Another Proof that the Catalan's Constant is Irrational

Edigles Guedes
edigles.guedes@gmail.com

August 8, 2013.

Put all your hope in God, not looking to your reason for support.
Proverbs 3:5

ABSTRACT. We use the contradiction method for prove, again, that the Catalan's constant is irrational.

1. INTRODUCTION

In Mathematics, the Catalan's constant [1] is defined by

$$
\begin{equation*}
G:=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}} . \tag{1.1}
\end{equation*}
$$

The Catalan's constant was named after Eugène Charles Catalan (30 May 1814 - 14 February 1894), a French and Belgian mathematician.

In previous paper [2], we prove that the constant G is irrational. In this paper, we damos outra prova de que the constant G is irrational.

2. THE PROOF

LEMMA. The Catalan's constant have the following representation in series

$$
G=8 \sum_{n=0}^{\infty} \frac{2 n+1}{\left(16 n^{2}+16 n+3\right)^{2}}
$$

Proof. We developed the power series formula from the definition of Catalan's constant as follows

$$
\begin{aligned}
G= & \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}} \\
= & \frac{(-1)^{0}}{(2 \cdot 0+1)^{2}}+\frac{(-1)^{1}}{(2 \cdot 1+1)^{2}}+\frac{(-1)^{2}}{(2 \cdot 2+1)^{2}}+\frac{(-1)^{3}}{(2 \cdot 3+1)^{2}}+\frac{(-1)^{4}}{(2 \cdot 4+1)^{2}}+\frac{(-1)^{5}}{(2 \cdot 5+1)^{2}}+\cdots \\
& =\frac{1}{(2 \cdot 0+1)^{2}}+\frac{1}{(2 \cdot 2+1)^{2}}+\frac{1}{(2 \cdot 4+1)^{2}}+\cdots-\frac{1}{(2 \cdot 1+1)^{2}}-\frac{1}{(2 \cdot 3+1)^{2}}-\frac{1}{(2 \cdot 5+1)^{2}} \cdots \\
= & \frac{1}{(2 \cdot 0+1)^{2}}+\frac{1}{(2 \cdot 2+1)^{2}}+\frac{1}{(2 \cdot 4+1)^{2}}+\cdots-\left[\frac{1}{(2 \cdot 1+1)^{2}}+\frac{1}{(2 \cdot 3+1)^{2}}+\frac{1}{(2 \cdot 5+1)^{2}}+\cdots\right] \\
& =\frac{1}{[2 \cdot(2 \cdot 0)+1]^{2}}+\frac{1}{[2 \cdot(2 \cdot 1)+1]^{2}}+\frac{1}{[2 \cdot(2 \cdot 2)+1]^{2}}+\cdots \\
& \quad-\left\{\frac{1}{[2 \cdot(2 \cdot 0+1)+1]^{2}}+\frac{1}{[2 \cdot(2 \cdot 2+1)+1]^{2}}+\frac{1}{[2 \cdot(2 \cdot 2+1)+1]^{2}}+\cdots\right\}
\end{aligned}
$$

$$
\begin{aligned}
=\frac{1}{(4 \cdot 0+1)^{2}}+\frac{1}{(4 \cdot 1+1)^{2}}+ & \frac{1}{(4 \cdot 2+1)^{2}}+\cdots-\left[\frac{1}{(4 \cdot 0+3)^{2}}+\frac{1}{(4 \cdot 1+3)^{2}}+\frac{1}{(4 \cdot 2+3)^{2}}+\cdots\right] \\
& =\sum_{n=0}^{\infty} \frac{1}{(4 n+1)^{2}}-\sum_{n=0}^{\infty} \frac{1}{(4 n+3)^{2}} \\
& =\sum_{n=0}^{\infty} \frac{(4 n+3)^{2}-(4 n+1)^{2}}{(4 n+1)^{2}(4 n+3)^{2}} \\
& =\sum_{n=0}^{\infty} \frac{16 n+8}{(4 n+1)^{2}(4 n+3)^{2}} \\
& =8 \sum_{n=0}^{\infty} \frac{2 n+1}{[(4 n+1)(4 n+3)]^{2}} \\
& =8 \sum_{n=0}^{\infty} \frac{2 n+1}{\left(16 n^{2}+16 n+3\right)^{2}} .
\end{aligned}
$$

THEOREM. The Catalan's constant is irrational.

