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Abstract. A gauge theory of contact is presented, based on the general idea 

that the local deformation of the nucleon surface at contact should be gauged 

by the variation of curvature. A contact force is then defined so as to cope with 

both the variation of curvature, and the deformation. This force generalizes the 

classical definition of surface tension, in that it depends on the mean curvature, 

but also depends on the variance of the second fundamental form of surface, 

considered as a statistical variable over the ensemble of contact spots. It turns 

out that the variance of the second fundamental form does not depend but on 

the metric of the space of curvature parameters, organized as Riemann space. 

This result compels us to review the definition of physical surface of a nucleon. 
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 Introduction 

 In a previous work (Mazilu & Al., 2013) we corroborated some general results about the confining 

nuclear potential, pointing out to a way to take into consideration, unequivocally, the space expansion of the 

matter. This is a physically intuitive property of the matter, and should be quite critical, especially at the 

nuclear level. We have shown, for instance, that the logarithmic potential, so much circulated in numerical 

lattice calculations of the confining nuclear potential, can have sound explanations not just as a conjecture, 

but as a matter of principle, and hinted to the fact that this very principle should rest upon the property of 

color of matter in general. Even though at the theoretical level of elementary particles the color is considered 

no more than a quantum number, there are reasons to believe that this quantum number has a classical 

counterpart in the theory of light colors (Mazilu & Al., 2014), and that, for instance, the principle of 

asymptotic freedom in the theory of strong and weak interactions is an expression of this very fact. Intuitively, 

the color is due to the space expansion of the matter, and is a phenomenon due to its confining. This 

phenomenon occurs at the limit between matter and space. As, classically speaking, such a limit is modeled 

by a surface, the present work focuses on a special issue involving the idea of surface in the nuclear realm: 

that of the contact of nucleons in a nucleus. 

 The concrete trend of our line of research is to start from results already available in theoretical fields 

where the space expansion of the bodies is essential. One such field, with exquisite theoretical results based 

on the differential geometry of surfaces, is the description of abrasion phenomenon as a dynamical process 

at the end of which the bodies of a certain congregation, pebbles for instance, acquire round shapes. This is 

plainly the case in geology, whence, as a matter of fact, the theory originated (Firey, 1974; Bloore, 1977). 

We were lucky enough to have found, already published, a fresh work with an up-to-date bibliography 

(Domokos, Gibbons, 2013), and eagerly recommend it for a general idea on the dynamics of the process of 

shape changing of extended bodies and the problems involved therein. This exquisite review is quite a 

comprehensive introduction in the problem, with the latest results, thus allowing us to shorten the discourse 
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and focus on stressing out the essential points of our present effort which, while concentrating upon the same 

type of problems, takes another route: that of gauge-theoretical approach. 

 One can get a grip on the line of thought involved in this approach from a few works by Shapere and 

Wilczek, who treated this way the problem of swimming motion by shape change (Shapere, Wilczek, 1989a, 

b, c). The gauge field is defined here with reference to the rotation group acting on the space of shapes, and 

the tensor of force governing the dynamics is given by forces calculated from the variation of stress due to 

the change of shape. The time of the problem is obviously the classical time, and the treatment is, 

geometrically speaking, a’global’ one, unlike the problem of wearing of pebbles, where one has to focus on 

local contacts, and consider a statistic of these, in order to evaluate the change in shape. The attractive general 

idea of gauge-theoretical approach is the fact that the surface changes of an extended body are the ones 

deciding the gauge field potentials. We adopt this idea here, but with no reference to an a priori time, and not 

from a global geometrical point of view, for it seems natural that in a conglomerate of particles – like the 

pebbles – the local contacts are essential, and the force should actually be defined at a contact. 

 Thus, the whole idea of this work is that the nucleus can be conceived indeed as a collective of ‘pebbles’. 

Inside nucleus, these ‘pebbles’ – the nucleons, or congregations of nucleons – interact by contact, exactly 

like the real life pebbles, continuously adjusting each other’s surface. In order to carry this analogy over 

completely into nuclear realm, two ideas have to be worked out in detail, both related to the notion of contact, 

however not quite independent from one another, at least from a physical point of view. First of all, because 

the nucleons, considered as extended particles, are exterior to one another, they interact through spots of their 

exterior surfaces, around the points of contact. Our view here is that of a general contact: it can be, in the last 

resort, even characterized by a ‘proximity’, in a manner occasionally done before for the theory of nucleus 

(Błocki, Świątecki, 1981), involving pressures. These can be conceived as being of different intensities, even 

negative, in which case the contact should be ‘virtual’, i.e. the surfaces are at distance with respect to one 

another along the line of contact. Our main problem is therefore to characterize such a contact in the most 

general way. Secondly, even though the nucleons are assimilated with pebbles, one should keep always in 

mind the fact that they are not quite like ordinary pebbles from a material characterization point of view. 

