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Abstract 

One of the major issues that remained controversial in classical thermodynamics is resolved. The issue is: 

Is it possible for the efficiency of an arbitrary reversible heat engine cycle to be equal to the efficiency of 

the enclosing Carnot cycle? Taking the simplest case of a reversible cycle that involves heat interactions 

at three different temperatures, we demonstrate that the answer is in the affirmative. We also show that if 

it is possible for the efficiency of an arbitrary reversible cycle to be lower than the efficiency of the 

enclosing Carnot cycle, then it is also possible for the efficiency of an arbitrary reversible cycle to be 

greater than the efficiency of the enclosing Carnot cycle. If the later is impossible, the former, too, is 

impossible. The later, however, is impossible according to Carnot’s corollary. Therefore, inequality of 

efficiencies of the two cycles is impossible. The only option left is equality of their efficiencies. 

______________________________________________________________________________ 
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1. Introduction 

Ever since the efficiency of Carnot heat engine cycle (Carnot cycle) is defined in such a way that its value 

is less than one, troubles started
1
. Efficiency of arbitrary reversible cycles is an issue discussed in physics 

and chemistry education journals from time to time [1-5]. Arbitrary reversible cycles can be considered as 

combinations of Carnot cycles. Such combinations of Carnot cycles are used to demonstrate many 

important results in thermodynamics. A few among such results are, for example: (1) the demonstrations 

of Clausius’ theorem that entropy of an arbitrary reversible cyclic process is zero [6], (2) the development 

of the concept of Kelvin temperature scale [7], and (3) the demonstrations that Carnot heat engine has the 

maximum possible efficiency, of all heat engines interacting with the same pair of heat reservoirs (HRs) 

at temperatures TH and TL [8]. When applied to combinations of Carnot cycles, the definition of 

efficiency leads to many problems. One such problem is connected with the question: Is it possible for the 

efficiency of an arbitrary reversible cycle to be equal to the value of efficiency of the enclosing Carnot 

cycle
2
? We address this question here in part A. Another problem with efficiency of reversible cycles is 

connected with the question: Do different reversible cycles operating between maximum and minimum 

temperatures TH and TL respectively, have different values of efficiency? We address this question in part 

B using Fermi’s method [8]. 

 

                                                           
1
 In fact, such a definition forced itself as a necessary consequence of rejecting the caloric theory of heat, according 

to which heat was a conserved quantity. 
2
 An enclosing Carnot cycle is one which brings about a loss of heat in HR at TH and a gain of heat in HR at TL (TH and 

TL being the highest and the lowest temperatures of heat interaction between the system and the surroundings in 
the given arbitrary cycle).  
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2. n-T Cycle 

 

A heat engine transforms heat into mechanical work. It works around a cycle. In general, an arbitrary 

reversible heat engine cycle involves heat interaction between the system and the surroundings at two or n 

(>2) temperatures. When n = 2 we call it Carnot cycle and when n > 2, we call it n-T cycle. We depict the 

cyclic processes pictorially using temperature-entropy (T-S) diagrams instead of the usual pressure-

volume (P-V) diagrams, since the former are easier to draw. A typical 5-T cycle is shown in figure 1. 

 

 

 

                                                                                                                             

  

 

 

 

 

 

 

 

 

 

 

     

                                                 Fig. 1. T-S Diagram of a n-T reversible cycle. 

 

A 2-T cycle (n = 2) is the well known Carnot cycle. A 3-T cycle is the simplest of non-Carnot cycles. It is 

important to note that, though heat interaction occurs at n (>2) temperatures during a cycle, it is possible 

in principle, that HRs at (n-1), ((n-1) ≥ 2) different temperatures only suffer change; the other HRs suffer 

no change as their gains and losses of heat being equal. For example, heat interaction may occur during a 

cycle at three different temperatures but it is possible in principle for HRs at two temperatures only suffer 

change. Similarly heat interaction may occur at four different temperatures but it is possible in principle 

for HRs at two or three temperatures only suffer change. 

 

3. Efficiency of an arbitrary reversible heat engine cycle 

According to the standard practice, the efficiency ηR, of an arbitrary n-T reversible cycle is defined [1] by 

the equations (1): 

 

 
 

Where, Qin, W and Qout are respectively, the heat input, work output, and heat rejected, per cycle. 

 

Literature study [1-4] shows that the efficiency of such an n-T reversible cycle is lower than the 

efficiency of the enclosing Carnot cycle.  We demonstrate in this article that:  
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a) It is not true that the efficiency of an n-T reversible cycle is lower than the efficiency of the 

enclosing Carnot cycle, but the two efficiencies are equal. 

 

b) If it is possible for the efficiency of an n-T cycle with heat interaction at highest temperature TH  

and lowest temperature TL, to be lower than the efficiency of a Carnot cycle interacting with HRs 

at TH and TL (the enclosing Carnot cycle), then it is also possible for the efficiency of an n-T 

cycle involving heat interaction at highest temperature TH and lowest temperature TL, to be 

greater than the efficiency of the enclosing Carnot cycle. If the latter is impossible, then the 

former, too, is impossible; leaving the only option that an n-T cycle and the enclosing Carnot 

cycle must have the same efficiency. 

 

For these demonstrations, we consider the simplest non-Carnot cycles – the 3-T (n=3) cycles. Each such 

cycle can be considered as a combination of two Carnot cycles with a common isotherm. For the sake of 

simplicity, we assume that each of the two Carnot cycles lies between a pair of adiabats that have the 

same value of ∆S, that is (Si – Sj) = (Sj – Sk) = ∆S. (This restrictive assumption is removed and the result 

generalized in part B). Though these cycles involve heat interactions at three different temperatures, only 

two HRs suffer change at the end of the cycle, in view of our simplifying assumption.   

