Exploring Prime Numbers and Modular Functions II:
 On the Prime Number via Elliptic Integral Function

Edigles Guedes
November 16, 2013
In the beginning was the Word, and the Word was with God, and the Word was God.
John 1:1

ABSTRACT. The main goal this paper is to develop an asymptotic formula for the prime number, using elliptic integral function.

1. INTRODUCTION

As consequence of the prime number theorem, I put the asymptotic formula for the nth prime number, denoted by p_{n} :

$$
\begin{equation*}
p_{n} \sim n \ln n . \tag{1}
\end{equation*}
$$

In this paper, I prove that

$$
p_{n} \sim 2 n K\left(\frac{256 n-4}{256 n+4}\right)-\frac{\ln 2}{8}(64 n+1)-\frac{\ln n}{64} .
$$

2. THEOREM

THEOREM 1. I have

$$
p_{n} \sim 2 n K\left(\frac{256 n-4}{256 n+4}\right)-\frac{\ln 2}{8}(64 n+1)-\frac{\ln n}{64},
$$

where p_{n} denotes the nth prime number and $K(x)$ denotes the complete elliptic integral of first kind.
Proof. In [1], we encounter the identity

$$
\begin{equation*}
\operatorname{agm}(x, y)=\frac{\pi}{4} \cdot \frac{x+y}{K\left(\frac{x-y}{x+y}\right)} \tag{2}
\end{equation*}
$$

In [2], we encounter an alternative for extremely high precision calculation is the formula

$$
\ln n \approx \frac{\pi}{2 \operatorname{agm}(1,4 / s)}-m \ln 2,
$$

where agm denotes the arithmetic-geometric mean of 1 and $4 / s$, and

$$
s=n \cdot 2^{m}>2^{p / 2},
$$

with m chosen so that p bits of precision is attained. Now, the value of 8 for m is sufficient. Hence,

$$
\begin{equation*}
\ln n \approx \frac{\pi}{2 \operatorname{agm}(1,4 / 256 n)}-8 \ln 2 \tag{3}
\end{equation*}
$$

Substituting (2) into (3), I get around

$$
\begin{equation*}
\ln n \approx \frac{512 n K\left(\frac{256 n-4}{256 n+4}\right)}{256 n+4}-8 \ln 2=\frac{128 n K\left(\frac{256 n-4}{256 n+4}\right)-8 \ln 2(64 n+1)}{64 n+1} \tag{4}
\end{equation*}
$$

Wherefore,

$$
\begin{align*}
& (64 n+1) \ln n \approx 128 n K\left(\frac{256 n-4}{256 n+4}\right)-8 \ln 2(64 n+1) \tag{5}\\
& n \ln n \approx \frac{128}{64} n K\left(\frac{256 n-4}{256 n+4}\right)-\frac{8}{64} \ln 2(64 n+1)-\frac{\ln n}{64} \\
& n \ln n \approx 2 n K\left(\frac{256 n-4}{256 n+4}\right)-\frac{\ln 2}{8}(64 n+1)-\frac{\ln n}{64}
\end{align*}
$$

I take (5) in (1), and achieve

$$
p_{n} \sim 2 n K\left(\frac{256 n-4}{256 n+4}\right)-\frac{\ln 2}{8}(64 n+1)-\frac{\ln n}{64} .
$$

This completes the proof.

REFERENCES

[1] http://en.wikipedia.org/wiki/Arithmetic_geometric_mean, available in November 16, 2013.
[2] http://en.wikipedia.org/wiki/Natural_logarithm, available in November 16, 2013.
$\kappa \alpha \iota \delta \iota \zeta l \kappa \alpha \iota s$