Therefore they have to be described in a general way, allowing for an appropriate constitutive law, essential, 

as we see it, in the calculations of the confining potential, as our previous work shows (Mazilu & Al, 2013). 

This point will not be touched here though, but in a future communication. 

 Rather, we shall presently concentrate upon the general geometrical description of the contact, within the 

local description of surfaces. We start from the obvious observation that a contact is a local event, involving 

therefore a local deformation of the surfaces of nucleons, a process through which the physics gets in. A 

variant of the classical theory of surfaces, involving differential forms, then allows us to gradually introduce 

that physics into the process of deformation, through a special statistics. This is actually the whole task of 

the present theoretical effort. 

 The mathematical method itself, for carying out the task, is based on an almost trivial statement that 

emerged apparently largely unnoticed. In order to make it obvious, we reproduce here two of the Élie Cartan’s 

algebraical theorems which form the ground of his approach of differential geometry by moving frames (for 

a clear description of the concept, from the point of view we adopt in the present work, see Spivak 1999, 

Vol. II, Chapter 7). These are adapted directly from Cartan’s course, via the Russian geometrical school of 

S. P. Finikov (Cartan, 2001; pp. 16 – 17, Theorems 7 & 9), and we call them here Cartan Lemmas 1 and 2, 

only in order to be used in the present context: 

 Lemma 1. Suppose that s1, s2,…, sp is a set of linearly independent 1-forms. Then we have 

 jiij

j

kjkk

k aa;sa0s    
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where 1, 2,…, p is another set of linearly independent 1-forms, and summation over repeated indices is 

understood. 

 Lemma 2. Suppose the basis differential elements du1, du2, …, dun are connected by a system of equations 

 0...,0,0
p21
   

where ωj, j = 1, 2, …, p are linearly independent 1-forms. Then the 2-form f vanishes as a consequence of 

this system if, and only if, f can be written as 

 k

k
f    

where, again, summation over k is understood, and k are p conveniently chosen 1-forms. 

 The first one of these theorems is, by and large, known as Cartan’s Lemma proper in the specialty 

literature, while the second one carries no specific name. What seems to be essential in these lemmas, and is 

always stressed in old treatises, but is apparently forgotten lately, is the fact that symmetric matrix a from 

Lemma 1 and the 1-forms k from Lemma 2 are things external to the geometrical problem, through which 

the physics can therefore be introduced. In concentrating on the local contact in a point of a surface, without 

being interested of the global aspects of that surface, this observation is essential. 

 Classical Theory of Surfaces 

 Cartan’s differential form approach to the theory of surfaces (Guggenheimer, 1977), allows us to say 

that the local differential theory of surfaces is simply a consequence of the fact that the elementary 

(differential) displacement of a point of surface is an intrinsic vector of that surface. Everything in the 

differential theory of surfaces follows from this simple fact through the rules of handling of the differential 

forms. To wit, if x⃗  is the position vector of a point of surface, then dx⃗  should be an intrinsic vector of the 

surface, at least as long as no physical phenomenon occurs forcing the position to leave the surface. But even 

in such a case, instrumental from a physical point of view, the elementary variation of position can be 

described by a process of deformation through a continuous family of surfaces containing the position during 

that variation. 

 Let us now lay down the proper mathematical form of this portrayal of surfaces. Referring the local 

geometry at location x⃗  on the surface to an orthonormal frame (ê1, ê2, ê3), where ê3 is the unit normal at that 

location, we write 

  ê|xdêsêsxd 2

2

1

1
s


 (1) 

The second equality in this equation involves a “Dirac representation” of the vectors, to be used extensively 

here, quite handy in calculations, whereby, mostly for a fixed reference frame, the vectors are represented by 

matrices, regardless of the nature of their components and the number of dimensions of space. By the same 

token, the matrices themselves will be always represented by bold letters, no matter of case and array 

dimensions. For instance, in equation (1) we have: 
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and the same notations will be used for the vectors in space, if the case may occur. This notation for vectors 

will be used freely in conjunction with the general notation by an arrow over the letter designating the vector, 

mostly when the reference frame itself is meant to vary. 

