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3.                Cosmologic model

3.1. Fundamentals and hypotheses

3.1.1.          Starting point of the work

Starting point of all contemplations is the lecture [1] delivered by Professor Cornelius
LANCZOS on the occasion of the EINSTEIN-symposium 1965 in Berlin. On this occasion open
questions, how for example the expansion, the existence and isotropy of the cosmic
background radiation should be clarified in the course of the work. Furthermore it will be
examined, whether it is possible to determine the HUBBLE-constant from the universal nature-
constants and other measurable dimensions mathematically.

3.1.2.          Tetrades-formalism and definite space-time-structure (quotation)

»…EINSTEIN has turned away the empiric of MACH's school in his later years completely and
the adoration of the “sense data” (i.e. the immediate sensations) mocks of the something takes
for pure coin, what is only the consequence of a much complicated situation. There are for
example the pressure and the temperature of a gas - two observable numbers - which aren't
however no more than macroscopic median values of an infinitely complicated process, of
which we can grasp only statistically. Would it not be possible that could apply somewhat such
also on the MINKOVSKIan line-element? There are now these gik, which should assume
virtually constant values in the vacuum. Yes, however we know from certain quantum
theoretical experiences, — like for example the so-called vacuum-polarization, or the zero-
point energy, — that the vacuum can play in no way a so passive role, that would be
characterized with a smooth quasi-euklidic geometry. In the forties I have permitted myself the
thought that there happens somewhat much more dynamic, namely, that there exists a strongly
agitated wave-field, which only therefore doesn't appear explicitly, since the frequencies are
extremely high and the inertia of the matter reacts only to statistical median values, as similar
as the pressure of a gas. In the last years, I have developed this somewhat vague picture by the
assumption that one possibly not has to look with the solution of the geometrical field-
equations for sphere-symmetrical solutions,—but after solutions, which are periodic, in all four
coordinates. Then one gets a crystal-like structure for the metric plateau, that underlies the
world-geometry. The constant gik of the MINKOVSKIan line-element would be only median
values, caused by the extreme small lattice-constant. Indeed, one gets from the three
dimensioned world-constants speed of light, gravitational-constant, PLANCK's constant a
fundamentally-length of the magnitude 10–32cm, just an extremely small length, opposite to that
the atomic dimensions are still macroscopic. Therefore it doesn't and can be considered to be a
priori impossible to equate this fundamentally-length to the lattice constant. (I it would like to
add here that I only found out by professor TREDERs works, that PLANCK itself already has
recognized this length as fundamentally-length and has discussed this matter in his lectures
about heat-radiation. In the English translation, I could not find any hint relating to this.)

Now I have discussed the idea of such a wave-background in its more primitive version with
EINSTEIN more often, and he does not have probably discarded the idea a priori, but his main
objection was that a preferred frame of reference would be introduced by a so agitated
background, which stands in contradictionwith the fact of the LORENTZ-transformation. This
objection is absolutely legitimate coming from EINSTEIN, who has celebrated so terrific
triumph based on the non-existence of a preferred coordinate-system, that he could not avoid to
consider this thought as final and irrefutable.

And however one can argue also differently. We know the crystals of the so-called cubic
symmetry-group, that absolutely behave macroscopically isotropic, although they are
characterized by three well-distinctive orthogonal main-axes. The three main-axes are however
macroscopically equivalent, which leads into the consequence of an apparent isotropy in as
well as elastical like optical sense. If one transfers this contemplation into the four-
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dimensional, so one comes to the knowledge that a microscopically preferred coordinate-
system nevertheless can fake the equivalence of all LORENTZ frames of reference
macroscopically.

Let's employ us something in detail with the main-axes of such a crystalline lattice. In his
incomparably beautiful examinations over bent surfaces GAUSS has introduced two
fundamental quadratic differential-forms, the first and second fundamentally-form. With help
of these two forms, the two main-curvature-directions of surface can be defined invariantly in
each point. In a pure RIEMANN geometry, however only the first fundamentally-form is
existing, and the question after the main-axes remains unanswered for the moment. Now,
however there is just a second Tensor, namely the curvature tensor Rik  – or also the matter
tensor Tik  – which is in accordance with our assumptions now in no way equal to zero.
Therefore one has the two fundamentally-forms

ds2  
= gikdxidx k

   and (0.1)

d 2
= Rikdx

idx k (0.2)

and accordingly the main-curvature-directions by the vectorial eigenvalue-problem

Ri h   gi h
 
=  0        (0.3)

can be defined. In order to not overburden the frequently used symbol of  we will rather mark
the four eigenvalues with 1… 4 so that the main-axis-problem can be written in the form

Ri h
k

kgi h
k

= 0 (0.4)

The first index of the quantities hik is a genuine contra-variant index, while the second one only
is used for numbering, to distinguish the four main-vectors hi as first, second, third, fourth
vector.

Therefore the quantities of hik aren't to be understood as Tensor but as four vectors with
altogether 16 components. Purely algebraically it follows these relationships

hia = h agi
gik = hia hka

gik = hiahka

hiahka = haihak =  k
i        (0.5)

Interestingly these are exactly the relationships EINSTEIN has introduced in his theory of
“distance-parallelism” in 1928. It was this exactly the year, in which I was assigned as his co-
worker to Berlin. He was made happy by the new ideas very much, whereas I could not find
the right enthusiasm for the new theory, since it appeared artificially to me wanting to graft
something on the RIEMANN geometry, that does not stand with it in any organic relationship.
And however EINSTEIN's theory seems to be very captivate and attractive. After all the
possibility was given to add here another anti-symmetrical element to the 10 symmetrical gik
characterized by 6 quantities, that would be to be assigned so well to the anti-symmetrical field
tensor of the electromagnetic field-strength. Now let's have a look at our main-axis-definition,
we can see that these EINSTEIN hia hia quantities adjust themselves quite casually without
taking reference on a distance-parallelism anyway. Naturally, these four vectors now have a
quite different meaning. They install into each point a tetrade of four perpendicular vectors
which are capable, to characterize our metric lattice. In addition, they yield not only the gik in
algebraic form but also the Rik according to the equation

Rik  = ahia hka         (0.6)
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or even

Rik  = ahia hka. (0.7)

That now has its particular advantages, if the question is to lay down an action-principle,
from which the field-equations should be derived for the geometry of the world. The EINSTEIN
variation-principle makes use of scalary curvature

R  =  Rikg
ik
= 1 +… + 4  , (0.8)

and the action-integral becomes here

W =  ( 1 +… + 4)hdx
1
…dx4  ,   (0.9)

where h means the determinant of the hia quantities. On the other hand if one works with a
quadratic action-principle, to satisfy the calibration invariant, so the LAGRANGE-function of our
action-principle now becomes

Lo =  
1

2
1
2 +…+ 4

2 C( 1 +…+ 4 )
2[ ]h (0.10)

where C is an a priori uncertain numerical constant. We see therefore that the difference
between the different action-principles is not so big at all, if one operates with the hia as
fundamentally-quantities. Of course there already supervenes as additional-condition that the
Rik Riks are given by a quite certain differential-operator, so that the complete action-principle
is characterized by the LAGRANGE-function

L   = Lo – pik 
ahiahka D(hiahka )[ ]h (0.11)

where I have marked with D(hik) the known differential-expression of second order in the gik
symbolically. To the luck, the second derivatives of the gik  occur only linearly in it, so that one
can immediately get rid of the second derivatives by partial integration and yields a
LAGRANGE-function containing only the first derivatives of the action-quantities. The action-
quantities, which are varied freely, are given as follows at this:

16hia ,   4 i ,   10pik , altogether 30 quantities.

Of course I would not like to get involved in arithmetical details, my object is only to outline
the train of thought and to register the results.

The mentioned metric lattice is not yet the end. Rather it corresponds to the empty space
only so far, what is translated with the MINKOVSKIan line-element usually. Instead, we now
have our periodic lattice with the microscopic metric waves. The material particles are
superponed to this lattice as modified solutions of the field-equations, to which the periodic
margin-conditions are no longer applied. Once let's leave aside the question of the structure of
these particles. What happens in a point of the world, that is far from material particles, just in
the vacuum? This situation is similar to, as if we would take a crystal bending it. The inflection
of the lattice just comes about by the action of distant masses and charges.

Therefore we have a mathematical interference-problem to hand and we are forced to look
for the interference on the LAGRANGE-function. Since we have gone out from an actual
solution of the field-equations (because we assume that the metric lattice represents a possible,
although not the only possible solution of the field-equations), so it depends on the second
variation 2L depending on the varied action-quantities quadratically. Just there are the
quantities hia of special interest and the linear field-equations, that must be found for.
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Let's think of our main-axis-problem now. A deformation of the main-axes can be split into
two parts, namely a bare spin and an elastic deformation. We can suspect with EINSTEIN that
the elastic deformation will correspond to gravity, the rotation to the electromagnetic field.
What however is the cause that the electromagnetic fields overtop the gravitational-fields so
strongly?

To this point is the following to say. We know that the so-called “cosmologic equations”

Rik  = gik (0.12)

fill the field-equations of the quadratic action-principle precisely. With this solution, all four
eigenvalues become the same:

i = (0.13)

and the direction of the main-axes remains uncertain. So the smallest interference can have the
consequence of a whatever strong rotation of the main-axes. This case of degeneration won't be
of interest for us. Probably however, we can assume that we are close to that case, i.e. that

i =  + i (0.14)

applies, where the i are small opposite to the large constant . Then we have certain main-
axis-directions, but the preference of these directions is weak, so that a rotation especially
easily comes into existence with an interference, while the metric alteration remains only
small. So the outstanding strength of the electric actions opposite to the gravitational ones can
be explained therefore.

The variation of hia just can be attributed to a true tensor Fik by setting

hia  = Fi
μ h μa (0.15)

This tensor doesn't appear with EINSTEIN. He presupposes the Euclidean values for the
fundamental field,

hia  = ia (0.16)

since he assumes the MINKOVSKIan line-element for the non-interfered field. Then applies

hia  = Fia (0.17)

whereas the tensor Fik is to separate strictly from the four vectors hia in our case. Now one
can show, that in case of a bare rotation of the main-axes the tensor Fik becomes anti-
symmetrical and can be traced to a vector i according to the equation

Fik = i,k – k,i .      (0.18)

Regarding to the LAGRANGE-function of the superimposition-field we can already make
certain quite definite prognoses out of the structure of the problem. We foresee that L = 2L
d2L will depend on the effect-quantities quadratically, as similar as at the mechanical
oscillations of a solid around the equilibrium, wherever the LAGRANGE-function starts with the
quadratic members (the linear members disappear, since we have gone out from an
equilibrium), while the higher members can be neglected because of the smallness of the
oscillations. We just have the quantities F ik2, and that must come in with certain
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coefficients, that become dependent from the lattice-structure somewhere. It is plausible to
assume that the four scalars i, – the eigenvalues of the main-axis-problem – will be suitable
for it particularly. In (0.14) we have accepted these i as virtually constant that only differ
from the big constants  by the small quantities . Therefore, we will expect an expression for
the coefficients, which depends on that i linearly in first approximation. The constant part
must disappear however, because if all i are zero, that's just the degenerate case (0.12) in
which even a finite rotation doesn't generate any metric alteration and therefore L =0 applies.
So it can be only an homogeneous linear function of the i as factor of Fik2, which must be
symmetrically in i and k furthermore. The most natural is to assume i+ k as a factor. However
with the help of universal principles it's possible to demonstrate that a modification of all i by
the same constant must not generate any modification in L´. Just we have to correct i+ k as
follows:

i + k

1

2 1 + 2 + 3 + 4( )            (0.19)

with the result

 L =   i + k

1

2 1 + 2 + 3 + 4( ) 

  
 

  
 Fik

2 , (0.20)

where  is a bare constant. This is the expression indeed, that yields the detailed calculation for
L = 2L.

This result immediately has the following consequence. The 6 terms, that appear in L , are
reduced to only 3 terms immediately, since only the combinations

F12
2 – F34

2 ,       F23
2 – F14

2 , F31
2 – F24

2 (0.21)

appears, i.e., immediately we see that the electric and magnetic quantities appear with inverse
sign in the action-principle. Let our metric lattice be only macroscopically isotropic concerning
x1, x2, x3, x4, then we will get the usual invariant of the electromagnetic field immediately

E 2 – H 2,      (0.22)

from which the MAXWELL equations can be derived as you know. The particular negative sign
usually derived from the MINKOVSKIan imaginary signature x4 = ict here comes about in a
quite natural manner as macroscopic superimposition-appearance because of a weak
interference on the metric lattice, evoked by an infinitesimal rotation of the fundamental four-
leg.

The alteration of a purely RIEMANN metrics to a metrics, in which Pythagoras's theorem
appears in the form of

s2 = x2+ y2+ z2 – c2t2 (0.23)

mostly is been accepted as more or less self-evident without big discussion.. For EINSTEIN was
the + + + – signature of the line-element an incomprehensible mystery, that one quite accepts,
simply because it so is, without comprehending why it must be so however. In the implementa-
tions discussed here, the situation is quite different. We have gone out from a real, pure
RIEMANN geometry, which is positively definite (without this demand we could not at all
guarantee the existence of real eigenvalues of the main-axis-problem generally). So, just from
the beginning we are able to work with a rational geometry, in which the conditions of each
rational metrics:
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AB = BA

AB = 0   heißt   A = B

AC AB + BC

     (0.24)

are fulfilled (in case of the MINKOVSKIan signature the second and third condition gets lost).
Furthermore we have taken as a basis an action-principle, that is quadratic in the curvature-
components, which satisfies the demand of the calibration invariance therefore. Therefore, we
install a philosophy of maximum rationality. Nevertheless, it succeeds, for the macroscopic
experience-space (whom all physically measurable quantities belong to) to derive a metrics,
that behaves in a MINKOVSKIan manner avouching the usual propagation of all physically
measurable quantities with speed of light. Namely the interference of the fundamental metric
lattice yields a LAGRANGE-function having to interpret in a MINKOVSKIan manner, if one
interprets it as primary and if one negates the fundamental lattice, from which it follows.

Does we have the right to consider a theory of this kind as a natural development of
EINSTEIN's ideas? The majority of my colleagues will probably negate this question, while I
believe to may answer with a yes. In any deep academic discovery, quite one may distinguish
essential and irrelevant elements. The incredibly large of the discovery of EINSTEIN was the
geometry of the nature to be recognized as bent and to understand the physical “matter” as a
curvature-condition of the space-time-world, on reason of the equation

Rik
1

2
Rgik = Tik (0.25)

what may possibly be put as the biggest achievement of all times in the area of abstract
thinking. Furthermore, it was EINSTEIN's endeavor to describe the interdependence between
matter and field by field-equations. The equation Rik=0 expresses the disappearance of the
matter tensor, what only can have macroscopic value, without solving the actual problem of the
matter, how that was probably known by EINSTEIN. But even assumed, that we have the right
field-equations, so it still remains a problem to take the right selection from an infinite variety
of possible solutions. EINSTEIN makes two assumptions from empirical reasons here. He
searches for spherical-symmetrical solutions, and he assumes as margin-condition that the line-
element in the vacuum, distant from matter, becomes virtually MINKOVSKIan. These two
assumptions forced by empiricism (and therefore only macroscopic proven) I would consider
as the accidental of EINSTEIN's theory, all the more, as EINSTEIN himself has not regarded the
MINKOVSKIan signature of the line-element as the last word.

In the theory sketched here, one doesn't search for spherical-symmetrical solutions but for
periodic ones (fourfold periodic) of the fundamental equations, by which a lattice-like structure
of the space-time-world is caused about. A fundamentally-length immediately appears with it,
namely the lattice constant of this crystal-like metrics. A second fundamentally-length, that is
assigned to the cosmologic constant , immediately comes together with it. The reasons are
1st: the cosmologic equations are exact solutions of the field-equations and 2nd: the
cosmologic constant in this theory becomes a calibration quantity of the microcosm (and not of
the macrocosm). Just there are two independent fundamental lengths, well harmonizing with
the so different magnitudes of HEISENBERG's and PLANCK's fundamentally-length, namely on
the one hand 10–13, on the other hand 10–32 cm. In addition, the theory succeeds in deriving the
MAXWELL equations on the basis of an infinitesimal interference of the lattice. About the
possibility, to regard the different subatomic particles as stimulated inherent-solutions of the
field-equations, nothing yet can be stated in this approximation. However it's not excluded to
link the lattice-oscillations with HEISENBERG's uncertainty principle. Relating to this however it
is possibly not uninteresting to refer to the following. For the measurement of any physical
quantity (i.e. a lattice overlaid one) only such lattice-points come into consideration, that lie
congruently regarding the fundamentally-cell. Because only then you will measure the one on
which it depends, without being disturbed by the metric oscillations of the lattice. Like this, a
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seemingly granulated structure of the space comes about just practically, with the lattice
constant as smallest possible length. On the other hand, the HEISENBERG uncertainty principle
yields,—according to a remark of professor TREDER,—that smaller lengths as  PLANCK's
fundamentally-length (interpreted as lattice constant in this case) basically aren't measurable.

I would like to close with a remark of universal type. As you know, the invariancy opposite
to LORENTZ-transformations is committed to the MINKOVSKIan line-element, just tradition-like
to a space with vanishing curvature. Now one cannot assume definitely at the fields
representing the material particles, that the RIEMANN curvature remains small, because in these
areas of the space-time-world, the matter tensor must become very considerable, and it is
impossible to postulate that the line-element still virtually has the MINKOVSKIan normal-form.
And however the strange paradox exists that the symmetry-qualities of the LORENTZ-cluster are
of basic meaning for the physical qualities of subatomic particles. It looks just like as if the
special relativity-theory would be more important for the structure of the matter than the
universal one. How can this strange contradiction be annulled?

Now let's consider the problem of the theory outlined here. Certainly, the material particles
lead to strong curvatures and can't be described by means of a virtually MINKOVSKIan line-
element anyway. But compared with the enormously strong sub-microscopic curvatures of the
fundamental lattice even these curvatures are still very weak. Compared with the very strong
lattice-field even the atomic fields are yet to be understood as relatively weak interferences,
having the consequence that the influence of the lattice is not essentially different, just as much
whether the macroscopic action on the vacuum (MAXWELL'S equations) or on the inside of the
particle is calculated (HEISENBERG's “smallest length” of 10–13 is just very small, but still very
big opposite to 10–32 cm). ). So the normally incomprehensible paradox dissolves in this way.

In the discussion Mister MØLLER (Copenhagen) inquired the one the geometry of the macros-
copic field should be determined by. We can reply: the LAGRANGE-function of the macroscopic
field contains all consequences referring to the field implicitly. If e.g. one gave a mathema-
tician the LAGRANGE-function of EINSTEIN's gravitational-equations without mentioning
anything about the RIEMANN-geometry so he would be able to develop all consequences of
EINSTEIN's theory from this function, indifferently, whether he now interprets the tensor gik  as
RIEMANN-line-element or not. The decisiveness are the invariancy-qualities of the LAGRANGE-
function. If e.g. this function remains invariant opposite to all LORENTZ-transformations, so
this observation would lead to a later introduction of a MINKOVSKIan metrics. It can be just
very well, that the macroscopic metrics nothing has to do with the real metrics but is presented
solely as mathematical construction to the interpretation of certain invariancy-qualities of the
LAGRANGE-function.«        *** End of quotation ***

Translation by Dipl. Ing. Gerd Pommerenke

Figure 1
Cubic surface-centered crystal lattice
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3.2. Specification of the model

In this lecture, it is just assumed that the metrics is built like a cubic (regular) space-lattice of
MINKOVSKIan line-elements periodically in all directions, and we want to assume too, that it
would be actually so. Object of the further contemplations should be the question, how such a
MINKOVSKIan line-element is built, how it “works”, how the single line-elements are arranged,
how they interact together and how the electromagnetic waves propagate in such a metrics.
Then, still open questions should be answered, like the one for the expansion of the universe
and its causes, the existence and origin of the cosmic background radiation as well as its
isotropy also at sources, that cannot have any causal connection on reason of their big distance
from each other. The existence of this radiation could not yet be taken into account in the
above-mentioned lecture, since it had been discovered first in the year the lecture was held.
The structure of the physical matter is not object of this work, since it represents, according to
[1], autonomous sphere-symmetrical solutions of the field-equations. In a separate chapter
however we will deal with the peculiarities and the interaction of matter and metrics.
Furthermore, we want to make the first hypothesis the model is based on:

I. On the level of the metric space-lattice apply the legalities of the classic physics.
The relativistic effects result from the existence of this lattice and its structure.

How the relativistic effects arise, will be considered in a later chapter. In the progression, we
will apply just only the legalities of the classic physics.

As first, we assume that the MINKOVSKIan line-elements (MLE), we want to examine here,
are arranged in a (regular) cubic surface-centered space-lattices (picture 1). Such a system
behaves isotropically.

Simply let's go ot from the MAXWELL equations, that even beside the known methods
according to [1], in fact should be to derive on the basis of an infinitesimal interference on the
lattice. Now, at first we want to consider these equations less mathematically but more
according to their content.

div  B = 0      div  D = 
curl E = – ˙ B curl H = i + ˙ D (1)

As well for the electric as for the magnetic field-strength the operator curl for rotation appears.
Let's assume that a rotation would really take place here. Thereto we look at the model figured
in figure 2 that is to imagine three-dimensional however.

3.3. Forces in the model

A ball-capacitor (figure 2) with the radius rc and the charge of qo qo moves on an orbit with
the angular frequency o, the radius ro and the velocity c=const (speed of light). The capacity
results in Co= 4 orc. the energy stored in this capacitor in

W0 =   
1

2

q0
2

C0

  =  
q0

2

8 0rC

(2)
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Figure 2
MINKOVSKIan line-elements
Physical dimensions and mutual coupling

and with ro= 4 rc and Co= oro

W0 =  
q0

2

2 0 r0

(3)

Furthermore this energy even should have a mass mo. Since this mass is rotating its mass-
moment of inertia results in

J 0  =  mr0
2 (point-mass) (4)

According to our formulation, applies o=c/ro and we receive for the kinetic energy, that
should be equal to the electric one,

Wo =  
1

2
J0 0

2 =     
1

2
m0c

2 (5)

Since the capacitor does not have any mass itself, the mass mo of the charge is given by

mo =  
q0
2

0c
2r0

=    
μ 0q0

2

r0
(6)

The 2nd expression of (6) we get from the known relationship

c  =  
1

μ 0 0

, (7)

having a strong similarity with the formula for the resonance-frequency of a loss-free
oscillatory circuit on the first look

cc c c

c

c

ro

1

4 rorc

or

Ho

o oo

qo qoqo

c2
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 = 
1

LC
    . (8)

Then for the centrifugal force (amount) Fz = moro 0
2
  applies:

Fz =   0
2q0

2

0c
2 = μ0 0

2 q0
2 =

q0
2

0r0
2 (9)

Fz is directed outwardly. Expression (9;3) represents with the exception of a factor 1/4  the
COULOMB law (repulsion), only that there is no second charge, that could wield a repelling
force, here. Centrifugal force and COULOMB-force would just be of same magnitude. To
guarantee, that mo doesn't vanish in the infinite, a force is required, able to eliminate the
appearing centrifugal force. Thereto it must be invert and of same quantity.

