interested reader can study how to solve these equations.  
   p(x) = x3 + 5.62x2 + 9.124x + 4.416 
   = (x + 3.2)  (x + 0.92) (x + 1.5) = 0. 
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   x + 0.92 = 0 and  
   x + 1.5 = 0. 
 
 This gives x = 37.8, 40.08 and 39.5. 
 
 However solving these equations is as hard as solving any 
equation in reals, here the special interval pseudo ring is infinite 
but it should be worked with modulo p if [0, p) is the interval 
used.   

However if R = {[0, p), +, } is taken as the pseudo interval 
ring we cannot make use of inverses as inverses do not exist so 
the question of making any polynomial p(x) into monic cannot 
be done.  So every polynomial in R[x] cannot be made into a 
monic polynomial. 
 
 However if p(x) is a polynomial p(x)  R[x] p(x) the 
derivative of p(x) with respect to x, for the coefficients are 
always take modulo p, where p is used in the interval [0, p) .  If 
p is not a prime the differentiation behaves in a different way.   
 

Example 4.51:  Let R[x] = i
i

i 0

a x







 ai [0, 6), +, } be the 

special interval pseudo polynomial ring.  
 

Let p(x) = 0.73x6 + 2x3 + 3x + 5  R[x].   
 

The derivative of p(x) is  
 

dp(x)

dx
 = 0.73 6x5 + 2.3x2 + 3 (mod 6) 

  
  = 3 a constant. 
 
 This is the unique property enjoyed by these special interval 
polynomials. 
 
 The differentiation is performed in a unique way.   

We can also integrate in a similar way.  
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 Thus polynomials in special interval pseudo ring is an 
interesting study for solving equations are difficult. 
 

Example 4.52: Let R[x] =  i
i

i 0

a x







  ai  [0, 16), +, } be the 

special interval pseudo polynomial ring using the special 
interval R = {[0, 16), +, }.  R[x]  has zero divisors, and a finite 
number of units.  R[x] has pseudo subrings, pseudo ideals and 
subrings.   
 

For P = 2i
i

i 0

a x







  ai  [0, 16), +, }  R[x] is a polynomial 

pseudo subring of R[x] of infinite order; if ai {0, 1, 2, …, 15} 
then also P is an infinite pseudo subring which is not a pseudo 
ideal. 

 
 We suggest the following problems for this chapter. 
 
Problems:  
 
1. Obtain some special features enjoyed by  
 R = {[0, n), min, max} the special interval semiring. 
 
2. Prove R = {[0, 27), min, max} has infinite number of 

subsemirings of order n, 0 < n < . 
 
3. Prove R = {[0, 143), min, max} has infinite number of 

subsemirings of infinite order. 
 
4. Prove R has no zero divisors and every element is an 

idempotent both with respect to min as well as max. 
 
5. Let R = {[0, 129), min, max} be the special interval 

semiring.  
 
 Prove R has infinite number of ideals which are not 

filters. 
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6. Let R = {[0, 24), min, max} be a special interval 

semiring.   
 
 Prove R has infinite number of filters which are not ideals 

of R. 
 
7. Can P  R = {[0, 25), min, max} where R is a semiring 

have P to be both an ideal and filter of R? 
 
8. Let R = {[0, 48), min, max} be the special interval 

semiring. 
 

(i) Find all subsemirings which are of infinite order (Is  
 it infinite collection?) 
(ii) Can R have ideals which are filters? 
(iii) Find some special features related with R. 

 
9. Let R = {(a1, a2, …, a7) | ai  [0, 24), 1  i  7, min, max} 

be a special interval semiring. 
 

(i) Show R has zero divisors. 
(ii) Prove R has infinite number of idempotents with  
 respect to both min and max. 
(iii) Prove R has infinite number of subsemirings. 
(iv) Can R have infinite number of ideals? 
(v) Find all semirings which are not ideals. 
(vi) Can R have filters which are ideals? 
(vii) Find all filters which are ideals and vice versa (if  
 any). 

 
10. Let S = {(a1, a2, …, a9) | ai  [0, 29), 1  i  9, max, min} 

be the special interval semiring.   
 