 Now, according to differential calculus, the vector dx⃗  is a total differential vector, so that its exterior 

differential is the null vector. This can be expressed by equation 

 0|êdê|)d(0xdd


 ss  (3) 
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where “” means “exterior” for the designated operation (differentiation or multiplication). As to the 

variation of the reference frame, it is usually described by a Frenet-Serret evolution equation: 

  ê|êd| Ω  (4) 

where Ω is a skewsymmetric 3×3 matrix. In detail, the equation (4) appears as a system: 

 2

2

31

1

333

3

21

1
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3
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2

11 êêêd,êêêd,êêêd   (5) 

The last equation here represents the fact that the variation of the unit normal to surface is an intrinsic vector. 

As known, this vector expresses the local curvatures of the surface at the chosen location, which are obtained 

by its projections in different directions of the surface. So, for our specific needs it will be designated from 

now on as the curvature vector. With the help of system (5), the second equality from equation (3) becomes 

itself a system: 

 23

2

13

1

12

1

221

2

1
ss0,0ssd,0ssd   (6) 

The first two equations of this system express the fact that, in general, the components of the elementary 

displacement on the surface may not be exact differentials, but they can be always taken as exact differentials 

in cases where the connection form vanishes (a trivial instance is the case of a plane surface). The last 

equation of the system (6) can be exploited with the help of the Cartan’s Lemma 1, thus leading to a definition 

of the curvature matrix, which we represent conveniently by 
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with α, β, γ some parameters – the curvature parameters. 

 The trace of the curvature matrix gives the mean curvature, and its discriminant gives the Gaussian 

curvature. Our contention here, inspired by this way of introducing the curvature parameters, is that these 

are actually external parameters, possibly physical, a feature bestowed upon them by the Cartan’s lemma. 

Fact is that they are always subjected to variations when physical causes, like the contact of bodies, participate 

in changing the local aspect of their surface. However, their evaluation – in case one needs it, and has the 

conditions to do it, of course – can be done just by geometrical measurements on the surface, as in the usual 

classical procedure (Lowe, 1980). 

 The sign in equation (4) is so chosen that the projection of the second variation of the position vector 

along the normal to surface in the given point, is a quadratic form without sign. Thus: 

  s||sêdxdêxd0êxd 33

2

3 α


  

because of the skew symmetry of the matrix Ω. Obviously, the quadratic form from the right hand side here 

is the second fundamental form of the surface at the given location. Thus, one can say that, in the tangent 

plane of a surface at a given point, every vector is a linear combination between the elementary displacement 

and the curvature vector: 

  s|)(V||s|V|
3

αe   

where e is the identity 22 matrix, and λ, μ are two real parameters. The norm of such a vector is a quadratic 

form in the parameters λ and μ: 

 
33232

||s2s|sV|V   

having as coefficients the three fundamental forms of the surface at the chosen location: 

 

IIIII2I

s||ss||s2s|sV|V
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

 αα
  

The three bracketed coefficients of this quadratic form are, indeed, the fundamental forms of the surface at 

the chosen location: the first (I), the second(II) and the third (III). 
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 Nonconstant Curvature 

 We apply a Cartan gauging procedure (Pommaret, 2013) at a generic – but fixed – point from the tangent 

plane at a given position on the surface, infinitesimally close to that position. Because our point is fixed, we 

have from equation (7), in the Dirac notation: 

  s|dd| 3 α  (8) 

as an equation for the ‘orbits’ through |s, as it were. Now, using equation (7) itself, as the one determining 

those orbits, the equation (8) gives actually a definition of the variation of curvature vector in a certain point 

of the tangent plane, infinitesimally close to the point of contact: 

  

3

1

3 |)d(d| αα  (9) 

Each and every point |s from a tangent plane, at a given position on the surface, is characterized by such an 

equation defining the variation of curvature vector. Using the curvature parameters from equation (7) 

explicitly, the equation (9) is: 

  33 |)d(d| ωe  (10) 

where we denoted: 
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with ω1,2,3 the differential 1-forms: 
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Now, in order to interpret geometrically, and therefore physically, this definition, we need first to have some 

characterization of the vector from equation (10) with respect to the position |s from the tangent plane. This 

will then show how much the second fundamental form differs from the nominal one, calculated in the origin 

of the plane. From equation (10) we have by direct dot multiplication: 

  333 ||s|s)d(d|s ω  (13) 