Since we are concerned with the circular motion of a charge here, we can even talk about a
current io= oqo. This current generates a magnetic field at which point even an inductivity
occurs (1 turn). Simplifying, we now assume, that the inductivity should be Lo=μoro. That
agrees with the equation for a coil with one turn as well:

L= μor ln
8r

 r 

7

4
 

  
 

  
 , (10)

Figure 3
Magnetic field-strength in one and
in several conductor loops
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in which represents r the inside-radius, r the wire-radius of one single short-circuited turn
(μr=1). If r´=0.5114 r applies, the bracket-expression yields 1 and we get the aforementioned
expression. This is, as said, only a model, since our coil doesn't consist of wire. Rather one
should imagine the charge and current something like “spreaded” across the space. According
to [20] the magnetic field-strength Ho (in future always figured as vector, H is the HUBBLE-
constant) in the centre of the conductor loop (left) amounts to

Ho =   
i0
2r0
er (11)

er is the unit-vector. The negative sign results from the definition of the field-strength as
difference between zero-potential (r= ) and potential in the distance R. Der field-strength-
share of a current-element iods in the distance r of the centre (figure 3) calculates according to
[20] in the following manner

dHo=  d
q0cer

4  (r0 r2 )
=   

i0erds

4  (r0 – r2 )
 (12)

Here the potential in the distance ro takes the place of the zero-potential. For the field-strength
Ho in this point the following applies

Ho=    dH =   
i0erds

4  (r0 – r2 )
(13)

To solve this integral, we better divide dH into the two shares H1  (right) and H2 (left), dH
results from the sum of both shares then. The integration-limits lie at 0 and .

Ho =  
i0er
4

1

r0 r
+

1

r0 + r

 

 
 
 

 

 
 
 d

0

    =   
i0er
2

r0
r0
2 r2

(14)

Im Mittelpunkt herrscht dann die in (11) angegebene Feldstärke. Dieser Wert ist aber nur
bezogen auf ein einzelnes, isoliertes MLE. Wenn wir die tatsächliche Feldstärke bestimmen
wollen, müssen wir auch die benachbarten Linienelemente additiv berücksichtigen. Betrachten
wir nun den Einfluß eines benachbarten MLE (Bild 3 rechts) in x-Richtung. Dazu können wir
den ersten Ausdruck in (14) folgendermaßen abändern:

H1 =  
i0er
4

1

1( )r0 r
+

1

+1( )r0 r

 

 
 
 

 

 
 
 
 d

0

  =   
i0er
2

r0
r0
2 2 1( ) 2 r0 r + r

2 (15)

Since the single line-elements are arranged in a cubic-surface-centered space-lattice (figure
1), altogether four line-elements are are arranged along a field-line in fact in the manner
fugured in figure 4. On this occasion, I already have jumped in ahead of coming findings by
figuring the single tracks not as circles but as eight-shaped graph (eight-curve). This is
necessary in order to figure the phase-relations. So far, we have considered even only one
special-case, namely that one, at which q and H have its effective-values. One must assume
however that it is about an oscillatable system overall (L and C) and there the single values will
vary after an approximately sine-shaped function. A track-graph with a positive charge at
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one end and a negative charge at the other end however figures a dipole, that lines up
accordingly a certain mode in the space (vector E0).

Figure 4
Collocation of the MLE's at a field-line in x-direction
at a cubic surface-centered lattice

Let's look at figure 4 now, so we first see the point A. This is the MLE, which we examine. In
the point B, the second MLE is located, which influence has been determined in (15). The
field-line cuts the two elements C in an angle of 0°, just not at all, so that they don't become
effective in x-direction. With an interference however (e.g. in the direction of the z-axis) they
can change their orientation in such a manner, that they become effective again or even occupy
the position of A and B. The propagation takes place in z-direction then.

 Figure 5
Course of the magnetic field-strength depending on the radius r

Then we have to consider the MLE´s located in the opposite x-direction and that ones of the
y-direction too, in front and behind, so that results overall:
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Ho   
i0r0er
2

1

r0
2 r2

+
4

r0
2 2 1( ) 2 r0r + r2

 

 

 
 

 

 

 
 

(16)

With it we receive a value of 0,7254892 io/ro for Ho in the point A. Figure 5 shows the course
of Ho in x-direction. In the distance of ro/2, the value of Ho amounts to exactly io/ro. Hence we
can consider this value even as median value. Consequently, we can write with good
approximation

Ho =   
i0
r0
er (17)

and for the magnetic induction

Bo=  μoHo   =
μ 0 0q0er

r0
=

μ 0cq0er
r0
2 (18)

Simultaneously, we are concerned with a moved charge in the magnetic field. So, a
LORENTZ-force Fm= qo(c Bo) will apply. It is directed inside. For the simplification, we want
to look atthe system along the x-axis again. Therefore, we can set for the amount of the
attractive forceFm= – qocBo. We get using

Fm=  –
μ 0c

2q0
2

r0
2      = –

q0
2

0r0
2     (19)

Expression (9), just with inverse signs. Centrifugal force and LORENTZ-force cancel each other.
Now, we can determine even the rest-mass of the magnetic field:

Wo =  
1

2
i0
2L0 =

1

2 0
2q0

2
μ 0r0 =  

1

2
m0c

2 (20)

mo =  
μ 0q0

2

r0
(21)

As it can be proven easily, this expression is identical to (6). Now, we want to determine the
gravitative attraction of the magnetic and the electric rest mass (we imagine it as point-masses
in the centre of the orbit). We can write on reason of the mass-equality

Fg =   G
m0
2

r0
2   =   G

μ 0
2q0

4

r0
4 . (22)

We now look at the energy stored in Co once again (3). Since this represents only the half of
the total-energy of the MLE, we can write

Wo =  
q0
2

2 0 r0
=      

  

1

2
h o (23)

Then, following expression arises for the charge:

qo =  
  

hc 0 =     
  

h

Z0
(24)
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Z0 = μ0 0 .In this connection, Z0 stands for the vacuum wave-propagation impedance
This represents because of equ. (7) a similarly invariable quantity like c. Herewith we have
already »linked the lattice-oscillations with HEISENBERG's uncertainty principle« by the way, as
it LANCZOS demands in his lecture. From (22) and (24) we get:

  

Fg =  – G
hc 0μ0

2q0
2

r0
4 =    

Gh

c

q0
2μ 0

r0
4 (25)

and after expansion with c2

  

Fg =   
Gh

c3

q0
2

0r0
4 (26)

Now let's have a look at the first fraction Gh/c3  somewhat more exactly, so it represents,
with the exception of a factor of 1/2 , exactly the square of the PLANCK's elementary-length,
how we already know it from other models. If we now fix that

  

r0 =  
Gh

c3 (27)

should be, we also get for the gravitational-force expression (19) as well as (9)

Fg =
q0
2

0r0
2 (28)

Now, the value of PLANCK's elementary-length is not Gh/c3 however but actually Gh/c3 The
difference of 1/2  is to attribute to the fact, that the radius ro on which Co moves,  is not
decisive for the propagation and measurement of the gravity and the electromagnetic radiation,
but the lattice constant c. Then there is still the factor 2 however. This results from the
sampling-theorem according to my view. With a lattice constant of c, measurements are only
possible starting with a length of 2 c. From now on, we always want to set expression (27) in
place of ro however remembering inwardly that the lattice constant of the metrics amounts to

ro. Further we get for the other PLANCK's elementary-expressions:

  
0  =  

c5

Gh   

W0  =  
hc5

G
    

  

m0  =  
hc

G
(29)

The value for o amounts to about 1,8551·1043s–1. We were able to trace back centrifugal-,
COULOMB-, LORENTZ- and gravitational-force to a single expression. Interestingly the value of
ro is insignificant with the electromagnetic contemplation (MAXWELL equations). If however
the gravitational-force is coming into play then for the value of ro only equ. (27) may apply.
Incidentally MAXWELL shall has gone out from a similar model we are discussing here,
however without expansion.

Another important point of view is the propagation-velocity of an interference in our model.
If we postulate that the angular frequency o of the electric dipole and o of the magnetic
induction and field-strength are equally large, so an interference must spread in phase and/or
amplitude with the velocity of c/2 along the field-line H0. That means, the interference
propagates along a straight line AB (not figured in figure 4) exactly with the speed of light.
The same is applied even to the propagation in other, optional directions. So, there are also
distances of 2 … 3  available in the space-lattice. Now we must imagine the radial-
velocity upon the field-line proportionally to the distance, so that the axial-velocity is always c.
If we regard the system LoCo as a parallel-oscillatory circuit, so we get for the resonance-
frequency:
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0  =  

1

L0C0

  =    
1

r0 μ 0 0

 =  
c

r0

(30)

and without r0

c    =  
1

μ 0 0

(31)

exactly expression (7). For the total-energy Wo of a MLE, that results from the sum of electric
and magnetic energy, then we get

W0  =  
q0

2

0r0

 =     
m0

2
c2
+

m0

2
c2

=   m0c
2 (32)

For this reason, the energy of the mass of electromagnetic radiation amounts to moc2 and not to
moc2/2. We get the same value here by solving the following equation (energy in the
gravitational-field)

W0  =   Fmdr0  =    
q0

2

0

dr0

r0
2 =    

q0
2

0r0

(33)

That is already the total-energy, since both masses are involved in it. Furthermore, the
relationship Wo=h o applies of course. We get more important relationships for the magnetic
flux o, if we equate electric and magnetic energy

W0  =   
1

2

q0
2

C0

 =    
1

2
0
2

L0

(34)

0

q0

 =   
L0

C0

 =    
μ0

0

=   Z0 (35)

  0   =   q0Z0  =    hμ 0c =    hZ0 (36)

0q0 =  h (37)

The last expression throws a marking light on the meaning of PLANCK's quantity of action and
we have already realized the suggestion of [1] : »…to link the lattice-oscillations with
HEISENBERG's uncertainty principle«. For the energy, one can also write Wo= oqo o or
Wo= oio as well as Wo= qouo (everything effective-values). One sees, almost all quantities
can be attributed to simplest expressions.

3.4. The MINKOVSKIan line-element as oscillatory circuit

Having considered so far only the case of electric and magnetic mass being equally large —
charge and flux o would have its effective-values and mo would describe an orbit in this case
— the MLE doesn't behave quite so simply. So it suffices however to assume an orbit for later
contemplations. As already more above suggested, there is an oscillatable system with a
capacitor and a coil available, that shall (in the moment) be interconnected via a loss-free
medium, namely the vacuum. So, we can make even an equivalent circuit for it (figure 6), the
one of an undamped parallel-oscillatory circuit:
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Lo Co

Figure 6
Equivalent circuit
of a static MLE

Figure 7
Courses of charge and induction

with labeling of the track-points
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We already have specified the equation for the resonance-frequency in (30). If Lo and Co
behave like a parallel-oscillatory circuit however, even all values like qo, o, Ho, etc. have to
change timewise according to harmonic functions. The same even is valid for the distance ro.
The temporal course of qo and Bo (Ho) in detail of the marked track-points is figured in figure
7. The exact track-function arises from (33), (35) and (37) using the following formulation:

Wo =  h o  =  
q0
2

0r0
 sin2 2 ot (38)

Rearranged to ro by neglecting the fixe phase-angle /2 with  =2 ot:

r( ot) =  
q0

2  0 0 0

1 + cos
2

+ 4 0t
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2 0

1 + cos 4 0t( )    (39)

r( ) = 
r0
2
1+ cos2( )           or in x and y to   (40)
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Real track-course in the xy-plane
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r0
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y( ) =   
r0

2
1 + cos2( )sin (42)

The exact course is figured in figure 8. In the xy-plane it corresponds exactly to the course of
the enveloppe of the POINTING-vector S (like r) of a HERTZian dipole [24].

For most further examinations, it suffices to go out from an orbit simplifying by
consideration of effective-values only.

Figure 9
Idealized and real track of
the MLE in three-dimensional presentation

Significant is the shape of a dipole (vector E0) by the true track-course (figure 8 and 9), since
the charge qo is equally large at the respective bend points of the track however affected with
opposite sign. This dipole can be oriented in all three directions at will.

An eventual expansion of this of model is achieved by the temporal increase of ro. The
model however is only valid, if the expansion-velocity of ro is smaller than c/2. If it is larger,
so there is no more rotation anyway. The motion proceeds rectilinear as well as curvilinear
then. It has no more exact track-function declared. That would be also rather pointless, as we
will still see later.

3.5. Disadvantages of the static model

With the described static model, we have realized case (0.13) and »the direction of the main-
axes remains uncertain. The smallest interference here can have the consequence of an at will
strong rotation of the main-axes.« The cause is following: With Lo and Co, it is a matter of
ideal components. That means, the Q-factor Qo following: With Lo and Co, it is a matter of
ideal components. That means, the Q-factor Qo of such an oscillatory circuit would be infinite
with it, the bandwidth zero. The resonance-superelevation is also infinitely with an infinite Q-
factor however (voltage uo and current io). Therefore it has no exact phase and amplitude
declared. This is just identical to the uncertainty of the main-axe's position however.

Another disadvantage is that the model doesn't change timewise. That means, all median
values including ro remain constant forever. Now it is a known fact however, that the cosmos
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is expanding and the same should happen with the metrics too. Maybe, this is even the cause of
expansion? We use this supposition as base and formulate our second hypothesis with it.

II. The expansion of the cosmos is evoked by the expansion of the metric lattice/
radiation-field.

Furthermore, the question of origin and isotropy of the cosmic background radiation remains
unanswered. In order to avoid these disadvantages, we want to make dynamic the model.

4.                Dynamic model

4.1. Further contemplations

If we want to achieve an expansion of the metrics, so we must see to take away energy from
the MLE. Now one assumes yet the vacuum as loss-free, since the propagation-velocity of
electromagnetic radiation is independent from the frequency. Let's introduce the conductivity

o=1/ o, so for the complex wave-propagation-impedance (j is the imaginary unit, as used in
the electrotechnics) applies

Z =  
j μ0

0 + j 0

       (43)

and on reason of (30) for c

c   =  
j

μ 0 0 + j 0( )
      (44)

Two extreme-cases result from it. While (44) passes into equ. (31) for a non-conductor, we get
for an ideal conductor

c   =  
j

μ 0 0

(45)

Therefore generally applies: in a loss-affected medium, the wave-propagation-impedance
becomes complex and with it c too. Since c determines the propagation rate  = +j =j /c, the
attenuation rate  would become unequal to zero and even moreover frequency-dependent with
the appearance of an imaginary part of c. It applies

   =   
c
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 (46)

That means, additionally to the geometrically caused damping an additional damping e– x

would appear and one could define a lower cut-off frequency for the space (–3dB/ ). Only if
the conductivity is zero, that wouldn't be the situation. All this does neither has been observed
in the vacuum and the wave-propagation occurs with light speed for all frequencies. The
vacuum just acts like an ideal non-conductor [20].

Nevertheless, we want to try to find a solution, taking all these facts into account. At first we
extend our equivalent circuit by the loss-resistor RoR (figure 10), index R stands here for a
series connection of circuits, as well as by the shunt-resistor Ro.
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RoR

Lo Co Lo Co Ro

Figure 10 Figure 11
Equivalent circuit with Equivalent circuit with
series-resistor shunt-resistor

With our further contemplations, now we have to decide in favor of one of both equivalent
circuits. For the conversion of both impedances applies

Ro   =   
Z0
2

R0R

. (47)

We decide in favor of the second model, since a very large loss-impedance is the best appro-
ach to a non-conductor. Starting with figure 10 we first define the loss-impedance RoR which
must be obviously very small in this case, in reference to a cube with the edge length ro to

R0R =
1

0

r

A
                A = r2                 R0R =

1

0r
  (48)

From it we obtain for Ro

Ro     =   oroZ0
2        (49)

Evidently, our MLE is a system of second order. By introduction of Ro, we can now define
even two time constants, namely

o     =   L0C0      and 1    =     RoCo (50)

With o, a time-constant of second order, it is with largest probability a matter of the reci-
procal of the angular frequency of our MLE. Which value in the nature then now that 1 can be
assigned to? An additional temporal damping of electromagnetic waves doesn't appear as you
know. Since Ro has to be very large, then the same is applied to 1. We now assume that 1 can
be identified with the reciprocal of the HUBBLE-parameter H. This hypothesis is substantiated
by the fact that H is a time-constant of first order, whatever is valid for 1 too. We can write
then

H     =  
˙ r 0
r0

  =   
1

R0C0
  =  

1

0μ0 r0
2

   =   0

0

1

L0C0
    =   0 0

2

0

.       (51)

Furthermore generally applies H= n/t; n is a constant factor which depends on the used
model (radiation-/dust-cosmos), t is the time and equates with the age here. Next we want to
define the Q-factor of the oscillatory circuit according to [5]

Qo     =      
W0 0

P0
  =     

  

h 0
2R0

u0
2 (52)

and because of uo= – o o as well as (36)
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Qo     =   
  

hR0

0
2

   = oroZo      =    
R0

Z0
        =     

2 0t

0

(53)

The numerical value is about 1,041·1061. If we goe out from the last expression of (51), we can
even write for H

H       =    0 0
2

0

   = 0c 0

0 r0
     =  0

0r0Z0
     =       0

Q0

 . (54)

Now we could think, up to the determination of H it is far no more. Unfortunately, the value of
o is unknown however.  But it can be received from the astronomically determined value of H

approximatively

o      =        
  

c3

μ 0GhH
(55)

with  1,710·1093 AV–1m–1. In this connection a value of 55 kms–1Mpc–1, has been set up for H,
that is 1,7824·10–18s–1. Possibly, this value is rather not up-to-date anymore. One recognizes
the magnitude of o however. Furthermore applies GhH = const.

Now that further on our model. Using the relationship H = n/t and the third expression of
(51) we are already able to determine the time-function of ro

r0 =
t

n 0μ 0
and (56)

˙ r 0 =
1

2

1

n 0μ 0t
(57)

With it we get for the HUBBLE-parameter H

H     =   
˙ r 0
r0

   =      
1

2t
 and q  =  

r0
˙ ̇ r 0
˙ r 0

2  =  1 (58)

just the relationship for a radiation-cosmos. This is nor further remarkable, since we have
assumed the MAXWELL equations however. q is the dilatory-parameter (do not mix-up with the
charge). It follows n=1/2 and we can write

ro      =     
2t

0μ0
 and ˙ r 0  =  

1

2 0μ 0t
  (59)

t          =      
R0C0
2

 =     0μ0 r0
2

2
(60)

With these relationships, we can now set about to put a differential equation for our oscillatory
circuit. Let's look at it figure 12 for that purpose.
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Lo Co Ro

i1 i2 i3

A

uo

Figure 12
Voltages and currents
in the oscillatory circuit

4.2. Differential equation and solutions

4.2.1.          Specification of the differential equation

We have a parallel-oscillatory circuit with the inductivity Lo, the capacity Co and the loss-re-
sistor Ro on hand. Furthermore, the voltage uo is connected to all components simultaneously.
In the node A the three currents i1, i2 and i3 unify. The KIRCHHOFF's first law applies:

i1 + i2 + i3 = 0 (61)

Furthermore applies because of uo=d o/dt and o=i1Lo

u0 =  
d i1L0( )

dt
(I)

u0 =  
1

C0

i2dt
(II)

u0 =  i3R0 (III)

Now equation (I) can be resolved as follows

uo =  
d i1L0( )
dt

= Lo 
di1
dt

+ i1 
dL0
dt

(62)

and we get the following differential equation

˙ i 1 +
˙ L 0
L0

i1 =
u0
L0

or (63)

y´+  f(t)y = g(t) (64)

M(t)  =   e
f(t )dt

 =         e
dL0
L0dt

dt

  =     e
dL0
L0 =   Lo . (65)

Now, we are able to resolve for i1 [21]

i1      =   
1

M t( )
 g t( )M t( )dt + C[ ] (66)
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With C=0 we get then

i1      =   
1

L0

 

u0

L0

L0dt    =       
1

L0

 u0dt . (67)

Now, we rearrange equ. (II) for i2:

i2      =     
d u0C0( )
dt

   = C0

du0
dt

+ u0
dC0

dt
(68)

We receive the value of i3 directly by rearrangement of (III) so that we can write

i1 =
1

L0

u0dt (I)

i2 =   C0

du0
dt

+ u0
dC0

dt
(II)

i3 =   
u0
R0

      (III)

Put into (61) we obtain

1

L0

u0dt + C0

du0

dt
+ u0  

dC0

dt
+

1

R0

 

 
 

 

 
 = 0  . (69)

Since u0 = ˙  0  equ. (69) changes into

 C0
˙ ̇  0 + ˙ C 0 +

1

R0

 

 
 

 

 
  
˙  0 +

1

L0
0 = 0 (70)

and after division by Co

˙ ̇  0 +
˙ C 0
C0

+
1

R0C0

 

 
 

 

 
  

˙  0 +
1

L0C0
0 = 0   .  (71)

This is the differential equation of a parametric amplifier. But on reason of the definition of
Co= oro we also can write

˙ ̇  0 +
˙ r 0
r0

+
1

R0C0

 

 
 

 

 
  

˙  0 +
1

L0C0
0 = 0   .   (72)

Of course it is somewhat difficult to imagine, that the capacitor quasi shall grow with the
metrics. But considering Co as a basic quality of space, whereat its size depend on the
dimensions of the MLE, it should be somewhat less difficult however. If we now assume, that
no expansion would take place anyway, equ. (72) would change into the normal differential
equation for a loss-affected oscillatory circuit with shunt-resistor with the well known solution:
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o     =      
1

L0C0

1

2R0C0

 

 
 

 

 
 

2

. (73)

Then however, we would get for the speed of light:

c          =     
1

μ 0 0

1

2μ 0 0r0
2

 

 
 

 

 
 

2

   , (74)

That would even mean that the (maximum -)speed of light is not constant. The constancy of the
light speed however is a basic statement, that we may not negate. To the luck our metrics is
expanding and the first partial factor of o in equation (72), namely H is 0. According to (51)
furthermore both augmenters are identically and we can write

˙ ̇  0 +
2

R0C0

˙  0 +
1

L0C0
0 = 0 or (75)

˙ ̇  0 + 2H˙  0 + 0
2

0 = 0        . (76)

Equation (76) is very interesting. If we want to determine the time-function of o however, we
now have to insert (53, 54):

˙ ̇  0 +
1

t
˙  0 + 0

2 0t
0 = 0       or (77)

˙ ̇  0t + ˙  0 +
1

2
0

0
0 = 0       . (78)

With it we have laid down the differential equation for our model. It deals with a very rare
hyper-geometrical differential equation, that we want to solve in the next section.