 Study questions (i) to (vii) of problem (9) for this S. 
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11. Let R1 = 

1

2

3

4

12

a

a

a

a

a

 
 
 
 
 
 
 
 
  



 ai  [0, 10); 1  i  12, max, min}  

 
 be the special interval semiring.   
 
 Study questions (i) to (vii) of problem (9) for this R1. 
 

12. Let R = 

1

2

3

4

9

a

a

a

a

a

 
 
 
 
 
 
 
 
  



 ai  [0, 9)  [0, 19); 1  i  9, max, min}  

 
 be the special interval semiring.  
 

(i) Study questions (i) to (vii) of problem (9) for this R. 
(ii) Compare this R with R1 of problem 11. 
 

13. Let R = 

1 2 3 4 5 6 7

8 14

15 21

22 28

29 35

a a a a a a a

a ... ... ... ... ... a

a ... ... ... ... ... a

a ... ... ... ... ... a

a ... ... ... ... ... a

 
 
  
 
 
  

 ai   

 
 [0, 143); 1  i  35, max, min} be the special interval 

semiring. 
 

(i) Study questions (i) to (vii) of problem (9) for this R. 
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14. Let R1 = 
1 2 12

13 14 24

25 26 36

a a ... a

a a ... a

a a ... a

 
 
 
  

 ai  [0, 13)  [0, 119);  

 
1  i  36, max, min} be the special interval semiring. 

 
(i) Study questions (i) to (vii) of problem (9) for this R. 
(ii) Compare R1 with R of problem 13. 
 

15. Let R = 

1 2 5

6 7 10

11 12 15

16 17 20

21 22 25

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

 
 
  
 
 
  

 ai  [0, 125); 1  i  25,  

 
 max, min} be the special interval semiring.   
 
 Study questions (i) to (vii) of problem (9) for this R. 
 

16. Let R1 = 

1 2 7

8 9 14

15 16 21

22 23 28

29 30 35

36 37 42

43 44 49

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

 
 
 
 
 
 
 
 
 
  

 ai  [0, 10)  [0, 26);  

 
1  i  4, max, min} be the special interval semiring.   

 
(i) Study questions (i) to (vii) of problem (9) for this R. 
 
(ii) Compare R1 with R of problem 15. 
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17. Let S = {[0, 13)  [0, 24)  [0, 53)  [0, 128); min, max} 
be the semiring.  

 
 Study questions (i) to (vii) of problem (9) for this S. 
 
18. Let Rt = {(a1 | a2 a3 | a4 a5 | a6 a7 a8 a9 | a10) | ai [0, 4)   

[0, 41); 1  i  10; max, min} be the special interval super 
matrix semiring.   

 
 Study questions (i) to (vii) of problem (9) for this Rt. 
 

19. Let M = 

1

2

3

4

5

6

7

8

9

10

11

a

a

a

a

a

a

a

a

a

a

a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ai  [0, 8)  [0, 11)  [0, 101);  

 
 1  i 11, max, min} be the special interval super column 

matrix semiring.   
 
 Study questions (i) to (vii) of problem (9) for this S.    
 
 Compare M with Rt of problem 18. 
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20. Let S = 
1 2 3 4 5 6 7

8 14

15 21

a a a a a a a

a ... ... ... ... ... a

a ... ... ... ... ... a

 
 
 
  

 ai  [0, 23)  

 
 
  [0, 14); 1  i  21, max, min} be the special interval 

super row matrix semiring.  
 
 
 Study questions (i) to (vii) of problem (9) for this S.    
 
 

21. Let M= 

1 2 3 4

5 8

9 12

13 16

17 20

21 24

25 28

29 32

33 36

37 40

41 44

a a a a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

a ... ... a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ai  [0, 15)  [0, 24)   

 
 
 [0, 9); 1  i  44, max, min} be the special interval 
 super column matrix semiring.  
 