Therefore the curvature variation ‘gauged’ through equation (10) induces a differential variation along the 

position vector in the tangent plane, proportional with the second fundamental form, but to which a certain 

quadratic form is added. Using equation (7) for calculating this quadratic form, results in 
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The general conclusion is that the variation of curvature parameters at a given position on the surface, 

involves three quadratic differential forms: the second fundamental form of surface in the given position, the 

quadratic differential from equation (14) and the quadratic differential 
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 (15) 

where the star denotes the usual Hodge duality operation on the differentials. Now, the two differential forms 

involved in equation (13), together with the one from equation (15) are, from algebraic point of view, a 

system of three mutually apolar quadratics (for the explanation of this concept see Burnside, Panton, 1960, 

pp. 333–334). The idea is thereby suggested, that the apolarity plays a fundamental role, when it comes to 

issues of the variation of curvature, and consequently to the physics involved in this variation of curvature. 

 Just for the benefit of present discussion, the algebraic apolarity is understood here as follows: two 

quadratics written in the form 

 2
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are apolar if their covariant 
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 122121 cabb2ca    

vanishes. The meaning of this fact is that the two corresponding quadratic equations (considered in a 

nonhomogeneous variable x/y, of course) have roots in a harmonic range: the cross-ratio of these roots, taken 

in a certain order, is –1. This is why two such quadratics are sometimes designated as mutually harmonic, 

mostly in the old classical treatises of algebra (see Burnside, Panton, 1960). 

 The whole physics involved in the local variation of curvature in a given position of a certain surface is 

therefore contained in the following reading of the previous calculus: an external agent somehow defines 

infinitesimal variations of the curvature parameters, which can be gauged by equation (10). These variations 

change the second fundamental form of the surface which, according to equation (13), becomes 

  s||s|s)d1(d|s 333 αω  (16) 

The two quadratic forms entering this expression of the new second fundamental form are apolar with the 

quadratic form (15) representing, as we shall see, some variation of the second fundamental form. 

 The physics can even be introduced in general terms, suggested by the generality of Cartan’s Lemma 1. 

Indeed, if the external perturbation is represented by a quadratic form with coefficients a, b, c say, viz. 

 222121
)s(csbs2)s(a)s(U   (17) 

then it changes the second fundamental form of the surface according to equation 

 222121
)s)(cb(ss)ca()s)(ba(II)]U(1[II   (18) 

where Δ(U) is a parameter depending only on the coefficients of U(s). 

 The Infinitesimal Deformation 
 In order to give an interpretation of the previous results we call upon one of the many description of the 

deformation of surfaces, namely the infinitesimal deformation (Guggenheimer, 1977, p. 245ff). Such a 

deformation gives a new surface described by the position vector 

 zx)(r

  (19) 

By its definition, this type of deformation is such that the variation of the first fundamental form is null for 

small ε, i.e. it remains approximately constant through the deformation: 

 0
II

lim xr

0










 (20) 

This condition leads to the following constraint for the vector z


: 

 xdyzd0zdxd


  (21) 

y


 here is an auxiliary vector, which cannot be quite arbitrary. Its properties are again simple consequences 

of the exterior differential calculus. Indeed, the vector zd


 in equation (21) should be an exact differential 

vector. Imposing this condition on the second of equations (21), and using again Cartan’s Lemma 1, leads 

directly to the following equations, where the definition ydv


  is used: 

 0v,BsAsv,CsBsv
3212211
  (22) 

Thus, the vector |v as defined here is practically an intrinsic vector of surface, which means that the normal 

component of the vector |y itself must be, locally, a constant. Moreover, by its definition v⃗  must be an exact 

differential vector. The condition that its exterior differential is the null vector, leads to equations like (6), 

but for v1 and v2. The third of those, combined with equation (22), then shows that A, B, C are constrained 

to satisfy the linear relation 

 0B2AC   (23) 

where , ,  are the coefficients of the second fundamental form (the entries of the curvature matrix). This 

shows that the flux through the tangent plane of the surface at the chosen location, is given by equation: 
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

 (24) 

has as magnitude a quadratic form, which is apolar to the second fundamental form. It only remains to 

elaborate on how the coefficients A, B, C can be related to the physics of our problem. 

 Infinitesimal Deformation Induced by Variation of Curvature Parameters 
 The parameters A, B, C are, again, external parameters, introduced by Cartan’s Lemma 1. We have 

noticed that the equation (23) is an apolarity condition, defining the apolarity between the quadratic form 

(24) and the second fundamental form in the point of surface considered. If we take these parameters as 

differential forms according to the rule of correspondence 

 321 C;B2;A  , (25) 

we can define an infinitesimal deformation, induced exclusively by the variation of curvature parameters. 