Proof. We will use the reductio ad absurdum.
By hypothesis, we suppose that G is a rational number. Of course, there exist two positive integers a and b, such that $G=a / b$, where, clearly, $b>1$. Firstly, we define the number

$$
\begin{equation*}
x:=\frac{\left(16 b^{2}+16 b+3\right)!^{2}}{4^{8 b^{2}+8 b+1}\left(8 b^{2}+8 b+1\right)!\left(8 b^{2}+8 b\right)!} \cdot\left(G-8 \sum_{n=0}^{b} \frac{2 n+1}{\left(16 n^{2}+16 n+3\right)^{2}}\right) . \tag{2.1}
\end{equation*}
$$

If G is rational, then x is an integer. We substitute $G=a / b$ into this definition to find
(2.2) $x=\frac{\left(16 b^{2}+16 b+3\right)!^{2}}{4^{8 b^{2}+8 b+1}\left(8 b^{2}+8 b+1\right)!\left(8 b^{2}+8 b\right)!} \cdot\left(\frac{a}{b}-8 \sum_{n=0}^{b} \frac{2 n+1}{\left(16 n^{2}+16 n+3\right)^{2}}\right)$
$=\frac{\left(16 b^{2}+16 b+3\right)!^{2} a}{4^{8 b^{2}+8 b+1} b\left(8 b^{2}+8 b+1\right)!\left(8 b^{2}+8 b\right)!}$
$-8 \sum_{n=0}^{b} \frac{\left(16 b^{2}+16 b+3\right)!^{2}(2 n+1)}{4^{8 b^{2}+8 b+1}\left(8 b^{2}+8 b+1\right)!\left(8 b^{2}+8 b\right)!\left(16 n^{2}+16 n+3\right)^{2}}$.
It is obvious that the first term is an integer, because, for $b>1$, then $4^{b}(b!)^{2}<$ $(2 b+1)!^{2}$. The second term is an integer, because, for $b>1$, then $(2 n+1)^{2} 4^{b} b((b-$ $1)!)^{2}<(2 b+1)!^{2}$. Hence x is an integer.

We, now, demonstrate that $0<x<1$.
First, we demonstrate that x is strictly positive, we insert the series representation of G into the definition of x and we find
(2.3) $x=\frac{(2 b+1)!^{2}}{4^{b} b((b-1)!)^{2}}\left|\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}-\sum_{n=0}^{b} \frac{(-1)^{n}}{(2 n+1)^{2}}\right|$

$$
\begin{aligned}
& =\frac{(2 b+1)!^{2}}{4^{b} b((b-1)!)^{2}}\left|\sum_{n=b+1}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}\right|=\frac{(2 b+1)!^{2}}{4^{b} b((b-1)!)^{2}}\left|\sum_{n=b+1}^{\infty} \frac{\cos (\pi n)}{(2 n+1)^{2}}\right| \\
& >\frac{(2 b+1)!^{2}}{4^{b} b((b-1)!)^{2}}\left|\int_{b+1}^{\infty} \frac{\cos (\pi x)}{(2 x+1)^{2}} d x\right| \\
& =\frac{(2 b+1)!^{2}}{4^{b} b((b-1)!)^{2}}\left|-\frac{1}{4} \pi \operatorname{Ci}\left(\left(b+\frac{3}{2}\right) \pi\right)-\frac{\cos (\pi b)}{4 b+6}\right|>0
\end{aligned}
$$

On the other hand, for all terms with $2 n+1 \geq 2 b+2$, i.e., $2 n \geq 2 b+1$, we have the upper estimate

$$
\begin{equation*}
\frac{(2 b+1)!}{(2 n+1)!} \leq \frac{1}{(2 b+2)^{2 n-2 b}} \tag{2.4}
\end{equation*}
$$

This inequality is strict for every $2 n+1 \geq 2 b+3$, i.e., $n \geq b+1$. Thereof, we substitute (1.1) and (2.4) in (2.1)

$$
\begin{gather*}
x=\frac{(2 b+1)!^{2}}{4^{b} b((b-1)!)^{2}}\left|\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}-\sum_{n=0}^{b} \frac{(-1)^{n}}{(2 n+1)^{2}}\right| \tag{2.5}\\
=\frac{(2 b+1)!^{2}}{4^{b} b((b-1)!)^{2}}\left|\sum_{n=b+1}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}}\right|<\frac{(2 b+1)!^{2}}{4^{b} b((b-1)!)^{2}}\left|\sum_{n=b+1}^{\infty} \frac{(-1)^{n}}{(2 n+1)!^{2}}\right| \\
=\frac{1}{4^{b} b((b-1)!)^{2}}\left|\sum_{n=b+1}^{\infty} \frac{(-1)^{n}(2 b+1)!^{2}}{(2 n+1)!^{2}}\right|<\frac{1}{4^{b} b((b-1)!)^{2}}\left|\sum_{n=b+1}^{\infty} \frac{(-1)^{n}}{(2 b+2)^{2 n-2 b}}\right| \\
=\frac{1}{4^{b} b((b-1)!)^{2}}\left|-\frac{(-1)^{b}}{4 b^{2}+8 b+5}\right|<1
\end{gather*}
$$

Since there is no integer strictly between 0 and 1, we have get in a contradiction, and so G must be irrational.

REFERENCES

[1] http://en.wikipedia.org/wiki/Catalan's_constant, available in July 12, 2013.
[2] Guedes, Edigles, An Elegant Proof that the Catalan's Constant is Irrational, July 12, 2013, vixra.