 
 Study questions (i) to (vii) of problem (9) for this M.    
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22. Let N = 

1 2 3 4 5 6 7

8

15

22

29

36

42

a a a a a a a

a ... ... ... ... ... ...

a ... ... ... ... ... ...

a ... ... ... ... ... ...

a ... ... ... ... ... ...

a ... ... ... ... ... ...

a ... ... ... ... ... ...

 
 
 
 
 
 
 
 
 
  

 ai  [0, 25)  

 
  [0, 36); 1  i  49, max, min} be the special interval 

super column matrix semiring.  
 
 Study questions (i) to (vii) of problem (9) for this M.   
 
 

23. Let T =  

1 2 3 4 5 6 7 8

9

17

25

33

41

a a a a a a a a

a ... ... ... ... ... ... ...

a ... ... ... ... ... ... ...

a ... ... ... ... ... ... ...

a ... ... ... ... ... ... ...

a ... ... ... ... ... ... ...

 
 
 
  
 
 
 
  

 ai   

 
 [0, 48); 1  i  48, max, min} be the special interval super 

column matrix semiring.  
 
 Study questions (i) to (vii) of problem (9) for this T.   
 

24. Let  S =  

1 2 15

16 17 30

31 32 45

46 47 60

a a ... a

a a ... a

a a ... a

a a ... a

 
 
    

 ai  [0, 32)  [0, 32)   

 
 [0, 32); 1  i  60, max, min} be the special interval super 

column matrix semiring.  
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 Study questions (i) to (vii) of problem (9) for this S.   
 
25. Can R = {[0, 29), +, }, the special interval pseudo ring 

have non trivial pseudo ideals? 
 
26. Can R = {[0, 24), +, }; the special interval pseudo ring 

have pseudo ideals? 
 
27. Can R = {[0,  125), +, }; the special interval pseudo ring 

have pseudo subrings of infinite order. 
 
28. Can R = {[0, 127), +, }; the special interval pseudo ring 

have infinite pseudo subrings which are not pseudo 
ideals? 

 
29. Study the special and distinct properties enjoyed by 

special interval pseudo rings. 
 
30. Compare special interval pseudo rings with special 

interval semirings for any interval [0, n). 
 
31. Let R = {[0, 23), +, } be the special interval pseudo ring. 
 

(i) Can R have finite subrings? 
(ii) How many finite subrings R contains? 
(iii) Can R have infinite number of infinite pseudo  
  subrings? 
(iv) Can R have units? 
(v) Can R contain infinite number of units? 
(vi) Can R have idempotents? 
(vii) Can R have zero divisors? 
(viii) Can R have ideals? 

 
32. Let R1 = {[0, 25), +, } be a special interval pseudo ring.  
 

(i) Study questions (i) to (viii) of problem 31 for this  
 R1. 
(ii) Compare R1 with R of problem 31. 
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33. Let R = 
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai  [0, 11); 1  i  3, +, }  

 
 be the special interval pseudo ring under usual matrix 

product. 
 

(i) Prove R is commutative. 
(ii) Prove R has infinite number of zero divisors. 
(iii) Find at least 5 left zero divisors which are not right  
 zero divisors. 
(iv) Find atleast 4 right zero divisors which are not left  
 zero divisors. 
(v) Find idempotents of R. 
(vi) Find left pseudo ideals which are not right pseudo  
  ideals of R and vice versa. 
(vii) Can R have finite subrings? 
(viii) Is it possible for R to have finite pseudo ideals? 

 
34. Let R1 = {(a1, a2, a3, a4, a5) | ai [0, 28), 1  i  5, +, } be 

the special interval pseudo ring.   
 
 Study questions (i) to (viii) of problem 33 for this R1. 
 
35. Let R2 = {(a1, a2, …, a9) | ai [0, 32)  [0, 48), 1  i  9, 

+, } be the special interval row matrix pseudo ring.  
 

(i) Study questions (i) to (viii) of problem 33 for this  
 R2. 
(ii) Compare R1 of problem 34 with this R2. 
 

36. Let R = {[0, 43), +, } be a special interval pseudo ring.   
 
 Study questions (i) to (viii) of problem 33 for this R. 
 