This infinitesimal deformation is then expressed by an addition to the second fundamental form, as we already 

mentioned before, given by equation (24) as: 
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This vector has indeed the magnitude given by equation (15), and therefore can be viewed as related somehow 

to the vector |dω3 defined in equation (9). It can be described by an auxiliary vector |y defining the 

deformation, which is directed along the normal to surface, and which acquires in-surface components by the 

very curvature parameters’ variations: 
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The corresponding first fundamental form on the deformed surface then becomes: 

 )|vv|(})y(1{,s||sI
223

εεehh   (28) 

where |v is defined in equation (22) but with the values (25) for the coefficients A, B, C. This matrix 

obviously reduces to the usual identity matrix, once the parameter ε  0. 

 Summing Up the Differential Geometry of Curvature Parameters 

 A few algebraical relations among the differential forms from equation (12) are in order. They form a 

basis (coframe) of a sl(2,R) algebra. We already alluded to a Lie group structure, by presenting equation (9) 

as a gauge equation referring to an ‘orbit’, obtained by left multiplication with the inverse of the curvature 

matrix. More than this, it turns out that, among other things, the space of curvature parameters can be 

organized as a Riemannian space. In order to show this, notice first the following differential relations in the 

space of curvature parameters, which can be proved by a direct calculation: 
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Here Θ is the differential 2-form 
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The 2-form Θ is closed because it is the exterior differential of a 1-form: 
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representing the classical Hannay angle for this problem. In the present context it can be written as 
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including explicitly the ratio between the mean and Gaussian curvatures. It gives therefore a way to found 

the mathematical procedure for the local contact problem, but certainly has everything in common with the 

original angle designated as such (Hannay, 1985; Berry, 1985). 

 On the other hand, we can verify the following relations: 
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












 133221 ;;  (32) 

Thus, from (29) and (32) we have indeed the characteristic equations of a sl(2, R) structure: 

 0)(2d;0d;0d 132323211   (33) 

Using these relations we can draw an important conclusion, destined to guide our future research. Notice, 

indeed, that in a given point of the surface, we can construct the 2-form in the curvature parameters’ space: 

 






 







01

10
;sss|)(d|s εαεω  (34) 

where we have used the equation (29) and the matrix ω from equation (11). As the 2-form Θ is a flux in the 

space of curvature parameters, viz. something analogous of the solid angle in the usual Euclidean space, the 

second fundamental form s|α|s of a surface, in a given point, is in fact the intensity (the value) of a flux in 

the space of curvature parameters, depending quadratically on the position in the local tangent plane. This 

philosophy can be used profitably, in constructing a statistic of the contact forces for a a nucleon in the 

nucleus. First, however, let us define the notion of contact force, in order to reveal the right place of the mark 

of Riemannian character of the space of curvature parameters: its metric. 

 A Definition of Contact Force 
 We introduce the contact force as a differential 2-form. It can be the component of a vector, or even the 

magnitude of a vector depending on the measure of the deformation of surface we manage to define. For, it 

is obvious that a local contact induces a local deformation of the surface, and that the force should be 

somehow related to this deformation. We define it as a 2-form: 

 23

2

13

1 ddf   (35) 

where 1 and 2 are two conveniently chosen differential 1-forms, and the components of the differential of 

curvature vector are defined in equation (10). The equation (35) incorporates a specific logic, allowed by 

Cartan’s Lemma 2. According to this lemma, the force is zero whenever there is not a variation of curvature 

in the given point, and reciprocally: if the force is zero, there is no variation of curvature. This last fact is 

intuitively obvious for an idea of contact force. However, in calculating such a force, one obviously has to 

take in consideration some particular physical circumstances, embodied in the choice of differential 1-forms 

1 and 2. The force can be zero even if there are curvature variations. 