4.2.2.          Universal solution of the differential equation

During literature-study, this type of differential equation has not been found and the POOLE's
equation [17] did not succeed anyway. To solve the equation therefore only comes into
question the integration of power series approach [21]. We look at the following equation for
that purpose:

y x    +    A y    +    B y =   0        (79)

We first rearrange this equation to y

y    =   
1

B
y x + A  y ( )  (80)

Then we expand y into a power series

y = aox0 + a1x1 + a2x2 + a3x3 + a4x4 +…+  anxn (81)
y = 0aox-1 + 1a1x0 + 2a2x1 + 3a3x2 + 4a4x3 +…+ nanxn-1 (82)
y = 0(-1)aox-2 + 1(0)a1x-1 + 2 1a2x0 + 3 2a3x1 + 4 3a4x2 +…+ n(n–1)anxn-2 (83)

In cumulative notation:
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y     =   a nx
n

n =0

(84)

Ay  =  Ananx
n 1

n=1

=    Ananx
n 1

n=1

=    A(n +1)a n+1x
n

n =0

(85)

y x  =  n(n 1)anx
n 1

n =0

=    n(n 1)anx
n 1

n=1

=    n(n +1)an+1x
n

n =0

  (86)

Now, inserting the last column's expressions into (80) we get:

a nx
n

n =0

     =     
1

B
(A + n)(1 + n)an+1x

n

n= 0

(87)

With it we can already specify the recurrence formula for the discrete coefficients of y:

an+1  =        – 
B

(A + n)(1+ n)
an (88)

It results in the following coefficients then:

a1 =  
B

(A + 0)(1+ 0)
a0 =   

B1

(A + 0)(1+ 0)
a0 (89)

a2 =  
B

(A +1)(1+1)
a1 =      

B2

(A + 0)(A +1)(1+ 0)(1 +1)
a0       (90)

a3 =  
B

(A + 2)(1+ 2)
a2 =  

B3

(A + 0)(A +1)(A + 2)(1 + 0)(1 +1)(1+ 2)
a0 (91)

…    …

an =   
B

(A + n 1)(1+ n 1)
an 1 (92)

an =  (–1)n 
Bn

(A + 0)(A +1)(A + 2)…(A + n 1)(1 + 0)(1+1)(1 + 2)…(1 + n 1)
a0 (93)

Another notation would be

an =   ao (–1)n Bn 1

(1 + k)(A + k)k =0

(94)

and with (z)n= (z+0)(z+1)…(z+n–1)

an =   ao (–1)n Bn 1

(1)n (A)n
  =   ao (–1)n Bn 1

n!(A)n
(95)

y  =   a0  

1

n!(A)n

 ( Bx)n

n=0

(96)

This is the universal hypergeometric function 0F1 (;A;–Bx) however.
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y        =    a0 0F1 (;A;–Bx) (97)

Herewith we have found a special solution of our differential equation. Now we must see
just, if we can express the result by a more simple analytic function. Whether it's possible or
not, depends on the parameter A however. Before we return to our model then, we still want to
examine the behavior of the universal solution (91). We look at two special cases thereto.

4.2.3.          Specific solutions

4.2.3.1. The harmonic solution (A=1/2)

We start with equ. (97) inserting the value 1/2 for A:

y  =  a0  0F1 ;
1

2
; Bx 

 
 
 

(98)

This yields by setting the expansion-part ˙ r 0 / r0  in (72) to zero as a solution of the differential
equation ˙ ̇  0t + 1 2 ˙  0 + 0 2 0 0 = 0  (model without expansion). According to [12] applies:

0 F1  ;
1

2
;

1

4
z2 

 
 
 
     =    cos z also (99)

1

4
z2   =   –  Bx      or (100)

z  =    4Bx (101)

y  =    a0 cos 4Bx with     a0 =  ˆ  0    B =  

1

2
0

0

x  =  t       (102)

0 =    ˆ  0  cos
2 0t

0
0  =  ˆ  0 cosQ0 (103)

0 =    ˆ  0  cos 2 0

2 0t
 t (104)

Considering the root-expression of equ. (104) more exactly, so it would have to correspond to
the angular frequency  and would be time-dependent.

  

0 =   0

2 0 t
ˆ  0  =   2hZ0 (105)

  0 

=   2hZ0 cos 2 0t      (106)

Since it deals with a differential equation of second order, the universal solution had to be then:

  0 

=   hZ0 (c1 cos2 0t + c2 sin 2 0t) (107)
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Since c2 can be even imaginary or complex, the universal solution also can be understood as
the sum of the exponential-functions ej2 ot und e–j2 ot. These also figure two possible
independent solutions. Equation (107) is then:

  0 

=   hZ0 (e j2 0 t
+ e j2 0t ) (108)

We would have found a solution with constant amplitude with it. MAXWELL uses this solution
as base for the solution of the equations designated to him. The factor 2 should be neglected
here once. The solution is not applicable for our model however, since we want to put a model
with expansion being A always larger than 1/2 (78).

4.2.3.2. The Bessel solution (A=1)

This solution corresponds to our model.

y        =    a 0 0F1(;1 ; –Bx) (109)

According to [17] applies

0 F1 (;b; x)    =       ( b)(jx)b 1 Jb 1(2 jx
1

2 ) (110)

Jn is the Bessel function of n'th order, just

0 F1 (;1;–Bx)    =      (1)(jBx)0 J0( 4Bx) (111)

y  =    a 0 J0( 4Bx) with     a0 = ˆ  i /2    B =  

1

2
0

0

   x = t       (112)

0 =    a0 J0

2 0t

0

 

 
 

 

 
 =     a0 J 0(Q 0 )       (113)

0 =    a0 J0 2 0

2 0 t
t

 

 
 

 

 
        with    0 =  0

2 0t
(114)

Since it´s about a differential equation of second order and the degree of the Bessel function is
integer, the universal solution is:

0 =  ˆ  i (c1 J 0(2 0t) + c2 Y0 (2 0t)) (115)

Even in this case c1 and c2 can be imaginary or complex. According to [22] it's often opportune
to consider the two functions (Hankel functions)

H
 0
(1) (x)   =    J 0(x)  +  j Y0(x) and (116)

H
 0
(2) (x)   =    J 0(x)  -  j Y0 (x)        (117)

as linearly independent solutions forming the universal solution

y(x) =   c1 H
 0
(1)(x) +  c2 H

 0
(2)(x) (118)

with it. The universal solution (115) reads then:
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0 =  ˆ  i H
 0
(1) 2 0t( ) + H

 0
(2) 2 0t( )( )  (119)

An analogy exists between equation (108) and (119). For our further examinations, we set c1

and c2 in (119) equal to 1 for the moment. Then we get as specific solution:

0 =  ˆ  i J0 2 0t( )   0 =  ˆ  i  J0

2 0t

0

 

 
 

 

 
       (120)

Even a formulation with the Bessel-Y-function would be possible however. With the
exception of an infinite initially-value no more differences arise then. Later, we will make use
of  the sum of both (Hankel function). With it, the discussion, whether a finite or infinite
initially-value is on hand, will have been proven as useless.

4.2.3.3. Behaviour of solutions

Depending on the coefficient A there is the following behaviour of solutions:

A < 0.5 ascending amplitude

A = 0.5 static amplitude

A > 0.5 descending amplitude

4.2.3.4. Consequences for the model

We have got a solution with non constant amplitude (descending). With it the magnetic flux
starts with a finite value however (gainful). Two problems result from it:

1. It has no frequency defined in the real sense.
2. The amount of the Planck's quantity of action is not constant.

The first problem is relatively easy to solve by studying the asymptotic behaviour of our
function (120). Even from (76) can be concluded on a frequency o, that depends on the age
i.e. the HUBBLE-parameter H. The second problem has extensive effects on nearly all physical
laws and processes, that should be discussed in the course of this work in detail. Furthermore
the gravitational-constant is also a variable quantity, which is being denied today by almost
nobody more however.
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4.2.4.          Asymptotic expansion

On presence of following conditions: t»0, Re(x)»0, Re(n)> -1/2 accordingly to [23] applies:

Jn(x)    
2

x
cos  x

n

2 4
 

 
 

 

 
  (121)

and for Jo and its derivative, that we require even later, (we use the equality sign from now on):

J0 (x) =   
2

x
cos x

4
 

 
 

 

 
   =      

1

x
(cos x + sin x) (122)

J1 (x) =   2

x
cos x

3

4
 

 
 

 

 
 =  –  

1

x
(cos x - sin x) (123)

For o we can write

 o    =    0

2 0t
      (124)

For  o applies then (approximation):

o      =  
ˆ  i

2 0 t
 (cos 2 ot + sin 2 ot) (125)

With the exception of one factor and a different phase-angle then we get an expression equal
to the harmonic solution (107). As more exact examinations show, equ. (123) fulfills  the
requests of an approximation function for the area t>2 1 (figure 13) indeed. But a better
approximation is given by following equation:

o      =    
ˆ  i

(1+ 2 0 t)
  (cos 2 ot + sin 2 ot)     (126)

With the effective value

oeff   =    
ˆ  i

2 (1+ 2 0t)
 (127)

or more exact

oeff     =    
ˆ  i

2 (1+ 2 0t)
1+

1 2

2 (1 + 2 0t)

 

 
 

 

 
  (128)

The latter expression is only of theoretical value however, since it stands for the effective value
which is only defined across at least one period. Within the first period (t<2 1) and for the
calculation of the PLANCK's quantity of action, it would be favorable therefore, to operate with
the (multiplied with the factor 1/ 2 ) exact enveloppe function. This function results from the
addition theorem of Bessel functions (Besselian “Pythagoras”) and applies precisely for Bessel
functions (J and Y) of zero order and, with very good approximation, for Bessel functions of
any order (real) and of course even for larger values of t:
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ˆ  0  =  ˆ  i J0
2 (2 0t) + Y0

2 (2 0t)    Enveloppe curve (129)

which starts in the infinite however. The value ˆ  i  then is defined at the point of time, in
which the enveloppe takes on the value of 1. The exact course of o as well as the
approximation function (127) for the enveloppe is figured in figure 13.

200. 400. 600.

-0.75

-0.5

-0.25

0.25

0.5

0.75

1.

ˆ

2 ot

o

ˆ i Jo
2 ot

o

ˆ i
cos

2 ot

o

+ sin
2 ot

o

1+
2 ot

o

ˆ i

2

1 +
2 ot

o

0.

Figure 13
Course of magnetic flux as well as of approximation-
and enveloppe-function (127) during a longer time period

The exact course of o during the first period as well as the course of the exact enveloppe-
function and of the first and second approximation shows figure 14. Even the course of qo is
figured (1st derivative). The enveloppe-functions are applied equally to o and qo and are been
important for the determination of effective-values.

Contrary to the ordinary Bessel function, which starts similarly like a cosine-function, the
time-function of the magnetic flux rather has a course like an RC-gate within the first part of
first period (1st order). With ascending Q-factor Qo=2 ot the function passes into an
approximately harmonic function. The enveloppe-function of the charge of qo doesn'nt fit right
quite precisely the real funktion during the first period (1st derivative). The reason is the square
root inside the argument of the Bessel functions. In case of hardship, one shold make use of the
root of the sum of squares of the Bessel function of 1st order (129).

A yet better and even easier function for the enveloppe curve, which in addition avoids the
ugly “hump“ in the negative domain of the first period in figure 13, I found later on (not
presented). It’s given by the function:

ˆ  0  =  
2 ˆ  i

2 0t
   Enveloppe curve (129a)
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ˆ
i

Z0
J0
2 2 0t

0

+Y0
2 2 0t

0

ˆ
i J 0

2 0t

0

ˆ
i

2

1+
2 0t

0

+

1
2

1 +
2 0t

0

ˆ
i

Z0

cos
2 0t

0

sin
2 0t

0

1 +
2 0t

0ˆ
i

2

1 +
2 0t

0

+

1
2

1+
2 0t

0

ˆ
i J0

2 2 0t

0

+Y0
2 2 0t

0

2 0t

0

ˆ
i

cos
2 0t

0

+ sin
2 0t

0

1 +
2 0 t
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Figure 14
Course of flux and charge as well as of the approximation-
and enveloppe-function (129) near the singularity

4.3. Laplace-transform

4.3.1.          Time domain

How does the solution-behavior of equ. (115) actually look like? J 0 ( x
x

)is defined for real
arguments – <x< . For positive x arises the course already figured many times. The
ambiguity of the root doesn't have any effect. To the negative region, a real solution submits in
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form of the modified Bessel function I 0( x ). This one manifests a course similar to cosh going
towards infinite. In contrast, J1( x ) and the charge q0= –j I 1( x ) becomes imaginary and
shows a course like j sinh( x ).

 For t<0 don't arise any physically meaningful solutions therefore. A charge is not defined.
The point of time t=0 is just the beginning of the expansion of the universe. What was before,
cannot be said, probably »NOTHING«. In such a case, the application of the LAPLACE-
transformation offers itself in order to get more information.

4.3.2.          Figure function

LAPLACE-transformation: This is suitable even to the solution of differential equation (78),
provided, the re-transformation is possible. We just go out from (78):

˙ ̇  0t + ˙  0 +
1

2
0

0
0 = 0  or (130)

y x    +    y    +   a y =   0 (131)

According to the differentiation-rule [22] applies:

L {y } =  p y(p) – f 0
(0 )      with  f 0

( )  =  
t +0
lim

d f (t )

dt
(132)

Fortunately we have already solved the differential equation and know the initial values for
t=0. It applies therefore:

L {y } =  p y(p) – 1 . (133)

We get for the second derivative:

L {y } =  p2y(p)  p f 0
(0)  f 0

(1) with the initial values 1 and 0 (134)

L {y } =  p2y(p) – p (135)

We require the LAPLACE transform for the product of y  and T however. According to the
multiplication-rule and (133) applies:

L {tn f(t)} =  (–1)n F(n)(p) (136)

d   y (p)

dp
 =   2p y(p) +  p2

  y (p)  2p y(p) (137)

L {y t} = 1 – p2 y (p) – 2p y(p) (138)

Substitution in (131) results in:

 y (p) +
a p

p2 y(p) =  0 with the solution (139)

y  (p) =  e
a p

p2
dp

 =    C1  p  e
a

p
=

C

a
p e

a

p (140)
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C1 is in the form of a time-constant. The source-function is a differential equation of second
order with a time-constant:  1=1/a=2 / . This appears twice with it and we does not come
into the embarrassment to examine which time-constant to be substitute at which position. The
value arising from H (astronomically) has a magnitude of 1.035·10–102 s. In the figure domain
applies for the magnetic flux then:

 (p) =   ˆ  ip 1  e
1

p 1

+C

         (141)

For signals with a duration of t» 1 it's about an ideal D-gate (differentiating circuit). Unfor-
tunately this something out of common use figure-function cannot be found in any reference
work making a retransformation into the time domain nearly impossible. So far, I did not have
succeeded in finding a solution for the integral of retransformation. Since we already know the
solution however this is not quite so bad. It would be interesting in that sense however, as the
type of function, which the model was activated with at the point of time t= 0, could be found
out on this way. Comparative contemplations lead to the conclusion that it could have been a
DIRAC-impulse (t) with the LAPLACE transform L { (t)} = 1 which even agrees with the
model of big bang in the best manner. To the multiplication in the figure domain, the
convolution corresponds in the time domain:

o =   ˆ  i  · (t) *J 0
2 0t

0

 

 
 

 

 
 (142)

At the beginning, there was the »NOTHING« with the physical qualities μo, o and o. Then,
something was there suddenly (magnetic DIRAC-impulse). The DIRAC-impulse is an impulse
with infinite amplitude and a duration of t 0. The integral below this impulse is equal to 1.
This would speak in behalf of a finite initial value (Bessel-J). The response of the model
(overswinging with a median value of 0) can also beobserved on electronic systems of second
order using a DIRAC-like agitation (needle-impulse) but not using a jump- or ramp-function.
The DIRAC-impulse is already known for a long time. Using technical methods however it
won't be to realize wether at present nor in future. So far, there were even no parallels in the
nature, only in form of an approximation as needle-impulse. This way, another mathematical
function would have found its exact correspondence in the nature. In any case, it's about a
forced process.

On assumption, that it was actually a DIRAC-impulse, we get promptly for the transfer-
function G(p):

G(p) =  p 1  e
1

p 1

+C

 (143)

The course of transfer-functions for the magnetic flux and of the charge q0 (first derivative) is
depicted in figure 15 by setting C=0 at first, since it has only an influence on the scale of the y-
axis. Both functions point out a polus at the position p=+0, a null with p=–0 and a minimum at
the point of time 1  respectively 1 /2. For longer impulses, the function changes into the one
of an ideal D-gate (high pass  contradiction?).

The PN-diagram doesn't need to be figured separately (polus at p=+0, null at p= –0). The
number of polus is equal to the number of the nulls (realizability-condition). There are no polus
in the left half-plane (stability-condition). Since the polus is located in the point of 0, the
system is loss-free anyway but still a “passive component” however.  With polus in the left
half-plane, the system could come into an oscillation by itself. With polus in the right half-
plane at p>0, losses appear, so that the oscillation grinds to a halt after a certain time —
contrary to reality, where the oscillation wether hasn't yet faded away even today nor probably
in the future. The null in the origin (–0) points on a blocking of lower frequencies. It is seen
about a high pass physically. Since the null is in the left half-plane, it's still about a minimum-
phase-system.
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Systems of this category have, according to [26], the quality of attenuation and phase being
associated by the HILBERT-transformation.

Since there are no conjugate complex polus available, even no resonance-effects appear. The
minimum at 1 points out a phase-transition.
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Figure 15
Transfer-functions (figure domain)
for magnetic flux and charge (C=0)

From the figure-function we have read that it deals with a high pass of 2nd order. In general,
such a system has a frequency-dependent attenuation. This stands in contradiction to the
observations however, resulting in a constant frequency response across all (technically
observable) frequencies. To the calculation of the complex frequency response of our model
we goes out from equation (143), in that we replace: p = + j . A substitution p = j  doesn't
emerge any useful result, since the system still is oscillating and, with it, the associated Fourier
integral never converge. The convergence is forced with the term of . The frequency response
of the magnetic flux gives also information about wave-propagation in the vacuum, since the
discrete dipoles (MLE) are interconnected across the magnetic field (resonance-coupling). We
obtain the value of  from the halve of the inverse of right factor of (77).

G(  + j ) =  (  + j ) 1 e
1

( + j ) 1

+C

 (144)

 With  = 1/(2 1) = 1  = 1/(2t1) = 
0

0

 and  = 0 (G(j ) = 1) we get for C = –1. Then applies:

G(j )  =   1 + j

1

 e
j

1 + j . (145)

With  = / 1 the following expression (complex frequency response) turns out:
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G(j )  =  sin
1+ 2

+ cos
1 + 2

 

 
 

 

 
 j sin

1 + 2
cos

1 + 2

 

 
 

 

 
 

 

  
 

  
 e

2

1+ 2

 (146)

Since the locus curve of frequency response doesn't cut the y-axis, there is no aperiodic
borderline case in this system.
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Figure 16
Frequency response locus curve

For frequency and phase response further we get with =
1 + 2

A( )  =  1 + 2
 e

2

1+ 2

 (147)

B( )  =   arctan
cos sin

sin + cos
     =         (148)

The expression for the phase response can still be simplified. Both functions (BODE-
diagram) are shown in figure 17. The attenuation-course (–6 dB/decade) shows that it's about a
system of 2nd order.

Interesting is the cosine of the phase response cos B( )=cos  as well. This value is used
e.g in the electrotechnics for the calculation of efficiency (power). It figures the measure of a
coupling-factor of the discrete MLE's mutually. The calculation of this value by substitution of
cos(arctanx) =1/ 1+x2 even leads to a simplified expression for (148):

cos   = cos arctan
1 +

2

 

 
 

 

 
    und       =  arctan

1+ 2   (149)

Then equation (146) simplifies to
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G(j )  =  (cos + j  sin ) 1 + 2
 e

2

1+ 2

  =     e

2

1+ 2
+

1

2
ln(1+ 2 )+ j

      (150)

The course of cos   is figured in figure 18. An appraisal takes place in 4.3.4. Still, even the
course of the second term is to be seen in . One sees that it only comes to the validity at
frequencies near 1.

Figure 17
BODE-diagram: Frequency response A( )
and phase response B( ) of the system

Figure 18
Course of phase angle,
cos  and of the expression 
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Finally, the phase- and group delay in dependence of the frequency should be examined. Both
functions are depicted in figure 19. The phase delay is defined as:

TPh  =
B( )

     =
1

(arctan
1+

2 ) (151)

For the group delay we get:

TGr  =
dB( )

d
   =         2

2

1

        =
2

1

 

1+
2

 

 
 

 

 
 

2

(152)
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Figure 19
Group- and phase delay

4.3.3.          Properties of the model

The following statements are applied only to one discrete MLE. More exact statements for
wave-propagation as such are worked out later. One sees here quite clearly that frequency- and
phase response are proceeding approximately exact linearly (0 dB) and phase-true until one
third of the frequency 1 10104s–1. A noticeable attenuation and phase-shift does not occur
until approximate one tenth of 1. Since the amount of 

1 is so extreme (the supreme measured
frequency, cosmic radiation is about 1042s–1), this effect does not have been observed so far
however.

The amplitude is ascending strongly above 1 and it actually turns out a high pass-behavior,
the wave-propagation at < o here just actually happens in the attenuation-zone. Since the
value of cos   is declining strongly from 1 /2 on however, and with it the coupling
coefficient of each discrete MLE mutually, a wave-propagation is impossible above 1.
Hypercritical photons cannot exist much longer than 1 therefore.

The frequency response across two MLE's with the coupling coefficient k=cos  is shown in
figure 20. It is about a group-delay-corrected low pass of 2nd order (2 MLE's that means 2
circuits, therefore the square). The expression 1+ 2 even occurs in the filter-theory and
corresponds to the form-factor of a calibrated equally-tuned dual-circuit filter with identical
attenuation-course [26].
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Frequency response for the transfer
to the adjacent MLE

In reference to the sampling-theorem we expect, that only frequencies below 0/2 are
transferred. The previous statements apply strictly speaking only to the universal wave-field in
accordance with [1]. The propagation of radio waves or photons, as we understand, in reality
takes place as propagation of interferences of this wave-field. Since the MLE's figure non-
linear systems, several side frequencies occur. Important is only the sum- and difference-
frequency o± . With the other frequencies, no power-conversion is achieved (property of a
non-linear circuit). For the cut-off frequency of overlaid signals, even only the summary
frequency is relevant. Because the overlaid signals are more red-shifted than the universal
wave-field, the “relative cut-off frequency“, i.e. the spacing between the overlaid frequency 
and the the cut-off frequency 0/2, ascends with rising age continuously.