37. Let M = {[0, 20) [0, 53), +, } be the special pseudo 

interval ring.   
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 Study questions (i) to (viii) of problem 33 for this M. 
 
38. Let N = {[0,  12)  [0, 28)  [0, 35), +, } be a special 

interval pseudo ring.  
 
 Study questions (i) to (viii) of problem 33 for this N. 
 
39. Let T = {[0, 7)  [0, 19)  [0, 23)  [0, 43), +, } be a 

special interval pseudo ring.   
 
 Study questions (i) to (viii) of problem 33 for this T. 
 

40. Let P = 

1

2

3

15

a

a

a

a

 
 
  
 
 
  


 ai  [0, 42); 1  i  15, +, n} be the  

 
 special interval pseudo ring.  
 
 Study questions (i) to (viii) of problem 33 for this P. 
 

41. Let M = 

1

2

3

10

a

a

a

a

 
 
  
 
 
  


 ai  [0, 31); 1  i  10, +, n} be the  

 
 special interval pseudo ring.  
 
 Study questions (i) to (viii) of problem 33 for this M.   
 
 Compare P of problem 40 with this M. 
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42. Let M = 

1

2

3

18

a

a

a

a

 
 
  
 
 
  


 ai  [0, 30)  [0,  48); 1  i  18, +, n}  

 
 be the special interval pseudo ring.  
 

(i) Study questions (i) to (viii) of problem 33 for this  
 L.  

 

43. Let D = 

1

2

3

9

a

a

a

a

 
 
  
 
 
  


 ai  [0, 29) [0, 61); 1  i  9, +, n} be  

 
 the special interval pseudo ring.  
 
 Study questions (i) to (viii) of problem 33 for this S.   
 

44. Let M = 

1 2 9

10 11 18

19 20 27

28 29 36

37 38 45

46 47 54

55 56 63

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

a a ... a

 
 
 
 
 
 
 
 
 
  

 ai  [0, 24); 1  i  63, +,  

 
 n} be the special interval pseudo ring.  
 
 Study questions (i) to (viii) of problem 33 for this M.   
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45. Let T = 
1 2 12

13 14 24

25 26 36

a a ... a

a a ... a

a a ... a

 
 
 
  

 ai  [0, 23)  [0, 24);  

 
 1  i  36, +, } be a special interval pseudo ring.  
 

(i) Study questions (i) to (viii) of problem 33 for this  
 T. 

 
(ii) Compare when in T; {+, } is replaced by {min,  
 max} so that the resulting algebraic structure is a  
 semiring. 
 
 

46. Let S = 

1 2 3 4 5 6

7 8 9 10 11 12

13 18

19 24

25 30

31 36

a a a a a a

a a a a a a

a ... ... ... ... a

a ... ... ... ... a

a ... ... ... ... a

a ... ... ... ... a

 
 
 
 
 
 
 
 
  

 ai  [0, 36)   

 
 [0, 41); 1  i  36, +, } be a special interval pseudo ring 

under the usual matrix product. 
 

(i) Prove S is non commutative. 
 
(ii) Study questions (i) to (viii) of problem 33 for this S. 

 
(iii) Find some right pseudo ideals of S which are not  
  left pseudo ideals of S. 

 
(iv) Find some right zero divisors of S which are not left  
 zero divisors of S. 
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47. Let W = 

1 2 3 4 5

6 7 8 9 10

11 15

16 20

21 25

a a a a a

a a a a a

a ... ... ... a

a ... ... ... a

a ... ... ... a

 
 
  
 
 
  

 ai  [0, 48);  

 
 1  i  25, +, } be the special interval pseudo ring under 

the usual matrix product.  
 
 Study questions (i) to (viii) of problem 33 for this W.  
 
 Study questions (i) to (iv) of problem 46 for this W. 
 
 
48. Let V = {(a1 a2 a3 a4 | a5 a6 | a7 a8 | a9) | ai  [0, 3)   [0, 12) 

 [0, 44); 1  i  9, + } be the special interval super 
matrix pseudo ring.   

 
 Study questions (i) to (viii) of problem 33 for this V. 
 