 Thus, if the conveniently chosen auxiliary forms, in the definition (35) of the contact force, are the 

components of the first fundamental form, i.e. the components of the position vector |s in the tangent plane, 

then equation (35) simply shows that there is no contact force. Indeed, using equation (10) in (35), with s1 

and s2 instead of 1 and 2, this contact force should be 

 )ss)((f 21

213   (36) 

This is zero by the apolarity between the second fundamental form and the magnitude of vector from equation 

(26). Therefore, the whole point of this definition of the contact force is that it is simply zero for no 

deformation, but depends explicitly on the variations of the curvature parameters. 
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 Our example of infinitesimal deformation helps in further elucidating the idea. Assume, indeed, that a 

surface is deformed and this deformation can be expressed by a vector equation like equation (19). Now, if 

in equation (35) we choose the differential 1-forms 1,2 as the components of the displacement on the 

deformed surface, rather than the ones on undeformed surface as above, i.e.: 

 222111
dzs,dzs    

then according to equation (35), the contact force is given by: 

 )sdsd(yf
13

2

23

1

3
  (37) 

because by equation (21) for |dz, we have 

 132231
sydz,sydz    

with y3 the constant normal component of the auxiliary vector |y. With (10), equation (37) then gets the form 

 )ss()(
2

)(d)()y(f 212
31

3 











   

or, after a few calculations 

 )ss)((d)y(f
213

  (38) 

This is the classical form of the surface tension: the contact force is proportional with the variation of the 

mean curvature. It allows us to say something about the auxiliary vector |y, and then improve upon our 

definition of contact force. 

 First, we have to recall that the surface tension has always been judged, in the case of liquids for instance, 

by an equilibrium between the flux of internal molecular forces of a liquid, and the external global force, like 

the gravitation in the case of capillary phenomena. Hence the quantity εy3d(α+γ) in equation (38) should 

reflect such an equilibrium. One can say that the vector |y is always related to an equilibrium of forces, even 

in the case of the most general contact. More than that, the small quantity ε reflecting the magnitude of 

deformation should also be related to the equilibrium of forces over a contact spot. 

 The Statistics of Contacts on a Particle 
 The characterization of a local contact is closely related to a plane centric affine geometry. That is to say 

that if one insists in conducting a statistics of the contact forces on the surface of a certain nucleon, which is 

the natural course of thought in describing an internal dynamics of the nucleus, one has to consider the centric 

affine geometry in the tangent plane. This section shows a way to build such a statistics, based on the idea of 

continous Lie group characterizing the plane centric affine geometry. 

 The sl(2,R) action preserving origin of this plane geometry is given by the three vectors 

 
2

1

32

2

1

1

21

2

1
s

sX;
s

s
s

s
2

1
X;

s
sX



























  (39) 

while the corresponding action in the space of curvature parameters is realized by the vectors: 

 




























 2A;A;2A 321  (40) 

This last realization characterizes an intransitive action in the space of curvature parameters, which allows 

transitivity only along specific manifolds, given by constant discriminant of the second fundamental form. 

Therefore the action realized by operators (40) is transitive only at constant Gaussian curvature. 

 The functions of physical interest can be presented here as a joint invariants of any two of the actions 

given by equations (39) and (40), with the help of Stoka theorem (Stoka, 1968). According to this theorem, 

any joint invariant of the two actions is an arbitrary continuous function of the two algebraic formations 
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 2222121
,)s(ss2)s(   (41) 

Obviously the Gaussian probability density, for instance, if the case may occur, is only a special case of this 

theorem. By the same token, the straight lines through origin s1 = s2 = 0 can be presented as joint invariants 

of two actions realized by operators (39), while the joint invariants of two actions realized by operators (40), 

one in the variables a, b, c, say, the other in the curvature parameters α, β, γ, are arbitrary continuous functions 

of the following three algebraic formations (Mazilu, 2004): 

  b2ca,bac,
22

 (42) 

These are important in problems transcending the manifolds of transitivity, like for instance transitions 

between points of different Gaussian curvatures from the surface of a nucleon, of which an example will be 

given presently. These algebraic facts can give good reasons for a few further observations related to the 

classical statistical theory of contact points at the surface of a nucleon inside nucleus. 

 Before entering the calculational detail, let us notice that such a line of thought hints toward ammending 

the definition of a shape as given by Shapere and Wilczek (loc. cit.). Namely, we consider the instant shape 

of a nucleon first of all as a collection of elementary events, described by contact points, their extended 

contact spots and the contact forces on them. It is this collection that should be considered as an evolving 

part of a ‘phase space’ of shapes. The actual space shapes have yet to be constructed from these elements by 

a certain mathematical procedure corresponding to physical facts. The classical illuminating example is 

Fresnel’s construction of the wave surface from pieces accessible to diffraction experiments. 