The course of group delay shows that the “processing” of changes of the magnetic induction
of lower frequencies actually takes place “instantaneously”. The transfer to the adjacent MLE
takes place on the basis of a resonance-coupling with a phase-shift of /2= 0tv. For the delay
time of tv, one gets the following expression then: tv= /(2 0)= r0/(2c). For the transfer rate
of c (the radius of the field-line of the vector Ho proceeding through the centre of the track
graphs of both MLE's is equal to the half of lattice constant, just r0/2), we receive in
accordance with figure 2 an amount of

c  =
2

r0

tv

=      
1

μ 0 0

 =   c (153)

With it, the wave-propagation-velocity of the vacuum results directly from the phase-shift
/2, that appears with magnetic resonance-coupling of two oscillatory circuits. This effect even

can be observed macroscopically with discrete components which is figured in [26] extensi-
vely.  On frequencies near 1, to tv the phase delay of TPh, multiplied with 2 , has to be added.
An accurate formula for c for this case (critical photons) however cannot be declared here be-
cause of considering the discrete MLE only. We will work out an exact expression for wave-
propagation-velocity in section 4.3.4.4.5. being valid near t=0 as well.

Furthermore we can say that the propagation-velocity c decreases the more approaching to
1 This value however exactly corresponds to that point, in which the track-curve (figure 8) is

no longer defined. A phase-transition occurs, the rotation finishes. There is only the rectilinear
expansion.
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With it the phase-shift to the adjacent MLE also adds up and achieves a value of , a
destructive interference appears, a wave-propagation isn't possible at all (coupling-factor
k=cos( /2)=0). Furthermore, c and even the wave impedance Z become complex, leading
real- and imaginary-part to achieve same value. This corresponds to the case of an electrically
conductive medium.

All that arises from the going smaller and smaller value of R0, resulting from descending r0,
and the Q-factor. That means, the impedance achieves the magnitude of the complex
impedances XC and XL short-circuiting them more and more. Above wo, R0 only determines
the behavior of the system then (electric conductor). However this is not applied to the wave-
field as such. Reverse behavior appears here. Near t= 0 as well as = 0, the field-wave
impedance behaves like a non-conductor. First at larger distance, the behavior approaches the
one of an ideal conductor, as we will still see later. Decisive for it is the mutual coupling-factor
of the MLE's however.

Now a wave-propagation-velocity different from c does not contradict our primary
assumption c=const and nor the SRT for so long, while its value is smaller or equal to c. This
is always guaranteed even with frequencies near 1 respectively in the time just after the big
bang. The previous results don't just stand in contradiction to prevailing discoveries.

4.3.4.          Propagation-function

First we want to pass in review the classic theory of MAXWELL's equations once again, in
oder to work out, with the help of analogies, an alternative solution, fitting the requests of our
model. The equation-system (1) is under-determined, so that there is more than one solution
filling these equations.

4.3.4.1. Classic solution for a loss-free medium

In accordance with the previous discoveries, the cosmic vacuum seems to be a loss-free
medium. It applies =0 (space-charge-density) as well as =0. To the reminiscence here the
MAXWELL equations once again:

div  B = 0 div  D = 
curl E = – ˙ B curl H = i + ˙ D        (154)

Furthermore applies:

D =  E    B = μ H i =  E  (155)

Put into (154) we get (partial derivatives for x, y and z):

div H  = 0 div E  = 0

curl E = – μ ˙ H curl H =  ˙ E (156)

curl E = – μ
H
t

curl H = 
E
t

Reapplication of the rotation-operation on (156) and substitution of the expression for curl H
results in:

curl curl  E = – μ  curl
H
t

  =    – μ 
(curlH)
t

 =    – μ
2E
t2

(157)
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Furthermore formal-mathematically applies and due to div E = 0, (  is the LAPLACE-operator):

curl curl  E = grad div E - E   =   – E (158)

Analogously applies for H:

curl curl  H =      curl
E
t

  =       
(curlE)
t

   =    – μ
2H
t2

 (159)

Just as because of div H = 0:

curl curl  H = grad div H – H   =  – H (160)

Then for μr = r =1 (vacuum) can be applied:

E =   μo o

2E
t2

  =  
1

c2
2E
t2

  H =   μo o

2H
t2

  =  
1

c2
2H
t 2

   (161)

The Laplace-operator  is nothing other than the vector of the second directional-derivatives
however:  = ( 2 / x2, 2 / y2, 2 / z2). With propagation only into x-direction, the partial
derivatives for y and z become zero, and we can write too:

d2E
dx2

   =   μo o
d2E
dt2

 
d2H
dx2

   =   μo o
d2H
dt2

 (162)

After division by d2E  respectively d2H , multiplication with dx2, division by μ 0 0
and subsequent extraction of the square-root, we will receive the known expressions for the
wave-propagation-velocity c (phase- and group velocity) as well as the field-wave impedance
ZF = μoc:

c  =  
dx

dt
  = 

1

μ o o

 =  c      ZF  =  
μ 0

o

=  Zo (163)

The underlinings stand for complex values. Since the product μr r is always larger than 1, the
maximum wave-propagation-velocity is equal to c. It has an all-pass-behavior on hand, no
lower cut-off frequency exists and the wave-propagation-velocity is independent from the
frequency. For the propagation rate   applies:

  =   + j      =    ± j  /c    =   ± j μ 0 0 (164)

In this connection is  the attenuation rate ( = 0) and  the phase-rate. Except for the
geometrical attenuation (S~r–2) in this case just no additional attenuation appears. Then, for
the propagation-function (into x-direction) we get (analogously for H):

E    =    E e
j t

x

c

 

 

 
 

 

 

 
 

=    E e
j t x

(165)

This solution suffices the cases appearing most frequently in the nature. If the medium is not
loss-free, it fails however. Even, the cosmologic red-shift cannot be explained so.

4.3.4.2. Classic solution for a loss-affected medium

At a loss-affected medium (e.g. water) =0 applies as well as >0. E and H are understood
as complex time-functions (underlined). Equation (156) is then:
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curl  E = – μ
H
t

       curl H =  +
t

 

 
 

 

 
  E (166)

To the solution of the equations, MAXWELL works with the following ansatz:

E  =  E ej t H  =  H ej t (167)

 In this connection, the real-part corresponds to an orientation of the vector in y-, the
imaginary-part to the one in z-direction, x is the propagation direction. This ansatz matches,
except for the factor 2, the first term of equation (108) ej t i.e. the harmonic solution with static
amplitude (static model without expansion). However, equation (108) does not treat the
magnetic (or even electric) field-strength but the charge as well as the flux. To the conversion,
a coupling-length rk, is required, depending from the model in use. At both MAXWELL
solutions, the value can be chosen absolutely free. But it should be essentially smaller than the
wavelength. The best choice would be PLANCK's elementary-length r0 indeed. The magnetic
field-strength submits to                          then.

Now it is comprehensible enough, that MAXWELL first attempts to find an harmonic solution,
this nevertheless corresponds to the long-time experiences (harmonic wave-functions) and
even to the current approaching in solving equation-systems. Furthermore, he achieved a
solution, that agrees to the greatest extent with observations and experiments, delivering even
technically applicable results, as well. The cosmologic red-shift however cannot be explained
with it. It applies further:

 
E
t

  =   j  E ej t   =   j  E
H
t

  =   j  H ej t  =   j  H (168)

We get for the second derivatives:

 
2E
t 2

 =  – 2E ej t  =  – 2E     
2H
t2

 = – 2H ej t  =  – 2H (169)

Further applies:

curl E =  – μ
H
t

    =  –j μH curl H = +
t

 

 
 

 

 
 E  =  (  + j ) E  (170)

We apply the rotation-operation to both sides again:

curl curl E  =  curl (–j μ  ) =   –j μ curl H =  –j μ(  + j ) E   =  – E      (171)

curl curl H  =  curl((  + j )E)) = (  + j ) curl E = –j μ(  + j ) H  = – H      (172)

Furthermore applies:

E  =   j μ(  +  j ) E =  – 2
μ

j 
 

 
 

 

 
 

 

 
 E =  μ

j 
 

 
 

 

 
 

 

 
  – 2E( ) (173)

H  =   j μ(  +  j ) H =  – 2
μ

j 
 

 
 

 

 
 

 

 
 H =  μ

j 
 

 
 

 

 
 

 

 
  – 2H( ) (174)

H = er (μrk
2 )
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On propagation in x-direction only, the partial derivatives for y and z become zero again and it
applies = d2 /dx2. Because of (169) one can also write:

d2E
dx2  =  μ

j 
 

 
 

 

 
 

 

 
 
d2E
dt2

d2H
dx2  =  μ

j 
 

 
 

 

 
 

 

 
 
d2H
dt2       (175)

For μr= r=1, we get after division by d2E as well as d2H, multiplication with dx2, division by
the double bracketed expression, de-parenthesizing of –j and extraction of the root the known
expressions for the propagation-velocity c = dx/dt and the field-wave impedance ZF:

c  =  
j

μ o( + j o )
Z F  =  

j μo

+ j o

(176)

Or resolved for real and imaginary part:

c = 
c

2
 1+

0

 

 
 

 

 
 

2

+1  + j  1 +
0

 

 
 

 

 
 

2

1

 

 

 
 

 

 

 
 

1

 1 +
0

 

 
 

 

 
 

2
      (177)

c = 
c

 1 +
0

 

 
 

 

 
 

2

4

cos 
1

2
arctan

0

+ j  sin 
1

2
arctan

0

 

 
 

 

 
 as well as (178)

c = 
c

 1 +
0

 

 
 

 

 
 

2
cosh 

1

2
arsinh

0

+ j  sinh 
1

2
arsinh

0

 

 
 

 

 
       (179)

The root-expression in (177) even is the absolute value simultaneously. For the attenuation rate
 and the phase-rate  one finally gets:

 =     
μ0 0

2
 1+

0

 

 
 

 

 
 

2

1
 

 

 
 

 

 

 
 
     =     

c
sinh

1

2
arsinh

0

 

 
 

 

 
         (180)

 =     
μ0 0

2
 1+

0

 

 
 

 

 
 

2

+1
 

 

 
 

 

 

 
 
     =     

c
cosh

1

2
arsinh

0

 

 
 

 

 
         (181)

The propagation-function is the same like (164) however with the variant values for  and 
(180, 181). For = 0 this solution passes into case 4.3.4.1. The propagation-velocity is
dependent on  and  and amounts to c at most There is a lower cut-off frequency. Since

0, an additional attenuation of the electromagnetic field-strength (POINTING-vector)
appears to the geometrical one. With extreme values of , nonlinear distortions occur because
of different group- and phase velocity. This solution describes wave-propagation in a medium
of whatever qualities and a space-charge-density of 0. It doesn't explain cosmologic red-shift.
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4.3.4.3. Alternative solution for a loss-affected medium with expansion

4.3.4.3.1. Solution

We start with the same formulation as in the previous case:  = 0 as well as > 0. E and H
are understood as complex time-functions again (underlined). Since in the time just after big
bang there is a pure radiation-cosmos and because we are considering the MLE, just the empty
space, here the vacuum solution only can be of interest anyway. Equation (156) reads then:

curl  E   =  μ 0

H
t

 curl H   =  0 + 0 t

 

 
 

 

 
 E (182)

In contrast to MAXWELL, who made use of the first term of equation (108) ej t as base, we now
choose the first term of equation (119), which we have obtained as an independent solution of
the differential equation (78). The coupling-length of rk cannot be chosen here freely. Because
the imaginary-part of the Hankel function is coming from the infinite the initial value of   is
defined at the point 2 ot=Qo=1. The coupling-length at this point is r1.

E  =  E H0
(1) (2 ot) H  =  H H0

(1) (2 ot) (183)

In this connection again, the real-part corresponds to the vector's orientation in y, the
imaginary-part to the one in z-direction, while x is the propagation direction. As already
noticed, an analogy exists among the exponential-function ej2 t and the Hankel function. Both
are transcendent complex functions being periodic respectively nearly periodic. In the
following, we want to find out, whether this base leads to a solution of the MAXWELL equations
too. It is however to mark that o is time-dependent in this case. Therefore we will first work
with the correct time-functions:

E  =  E H0
(1) 2 0t

0

H  =  H H0
(1) 2 0t

0

(184)

Let's proceed now like in 4.3.4.2. (analogously for H):

E
t

 =    
2 0

2 0

0

2 0t
 E H1

(1) 2 0t

0

=  – o

2 ot
 E H1

(1) 2 0t

0

(185)

The minus sign is caused by the derivative of the Hankel-function. Furthermore applies,
according to the calculating rules for cylinder-functions [22]:

E
t

  =    –  E H1
(1)  (2 ot) =   – 0

2 t E H0
(1)(2 0t) +H2

(1) (2 0t)( ) (186)

H
t

  =    –  H H1
(1)  (2 ot) =   – 0

2 t H H0
(1)(2 0t) +H2

(1) (2 0t)( ) (187)

As next, we de-parenthesize the expression for the Hankel function of zero order so we can
write, because of (183), for the first derivative as expression of the original-function:

E
t

  =  – 0
2 t 1 +

H2
(1)(2 0 t)

H0
(1)(2 0 t)

 

 
 

 

 
 E  

H
t

  =  – 0
2 t 1 +

H2
(1)(2 0 t)

H0
(1)(2 0 t)

 

 
 

 

 
 H      (188)

We require the second derivatives as well. These we determine to the best, in that we
differentiate the right expression of (185) once again (analogously for H):
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2E
t 2   =  

t
0

2 0 t
H1

(1) 2 0 t

0

 

 
 

 

 
  E   =     (˙ u v + u˙ v )  E       (189)

For u and v, we get following expressions:

u = o ˙ u =   
0

2t
(190)

v = H
 1
(1) 2 0t( ) =   0t H

 0
(1) 2 0 t( ) +H

 2
(1) 2 0t( )( ) (191)

˙ v  = 0 H
 2
(1) 2 0t( )

1

2t
H

 1
(1) 2 0t( ) = 0

2
H

 0
(1) 2 0t( ) H

 2
(1) 2 0t( )( ) (192)

Replacement of the second expression of(189) results in:

2E
t 2    =      0

2 H
 0
(1)(2 0t) E   =  0

2
 E (193)

2H
t2    =      0

2 H
 0
(1)(2 0 t) H   =  0

2
 H (194)

Now, we put (188) into (182) getting:

curl H =  0 + 0 t
 

 

 

 
 E  =  0 – 0 0

2 t 1 +
H2
(1)(2 0t)

H0
(1)(2 0t)

 

 
 

 

 
 

 

 
 

 

 
  E (195)

Expression (195) even can be written more simple:

curl H =  0 0
2t  

0

0 0
2t

– 1 +
H2

(1)(2 0 t)

H0
(1)(2 0 t)

 

 
 

 

 
 

 

 
 

 

 
  E       (196)

curl H =  0 0
2t  2 – 1 +

H2
(1)(2 0t)

H0
(1)(2 0t)

 

 
 

 

 
 

 

 
 

 

 
  E (197)

curl H =  0 0
2t  1

H2
(1)(2 0t)

H0
(1)(2 0t)

 

 
 

 

 
  E (198)

For   curlE   =  μ0

H
t

 we obtain immediately by substitution :

curl E =  μ 0 0
2t  1+

H2
(1) (2 0t)

H0
(1) (2 0t)

 

 
 

 

 
  H (199)

We apply the rotation-operation to both sides again:

curl curl H =   curl 0 0
2t  1

H2
(1)(2 0t)

H0
(1)(2 0t)

 

 
 

 

 
  E

 

 
 

 

 
  =  0 0

2t  1
H2

(1)(2 0t)
H0

(1)(2 0t)

 

 
 

 

 
  curl E (200)
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curl curl H =   μ 0 0 0
4t2

 1
H2

(1) (2 0t)
H0

(1) (2 0t)

 

 
 

 

 
  1+

H2
(1) (2 0t)

H0
(1) (2 0t)

 

 
 

 

 
  H  =  H (201)

curl curl H =   0
2

c2 0
2t 2

 1
H2

(1) (2 0t)
H0

(1) (2 0t)

 

 
 

 

 
 

2 

 
  

 

 
   H  =  H (202)

The result for E is analogous. We continue like in section 4.3.4.2.:

E =   0
2t2

c2  1
H2

(1)(2 0t)

H0
(1)(2 0t)

 

 
 

 

 
 

2 

 
 

 

 
  0

2E( )  =  
0
2t2

c2  1
H2

(1)(2 0t)

H0
(1)(2 0t)

 

 
 

 

 
 

2 

 
 

 

 
  

2E
t2 (203)

H =   0
2t 2

c2  1
H2

(1)(2 0t)

H0
(1)(2 0t)

 

 
 

 

 
 

2 

 
 

 

 
  0

2H( )  =  
0
2t2

c2  1
H 2

(1) (2 0t)

H 0
(1) (2 0t)

 

 
 

 

 
 

2 

 
 

 

 
  

2H
t2 (204)

With propagation only into x-direction, the partial derivatives for y and z will be zero again
and it applies  = d2/dx2 (analogously for H):

2E
x2  =  

0
2t2

c2  1
H 2

(1) (2 0t)

H 0
(1) (2 0t)

 

 
 

 

 
 

2 

 
 

 

 
  

2E
t2 (205)

After rearrangement, we finally get for the wave-propagation-velocity c and field-wave-
impedance ZF:

c  =  
c

j 0 t

1

 1
H2

(1) (2 0t)

H0
(1) (2 0t)

 

 
 

 

 
 

2
     with  =  

H2
(1)(2 0t)

H0
(1)(2 0t)

(206)

c  =  
c

j 0 t

1

 1 2
     Z F =  

Z0

j 0t

1

 1 2
(207)

One sees that the propagation-velocity converges to zero for large t. The same is applied to
the field-wave impedance too. We have to do it with a quasi-stationary wave-field (standing
wave) filling very well the requests on a metrics. The propagation-velocity is complex again. A
decomposition into real- and imaginary-part works out quite difficult, but it's mathematically
possible however. The solution for c reads:

c  =
2

0

c

2 0t
 1

1

1+
2

j  1+
1

1+
2

 

 
 

 

 
 Ambiguous! with (208)

A =
J0 (2 0t)J2 (2 0t) +Y0(2 0 t)Y2 (2 0t)

J 0
2 (2 0t) +Y0

2 (2 0t)

B =
J2 (2 0t)Y0 (2 0t) J 0(2 0t)Y2 (2 0t)

J0
2 (2 0t) +Y0

2(2 0t)

0 =    1 A2 + B2( )
2

+ 2AB( )
24

 =  
2AB

1 A2
+  B2 (209)
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It turns out an all together quite complex expression, that can still be simplified something
however (210). A starts at +  converging to –1. The course resembles the function 1/A2–1
approximately, which cannot be used well as approximation however. B has a course like 1/B2

and is converging to zero. The same is applied even to  then. The bracketed expression
converges to 1 with it. 1/ 0 is the value-function converging to 1/ 2 .

c =
2

0

c

2 0t
sin 

1

2
arctan + j  cos 

1

2
arctan

 

 
 

 

 
    =    
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2 0t
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Unfortunately (210) cannot be transformed into an expression similar to (179) with area-
functions, so that the ambiguity of the arctan-function leads to a partially wrong result. We
should better calculate with the following substitution therefore:

arctan = arg  1 A2 + B2( ) + j2AB ( )             argc =
1

2
arccot

4
(211)

While the real-part of c is defined as the velocity in propagation direction, the imaginary-part
can be interpreted as a velocity rectangularly thereto. The appearance of an imaginary part in c
means also that there is an attenuation anywhere (refer to figure 23). A numerical handling of
(206) even can be processed with »Mathematica« resulting in the course figured in figure 21.
Since the Hankel functions, with larger arguments, can be expressed well by other analytic
functions, we will try to declare approximative solutions later.
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Propagation-velocity
in dependence of time (linear time-scale)

In the coarse, the propagation-velocity behaves proportionally to t-1/4, as we will still see later.
Overall, figure 21 strongly reminds to the smooth curve of a discrete MLE (figure 13). Near
t=0 it looks somewhat differently however. A logarithmic scale helps on in this case (figure
22). As exact examination emerged, have real- and imaginary-part of c the same amount from
20 0t/ 0 on approximately. We must pay attention to this with the specification of an
approximation function.

We have to do with a case of inversion here. This manifests by the fact that the propagation-
velocity ascends from zero to an amount of 0.851661c (with 0.748514 t1) first in order to
descend asymptotically to zero again.
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Propagation-velocity
in dependence of time (logarithmic time-scale)

With it, the world-radius (wave-front) of this model doesn't expand with c but only with
0.851661c which figures no violation of the SRT anyway. With it happens also that later
transmitted wave-sections pass the wave-front quasi. Since the proportion of real- and
imaginary-part is different in this case, it doesn't take place on the same track-curve - the wave-
fronts rather cross each other.

To specifiy the propagation-function, let's have a look at the classic solutions (165), (212)
once again and at our primary function (183) too.

E  =  E e
j t
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                =    E e
j t x

      =    E e
j t + j x( ) (212)

Contrary to (165) the argument in the case with expansion is real. Strictly speaking, namely it's
not the Hankel function but the modified Hankel function M0

(2 )= Io(z)–jKo(z) being the
equivalent of the exponential-function. It is valid for Io(z)=Jo(jz) however only for pure
imaginary arguments. With complex arguments, the real part cannot be drawn to a position
ahead of the Hankel function as usual with the exponential-function, since the power rules
aren't applied to Hankel functions anyway. It's possible first with larger arguments z. In general
the modified Hankel function isn't used however. Therefore, we use for the base the “ordinary”
Hankel function adapting the propagation-function accordingly. To avoid contradictions with
the classic definition of propagation rate, real-part equals attenuation rate, imaginary-part
equals phase-rate, the propagation-function should read as follows then (analogously for H):
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    =     EH0

1( ) 2 0t j x( ) (213)

This is not quite the classic expression for a propagation-function. Attention should be paid to
the factor 2 which can be assigned both to the frequency, as well as the time-constant. With the
definition of propagation rate  = +j  it obviously belongs to the frequency since  de-
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pends on phase velocity dx/dt, but not on the half of dx/(2dt). By equating both arguments of
(213) one gets then:

 =  

2 0

c
   =        j 0Z0  1 2    (214)

From (210) the reciprocal of c can be determined very easily. Due to (164) we get for :
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Phase-rate and attenuation rate

in dependence of time (linear scale)

With accurate contemplation one recognizes that  and , evaluated by its action, are
exchanged in fact (  = phase-rate,  = attenuation rate). This is caused thereby that a rotation
of about 90° (j) occurs during propagation (figure 26). x turns into y and y into –x. The
attenuation , starting at the point of time t=0, starting off infinity, is decreasing exponentially.
To the present point of time, one can say that there is basically no attenuation anyway. This
doesn't apply however considering cosmologic time periods.