 
49. Let  
 

 P = 

1 2 3 4 5 6 7 8 9 10

11 20

21 30

31 40

a a a a a a a a a a

a ... ... ... ... ... ... ... ... a

a ... ... ... ... ... ... ... ... a

a ... ... ... ... ... ... ... ... a

 
 
    

 ai  

 
  [0, 43); 1  i  40, +, n} be the special interval super  
 row matrix pseudo ring. 
 

(i) Study questions (i) to (viii) of problem 33 for this P. 
 
(ii) If  [0, 43) is replaced by the interval [0, 30) what  
 are the special features associated with that P. 
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50. Let L = 

1

2

3

4

5

6

7

8

9

10

11

12

13

a

a

a

a

a

a

a

a

a

a

a

a

a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ai  [0, 36)  [0, 48); 1  i  13, +, n}  

 
 be the special interval column super matrix pseudo ring.   
 
 Study questions (i) to (viii) of problem 33 for this L. 
 

51. Let M = 

1

2

3

4

5

6

7

8

9

10

11

a

a

a

a

a

a

a

a

a

a

a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ai  [0, 43)  [0, 29)  [0, 61);  

 

 1  i  11, +, n} be the special pseudo interval super 
column matrix ring.   
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(i) Study questions (i) to (viii) of problem 33 for this  
 M. 
(ii) Compare this M with L of problem 50. 

 

52. Let P = 

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 ai  [0, 38)  [0, 54); 1  i  22, +,  

 
  n} be the special interval super column matrix pseudo 
  ring.   
 
    Study questions (i) to (viii) of problem 33 for this M. 
 

53. Let D = 

1 2 3 4 5 6

7 12

13 18

19 24

25 30

31 36

a a a a a a

a ... ... ... ... a

a ... ... ... ... a

a ... ... ... ... a

a ... ... ... ... a

a ... ... ... ... a

 
 
 
 
 
 
 
 
  

 ai  [0, 21)   

 
 [0, 48) [0, 32); 1  i  36, +, } be the special interval 

super matrix pseudo ring.   
 
 Study questions (i) to (viii) of problem 33 for this D. 
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54. Let R = 
1 2 3 4 5 6 7

8 14

15 21

a a a a a a a

a ... ... ... ... ... a

a ... ... ... ... ... a

 
 
 
  

 ai  [0, 48)  

 
  [0, 27); 1  i  21, +, } be the special interval super 

matrix pseudo ring.   
 
 Study questions (i) to (viii) of problem 33 for this R. 
 
55. Let M = {RG where R = {[0, 13), +, }, G = S4} be the 

special interval group pseudo ring. 
 

(i) Prove M is non commutative. 
(ii) Find idempotents of any in M. 
(iii) Find zero divisors of M. 
(iv) Find units of M. 
(v) Can M have pseudo subrings which are not pseudo  
  ideals? 
(vi) Can M have finite ideals? 
(vii) Characterize those subrings which are not ideals. 
(viii) Find any other property associated with this M. 
(ix) Can M be a pseudo principal ideal domain?  
  (prove your  claim). 

 
56. Let RD2,7 be the special interval group pseudo ring of D2,7 

over the ring R = {[0, 49), , +}.   
 
 Study questions (i) to (ix) of problem 55 for this RD2,7. 
 
57. Let RD2,11 be the special interval group pseudo ring of 

D2,11 over the special interval pseudo ring R = {[0, 9)  [0, 
24), +, }.   

 
 Study questions (i) to (ix) of problem 55 for this RD2,11. 
 
58. Let R(D2,8  S(3)) be the special interval group semigroup 

pseudo ring of the group semigroup D2,8  S(3) over the 
special interval pseudo ring R = {[0, 29), +, }.   
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 Study questions (i) to (ix) of problem 55 for this  
R(D2,8  S(3)). 

 
59. Let RS(5) be the special interval semigroup pseudo ring 

where R = {[0, 11)  [0, 23)  [0, 28), +, } and S(5) is 
the symmetric semigroup.  

 
 Study questions (i) to (ix) of problem 55 for this RS(5). 
 