 Thus, for instance, consider that the contact spots of a certain nucleonic surface, are dominated by the 

Dupin indicatrix at the contact points. According to Stoka theorem, the statistical ensemble of these contacts 

can be characterized by a normal probability density 

    














222121

2

21

XY )s(ss2)s(
2

1
exp

2
,,s,sp  (43) 

in two statistical variables X and Y, of which we don’t know too much for now, other than that they are the 

coordinates of position on any one of the contact spots of the surface of nucleon, as suggested before. 

 We have, therefore, a way to calculate the statistics of a quadratic variable Z(X, Y), obtained as before, 

in the process of deformation by contact, and having the generic values: 

 })s(csbs2)s(a{
2

1
)s,s(z

22212121
  (44) 

Thus we need to find first the probability density of this variable, under condition that the generic plane of 

contact is characterized by the a priori probability density as given, for instance, by the Gaussian in equation 

(43). The probability density of Z should also satisfy the Stoka theorem, in the precise sense that it must be 

a function of the algebraic formations from equation (42). This leaves us with a functionally undetermined 

probability density though, even if we impose some natural constraints in order to construct it. 

 Nevertheless, proceeding directly, in the usual manner of the statistical theoretical practice, we are able 

to solve the problem, at least in this particular case, with important results. Thus, we have to find first the 

characteristic function of the variable (44). This is the expectation of the imaginary exponential of Z, using 

(43) as probability density. Performing this operation directly, we get, with an obvious notation for the 

average: 

 
2

2
2

2

Zi

bac
)i(

bac

b2ca
)i(12

1
e











 
 

(45) 
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In view of (42), this characteristic function certainly satisfies the Stoka theorem, which thus reveals its right 

place in a physical theory: it should serve for the selection of the right physical functions, specifically the 

probability density, or the characteristic function, as in this case. Anyway, the sought for probability density 

can then be found by a routine Fourier inversion of the characteristic function from equation (45), based on 

existing tabulated formulas (see Gradshteyn, Ryzhik, 1994; 2007, especially the examples 3.384(43); 6.611 

(40); 9.215(16)&(39)). The result is: 

 






 







 
 z

2

BA
Iz

2

BA
expAB),,|z(p 0Z

 (46) 

Here I0 is the modified Bessel function of order zero, and A, B are two constants to be calculated from the 

formulas 

 BA;
bac

AB;
bac

cab2
BA

2

2

2










  (47) 

Again, this probability density obviously satisfies the Stoka theorem, as it is a function of the joint invariants 

from equation (42). And so do the statistics of the variable Z, i.e. its mean and variance, for they can be 

calculated as 

 
2

22

222

22
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baccab2

2

1

BA

BA

2

1
)Zvar(;

cab2

2

1
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BA

2

1
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


























  (48) 

We thus have the interesting conclusion that the essential statistics related to variable Z do not depend but on 

its coefficients and the values of the curvature parameters characterizing the point of contact. 

 Contact Force by a Statistic 
 First of all, the previous theory can help us secure, from a theoretical point of view, a purely statistical 

connotation in the curvature space itself. Assume indeed, that a, b and c are some variations of the curvature 

parameters α, β and γ, respectively, over the ensemble of contact points representing the instantaneous surface 

of a nucleon. It thus turns out that the quantity with values given by equation (44), is actually a variation of 

the second fundamental form, controlled only by the variations of its coefficients. It is a statistical variable – 

let us call dZ in order to show its differential nature – which has, according to equation (48), the expectation 

 2

ddd2

2

1

AB

BA

2

1
dZ









 

(49) 

and the variance 
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(49) 

From these formulas we get a statistic having a special geometrical meaning: 

  
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

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
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


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

 

(50) 

The right hand side of this formula carries indeed a special meaning: it is the Riemannian metric which can 

be built by the methods of absolute geometry for the space of the 2×2 matrices, having the curvature matrices 

with null Gaussian curvature as points of the absolute quadric (Mazilu, Agop, 2012). This is the Klein model 

of the so-called ‘fourth geometry of Poincaré’, in the modern views (see Duval, Guieu, 1998). In fact, one 

can prove that the quadratic form (50) is just the Cartan-Killing metric of a homographic action of the 2×2 

real symmetric matrices. This is indeed the quadratic form 
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2 
 

(51) 

where ω1,2,3 are the 1-forms from equation (12). 

 Now, in order to introduce the contact force in our formalism, we only need to adopt the natural 

hypothesis that the deformation it induces is also to be accounted for by the variation of curvature. The 

considerations above just show a logical way toward that connection. Specifically, we leave the realm of 

infinitesimal deformation expressed by an auxiliary vector |y, and adopt its generalization through the 

apolarity condition (23). The vector representing the deformation, is then basically that from equation (27). 