At the point of time 0.897 t1 (Q = 0.947), the function  has a zero-passage. This supplies the
somewhat particular course in logarithmic presentation (figure 24). It's about a phase-jump of
180° in this case. Possibly, this is even that point, in which the wave-front, sent at the point of
time t=0, is passed by the faster, later transmitted. Furthermore, even the formation of the
crystalline structure of space takes place approximately to this point of time (folding of parable
into rotation). Up to this point of time, the space is closed, after it open. From the point of time
100 t1 on we are able to declare, referring to figure 24, the following approximation:

Attenuation rate 

Phase rate 
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Phase rate and attenuation rate
in dependence of time (logarithmic)

  (1 + j)  0Z0  
0

2 0t
4   (1 + j)  

0Z0

2 0t
(218)

These relationships can be derived as well graphically from figure 24, as explicitly using (214)
by application of (223). However, it's necessary to multiply (214) with j, in order to take
account of the 90° turning (figure 26). Then, to the approximation  = 2 o/c is applied. The
factor oZo is the reciprocal of our ro with a Q-factor of 1, marked with 1/r1. Phase rate and
attenuation rate are the same from 100 t1 on approximately. This is the behavior of an ideal
conductor. Possibly a lot of known physical effects like e.g. superconductivity and electron
conductivity of the vacuum are basing hereupon.

Even interesting is the similarity of the course of the absolute propagation-velocity of
metrics with the group delay specified in section 4.3.2. on transit of an interference through the
discrete MLE. While the propagation-velocity of metrics is increasing near the singularity, the
propagation-velocity of an overlaid wave is decreasing simultaneously, with the result of total-
velocity remaining constant = c.

At the world-radius, the universe expands with the maximum velocity of 0.851661c, in the
inside with a velocity decreasing more and more. Since the wave count in the interior of a
sphere with defined radius r(c,t) is decreasing, the deficit is balanced by an increase of
wavelength. Outside K, the wave count ascends continuously due to propagation.

Now, some problems appear, at which we want quickly have a look here, as well. Initially, the
cosmos would not show the same physical qualities anyplace. We would have to do it with a
weakened cosmologic principle then:

III. The cosmos offers the equal sight to the equal point of time.

Approximation

Attenuation rate 

Phase rate 

Phase rate –
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This statement needs the interpretation: The universe is expanding into an even Euclidean
space without time-definition. The calendar begins with the transit of the wave-front first.
Therefore, the universe has a different age at different positions. The local time is always
meant. To equations, that refer to the expansion-center, the time is applied at this point, just the
total-age. There is no universal world-time in this model, what agrees with the statements of
the SRT very well. With it, the local age is a function of the distance to the center, which can
be determined by measurement of the local physical quantities, at least theoretically. The
HUBBLE-constant turns into a local quantity. With it, we even would have solved the time-
scale-problem, which would have been appeared here otherwise. There are just both areas
being younger and such being older than the area, in which we are located (everytime seen
from the observer). If one moves in space, so one moves in time simultaneously. Thus the
expression »space-time« is uniquely defined.

The space outside K would be equipped with the basic physical qualities 0, μ 0 and 0,
allowing even a wave-propagation in accordance with the classic MAXWELL theory for the
vacuum. The metric wave-field is just not required for wave-propagation anyway. In what
extent matter can exist outside, should not be examined here further. Debatable in any case ist
the question, where this, respectively any other electromagnetic radiation should come from.
We once assume that there is none. If this should be the case but yet, no possibility exists to
cross the singularity at the world-radius K, neither into the one,  nor into the other direction.

We have the real- and imaginary-part of c assigned to propagation in x- and y-direction.
Let's have a look at the propagation of the wave-front now, transmitted at the point of time
t = 0. If we figure it two-dimensionally, we will get the following track-curve (figure 25):
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Track-curve for larger values of t

in dependence of time

For larger t, the expansion of the wave-front proceeds approximately rectilinear. The
behavior looks somewhat differently near the singularity. In figure 26 is figured the course of
the track-curve of a discrete section of the wave-front near the singularity. One discovers a sort
of parable, with larger t a hyperbole. A rotation of an angle of 90° appears in the propagation
direction. Figure 27 shows the function of the absolute distance to the center.
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The function has been calculated and figured with the help of »Mathematica« by numerical
integration on the following way:

Hankel1=Function[BesselJ[#1,#2]+I BesselY[#1,#2]];
Cd=Function[-2*I/Sqrt[#]/Sqrt[1-(Hankel1[2,Sqrt[#]]/Hankel1[0,Sqrt[#]])^2]];

CdI=Function[NIntegrate[Cd[a],{a,0,#}]];

Plot[Abs[CdI[t]],{t,0,1}, AspectRatio->1]     (219)
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The locus curve of the field-wave impedance is declared in figure 28. The value for t»0 is of
particular interest.  Contrary to overlaid interferences of inferior frequency, to which ZF=Z0 is
applied, this value virtually becomes zero for the metrics on the other hand. Thus  (virtually)
no propagation-losses appear anyway. This “virtually” could be the reason for the cosmologic
red-shift. This idea should be examined in the following section. First however, we want to
deal with the approximative solutions for larger t once again.
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Locus curve of the
field-wave impedance

4.3.4.3.2. Approximative solutions

In [23] is an asymptotic formula for the Hankel function declared. It reads:

H
  

(1) z( )  =  
2

z
 e

j  z
2 4

 
 

 
  1+O z-1( )[ ] for 0 < z <  (220)

Put into (206), one sees that nearly all expressions can be reduced. The root-expression
converges to a value of:

R =   1
1 +O2 t 1 2( )[ ]
1 +O0 t 1 2( )[ ]

 

 

 
  

 

 

 
  

2

or (221)

By expanding with [1 – Oo(z-1)] and suppression of the quadratic terms we get:

R =   1 [1+O2 (t 1/ 2 ) O0 (t 1/2 )]2
 2O2 (t 1/2 ) 2O0 (t 1/ 2 ) (222)
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The root-expression is just only dependent on the remainder terms which is tending to zero as
well. Therefore, this base is not suitable for our purposes.

For , we have already found an approximation, still remain c and ZF. In figure 22 we have
already figured the course of c. To the graphic determination of an approximation, we require
the logarithmic representation however (figure 29). To be considered, it is the fact that the
imaginary part is actually negative.
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Propagation-velocity
in dependence of time (logarithmic)
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4.3.4.3.3. Propagation-function

First we want to put an approximation of the propagation-function. One can work with very
large precision using the approximation equations with it. For larger arguments, we achieve by
application of (220) the essentially more simply manageable expressions (analogously for H):

E  =  E   
2

  2 ot + j x  

 e
j(2 ot

4
) x

      (226)

The value-function appears here in the root-expression, since character phasing is determined
by the exponential-function only, as one can discover in figure 13 and 14 very well. The

Real part

Approxim.

–Imaginary part
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phase-angle /4 is of subordinate interest for the approximation so that it can be omitted
therefore:

E  =  E   
2

  2 ot + j x  

 e
j 2 ot x

(227)

Substituting the approximations for  (218) we determine both o , as well as  being
functions of time. It's no further critical for 2 ot , since it will be multiplied with t anyway.
Differently with , it should depend on x only. To the substitution of t, we require the phase
velocity vph. It applies t=x/vph then. On the basis of the factor 2 the phase velocity is defined
as follows:

vph =  

2 0
 =  

2c

 2 0t
 =  2   c  for t»0 (228)

The phase velocity is equal to the double absolute amount of propagation-velocity. This is
caused by the factor 2 on the other hand, since character phasing propagates with double
frequency even with double velocity. As a matter of interest, the group velocity should be
declared here as well:

vgr =  

1

d d 0

 =  2   c      for t»0 (229)

Both results are equal with the exception of sign. That means, propagation takes place
distortion-free. By substitution of t=x/vph in (218) we get with t3= o oμo

2x4/4 and the product
x the following expressions for :
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4 0
2Z0
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 1 + j( )  4 0

2Z0
2 x23
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2
 1+ j( )  

4x2

r1
2

3 (231)

The result is stunning.  is proportional x–1/3 and the time t can be eliminated totally.
Unfortunately, one can declare  (x) explicitly only in the approximation. With the exact
function (217) a separation, especially of t, is absolutely impossible. Other solution-procedures
must be applied here. A simple base arises as follows:

In figure 27 we have proven that the radius ascends linearly with smaller arguments. With it,
the dependences figured in (230) and (231) are valid even for small arguments, however not in
x but in r. For larger arguments it is not of interest, whether one reckons with x or with r
anyway. However then, it's necessary to multiply both,  as well as x with 2  because of
(r=x 2 ), since propagation takes place as well into x, as into y-direction. The rotation  is
defined by the imaginary part. It applies:

r ˆ = (j2 0t)
3               or rearranged 2 0 t ˆ =  j  r( )

2
3 (232)

Since it's the phase velocity which is important for the propagation-function only, being real
and having always the same direction like propagation direction, even only the value-function
is required:

 r  ˆ = (2 0t)
3            or rearranged 2 0 t ˆ =   r  

2
3 (233)
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With it, an approximative solution (r) would be valid until down to t=0 precisely. However,
the rotation about the angle  remains unconsidered then. Now however, we have a case on
hand in which  and  are containing as well attenuation- as phase-information. With it, we are
unable to make a reasonable propagation-function. In the case t» t1 phase rate and attenuation
rate are having the same value overall. Our model behaves similarly like a metal with it.
Propagation within a metal takes place about /4 warped to the entry-direction,  doesn't just
actually stand for an attenuation but for the rotation. Since the material-qualities of the metal
don't change in general, deviation adds up as long as a value of  is achieved with vertical
incidence so that the wave after minimal penetration leaves the metal in reverse direction
again. The penetration depth is dependent on material-qualities, wavelength and the incidence-
angle. Therefore, electromagnetic waves are reflected by metallic surfaces in general. In the
case of our model, the material-qualities aren't constant,  is decreasing by time. Therefore it
suffices only to one rotation of 90° here and the wave remains in the medium (vacuum). An
attenuation doesn't appear (t» t1).

In order to take that into account, we take up a rotation about /4 of the coordinate-system.
This corresponds to the multiplication of (231) with j . Also our 2  comes into play here and
we get a purely imaginary solution: (234) and (235) left side. With it applies =0 as well as

=j  and there is no exponentially caused attenuation anyway. Nevertheless, the amplitude of
E and H is decreasing continuously. This is caused by the Hankel function only, as one can
discover in the approximation (227) very well (root-expression). Amplitude and phase are
coupled closely together with it (minimum-phase-system). The rotatory angle in space now is
equal to + /4.

The Hankel function is singular at the point x=0. Therefore, this point is not suitable as
origin for a space-temporal coordinate-system, that we require, in order to figure the
simultaneous dependence of space and time. Therefore, we will use the “nearest” situated point
r1/2. This is the smallest distance at all, with which a space-temporal coordinate-system is
possible. Also, we have taken up coupling of o and E at this point. Another reason for the
choice of this point is formulated in section 4.6.3. It is this the existence of an inner
SCHWARZSCHILD-radius. So even a largest value 1 exists, that cannot be exceeded. We
consider this by the substitution r2 r2 –r1

2 /4 (the quadratic action-principle is applied). We
finally get:

  =   j 2  0Z0   

r1

2r
3               =  

j

r
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4r2
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2

3 (234)
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4r2
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2

3             r  =  j   1
4r2

r1
2

3 (235)

Equation (234) and (235) are actually referred to the expansion-centre (r1/2). It is however
useful to find a function being based on another point as centre.  The best-suited point in this
case is the point, at which we are being. The substitution t T+t´ leads, due to ro=r1Qo (The
tilde stands for the initial value at the point t=0, it's just about a constant), to r1 ro and:

2 0 t = ˜ Q 0  1 +
 t 

˜ T 
       und       r  =   

˜ Q 0 1
4r2

˜ r 0
2

 

 
 

 

 
 3       (236)

If we reckon with the radius r, we will make use of  only, in future So a mix-up of the
different values (x) and (r) is beeing avoided as well. Since =0, the propagation-function
simplifies once again:
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E  =   ˆ E i  
2

 2 0t r( )
 e

j 2 ot r( ) (237)

With ro, we have already found one elementary-length. LANCZOS already speaks of a second
one however [1]. This is the wavelength of the metric wave-field o=2 / .  In the
approximation of o, it's necessary to divide by 2 in order to re-cancel the rotation of the
coordinate-system. To the comparison  here the expression for ro once again. One gets:
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2 0t

0
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2 0t

0Z0

 =  
2t

0μ0

 (240)

However is o smaller than ro and with it different from HEISENBERG's elementary-length. o
is in the magnitude of 10–68m. LANCZOS just errs in this point. It has been even only a
supposition for his part however. It is rather about the wavelength of the wave-function, that
forms our metric lattice itself. (238) till (240) are figureing the time-functions only. The
functions of time and locus are as follows.
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All time/locus-functions are defined for 0<t<  and for –r1/2<x< . Analogously, time/locus-
functions of all other quantities can be determined as well. The precise and approximative
temporal courses of o (r=0), just as the one of ro(r=0) are figured in figure 30 and 31.

Figure 31 is somewhat misleading. It looks like, as is ro smaller than o . In reality, the
graph of ro cuts the one of o  at an argument of 450.592 with 21.2271 r1. The phase-jump, just
to be recognized in figure 31, appears with an argument of 0.8968.

Also of interest is the (total-)world-radius K. It arises from the relationship 2 oA =  (A is
the total-age) to:

K =  
 1 + 2 0A( )

3

0 Z0

  
2 0A( )

3

2

0Z0
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2 0A

0

 

 
 

 

 
 

3

4 (244)

It is this the radius, that one “measures” moving along the expansion-(world-)line. One cannot
determine the exact value and the distance to the center of expansion however, since we don't
know real age anyway.
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We only now local age T, that results from the local HUBBLE-parameter (245). It quasi-figures
the temporal distance to the expansion-center. It's however possible, to determine the spatial
distance to the (local) world-radius R. This one figures a spatial singularity with it. The value
of results from the base (246):

2 0 t 0 r =  0(H)

H
bei  r = 0 T =

1

2H
      (245)
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2 0 t 0 r =  0(H)

H
with  2 0t = 0      (246)

R  =  
0 (H)

0H
 =  

0r0

H
 =  2ct with (247)

  

0 =  0Z0  
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0

4  =  
c3

Gh
 =  

1

r0

 (248)

We received the value of 0 from (218) in that we replaced time with the HUBBLE-parameter.
The phase rate is just equal to the reciprocal of ro. The expression for R is:

R  =  
c

H
  =   –1.682·1026m   =   –1.778·1010Lj   =   –5.451 Gpc      (249)

The value is roughly 17 billion light-years. Local age amounts to only the half of time,
namely 8.8 billion years, according to this model. Trying to calculate total-age A as well as
total-world-radius K one recognizes that it won't work. The reason is that present data don't
suffice because the equation-system arising from is under-determined anyway. It however
applies:

R4

K 4  =  
1

H3A3 and HR = –c (250)

With the exception of these two we have clearly determined all functions now. And there is
no contradiction to already existing theories. But we could still not yet explain cosmologic red-
shift.

The examined wave-field forms the metrics of the universe however (empty space), just the
MLE. We can already declare it here, further contemplations are reserved to a separate chapter.
We go out from (0.23) in it's differential form substituting the common speed of light c with
our propagation-velocity c of the metric wave-field:

ds2 = dx2+ dy2+ dz2 – c2dt2 or (251)

ds2 = dr2+ r2(d 2+ sin2   d 2) – c2dt2 (252)

Here immediately becomes clear, which physical meaning is assigned to the MLE. For the
exact formula, we apply polar-coordinates usefully. We now substitute the exact expression for
c (r=0):
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0
2 (2 0t r)

(cos arctan  (2 0t r) + j  sin…)

(254)

ds2
= dr2

+ r2(d 2
+ sin2

 d 2 ) +
c2dt2

0
2t2

0
2 (2 0t r)

  1 + j  (2 0 t r)

 1 + 2 (2 0t r)  
(255)
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ds2
= dr2

+ r2(d 2
+ sin2

 d 2 ) +
c2dt 2

0
2t2 (1 A 2( ) + B2 ( ))  (1 j  ( ))

(256)

ds2
= dr2

+ r2(d 2
+ sin2

 d 2 ) +
4˙ r 0

2
 dt2

 1 (A( ) jB( ))2 (257)

with =2 ot– r. Interesting is the reversal of sign. The beam turns into a ball. The previous
beam is however still applied to overlaid signals propagating always with speed of light. It
adds up the local propagation-velocity (not expansion-velocity!). A( ) and B( ) determine
rotation near the singularity. The reciprocal of the expression in the denominator shows a
behavior like t1/2 according to the absolute value. Now still the approximation (equation (260)
is an anticipation of later results):

ds2
=  dx2
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+ dz2

+
c2dt2

2 0t x2 + y2 + z2
(258)
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Moving only in time and not in space, no spatial curvature appears. This motion-type is
called time-like world-line (e.g. photons). With it, a curvature is to be equated with the motion
of a mass. This must first be accelerated for this purpose. One names this motion-type space-
like world-line then. If you use the expansion-centre as origin of coordinate-system, so there is
only a temporal dependence. Directly at the point r = 0 there are no space-like world-lines
possible, however closely alongside. These are directed outside the singularity, the time-like
ones inwards then. A body would be repelled by the singularity. It's about a particle-horizon
therefore. Another example for this type of singularity are white holes (if existing) and the
local world-radius R. Latter one can be passed through by e.g. photons therefore.

The non-existence of space-like world-lines at this point as well is a reason for the fact that
there is no universal spatial coordinate-system defined. Such one, if existing, needs to be valid
at each point anyplace. If there is only one single point, at which it doesn't apply, there is no
universal spatial coordinate-system anyway. Contrary to it only space-like world-lines at the
total-world-radius K exist. It's about a temporal singularity therefore (event-horizon) that
cannot be passed through by photons. With it, there is even no universal time defined, exactly
like in the SRT. The time-like world-lines in the vicinity are defined outwards, the space-like
ones inwards the singularity. A body would be attracted by the singularity and could even
penetrate it. Examples here are e.g. black holes.

Thinkable would be an universe, with the observer always located in the centre, both
singularities equally far away, being quasi “connected” outside space. This is strengthened by
the fact that the product HR exactly fits the speed of light, there is just an infinite curvature at
both ends and even by the symmetry of the propagation-velocity-time-function (figure 22).
Crossing the point, where the phase-jump appears, you will come out at the “other end of the
world”. Such a model would be expanding speaking in behalf of a big bang.

Looking at the second expression of (236) one realizes that it describes exactly the just
proposed model. For an observer, there is only his local frame of reference. That a motion in
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space means even a motion in time, we have already determined yet. Expression (236)
however clearly shows, that it doesn't matter, into which direction one moves, temporal
direction is always the same, opposite to the natural time-direction (because of r2). This
however still means something else: Each observer has the impression that he is standing in the
center of the universe everytime. Since the natural time-vector is always larger than that caused
by motion, the observer is always moving in the natural time-direction nevertheless (except
one flies faster than c). Although, with a relative-motion ( r = const) as well as acceleration
( r const) a time-reduction appears. This, once again agrees with the statements of the SRT
very well.

4.3.4.4. Solution for a loss-affected medium with expansion and overlaid wave

4.3.4.4.1. Model

We assumed, that the vacuum is not loss-free by introduction of a specific conductance o.
With it, we could find a maximally rational solution of the MAXWELL equations, which fills
the requests to a metrics, being not in contradiction to Special Relativity. According to [1], the
propagation of photons happens as an interference of this wave-field. Furthermore we had
determined, that this takes place exactly with speed of light. That agrees with the observations
and experiments very well. Solution 4.3.4.1. (Classic solution for a loss-less medium) very
well describes the propagation-behaviour of photons without metrics, but the cosmologic red-
shift cannot be explained however. To do so, we are forced to favour another solution. For this,
solution 4.3.4.2. (Classic solution for a loss-affected medium) at first comes into question.

If we simply equate = o, we will obtain a solution  with a wave-propagation-velocity close
to zero, which doesn't agree with reality quite obviously. Solution 4.3.4.2. even only describes
wave-propagation in absence of a metrics.

However other circumstances are on hand with a propagation as an interference of a metric
wave-field according to 4.3.4.3. Solution 4.3.4.2. as you know, can be obtained even as
solution of equation (72) without expansion, which bases on the equivalent circuit figure 11,
when Ro . With solution 4.3.4.3. Ro depends on place and time  and is also close to infinite.
Doing a reverse-calculation with the base = o we get a value, which is close to zero. In order
to come again in correspondence with reality, we are just forced to use another model.

In section 4.3.2. we had determined that the MLE as per figure 11 behaves like a low pass of
2nd order for overlaid signals. Therefore, we want to transform the equivalent circuit of the
MLE into a low pass. The exact procedure is presented in figure 32. We first of all disconnect
the circuit at the marked position elevating the coil Lo Thus, the proper low pass (centre right)
is ready. Although, the therein contained loss-resistor Ro characterizes only the losses within
the MLE. If we now want to model wave-propagation, we must daisy-chain a lot of these
elements (figure 33).    

We consider the coupling of two line-elements in the interval ro, at which point the coupling-
factor should be equal to 1. The coupling itself takes place across the magnetic field (figure 2).
And exactly with this coupling there's going to be more losses, which are not characterized by
the impedance Ro. It's possible to interpret it as exclusive losses of the capacity Co, For the
coupling-losses, we now introduce another impedance RoR, which we already know from
figure 10, and assign it to the inductivity Lo. It are about losses with the inductive transfer
indeed. The value of RoR calculates generally by analogy with (48). But if we'll get the same
result, we must already prove.

For RoR we assumed the resistance of a cube with the edge length ro and we had defined the
value o accordingly. This value is certain with it. Now however, we are concerned with an
edge length ro and then we normally acquire a smaller value RoR = 1/( oro). The reason, why
it is not the case, is , that we want to look at the interaction of two single MLE's only.
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Figure 32
Conversion of the equivalent-circuit of the MLE into a low-pass
under consideration of the additional coupling losses

Figure 33
Line-equivalent-circuit with shunt-resistor

Within a ball with the diameter ro, the wave just propagates spherically, reside  line elements
on average, as we can easily verify by counting. In consequence, the cross-sectional area must
be shared by  line-elements, the cross-section A must be divided by . With A= ro

2 we
exactly acquire (48) right in turn.

Then, we already transform the impedance RoR into an a second parallel loss-resistor Ro, with
the help of (47), bunching both together to the total-loss-conductance Go with which Go=2/Ro
applies. Figure 32 centre and right are equivalent.