60. Let RZ24  where R = {[0, 24)  [0, 17), +, } be the 

special interval pseudo ring and Z24 be the semigroup 
under , be the special interval semigroup ring of the 
semiring (Z24, ) over the special interval pseudo ring R.  

 
 Study questions (i) to (ix) of problem 55 for this RZ24. 
 
61. Let M = R(S7  D2,12) where R = {[0, 18), , +} be the 

special interval group pseudo ring of S7  D2,12 over R.  
 
 Study questions (i) to (ix) of problem 55 for this M. 
 
62. Let B = R(S(10)  S12  D2,11) where R = {[0, 7)  [0, 20) 

 [0, 48), +, } be the special interval pseudo ring.  B a 
special interval semigroup pseudo ring.   

 
 Study questions (i) to (ix) of problem 55 for this B. 
 
63. Let RD2,12 be the special interval group pseudo ring of the 

group D2,12 over the special interval pseudo ring  
 R = {[0, 12)  [0, 4), +, }.  
 
 Study questions (i) to (ix) of problem 55 for this B. 
 
64. Let RS(7) be the special interval semigroup pseudo ring 

of the symmetric semigroup S(7) over the special interval 
pseudo ring R = {[0, 7)  [0, 12)  [0, 15), +, }. 

 
(i) Prove RS(7) has zero divisors. 
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(ii) Study questions (i) to (ix) of problem 55 for this  
  RS(7). 

 
65. Let R(S5  D2,9) be the special interval group pseudo ring 

where R = {[0, 5)  [0, 9), +, } be the interval pseudo 
ring.   

 
 Study questions (i) to (ix) of problem 55 for this R(S5  

D2,9). 
 
66. Let B = RS4 be the special interval group pseudo ring 

where R = {[0, p); p any prime} be the special interval 
pseudo ring.   

 
 Study questions (i) to (ix) of problem 55 for this B. 
 

67. Let R[x] = i
i

i 0

a x







  ai  [0, 13), +, } be the special 

polynomial interval pseudo ring. 
 

(i) Can R[x] have zero divisors? 
(ii) Can R[x] have units? 
(iii) Can R[x] have pseudo ideals? 
(iv) Can R[x] have finite pseudo subrings? 
(v) Solve p(x) = 8x3 + 4x + 3 = 0. 
(vi) Is the solution to every polynomial in p(x) has  
 a unique set of roots? 
(vii) Characterize those p(x)  R[x]  whose derivatives  
 are constants. 

 

68. Let R[x] = i
i

i 0

a x







  ai  [0, 12), +, } be the special 

polynomial interval pseudo ring.  
 
 Study questions (i) to (vii) of problem 67 for this R[x]. 
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69. Let R1 [x] = i
i

i 0

a x







  ai  [0, 13)  [0, 24), +, } be the 

special polynomial interval pseudo ring.  
 
 Study questions (i) to (vii) of problem 67 for this R1 [x].   
 
 Compare R1[x] with R[x] in problem 68. 
 

70. Let R[x] = i
i

i 0

a x







  ai  [0, 12)  [0, 25)  [0, 37), +, } 

be the special polynomial interval pseudo ring.  
 
 Study questions (i) to (vii) of problem 67 for this R[x].   
 

71. Let R[x1, x2] =  i j
ij 1 2a x x ; 0  i, j  , +,  where  

R = [0, 39)  [0, 81)} be the special interval pseudo 
polynomial ring.  

 
(i) Study questions (i) to (vii) of problem 67 for this  
 R[x1, x2].   
(ii) Compare R[x1, x2] with R[x] in problem 70. 

 

72. Let R[x] = i
i

i 0

a x







  ai  [0, 31)  [0, 23)  [0, 43), +, } 

be the special polynomial interval pseudo polynomial 
ring.  

 
 Study questions (i) to (vii) of problem 67 for this R[x]. 
 
73. Find a C-program for finding roots of polynomials in 

special interval polynomial pseudo ring. 
 
74. Find some innovative application of these new 

polynomial pseudo rings. 
 
75. Find some special features enjoyed by these pseudo rings.  
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