Considering, for the sake of illustration, the small parameter ε, as well as a constant local stretch of the surface 

metric, included in the variation of the curvature parameters, the metric tensor expressing this deformation is 

given by equation (28) as 
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(52) 

The eigenvalues of this matrix are 1 and 1+v|v. The corresponding eigenvectors are 
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(53) 

respectively. We choose their components as the convenient differential forms 1,2 from the definition of 

contact force in equation (35). Accordingly the contact force can be described as a vector in the local tangent 

plane, whose components in the two orthogonal eigendirections of the metric tensor are given by 
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(54) 

The first one of these components is null according to definition (35): naturally, there is no component of 

contact force along a direction, if there is no deformation along that direction. As to the second component, 

using equation (27), it is 
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Assuming now the gauge definition of the variation of curvature, as given by equations (10) and (11) this 

contact force becomes 
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Recall that we are using here the exterior multiplication in the tangent plane at a point of nucleon surface, 

not in the space of curvature parameters! With equations (7), (23) and (25) this 2-form is 

 )ss]}()2)[(()]())(2[(d{f 21
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After some lengthy, but otherwise straightforward calculations, based on equation (12), we reduce this force 

to its final expression 

 )ss}()2(dd){(f 21
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2

22 
 

(55) 

where  is the variable defined in equation (31), by the ratio of the two curvatures. 

 Just like the classical surface tension, this force contains the mean curvature of the surface in a point. 

However, unlike that classical expression it also depends on the variance of the increment of the second 

fundamental form due to a proces of ‘wrinkling’ at the contact, a phenomenon expressed by the variations of 

curvature parameters. If either one of the mean and Gaussian curvatures is not affected by this ‘wrinkling’, 
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the magnitude of the contact force thus defined can be expressed exclusively by the Riemannian metric of 

the space of curvature parameters. 

 Conclusions and Outlook 

 A nucleon inside nucleus, can be conceived as a convex body limited in space by an irregular surface in 

permanent transformation due to interactions with the other nucleons. If it is to have some understanding of 

the strong and weak forces inside nuclear matter, then we have to describe a very first instance of the 

interactions between nucleons, namely the contact. There are two aspects of the geometrical and physical 

theory of contact: first the a priori choice of the location on the host surface of a generic nucleon, then the 

measure of the contact spot, due to the neighboring nucleons and their contact forces. 

 A natural idea about the physical description of the contact on the host surface, is that this contact is local, 

at least at a certain scale, and changes the curvatures of the surface at the location it takes place. This fact has 

the twofold consequence that can be clearly put into mathematical form: on one hand, a deformation of 

surface expressed by local curvature changes, on the other a certain definition of the variation of the curvature 

vector. These two mathematical results converge into a logical definition of the contact force as a differential 

2-form that generalizes the classical definition of superficial tension. 

 The space of curvature parameters can be organized as a Riemann space, whose metric, has the precise 

statistical meaning as the variance of a certain deviation of the second fundamental form from its nominal 

value, due to the variation of its coefficients (the curvature parameters). The contact force, as defined here, 

is proportional with the nominal mean curvature as in the classical case, but also involves the variance of the 

second fundamental form, therefore the Riemannian metric of the space of the curvature parameters. This 

fact can have important consequences in the description of the dynamics of a nucleon inside nucleus by a 

gauge theory. But unlike the classical case of Shapere and Wilczek, the gauge is defined by the variation of 

local curvature, and asks for a proper definition of the instantaneous nucleon surface. This one can be 

conceived as an ensemble of ‘elements of contact’, whose characteristic contact force already contains a 

statistical element through the variance of the second fundamental form. 

 The actual (spatial) instantaneous surface of a nucleon is nevertheless a matter of further elaboration. 

However, one could say that this elaboration can take advantage of a sound guidance, both from the classical 

Fresnel theory of the wave surface of light, and the modern theory of a holographic universe, according to 

which the interior of a nucleon should be structured as a hologram (’t Hooft, 1993; Susskind, 1994). In this 

respect, the actual surface of the nucleon can even be taken as a fuzzy sphere in the sense of Madore (Madore, 

1992). This can be quite a natural approach, in view of the fact that with the variation of the curvature 

parameters, as presented in this work, we are actually in the realm of sl(2, R) Lie algebra. 
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