4.3.4.4.2. Approximative solution

First we want to check, whether we cannot use solution 4.3.4.2., if we apply a substitution to
o. This is the case indeed. But we don't get a constant in this case, since Ro is not static. We

introduce a substitutive value oR to it. With the help of (53), (59), (218) and (247) we obtain:

R0R =
1

0  r0

   r1 =
1

0  Z0

   r0  =  r1Q0  =
2t

0  

μ0

  R0R =  
μ0

2 0t
      (261)

R0  =
Z0

2

R0R

 =  Z0Q0    G0 =  
2

R0

 =  
2

Z0Q0

 =  0R

r0
2

r0

 =  0Rr0    (262)

0R =
2

Z0Q0r0

 =  
2

Z0R
 =  

2

Z02ct
 =  0

t 0R =  2 0H  =  
2 0

Q0
2     (263)

R is the world-radius 2ct. Then, inserting (263) into (176) we obtain for the complex
propagation-velocity c and the field-wave-impedance ZF:

c = c  

j t

1 + j t
   ZF =  Z0  

j t

1+ j t
(264)

Now light speed is achieved in infinite time only. Nevertheless, the propagation-velocity is
close to c.  The remainder is filled up by the propagation-velocity cM of the metrics so that the
total-velocity is equal to c in turn, which was a basic assumpton of this work. The same result
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we get by solving the telegraph equation [5] (265) for the transient state (c1=0) using the
values for C0, L0, G0 as well as R0 =0. Figure 33 shows the associated equivalent circuit. In
addition we still derive with respect to r, i.e. each low pass-gate now represents the properties
of a conducting-section of the length r. The discrete components turn into the capacity,
inductivity and conductance covering C 0, L 0 and G 0. Since the vacuum in this model has a
finite structure with the smallest increment r0, applies r r0. Fortunately r0 is sufficiently
small, so that we can work with the difference-quotient. Then, we get C 0 = C0/r0 = 0, L 0 =
L0/r0 = μ0 and G 0 = 0/t= 0R for the coverings. With it, the fundamental physical constants 0,
μ0 and the substitutive value 0R are identical to the capacity, inductivity and conductance
covering of our “conduction“, i.e. the vacuum.

2u

t2
= c2

2u

r2
+ c1

u

r
+ c2

u

t
+ c3u with (265)

c =
1

 L 0  C 0
c1 = 0   c2 =

 R 0
 L 0

 G 0
 C 0
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 G 0  R 0
 L 0  C 0

     R 0 = 0

2u

r2
 L 0  C 0

2u

t2 (  C 0  R 0 +  G 0  L 0)
u

t
 G 0  R 0u = 0

 
       analogously for i (266)
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(267)
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u + 0

u

t
(268)

This corresponds to a loss-affected line in general. Because of E=–u/r0 as well as H=–i/r0 we
obtain after division by r0:

E
r

=  μ0

H
t

  ˆ = curlE
H
r

=  0R + 0 t

 

 
 

 

 
  E     ˆ = curlH     (269)

In this way the MAXWELL equations can be derived directly. Unlike 4.3.4.2. the parameter 0R

however decreases steadily in this case. The solution itself is not loss-free. An attenuation-
factor, different from zero, which can be attributed to the variable parameter 0R Therefore, it is
also named parametric attenuation. Starting with (266), we get for the line-/field-wave-
impedance (ZL= ZF):

ZL =  

 R 0 + j  L 0
 G 0 + j  C 0

 =   

j μ0

0 t + j 0

 =  Z0   

j t

1+ j t
(270)

That's the same solution as (264). Because of Z0=μ0c, even the expression for c applies.
Altogether it's about an autonomous solution with different properties as the hitherto
introduced ones. Since no discrete components are involved, the attenuation takes place
completely free of noise. The solution is distortion-free. Even no scatter occurs with it.
Because of the currently low value of 0R (2.1779·10–29 Sm–1), the attenuation is not detectable
nowadays. Thus, it seems, that wave-propagation would proceed according to the classic loss-
less solution. But strictly speaking, it applies only in a universe without expansion ( 0 = 0R =0)
and figures a special-case of the solution introduced here. Now, let's have a look at the
propagation-velocity c in detail.

IV. The metric wave-field behaves for overlaid electromagnetic radiation-fields
like a conduction with variable coefficients. This conduction behaves in the
first approximation like the classic loss-less vacuum solution of MAXWELL’s
equations.
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Now let's have a look at the value-function:
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This expression is even achieved on base of the MLE (259) after division by dt2 with
c2=ds2/dt2. cM is the propagation-velocity of the metrics. With it, the overlaid wave is moving
always rectangularly to the metrics with exact c (figure 34). After rearrangement of (271) we
receive:
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Since with expression (273) it's about an approximative solution, we want to try, whether  it
already can be simplified. With y=1/(2 ot) we get for 2 ot » 1:

=
2H

 

2y y2

1 2y + y2

2H   

1 2y

2y
= 2H   

1

2y
1 (274)

We finally receive after substitution:

=  2H  0t 1 2H   2 0t (275)

Because of H=1/2t the frequency is decreasing according to ~t–3/4 ab. We are particularly
interested in the wavelength = 2 / = 2 c/ . The sign of (250) has been neglected. The
factor 2  stands here instead of 2, as even already with o, to cancel rotation around /4 of the
coordinate-system uptaken with the definition of the approximative formula of (r). We'll get
then:

 =      

c

H

1

 2 0 t
=

R

 2 0 t
      ~t3/4  (276)

To this we must remark that we have assumed, for the previous contemplation, the expansion-
centre as basis of the coordinate-system, at which no length is actually defined. More essential
qualities result from it for the two singular points.

For the spatial singularity (expansion-centre) applies: Each length, measured
from this point, always has the quantity r1/2. Each period, measured at this point,
always has the amount T, each frequency 2H. It's about an event-horizon. It's a drain
of the electromagnetic field. To the approximation applies r= , t=0.
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For the temporal singularity (wave-front) applies: Each length, measured
from this point, always has the quantity R/2. Each period, measured at this point,
always has the amount t1, each frequency 2 1. It's about a particle-horizon.
It's a source of the electromagnetic field. To the approximation applies r=0, t= .

The spatial singularity only is suitable as basis of a space-independent temporal, the temporal
singularity as basis of a time-independent spatial coordinate-system. As basis of a four-di-
mensional space-temporal coordinate-system, both singularities are equally inappropriate. Seen
from the spatial singularity, all time-like vectors have an equal frequency and wavelength. We
must pay attention to this on a coordinate-transformation to our local coordinates. It applies for
t=T+t´ and for the wavelength :
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2 Cc
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C is an arbitrary constant, it disappears on a retransformation. Expression (278) represents the
temporal dependence. To the determination of spatial dependence, we must visualize that this
case differs from the preceding o and ro.

Having to do until now with a wave-field which shows different conditions at different
places (quantity of ro, propagation-velocity etc.—therefore different dependences of space and
time), the circumstances are deviating in this case. It is about a purely time-like vector, which
propagates everywhere with the same velocity, namely c. The dependence of space and time is
identical to it, following the same function. Even R/2 expands time-like with a constant
velocity of c. Just only, we have to replace t by r. Therefore we expand the fraction in (278)
with 2c obtaining:
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With it, the overlaid wave doesn't behave like the metrics r0 as well as 0 concerning
wavelength and frequency. But differences exist also between r0 and 0. There are even more
differences then again. So, the distance, the light covers from the source to the observer, is
different from the distance, a material body must cover. Latter one amounts to R/2 maximally,
while theoretically whatever large distances are possible in the first case. This is clearly the
behaviour of a particle-horizon. We call the first one time-like, that second one as space-like
distance (see also section 7.5.2.). The conversion takes place in the following manner:

rT =  

rR

 1
4rR

2

R2

      rR =  

rT

 1+
4rT

2

R2

   (280)

We got both expressions, in that we have taken up a bond at the SRT with c=R/(2t) and v=r/t.
With help from (279) we can also find a substitution for the expression , that is applied to
signals, which are overlaid the metrics. In contrast to (236) that applies to the metrics itself, we
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get for the phase rate  of the overlaid wave (not equal to the phase rate of the metrics 0)
because of =2 c/ =2 / :
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We introduce the two right functions to the better presentation. With the propagation of
overlaid waves,  is not identical to  obviously. We obtain  and  from (180, 181) by
replacement of 0 with 0R
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For t»1 outside the near field of a beaming dipole (inside other relationships apply
anyway), with help of the approximations arsinh , sinh , cosh 1+ 2/2 follows:

 =     
1

R
        =   

c
 =  ±  μ 0 0     (284)

Here, we get for the phase rate  a deviant result, namely the same, as with the classic
solution for a loss-free medium. The cosmologic red-shift is not just caused by the electric
qualities of the line as well as the space but by the line itself. Just once imagine the following:
A line is flowed through by an alternating current. A certain wavelength appears. If this line is
manufactured from an ideally elastic material now and one pulls at an end, so the line is
stretched. Simultaneously, also an enlargement of the wavelength occurs with simultaneous
diminution of the conducting-velocity (c in sum).

Since 0, even an attenuation of the amplitude appears. It is however so small, that it
becomes effective only in cosmologic time periods. For the electric and magnetic field-strength
applies (amplitude response):

A = 20  lg e
r

R
 = 8.686

r

R
 dB    (285)

A = 20  lg e
t

2T = 4.343
t

T
 dB   (286)

c = const

c

c
M

Figure 34
Propagation velocity of the metrics and

of an overlaid electromagnetic wave

or A´=–1Np/R. Because of c=const, both expressions are equivalent. With it, the half-life
period (–6dB) is about 1.382T, the half-life width about 0.691R. The attenuation is just so
small, that it can be neglected mainly, it is far below the geometrical attenuation however. It
obviously also appears with the metrics included. With it, it is unattached from the metrics
indeed, as one easily can realize in (270). The influence of the metrics is given by r0 and, as
one sees, all r0 cancel each other. With it, our solution completely emulates wave-propagation
and -attenuation admitteldly, but not the cosmologic red-shift. Therefore, we divide the portion

 (the attenuation rate  is not affected) by the bracketed expression of (279) obtaining our
substitute- , c and ZL, it applies R=r0Q0:
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=  

˜ H 

c
+ j

˜  

c
(r) c=c ZL=Z0   (287)

Expression (287) is the propagation rate for signals, that are overlaid the metrics, ( = +j ).
The geometrical attenuation of course still appears. It cannot be neglected, but it's not figured
here. The solution is applied to the entire domain r»r0, however not in the proximity of the (of
a) temporal singularity and with very strong gravitational-fields (black holes). We require the
complete solution 4.3.4.4.4 to it.

4.3.4.4.3. Propagation-function

We assume the solution of the telegraph equation for the transient state [5]. The equation-
system is also known as conducting-equations.

u2 cosh r  + i2 ZL sinh r = u1

u2

Z L

sinh r + i2 cosh r     = i1

(288)

In this connection, the index means the input-signal 1, the index 2 the output-signal. We now
replace in the following manner:

E1 =
ˆ u 1
r0

er  e j t
=  E1  e j t H1 =

ˆ i 1
r0

er  e j t
=  H1  e j t (289)

er is the unit-vector. Furthermore, ZL Z0 applies (transient state) and u=iZ0. Then we get as
solution of (288):

E2 = E1  e
j t r

              H2 =H1  e
j t r

       = ˜   (t) (290)

This solution is identical to (165) but it considers the cosmologic red-shift only for  (287). We
also must notice the temporal dependence of the expression j t, i.e. at the source of the signal.
The right expression of (290) is used for it. With it, we have found a solution explaining as
well the propagation as the cosmologic red-shift of electromagnetic waves.

4.3.4.4.4. Complete solution

If we want to find a solution, being valid even in the proximity of very strong gravitational
fields  and/or of the temporal singularity, we are forced to calculate with the complete formula.
In section 4.3.2. we had noticed that the space owns also an upper cut-off frequency. Solution
(290) shows all-pass behavior and doesn't reflect the real circumstances anyway, but it's
adaequate for more than 99% of all cases. A solution with consideration of the cut-off
frequency (downward the frequency is really restricted by the age only) must be a complete
solution. Therefore, let's try to find first an approach for a complete solution with and without
consideration of the cut-off frequency. We go out from (271), however using the correct
expression for the propagation-velocity cM of the metrics (210):

c  = cM + c =  c      c = c  

e j1
2 arctan
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We look at the value-function again, at which point it's however necessary to pay attention to
the fact, that the angle , depending also on , may be unequal to /2 (figure 96). Therefore,
the cosine-rule applies:
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analogously for Z0=μ0c. After reiterated substitution, we get the following solutions:

= 2H  
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 1 y4 mit1   y =  x
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2

c2 sin2     (294)

The second solution is applied to space-like photons. Similarities exist obviously with the reci-
procal of (274). The value of y tends to 1 for Q0»1. Since the real transfer-function is indepen-
dent from the metrics, (284) is also applied to the complete solution in the far field t»1. We
continue as in 4.3.5.4.2. To that purpose we first transform:
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The transition from the exact solution to the approximation will be descripted more exactly in
section 5.3.1. The factor 2 turns out by itself with it, that means, with the exact solution the
rotation of the coordinate-system is automatically done by the function. We are interested in
the wavelength =2 / =2 c/  once again:
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C is that arbitrary constant to the conversion upon the R4-coordinate system once more. The
function R(r) describes the exact dependence of R concerning the phase-angle/Q-factor Q.  The
definition of A and B can be taken from (209). We were already able to set R(t) = 1 + t ˜ T  in the
approximation. With the complete solution it is unfortunately impossible, because R is
propagating and expanding at the same time (see section 6.2.2.1). The relation R=r1Q0

2 exactly
applies only for Q0»1. The spatial and temporary dependence of R for zero-vectors is given by
the right expression of (297). Furthermore ˜ Q = ˜ Q 0 and R( ˜ Q ) = ˜ R  applies. Finally, we get for the
wavelength and frequency:
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All values except c and  are a function of the phase-angle/Q-factor Q0=2 0t. For just two
kinds of photons and neutrinos we define the eight functions2 x(r) und  x(t):
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(299)

(r) = (t) =  
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˜  4 1

 
4 1

   
 (r) =  (t) =  

R( ˜ Q )

R(Q)

 
˜   

4 1

  

4 1

                                                  
1 See (621) relativistic dilatation factor  with v=cM, see also section 5.3.
2 See section 5.3.1.
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Responsible for the insertion of the right relationships (substitution r=ct) is the reader himself.
But the function is explicitely calculable yet. (287) and (290) are applied. This is the complete
transfer-function without consideration of the cut-off frequency. It is valid even in strong
gravitational fields and at the „edge“ of the universe.

4.3.4.4.5. The cut-off frequency

In section 4.3.2. we have worked out the transfer-function of a discrete MLE of the size r0

The solution has been applied to the metric wave-field itself. But it's valid even for overlaid
waves however, if we understand the overlaid wave as an interference of the differential equa-
tion (76). In this case, we have to use 2 0 for  in (144) instead of 2 1, it applies =0.5 / 0.
First, let's have a look at the part of the total attenuation factor , caused by g, which can be
calculated from the amplitude response A( ). Only the real part is being transferred. In
connection with the phase-angle  in reference to the length r0=c/ 0 applies:

( ) =  ln Re(A(j ))  =  ln (A( )cos )    (300)
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=
˜ H 

c
+

˜  0
c

( )    ( ) = 0   for « 0 (303)

By the way, the part ( ) here depends on space and time, since it depends on , the ratio of
two frequencies, changing both according to different functions ( ~t–3/4, 0~t–1/2). So the
change don't cancels out. ~t–1/4 applies in the approximation.

But the cut-off frequency has even effects on the phase rate . The more approaching the
cut-off frequency, all the more the phase-shift  (149) is making noticeable, caused by the
ascending phase delay TPh (151) during transfer of one MLE to the other (t1 t0). Since the
phase-defcts add up, there's going to be a retardation of the overall phase-shift ( ).  This cau-
ses a ramp down of the propagation-velocity onto values smaller than c (permitted), remaining

 unchanged, declining  on the other hand. The smaller value of |c| is affecting  and  in the
same manner. With the now manageable frequencies, the phase-defect is practically equal to
zero however.  Before calculating on, we must already convert the phase-shift ( ) into units
of wavelength however. It applies ( )=1+TPh/T , where T  is the period of :

( ) =  1+
1

2
arctan

1+
2

 

 
 

 

 
 

 

 
 

 

 
 ( ) =1   for « 0 (304)

With it, we can declare the following universal propagation-function for the vacuum:

E2 = E1  e
j t r

          H2 =H1  e
j t r

= ˜   (t) (305)
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c
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˜  0
c
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 + j

˜  

c
(r)

 

 
 

 

 
  ( )      |c| c |ZL| Z0 (306)

The complete solution with frequency response is not required in most cases. With later
contemplations we will work further with (306) however. In that cases, in which the cut-off
frequency plays no role, applies ( )=1.
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One quality of the universal propagation-function is that electromagnetic waves with critical
frequency, i.e. with a frequency near 0, have only a small-scale reach, since with approach to

0 both, the phase- and group velocity are degrading with different value. This is however
synonymous with the appearance of non-linear distortions, finally causing a total destructive
interference to the wave. The behaviour resembles the one of the wave-propagation in an ioni-
zed plasma. The signal factually dissolves in noise, an effect, as it everyone knows, who has
been observed or executed radio-traffic on shortwave before now.

Theoretically, waves would be possible with hypercritical frequency as well. For these
applies the same, said in the preceding paragraph. Even a propagation without aid of the
metrics doesn't work across longer distances because of the giant conductivity 0. If you should
be interested, please look up in section 4.6.5.

4.3.4.4.6. The cosmologic red-shift

From (279) an expression for the cosmologic red-shift can be derived directly:

 =  ˜   1+
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v is the escape velocity. Now one often claims in the literature that this could be also larger
than c. But this is not the case. Reason for the wrong claim is a cardinal-mistake that is liked to
do even by experts again and again and, I don't want to exclude myself here, in the first edition
also by myself. One simply substitutes ˜ R  with the current value at the observer, obtaining
escape-velocities larger c then.

As further wrong conclusion arises that signals with z>1.28 should have come from areas
behind the event-horizon ˜ R = 2c ˜ T  or better, they should have covered a distance longer than ˜ R .
This stands in contradiction to the observations indeed.

While the options of observation were restricted to smaller z-values, it has not been attracted
attention to. Meanwhile, already objects with a red-shift of z= 6 have been found and the red-
shift of the cosmic background-radiation has even a value of z=(2Q0)3/2 1090, as described in
section 4.6.4.2.3. Now, the reason for such giant values of z is not an universe which is, in
reality, much larger than assumed — even if it would be so, there could not exist zero-vectors
with a length larger than ˜ R = 2c ˜ T , because they would return to their starting point after this
distance, i.e. they are closed in itself.

The real mistake is the mis-interpretation of (309a). The expressions are namely based on the
propagation-function (290) and this is always being related to the starting point of the wave,
the signal-source. So it applies to outgoing vectors only. Therefore, we must always substitute
˜ R  with the value at the source to the point of time of radiation, and all distances and the

velocity v  are always been referred to the source then. The expansion of the universe since the
point of time of radiation is namely already included in the exponent 4/3, as one easily can
recognize with the help from (277) . By the way, this is applied also to calculations according
to the classic model of cosmology, even if the exponent can differ from 4/3 there. For this
reason, I have marked both values with the upward-arrow  for outgoing vectors. It reminds
something to the wiring sign of a transmitting aerial, which may serve as mnemonic device.
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Now we don't know the exact value of ˜ R  indeed, which is associated with the distance
between the source and the observer, the value we want to determine originally. What we
however know, is the value ˜ R . Since the distances r  and r  as well as the velocities c  and c
are equal, a simple relationship, that works with the value ˜ R  at the observer, can be found. We
do the following approach:

r =  
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After reducing to r, we get the following expressions for r and v:
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 (309d)

The expressions (309a) and (309d) yield the same result when substituting the right values. The
contradiction has been solved with it. But it is not yet the whole thing. What applies to the
value r, applies also to ˜ R , ˜ r 0,  ˜ H , ˜  0  and  ˜   in the propagation-function, i.e. if we are working
with ˜ R , also these values must be corrected. One always only reckons either with the values at
the source or with those at the observer. In more final case, the expressions  and  must be
multiplied with a correction-factor. For the world-radius R applies:

˜ R =  2c  ( ˜ T t)  =  2c  
˜ T 
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With the help of (308) can be shown that the expression (z+1) is corresponding to the relativi-
stic dilatation factor . Then further (z+1)2/3~ 2/3~Q0

–1 applies and on the basis of table 5:

˜ r 0 = ˜ r 0
1

(z +1)
2
3

        ˜ r 0 = ˜ r 0 (z +1)
2
3        ˜  0 = ˜  0(z +1)
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2
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(309g)

r1 = r1 =
1

0Z0
~ (z +1)

0
3 =  const         1 = 1 = 0

0

~ (z +1)
0
3 =  const (309h)

An exception forms the frequency . In contrast to H~Q0
–2 resp. 0~Q0

–1 applies ~Q0
–3/2:
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(z +1)
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To the correction of  and , we next consider the product r:
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With it, the parametric attenuation is really unattached from the frame of reference, exactly, as
determined by the solution of the telegraph equation. The remaining quantities depend on the
respective frame of reference however. With it, we can define the universal propagation-
function using the values at the observer. At first however once again correctly with arrows for
the values at the source:

E2 = E1  e j t r          H2 =H1  e j t r
= ˜   (t) (309l)
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These expressions are even applied to passing through signals, that are followed up into future.
In this case, one inserts the values of the observer instead those of the source, doing just so, as
if the observer would be the source. The distance r indeed is defined in reference to the
observer then. The same applies even to z. At the place of the observer applies z=0, which is
not favorable straightaway, since z is defined absolutely in general, namely on the basis of the
red-shift of the absorption-lines of stars. Therefore, a propagation-function, using the values of
the observer, with which r and z are however defined in reference to the source, would be
suitable better. This arises to:

E2 = E1  e j t r          H2 =H1  e j t r
= ˜  (z +1)  (t) (309n)
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After having figured the real relations extensively once again, it was simply necessary, we
now come to the real topic. In table 1, which has been gathered from [27] in excerpts, some
quasi-stellar radio-sources are figured with distance-information. The values marked with an *
have been taken from the original, the rest has been calculated.