4. Demonstration for (a) 

 

Fig. 2 depicts a Carnot heat engine cycle ABCDA. In this cycle the system interacts with HRs at absolute 

temperatures TH and TL (<TH). The system receives QH units of heat at TH and rejects QL units of heat at 

TL. W (= QH – QL) units of work is delivered. The efficiency of this Carnot cycle ηC, is given by 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

             Fig. 2. T-S diagram of a Carnot Cycle                  Fig. 3. Combination of two Carnot Cycles 

 

It is possible to consider the Carnot cycle ABCDA as a combination of two Carnot cycles, ABEFA and 

FECDF, as shown in Fig. 3. In the cycle ABEFA  the system interacts with HRs at TH and TX, and in 

FEC’DF the system interacts with HRs at TX and TL, (TH > TX > TL). When these two cycles are 

described in clockwise direction once, the changes in the surroundings are the same as those produced by 
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Carnot cycle ABCDA (Fig. 1). Since the work output and heat input are measured from the changes that 

occurred in the surroundings only; cycles which produce identical changes in the surroundings must have 

the same efficiency. Hence, efficiency of cycles shown in Fig. 2 and Fig. 3 must be equal. 

 

Again, it is also possible to show the operation of the composite cycle in Fig. 3 in the form of the 

composite cycle ABEECDFFA shown in Fig. 4 and ABEFCDEFA shown in Fig. 5. Figures 4, 5 are 

obtained by sliding the component Carnot cycles ABEFA and FECDF (Fig. 3) relative to each other along 

their common isotherm, to different extents. When these two cycles are described in clockwise direction  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

  Fig. 4. Cycle CDFE is slid along FE to CDFE                 Fig. 5.Cycle CDFE is slid along FE to CDEF 

 

once, the changes in the surroundings are the same as those produced by Carnot cycle ABCDA in Fig. 2. 

Such being the case, it is impossible for those cycles to have different values of efficiency. Therefore, it 

follows that the efficiency of the cycles shown in Figs. 4 and 5 are equal to the efficiency of the cycle 

shown in Fig. 2, which equals the efficiency of the Carnot cycle in Fig.1. The enclosing Carnot cycles 

(shown on dotted line in Figs. 4 and 5) also have the same efficiency as the Carnot cycle in Fig. 1 since 

they also interact with HRs at TH and TL only. 

 

According to the definition of efficiency (eq. (1)),  ηR of cycles shown in Figs. 4, 5 is expressed such that 

the heat input  in these two cycles is different and is also different from that of the Carnot cycle in 

Fig. 1. The heat input in cycle-4 is considered to be (QAB + QEE’), while that in cycle-5 is considered to be 

(QAB + QEF’’). Thus the heat inputs in cycles 2, 4, 5 are different, with the least in cycle-2 and the highest 

in cycle-5, for the same work output. Consequently, efficiencies of the cycles are different and are in the 

order: efficiency of cycle-2 > efficiency of cycle-4 > efficiency of cycle-5. This, however, is not true; for, 

the changes in the surroundings produced by all these three cycles are same.  

 

This completes the demonstration (a) that it is not true that the efficiency of an n-T, (n>2) reversible cycle 

is lower than the efficiency of the enclosing Carnot cycle, but that the two efficiencies are equal. 

 

5. Demonstration for (b) 

Let us now consider the cycles shown in Figs. 6, 7. In these two cycles, the system follows the  
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          Fig. 6. Heat is rejected at TL and TX > TX                Fig. 7. Heat is rejected at TL and TX < TX 

 

same path - from state A to state D as it did in the cycle shown in Fig. 4. Then, in the cycle in Fig. 6, the 

system changes adiabatically from state D to state G at temperature TX (> TX). The system then follows 

the reversible isothermal path GH, rejecting heat to HR at TX followed by a reversible adiabatic path 

along HA, and completes the cycle.  In the cycle in Fig. 7, the system changes adiabatically from state D 

to state G at temperature TX (< TX). The system then follows the reversible isothermal path GH, 

rejecting heat to HR at TX followed by a reversible adiabatic path along HA, and completes the cycle. 

 

Comparing cycles depicted in Figs. 4 and 6, and following the conventional analysis, we find that the 

heats absorbed in the two cycles are the same but the work delivered in the cycle in Fig. 6 is less than that 

in the cycle in Fig. 4 leading to a lower efficiency for cycle in Fig. 6. Again, comparing cycles depicted in 

Figs. 4 and 7, we find that the heats absorbed in the two cycles are the same but the work delivered in the 

cycle in Fig. 7 is more than that in the cycle in Fig. 4 leading to a higher efficiency for cycle in Fig. 7. 

Since we already showed above that the efficiency of cycle in Fig. 4 is equal to the efficiency of the 

enclosing Carnot cycle, it follows that if the efficiency of a reversible cycle is less than the efficiency of 

the enclosing Carnot cycle, then it is also possible for the efficiency of a reversible cycle to be more than 

the efficiency of the enclosing Carnot cycle. If one is impossible the other is also impossible. This proves 

that the efficiency of an arbitrary reversible cycle is equal to the efficiency of the enclosing Carnot cycle. 

This completes our demonstration. 

 

The above results hold potential to open new vistas for exploration of the nature of heat. 
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