*

Source

*

z

Escape
velocity
[v/c]

Escape
velocity

[v/c]

*
Distance 

photometric
[Gpc] 

Distance
[Gpc] 

Eq. (309a)
[H=76] 

Distance
[Gpc]

Eq. (309a)
[H=55] 

*
Distance 
geometric
[Gpc] 

Distance
[Gpc]

Eq. (309d)
[H=76] 

3C  273B 0.158 0.108 0.089 0.470 0.427 0.588 0.420 0.484

3C   48 0.367 0.259 0.170 1.100 1.023 1.408 0.800 0.928

3C   47 0.425 0.302 0.188 1.270 1.194 1.644 0.900 1.025

3C  279 0.536 0.386 0.218 1.610 1.528 2.103 1.070 1.187

3C  147 0.545 0.393 0.220 1.630 1.555 2.141 1.090 1.198

3C  254 0.734 0.542 0.260 2.200 2.143 2.950 1.310 1.416

3C  138 0.759 0.562 0.265 2.280 2.222 3.059 1.340 1.441

3C  196 0.871 0.653 0.283 2.610 2.583 3.555 1.450 1.542

3C  245 1.028 0.783 0.305 3.080 3.100 4.267 1.590 1.662

CTA 102 1.037 0.791 0.306 3.110 3.130 4.308 1.600 1.668

3C  287 1.055 0.806 0.309 3.160 3.190 4.391 1.620 1.681

3C  208 1.109 0.852 0.315 3.320 3.372 4.642 1.660 1.716

3C  446 1.404 1.110 0.345 4.200 4.392 6.046 1.870 1.877

3C  298 1.436 1.139 0.347 4.300 4.506 6.202 1.890 1.892

3C 270,1 1.519 1.214 0.354 4.550 4.802 6.610 1.940 1.929
3C  191 1.946 1.612 0.382 5.830 6.376 8.777 2.160 2.078
3C    9 2.012 1.675 0.385 6.030 6.627 9.122 2.190 2.097

Table 1: Some quasi-stellar radio sources

For the interpretation of the measuring results, the author used, willy-nilly, the classic model
of cosmology with several parameters (parabolical and elliptical). Since the elliptical model
with q=1 has the best fit with my model, the elliptical values have been taken over. Therefore,
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one must not expect an exact agreement with the values calculated by me. In order to document
the mistake in the first edition more exactly, in column 3 have been figured the escape-
velocities >c calculated with the wrong value of ˜ R . Column 4 is containing the right values.

Column 7 shows the incorrectly calculated distances according to (309a) for
H=55 kms–1Mpc–1 one can see, that the values are too high, H has been estimated too low.
One furthermore sees, that the author of [27] has committed the same cardinal-mistake obvi-
ously. Indeed, the values are only shifted in reference to the photometric distance in the loga-
rithmic representation (figure 35), which corresponds to a multiplication. The corresponding
factor has been determined with statistical methods. It amounts to 1.38±0.08. That results in a
probable value of the HUBBLE-parameter of 75.9±4.4 kms–1Mpc–1 (column 6). The correlation-
coefficient to the photometric values is 0.792. The value of H is within the limits determined
with modern methods. Obviously, one can achieve right results even with wrong data
comparing two wrong results…

All results of table 1 are visualized in figure 35. One sees that the values, calculated cor-
rectly according to expression (309d) with H=75.9 kms–1Mpc–1 also fit well the geometrical
distance (light-way) calculated by the author of [27]. The correlation-coefficient between this
two data-series amounts to 0.795. This corresponds to the one of the incorrectly calculated va-
lues approximately. In the further course of the work, we will use a value of the HUBBLE -pa-
rameter of H=75.9 kms–1Mpc–1 therefore. This will be specified in section 7.5. once again.

Figure 35
Distance in dependence of the
red-shift for elliptical models (q=1)

The difference in the ascend of both pairs of curves is to be attributed to the application of
the classic model of cosmology.

4.3.4.4.7. The HERTZian dipole

In the section 4.3.4.4.2. we have worked out an expression for the line-wave impedance of
the vacuum (264). Furthermore we have determined that the spatial singularity behaves like a
HERTZian dipole. The HERTZian dipole is the interface between an electronic system and the
vacuum. Both can be figured also as a four-terminal network. We just expect circumstances
analogical as with a voltage divider. From [20] we understand the legalities in the near field of
a beaming HERTZian dipole. The coordinate-system is descripted in figure 36.
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HERTZian field-equations (complex)  radiation-field in the point P:
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For the two electric field-strength-vectors applies:
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Figure 36
The HERTZian dipole

Looking at these equations more exactly, one recognizes that they implicitly contain the
expression for the field-wave impedance ZF of the vacuum (264) found by us, namely in the
spatial part. We try to depict these equations as a function of ZF without changing the physical
content therefore. It applies r/c= t as well as I=U/Zo
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4.5. Complementary contemplations to the metrics

In section 4.3.4.3. we found with (243) an expression for the temporal and spatial
dependence of PLANCK's elementary-length, figuring at least locally a scale for the proportions
(distance). On this occasion we refer once again to the fact that this is not applied to the size of
material bodies itself, which doesn't change, since it's about autonomous ball-symmetrical
solutions of the field-equations according to our assumption [1], that are always stationary
according to the BIRKHOFF-theoreme. It doesn't mean that these never changing solutions
cannot be observed with variable size.

Just particularly is this a matter of the distances of material bodies mutually. These follow a
function, which depends on the considered distance on the other hand, since quantity and
expansion-velocity of PLANCK's elementary-length is changing with ascending distance to the
coordinate-origin. Here only distances with its starting-point in the origin should will be
considered. Of considerable importance for deeper contemplations is also the number of the
MLEs along an imagined line with the length r (wave count vector ). We distinguish two
cases in this connection: Wave count vector with constant r and r with constant wave count
vector. More final case corresponds to the best the existing circumstances, since one can
assume that no point is distinguished to other points in the cosmos. The average relative
velocity against the metrics at the coordinate-origin is equal to zero. This should be so
everywhere then. With it, the expansion of the universe is traced back to the expansion of the
metrics only. This corresponds to the case of a constant wave count vector.

4.5.1.          Constant distance

For smaller distances r the wave count vector is defined on the basis of the lattice constant
ro as follows:

 =  
1 r

r0

er (316)

er is the unit-vector. In the following, we regard only the amount  however. For larger
distances, we have to replace  with d  and r with dr using the corresponding expression (243)
for ro:
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To the solution we replace as follows (it applies ˜ R ˜ r 0 =
˜ Q 0 ):
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Figure 37
Wave count vector as function
of distance for t=0

The wave count follows the function figured in figure 37. Approaching the half world-radius
(cT) the wave count vector is directed to infinite. Nevertheless, the wave count is even a
function of the local Q-factor. To define just a wave count o, that is not infinite, we take only
a certain part of the world-radius calculating the wave count for it. This is also a function of
time then. Usefully, one takes the radius, at which the function (320) is equal to the local Q-
factor. The value is about 0.49383R that is 98.7661% of the distance to the temporal
singularity (cT).

0.5R0.25R0.1R 0.75R

-1. -0.5 0.5 1. 1.5 2.
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0.01R

t
˜ T 

˜ Q 0

Figure 38
Temporal dependence of the wave count vector
for different distances r
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The temporal dependence for different r is figured in figure 38. The larger the considered
length, the later the point of time, the wave count vector is defined on from. This is easy to
understand, can I however regard a length as existent only then if the world-radius is larger or
equal to it. If the world-radius is smaller, so such a length doesn't exist. Therefore, lengths
larger than 0.5R aren't defined at present and the function (320) has a real solution not until a
value of e.g. t=0.75T, t=0 is the present point of time. Altogether, the wave count decreases.
This results from the fact that we are considering a constant length with expanding ro. So it
appears, that MLEs are “scrolled out” permanently at the “tail” leading to a degradation of the
wave count vector at the same time.

4.5.2.          Constant wave count vector

4.5.2.1. Solution

We first assume the right expression of (320) for t=0 (a=1). This declares the quantity of the
wave count vector at the present point of time and at each point of time, if we want to assume it
as constant. We just look for the function F(a,  ˜ r ) being nothing other as the temporal
dependence of a given length  ˜ r .
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Explicit reducing by differentiating and setting to zero (the left expression turns into zero on
this occasion) leads to the trivial solution F=0. Otherwise, only an implicit solution can be
found as solution of the equation:

a  artanh 

 ˜ r F

a
artanh  ˜ r  ˜ r (F 1) =   0     r(t) =  ˜ r F3 (t) (322)

or in »Mathematica«-notation F1[t,r]:

Fa1=Function[a=FindRoot[
#1*ArcTanh[#2/#1*x]-ArcTanh[#2]-#2*(x-1)==0,{x,1},

MaxIterations->30]; (Round[(x/.a)*10^7]/10^7)^3];     (323)
F1=Function[Fa1[(1+#1)^.25,(2*#2)^(1/3)]];

In this connection we have to be particular about the method (tangent-method) and the initial
value. Equation (322) namely has another second solution. This one, F2[t,r], we get as follows
(secant method):

Fa2=Function[a=FindRoot[

#1*ArcTanh[#2/#1*x]-ArcTanh[#2]-#2*(x-1)==0,{x,{-30,30}},
MaxIterations->30]; (Round[(x/.a)*10^7]/10^7)^3];     (324)
F2=Function[Fa2[(1+#1)^.25,(2*#2)^(1/3)]];

The temporal course of the first solution is figured in figure 39, it's positive. For the first
solution, there is only a limited definition-range. This is, on the one hand limited by the spatial
singularity (world-radius smaller than considered length), on the other hand by the temporal
singularity (the end is now behind the SCHWARZSCHILD-radius). Outside these limits, one gets
with (323) the second solution. The larger the considered length all the smaller the definition-
area.  The second solution but even is defined within the limits of the first one.
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Figure 39 
Temporal dependence of a 
given distance r (first solution) 
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Figure 40 
Temporal dependence of a 
given distance r (second solution) 
 
The second solution1 (figure 40), actually a duplicate-solution, is negative. Which physical 
meaning it has, cannot be said here more exactly. I think that it could be about the solution for 
time-like vectors like photons coming from the past (negative distance). On the basis of the 
curvature which is increasing when approaching the local world-radius, our model is closed for 
space-like vectors. With it, one had to be able to even achieve a certain point when moving into 
the opposite direction. On the basis of the fact, that the point, we are located, is identical to the 
coordinate-origin, the question arises then again, what a negative distance actually means. 
 

                                                
1 Remark: One obtains the second solution only using Mathematica 1.0. All higher versions display a math error (branch point) during calculation, 
   iteration procedures converge first, but diverge after all. Thus, the existence of a second solution is not deemed to be sure. 
 

Particle horizon 
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For example even another interpretation as distance with motion contrary to the natural time-
directionwould be possible. For this purpose we would have to move faster than the light then.
Does the answer arise here to the question, where and whether one comes out again having
fallen into a temporal singularity (black hole) - if one should be still alive? Maybe, someone
else knows a valid interpretation. As a support, even the relationship of the second and first
solution –r2/r1 at the point of time t= 0 (r1= r), just today,  is declared in figure 41. One
recognizes that the second-solution is definitely a space-like vector, since it moves against
infinity with R/2.
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Figure 41
Ratio of second and
first solution with t=0

4.5.2.2. Approximative solutions

A simple solution for small r arises explicitly from (322) under application of the two first
terms of the TAYLOR series for the function artanh:

r   ˜ r  1 +
t
˜ T 

 

 
 

 

 
 

1

2
  =   2 0 t  

˜ r 
˜ Q 0

for   ˜ r 0, 01 
˜ R (325)

This corresponds exactly to the behavior of PLANCK's elementary-length (MLE) and is valid
until 0.01R approximately. For larger distances, the ascend is larger too. We first examine the
course in the environment of t=0 (figure 42) as well as the ascend r/ t with t=2·10–3. With
root-functions is the ascend (dr/dt) in this point equal to the exponent m in:

r  =  ˜ r  1 +
t
˜ T 

 

 
 

 

 
 

m

(326)

This is figured in figure 43 for both solutions. For the first solution, it is in the area of
1/2…3/4. With the function Fit [] may be found approximative formulas of different precision
for the exponent m (first solution):
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m 0,510614 + 0,180781
r
˜ R 
+ 0,52561

r2

˜ R 2
(327)

m 0,5 + 0,545339
r
˜ R 

1,39032
r2

˜ R 2
+ 2,55941

r3

˜ R 3
(328)

m 0,5 + 0,61738
r
˜ R 

3,55318
r2

˜ R 2
+18, 4405

r3

˜ R 3
42,6787

r4

˜ R 4
+38,0884

r5

˜ R 5
  (329)
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Equation (329) is very exact and suitable even for calculations with more extreme demands.
Indeed, one needs to consider the restricted definition-range, which is not being coemulated
automatically by the approximative solution. It is pointed out here once again that the distances
and velocities, regarded in this section, are a matter of space-like vectors having nothing to do
with the time-like vectors considered in section 4.3.4.4.6. Cosmologic red-shift.

4.5.2.3. The HUBBLE-parameter

Having defined the HUBBLE-parameter only for small lengths and PLANCK's elementary-
length (ro) until now, which are following the relationships for a radiation-cosmos (m=1/2), we
have to correct our statements for larger distances. With m= m(r) becomes the HUBBLE-
parameter H= ˙ r /r herewith even a function of the distance:

H  =  
m

˜ T + t
  H 0  =  

m
˜ T 

  (330)

The course is shown in figure 44. The metrics examined by this model is a non-linear metrics.
The question has become unnecessary with it, whether our universe is a radiation- or dust-
cosmos. The answer is — as well, as. It's a question of the dimensions of the considered area.
For small lengths, the distance behaves like a radiation-cosmos, in the range between zero and
0.5R like a dust-cosmos, with 0.5R like photons overlaid the metrics.

More latter distance is not an area of infinite red-shift however, as in other models. It shows
with the dilatory-factor q very well  The course is figured in figure 45.

q  =  
r 
˙ ̇ r 
˙ r 2

 =  
1

m
1 (331)

r
˜ R

˜ T 
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HUBBLE-parameter as a function of the
distance for t=0, the values r>0.5R are extrapolated.
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Dilatory-factor as a function of the
distance for t=0, the values r>0.5R are extrapolated.

The expansion-velocity Hor as a function of the distance is shown in figure 46. The speed of
light is already reached in an essentially minor distance as with the standard-models. While the
quantity of ro is running against zero at 0.5R the expansion-velocity  is finite and smaller than c
at this point. This has suspected that the entire universe is essentially larger than c, especially
since equation (319) allows for r>R with arcoth instead of artanh an extrapolation of . An
expansion-velocity of c corresponds to a red-shift of z=0.763301.
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The cT-limit for space-like vectors is only a consequence of the coordinate-transformation
(236) from the spatial singularity (expansion-centre), which is outside our coordinate-system,
to our local coordinates. This is applied even to the contradiction between our assumption that
the total-universe is expanding with 0.851661c at the wave-front and the values fugured in
figure 46, which are increasing strongly above R/2. An observer in the vicinity of <0.5R is
measuring quite other values for ro and T locally. The values at us, seen by this observer,
resemble those again, measured by us at the very same observer. For r>0.5R there is no more
coordinate-transformation possible anyway, however time-like signals can reach us perfectly
well. Overall the universe is open, smaller areas behave like this, as they are closed. This even
carries weight for the entropy of the metric field.

4.6. Energy and entropy

4.6.1.          Entropy

Now we would like to consider the discrete MLE and our model from the energetic view-
point. Since entropy is much more important for the thermodynamician than energy, we want
to take this into account by examining entropy first. We want to mark entropy with S
henceforth. In order to avoid confusions with the POINTING-vector, we will always figure this
bold, as vector (S) therefore. If we write S, we always mean entropy and with S always the
POINTING-vector.

Purely statistically seen, the entropy of a system is defined by (332) at which point k is the
BOLTZMANN-constant and N the number of the possible inner configurations.

S = k ln N (332)

With a single MLE (N=1) ) the entropy would be equal to zero theoretically, when applying
(332). This is wrong of course, since the statistics necessitates a minimum number of N to be
applied at all. With N=1 the result, mathematically seen, can take on a whatever value without
offending against the “statistics”. Therefore we want to try to find out, if there is another
possibility to determine the entropy of this single MLE.

Exactly considered, with the MLE it's a matter of our ball-capacitor moving in its inherent
magnetic field. This has the mass mo (29). What happens inside this capacitor, we don't know.
It behaves basically like a (primordial) black hole. According to [5] the SCHWARZSCHILD-
radius is defined as:

rs  =  
2mG

c2 (333)

Let's substitute m with mo here now (29), we receive rs=2ro, substantiating our foregoing
assumption. The surface of this black hole yields with it to A=4 ro

2. It is interesting that the
expression for the SCHWARZSCHILD-radius can be derived even without aid of the SRT or
URT. Since the SRT/URT according to this model is only emulated by the metric fundamental
lattice, such relationships must be basic qualities of the lattice itself. They apply as well
microscopically as macroscopically then.

In [4] is figured a method to determine the entropy of a black hole. It is based on quantum
physical considerations fitting our MLE very well. The author assumes the KERR-NEWMAN-
solution of the EINSTEIN-vacuum-equations Rik=0 with stationary rotating, electrically loaded
source and external electromagnetic field (334) with R r2–2mr+a2 and 2 r2+a2cos2 ,
M= mGc–2 and a=Lm–1c–1; m is the mass and L the moment of momentum.
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ds2
=  

R
2 cdt a sin2

 d[ ]
2
+

2

R
dr2

+
2d 2

+
sin2

2 r2
+ a2( )  d a dt[ ]

2

(334)

We don't want to discuss this here further. The author finally comes to the following statements
for the radius r± of the black hole and its surface A:

r± =  M ±  M 2 a2( )           A =  8  M2
±M  M2 a2( ) (335)

Let's put in here now m= mo, L= 0, so we get with r+=2ro as well as A=4 ro2 ro2 precisely
the same result as in (333). The inner radius coincides with the centre in this case. For L= h we
get a solution for an inner SCHWARZSCHILD-radius r–=ro as well as A= ro2. The result is just
dependent on the fact, whether the MLE owns a moment of momentum or not.

Furthermore, the author refers to a work of BEKENSTEIN (1973) whereby the entropy of a
black hole should be proportionally to its surface. The exact proportionality-factor has been
determined by HAWKING (1974) in a quantum physical manner to:

  

Sb =     
kc3

4Gh
A  =           k

A

4r0
2 =       k

A

(4)rs
2 (336)

k is the BOLTZMANN-constant, the number in bracket is applied to L= h. Interestingly enough,
this expression contains PLANCK's elementary-length and even with h according to our
definition instead of h. If we now insert the values again, so we get:

Sb = 4 k for L= 0 as well as Sb = k    for L=h (337)

In this connection, the factor  corresponds exactly to our lattice constant! Now we want to
examine, whether the MLE actually owns a moment of momentum. We are based on our
model (effective-value) developed in section 3.3. Generally applies for the moment of
momentum L:

L =  r p =  m (r v) (338)

With m = mo, r = ro, v=c, c r we get after application of (27) and (29) for the amount L:

  
L =  m0cr0  =  h and because of c= oro        (339)

  
W0  =  m0 c2  =  h 0   (340)

Expression (340) is apparently right. We have explicitely proven with it that the MLE owns a
moment of momentum. This one is equal to PLANCK's quantity of action or vice-versa:

The PLANCK's quantity of action is defined by the effective-value of the
moment of momentum of the MINKOVSKIan line-element. The inherent moment
of momentum (spin) is identical to the track moment of momentum.

The last statement is justified by the fact that it's a matter of effective-value here. In reality, ro,
mo and the track- and inherent moment of momentum are temporally variable, nearly periodic
functions. PLANCK's quantity of action is the sum of track- and inherent moment of momentum
then. This one is equal to h, at which point one time the track-, the other time the inherent
moment of momentum becomes equal to zero. Such an interdependence even is called dualism.
Naturally, PLANCK's quantity of action can be defined not only as moment of momentum.
Another possibility is e.g. qo o.
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Going back to entropy. One sees that the BOLTZMANN-constant figures an elementary quality
of our metric fundamental lattice, as elementary as o, μo and o. Here, someone will say, this
cannot be the matter, since k is a purely statistical constant. One can just answer this
interjection: »The BOLTZMANN-constant is so elementary only just because of that it is
statistical«. Also  allows to be defined statistically.

We have determined the entropy of a discrete MLE. How does it look with a larger length
then again? Since the single-entropy is a multiple of the BOLTZMANN-constant, we can
calculate-on with the already known statistical relationships (332). In this connection the
(absolute) maximum number of possible inner configurations within a volume with the radius r
is given by the number of MLE's contained in this volume. With a cubic-surface-centered
crystal-lattice, the number of MLE's within a cube with the edge length d is defined as follows:

N  =    6  

d 

 
 

 

 
 

3

   =    
6

3  

d

r0

 

 
 

 

 
 

3

(341)

 is the lattice constant in this case. The surface-centered MLE's are coming in with the same
number, as the ones, located at the corners. Then, within a ball with the diameter d and the
volume /6d3 there are

N  =     

d 
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   =    
8

2  
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   =    8  

3 (342)

individual MLE's. As long as  is not too large, we can insert (316) for , otherwise (320):

N  =  
27
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r
˜ R

N
˜ Q 0

3

0.1 0.2 0.3 0.4 0.5

5.

10.

15.

20.

Figure 47
Number of MLE's in dependence of the radius
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S =  k  ln  8  

3( ) (344)

The course of N as a function of the radius r at the point t=0 is figured in figure 47. No
peculiarities can be observed. Figure 48 shows the course of entropy in dependence of the
radius.

If one observes a certain area with the radius r from a frame of reference being moved to it, so
no minor entropy-value is measured because of longitudinal-contraction, since r and the world-
radius, as well as even t and the age are measured foreshortened in the same manner, so that
the respective quotient and with it S doesn't change.
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Entropy in dependence of the radius

The entropy ascends with larger r continually, goes through a phase of minor ascend and is
directed steeply against infinite with r cT. We can even now define analogously o an
entropy So:

S0  =  k  ln  8  
˜ Q 0

3( )       =    1,83755 10 20 J  K 1 (98,7661%) (345)

We are also interested in the temporal dependence. This is figured in figure 49 for the case
r=const which is even valid for So then (course approximately like 0.5R). Interesting is that the
entropy is decreasing for regions with constant dimensions. This could be the “motor” for the
evolution from the inferior to the superior.

With the second case (constant wave count vector) the entropy S and So remain constant
across the entire definition range. It calculates as follows:

S =  k  ln 

27
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˜ Q 0
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   (346)

The second solution does not carry weight for the entropy. For So applies (345) within the
definition range.
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Temporal dependence of entropy
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The restricted definition range means nothing other than that there is no universal entropy of
the universe as whole defined, unless one accepts infinity as a valid value. There is just no
universal time, no universal spatial coordinate-system, no universal entropy and maybe even no
universal energy…

4.6.2.          Particle-horizon

We have noticed that there is a singularity in our model in the distance cT. This has the
qualities of a particle-horizon. So we have found a good correspondence with other models,
which reckon with the same distance, in fact - resulting from the assumption, that the
maximum velocity is c. With a „pure” radiation-cosmos this one had to be at 2cT however. We
have to do it with our model with a phenomenon, that I would like to mark as the »2T-
problem«. In all possible relationships, the factor appears 2 again and again that is associated
with time. It results from the definition of the HUBBLE-Parameter H = 1/(2T). Nevertheless the
model behaves, as if there is no such factor at all.

We have already found the solution in the antecedent section. It is this the appearance of an
inner SCHWARZSCHILD-radius, well-founded by the fact that the discrete MLE disposes over a
moment of momentum (spin) of the quantity of PLANCK's quantity of action h. On the basis of
the relation R=roQo a particle-horizon exists as well in the macroscopic scale for the local
cosmos as whole, as in the sub-microscopic scale with the length r1 due to the relation r1 due to
the relation r1=ro/Qo. This one is at r1/2 then. That is also the reason, why we have taken up the
coupling of o and Eo at r1/2 and not at r1 There is no other contradiction-free possibility. This
exactly corresponds to EINSTEINs ”supposition”, that he doesn't believe that God would have
had any choice as he created the world. The existence of a moment of momentum also avoids
an overlap-problem, that would have appeared else, because the lattice constant amounts to ro
only.
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4.6.3.          Temperature

Now we want to assign a temperature to the discrete MLE. According to [4] it arises from
the GIBBSian fundamental equation as well as from (23) and (32) to:

TbdSb =  d(mc2 ) dL       (347)

  
TbdSb =  d(m0c

2) d(h 0 )  =  0 Tb  0  K (348)

because of o const. This agrees with the observations very well. The famous expression
mc2=h  is just nothing other than a special case of the GIBBSian fundamental equation for
Tb=0 on the level of the metric wave-field. This one, thermally seen does not comes into
picture — For the case L=0 namely following expression would arise for the temperature:

  

Tb =  
hc3

8 m0Gk
 =  

W0

8 k
 Tb =  5.638 1030K (349)

The result (349) deviates from the one which would obtain using the WIEN displacement law,
the magnitude is correct however. Indeed this is even only applied to black radiation, while in
our case it's about a discrete, very narrow spectral-line. The temperature would be proportional
Tb~t–1. Since this is not the case, it applies:

1. The temperature of the metric wave-field is equal to zero.
2. The discrete MLE owns the moment of momentum of  h.
3. The inner SCHWARZSCHILD-radius of the MLE is equal to ro /2.
4. The inner SCHWARZSCHILD-radius of the local universe is equal to cT.

The PLANCK's quantity of action is also a fundamental quality of the metric wave-field with
it. However it is not a constant, so that we will dedicate an individual chapter to it (4.6.4.1.).

Because of the integer spin, the MLE is subject to the BOSE-EINSTEIN-statistics formally. In
what extent this is of meaning, cannot be said here. It is possible however that effects like e.g.
superconductivity are based on the existence of the metric wave-field still owns the MLE a
charge, its effective-value is near the electron charge:

  

q0 =  
h

Z0

 =  5,288807 10 19As =  3.301378 e (350)

With the superconductivity, it works around the shape of Cooper-pairs consisting of two
electrons with inversely directional spin and FERMI-velocity, just having a charge of 2e and
integer spin of zero quantity. They are likewise Bosons with it. So it would be possible that
such a COOPER-pair occupies the position of the ball-capacitor in our model. On this occasion
the charge-difference would amount only approximately 39% of the total-charge of the MLE,
so that the electrons can tunnel into the conducting band, how it is the case with
semiconductors e.g.. The width of the conducting band results directly from the HEISENBERG's
uncertainty principle of energy and time as well as from (23) and (24) to:

  

W t   
h

2
 as well as

  

W0 0   
h

2
(351)

  

q0   
h

2Z0

 =  
q0

2
 =  2.334427  e (352)
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Then the lower limit of the conducting band amounts to 2,134e so that the charge of the
COOPER-pair with 2e is only 4% (q0) below the conducting band. By the way, the equality-sign
in (352) applies only on condition, that a GAUSSian normal-distribution of the charge has on
hand, what kind of N=1 is not given, so that one does without a tunnel-effect at the worst. Like
that, a conduction could take place directly on the level of the metric wave-field, whereas the
specific impedance 1/ 0=8,07239·10–94 m2/m comes off so small that it is factually equal to
zero. An instrumentational determination of 0 in this way however would be far outside our
technical possibilities.

4.6.4.          Energy

Before we do broader contemplations in this direction, we first turn to the PLANCK's quantity
of action, since it is joined narrowly with the electromagnetic energy.

4.6.4.1. The PLANCK's quantity of action

4.6.4.1.1. Temporal dependence

We have seen that PLANCK's quantity of action is equal to the product of electric charge and
magnetic flux. First, we want to put the time-function for the value of h, which is applied to
t»0, (approximative solution). Because of (122) we can immediately write down for o:

o      =  
ˆ  i

2 0 t
 (cos 2 ot + sin 2 ot)  (353)

Furthermore applies: u0 = ˙  0  (Self-induction). We assume the exact formula more safely.
During differentiation we have to pay attention once again that o is a time-dependent value.
One works just useful using equ. (114)

0 =  ˆ  i  J0 (2 0 t)   0 =  ˆ  i  J0  

2 0t

0

 

 
 

 

 
       (354)

˙  0 =  
ˆ  i
2

 

 2 0

ot
 J1 

 2 0t

o

(355)

u0  

=  ˆ  i  0 

J1 

(2 0t)       (356)

For qo we obtain because of (123):

qo  =   Couo  =   orouo          (357)

qo  =  – o oro ˆ  i J 1 (2 ot)   =  – oc ˆ  i J 1 (2 ot) (358)

qo  =  – ˆ q i J 1 (2 ot)  (359)

qo  = 
ˆ q i

 2 0t
 (cos 2 ot – sin 2 ot)       (360)



97

Now, we get for PLANCK's quantity of action:

h(t)   =
  

ˆ h i

2 0t
(cos2 2 0t sin2 2 0t) = 

  

ˆ h i

2 0t
cos4 0t       (361)

  
ˆ h i =  ˆ q i ˆ  i  is the amplitude (peak value) of h at the point, at which the time-function of h has

the value 1. Now, PLANCK's quantity of action itself is actually not an (almost) periodic time-
function but its effective-value, albeit this is on the other hand even a function of time. The
effective-value is defined as the quadratic median value across one period:

QM  =   

1

tk+1 t k

 F 2(t)  dt
t k

t k+ 1

      (362)

For periodic functions, the lower limit is zero in general, the upper limit a multiple of ,
mostly 2 . That e.g. leads to an effective-value of 1/ 2  for the sine- and cosine-function. The
effective-value of the product of two functions is equal to the quadratic median value of this
product or equal to the product of the effective-values of both functions.

Unfortunately, we don't have to do with periodic functions here. Because of the root in the
argument frequency is constantly changing and with it the period. Equation (362) is
analytically solvable in our case admitteldly, even for the Bessel (exact) solution. However we
cannot do anything with the result so much, particularly if t is near to zero, since frequency is
changing there more quickly than the coverage of median value. That means, in the time
immediately after big bang, across the first two or three periods, the PLANCK's quantity of
action as such is not defined. Only the exact time-functions apply here. Now it is opportune
however, to have a function, which can be applied back up to the point of time t=0, just, in
order to determine hi.

Therefore we set the effective-value of charge and magnetic flux to 1/ 2  of the amplitude.
This is not quite exact admitteldly, at least with small arguments, it's about an approximative
solution then again anyway. We get for t»0 then:

h   =     
  

ˆ h i

4 0 t     =
  

ˆ h i

2
0

2 0t
=    

  

1
2

ˆ h i

Q0

  (363)

The quantity of hi (peak- and effective-value) allows to be determined from it easily:

  
ˆ h i  =  2  

˜ Q 0
˜ h  =  4,99697 1027Js

  

h i  =   
ˆ h i

2
       t i =  

t1

4 2   (364)

This value is very much larger than the present. This has enormous effects onto the
circumstances in the time just after big bang.  We will defer to it in this chapter even near. For
flux and charge applies analogously (24) and (36):

o  =   
  

h1Z0

2 0 t
       =    

h1Z0

Q 0

  
  

h1  =   
ˆ h i

2
  =  7,95297 1026 Js       (365)

qo   =   
  

h1

2 0 tZ0

   =    
h1

Q 0Z0

  
  

q1  =  
h1

Z0

 =  1,45244 1012As      (366)

In future we will use the value h1 instead of of hi, since it can be reckoned with it much
better. On the basis of the anyway inaccurate value of the HUBBLE-parameter and with it of Q0
the approximative solution (363) is sufficient for the bulk of all cases.
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Figure 50
Miscellaneous approximative solutions for

PLANCK's quantity of action, larger scale

Figure 51
Miscellaneous approximative solutions for
PLANCK's quantity of action, smaller scale

For examinations of the period immediately after big bang it's however opportune to work with
the time-function. This is as follows:

  
h  =   – ˆ h i J 0  

(2 0t) J1 

(2 0t) (367)
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Another expression for the effective-value h can be found with it. Whether this is better than
(364), one can see in figure 50 and 51 — the approximation (363) is well almost down to t=0.
Even the associated functions are declared. One sees, the application of Bessel functions lead
to no increase in precision opposite to (363), rather to the contrary. The Bessel functions of 0th
and a mix of 0th and 1st order turn out even more inaccurate solutions. In future we'll therefore
only use expression (363) that still has the additional advantage, to be better integrable. Also
the dependence of the present values is interesting. We take up the known transformation
2 0t  t/T once again obtaining:

  

h   =       
h1

˜ Q 0
 1+

t
˜ T 

 
 

 
 

1

2
  = ˜ h  1 +

t
˜ T 

 
 

 
 

1

2
(368)

The temporal dependence of PLANCK's quantity of action has also effects on the value of the
electromagnetic energy. That means, beside the cosmologic red-shift, an additional debasement
arises by decrease of h, so that W ~ t–5/4 applies.

4.6.4.1.2. Spatial dependence

If PLANCK's quantity of action is a function of time, so it is also a function of the location.
This is applied to each local space-temporal coordinate-system. One gets the function, as
handled in the preceding sections already several times, by expansion of (368) to:

  

h   =       
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˜ Q 0
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(369)

That is the value of h, valid for a process in the distance r of the observer, seen by the observer.
According to this definition h can take on even negative values, which corresponds to the
appearance of negative energy. At the place of sign-change, there is a spatial singularity with
proper certainty. We obtain the course figured in figure 52 which is a function of  distance.

Figure 52
PLANCK's quantity of action
as a function of distance for t=0
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Figure 53
PLANCK's quantity of action
as a function of time for r=const

Near the half world-radius (cT) there's going to be an extreme ascend towards infinite. It is to
be considered that the maximum-value by definition as median value is restricted to hi.

With the temporal dependence, the two cases constant distance and constant wave count vector
are to be distinguished again. The course for different distances in the case r=const shows
figure 53. In the case of constant wave count vector the quantity of PLANCK's quantity of action
doesn't remain unchanged however, it's decreasing too. The course is figured in figure 54.

Figure 54
PLANCK's quantity of action as function
of time with constant wave count vector

It will be obtained by application of (326) and (329) without consideration of the restricted
definition range by replacement of r (370).  However the value of h over a long time period
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(approximately one age) remains virtually constant (figure 55).  With small distances applies
(368) as approximation, that means, h depends only on time. For larger distances, the time
period h const is shorter admitteldly, however the end already soon will be situated behind
the particle-horizon, so that h even can be regarded here to be constant over the whole
definition range.
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Figure 55
PLANCK's quantity of action with constant wave count vector
for several initially distances (time calculated from nowadays)

Obviously, even a dependence between entropy and PLANCK's quantity of action can be
constructed with it. This can take place with help of equation (344) and (369) by substitution of
r. Analytically, the problem can be solved only in one direction as function S(h) however. This
dependence does not figure a contradiction. Seen from information theory, entropy is a
measure for the disorganizedness of a system. The larger the entropy, all the larger the
uncertainty of the inner conditions, even that a previously existing order will be replaced by an
accidental order.

The quantity of PLANCK's quantity of action on the other hand determines the limit between
micro- and macrocosm on reason of HEISENBERG's uncertainty principle for impulse and place:

  

p x   
h

2   

(mv) x   
h

2
(371)

As test-particle, we use the most lightweight subatomic particle with a rest mass different
from zero, the electron. Under the assumption, that the maximum velocity is c, we obtain as
upper limit for the microcosm x:
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     (372)

If the rest mass of the electron doesn't change according to the BIRKHOFF-theorem, a larger
value of h means nothing other, than an upward shift of this limit. In the period just after big
bang, this limit has been in the magnitude of the entire universe (quantum universe). But even
in the proximity of the inner SCHWARZSCHILD-radius of our local universe and near time-like
singularities, like black holes, this effect is to be observed or should have to be to be observed.

How can we interpret this? According to the SRT a coordinate-transformation between
frames of reference, their relative velocity to each other oversteps c, is impossible. Even with
strong gravitational-fields (URT) is this the case. According to the classic theory, is the
transition transformation possible  transformation impossible abrupt. According to the
present theory, this transition is gliding however. The closer we come to the SCHWARZSCHILD-
radius with its escape-velocity c, the larger will be spatial curvature, entropy and the value of
PLANCK's quantity of action. The limit of the microcosm shifts with it upward and there's going
to be the appearance of quantum-effects even with macroscopic bodies (not with time-like
vectors!). Then, a simultaneous, exact determination of impulse and place is impossible even
for macroscopic bodies. These can be localized only by the electromagnetic radiation sent out
by them. Since time-like vectors spreads on different world-lines having another ”length”,
time-like and space-like coordinates of the source don't coincide and the uncertainty survives.

Near the point cT the uncertainty oversteps the magnitude of distance finally. As a result,
each transformation, even if it should be mathematically possible, becomes pointless.  Because
of the limit of h, there is also a maximum-value of uncertainty x. For the electron this
amounts to :

      

xi =   
1
2

h i

mec
  =    4.57445 1048m   »  ˜ R   (1.21881 1026m)   (373)

This value is for our present frame of reference only of theoretical interest however. In a
distance, that amounts to R/2 exactly, actually (R–r1)/2, the uncertainty is so extreme indeed.
But only about the classic BOHR's hydrogen-radius (5.28·10–11 m) beside it - the bodies we are
considering, doesn't have the diameter zero - the local uncertainty for the very same atom
amounts to 3.64·1020 m only, as we can easyly check using (369) and (372). Also the value of h
is essentially lower there. In the distance R/2–1m we obtain for the hydrogen-atom a value of

x= 1.936·1010 m, for a body with the mass 1t (e.g. 1m3 water = cube with the edge length 1m)
only 3.2·10–20 m.

For macroscopic bodies, it's just about a rather abrupt transition, not so for microscopic
bodies. So, the uncertainty in 1000 km distance for the hydrogen-atom still amounts to
1.936·104 m, for the electron even 3.529·107 m. The uncertainty always refers to our local
frame of reference only, just on a very large distance. Quite other, lower values would be
applied to an observer being located at the place.

In the time just after big bang, i.e. seen from the spatial singularity as well as in their
proximity, the temporal and spatial dependence of PLANCK's quantity of action plays a much
more essential role.  Moreover it's to be noticed that the spatial singularity, the expansion-
centre, is located outside the world-radius determined by our space-time-coordinates . Exactly
seen is this point outside each possible space-temporal coordinate-system, since it's
inaccessible for space-like vectors.

However this doesn't apply for ”intellectual vectors”. If we would have a look at the
expansion out of the spatial singularity, so the temporal course of the expansion of the universe
as a whole, figured in figure 57, would turn out.



103

The course of the expansion-velocity of the wave-front (figure 56) corresponds, up to the
maximum at 0.851661c, to the one in figure 21 and 22. Up to a radius of 1.978 m with 7.747
ns, it's about a quantum universe, after that about a gravitational universe. As border-criterion
has been assumed the equality of world-radius and uncertainty x for the electron (372;2).

1. 2. 3. 4.

0.2

0.4

0.6

0.8

2 0t

0

K·

c

Figure 56
Velocity of the wave-front at the total-world-radius K
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4.6.4.2. Energy of the metric wave-field

What happens then now with the energy ”consumed” in Ro? In section 4.3.2. we have
proven that the MLE is showing a non-adiabatic behavior. It is this an irreversible process, that
off-goes by absorption or emission of energy. We will already exclude the first case, energy-
absorption, from obvious reasons. The second case, a process, that proceeds under energy-
emission, remains. One possibility would be the conversion into mechanical work, another, the
conversion into electromagnetic radiation (heat). The first case, conversion into mechanical
work, doesn't come into question, since there is no change, neither in temperature,  nor in
entropy.
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 Also, there are no material bodies, at which said work could be performed, since we
considered empty space only until now. We'll now assume, that the energy doesn't vanish
anywhere but it's emitted into space as cosmic background radiation (CMBR) instead:

V. The energy released with the expansion of the metrics is emitted as cosmic 
background-radiation into space..

It propagates according to the legalities derived in section 4.3.4.4. with light speed as overlaid
interference of the metric wave-field. A part of this radiation-energy is transformed in the
course of expansion into particles as well as material bodies, that fill our space little by little, so
that it is no longer empty. Details are reserved to a later section. This matter  however doesn't
have a noticeable effect on the metrics as whole, since its mass is far below the mass of the
metric wave-field. The interferences of said field, caused by the material bodies, also propagate
with speed of light and are cause of the gravitative interaction. According to [24] statement VI
is described by the energy-conservation-rule of the MAXWELL equations

˙ w 0  + div S  =  – i E (374)

In this case, is ˙ w 0  the shift of the energy-density, S the POYNTING-Vektor, i the current-density
and E the electric field-strength. This process should still take place even today then. However,
on reason of the extreme Q-factor, the amount of the emitted energy would be so low that it is
factually not verifiable then.

4.6.4.2.1. Energy of the MINKOVSKIan line-element (MLE)

Let's have a look at the discrete MLE first. The energy of the electromagnetic radiation is
defined as W0=h 0. As well h as 0 are functions oftime and place. First, we want to figure the
temporal dependence. Under application of(363) we obtain:

W0  =     
  

ˆ h i

4 t
      =        h1H       =       hQ0H      =      h 0              (375)

Everything in all a very simple expression, that doesn't allow further simplification. This
applies, if we assume the expansion-centre as zero of a purely temporal coordinate-system. In
the second expression, our lattice constant  appears interestingly enough. The course is
figured in figure 58. There is also a maximum-energy (Q=1/2):

Wi   =     
  

ˆ h i

4 t i

      =       
  

h i i       =     4 h1 1   =      4,4508·10131 Js (376)

No  MLE’s exist at an earlier point of time. If we want to figure the spatial dependence (figure
59), we have to rearrange (375) a little bit. We replace 0=c/r0 :

(377)
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Energy of the MINKOVSKIan line-element temporal dependence

The third expression in (377) clearly shows that h is also a moment of momentum as well as a
part of the definition of mechanical and electromagnetic energy. On the basis of the quadratic
expression in the denominator the energy of the MLE is always defined positively, even behind
the spatial singularity. The course immediately behind the particle-horizon as well as the one
up to the event-horizon is figured in figure 60 and 61.
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Energy of the MINKOVSKIan line-element spatial dependence up to the particle-horizon
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Figure 60
Energy of the MINKOVSKIan line-element
 spatial dependence at the particle-horizon
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Energy of the MINKOVSKIan line-element
spatial dependence up to the event-horizon

4.6.4.2.2. Power dissipation

According to our model (figure 12) a power dissipation Pv appears at the impedance R0. This
is a function of time again and should be, according to assumption VI., reason for the cosmic
background-radiation. Since we don't know exactly, as Pv behaves, whether it suffices, like
hitherto, to consider only the median value, we first want to put the exact time-function. It
applies:

Particle horizon Event horizon

Particle horizon
Local world radius

Event horizon
Total world radius
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space behind
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Pv  =   
u0

2

R0
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0 r0
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Square of the Bessel function of
1st order during the first period
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Minima and maxima are fixed only by the Bessel function. The first two periods are
interesting particularly. Therefore, in figure 62 is first figured the course of the Bessel function
alone, since, because of the rapid decrease of amplitude, it's impossible to recognize the null in
the representation of the entire function (figure 63). The estimation yields 15 t1 for the first and
50 t1 for the second null.

Exactly seen with both maxima it's only about the first period, since a frequency duplication
is caused by the square. We have to do with a case here, at which it's necessary to calculate
with the exact time-function, as already indicated in the previous section. The course of power
dissipation during the first maximum is mainly determined by the quotient in front of the
Bessel function. No similarities exist with figure 62. The median- and energy-value have been
determined by numerical integration using the »Mathematica«-function NIntegrate. There is a
problem in that the power dissipation is directed against infinity in the zero point. As attempts
with the lower integration-limit emerged, the integral converges to the value stated in figure 63
fortunately.

Before we examine-on the first maximum, let's have a quick look at the second one (figure
64). One can see that as well the power as the energy of this maximum is far below the first
one (–21,6dB=1/143). That means: If the cosmic background-radiation is really the action of
the power dissipation, accumulating in R0, so it is (almost) exclusively the first maximum, the
qualities of this radiation are defined by. Conceivably, an action of the second maximum can
be proven yet with the present-day technical methods.
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Figure 64
Power dissipation of the MINKOVSKIan
line-element during the second maximum

We want now to examine the first maximum more. It's about a discrete impulse with a
defined length T incipient in the point t=0. The LAPLACE-transformation is at the best suitable
to it. With it, one first determines the figure-function G(p) as already done in section 4.3.2.
Using the transition p +j  we are able to determine the spectrum of our impulse then. With
a single-impulse, we get a continuous spectrum. Since we doesn't know the figure-function of
(379) and, to the transformation, would have to solve the convolution-integral with (143) first,
what works out quite difficult, we will choose another way: We split the function into 64
discreet values calculating the figure-function with help of the Fast-FOURIER-Transformation
(FFT). The current FFT-algorithms are been suitable to it, as e.g. the »Mathematica«-function
Fourier[{List}]. With it, we must however multiply either the result or the initial-values with
the root of 2 , since it's about a LAPLACE-transformation.
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As a result, we get a list of 64 complex values in turn, with which the last 32 ones correspond
to negative frequencies. The first value corresponds to the DC component and after transition
to . We want to take up an estimation of bandwidth and Q-factor. We set = 1 therefore
(resetting). First, we calculate the amounts of the figure-functions however. These are figured
in figure 65 and 66 (only positive frequencies k=2 /T).
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Continuous spectrum (first maximum)
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Continuous spectrum (second maximum)

Simultaneously, the transfer-functions of a loss-affected oscillatory circuit of 1st order with
different Q-factors are figured. We can take up an estimation of the bandwidth of the cosmic
background-radiation with it. For the transfer-function applies:

Spectral function
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Spectral function

Q=0.5
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Pv =  
Pmax

1+ v2Q2 v  =  
 

0

0

 0 =  1      (380)

v is the discord, Q the Q-factor of the oscillatory circuit. For the first maximum, the Q-factor is
at 1/2, with the second maximum at 1. The curves does not quite come to cover. The cause is
the low resolution (64 values) on the one hand, on the other hand the fact that the cosmic
background radiation is no longer a minimum-phase-system. In this case, the phase-
information has to be co-considered, which we have not done as well. According to [26] p. 341
each non-minimum-phase-system allows to be splitted in a minimum-phase- and a non-
minimum-phase-share. For latter one, one gets with help of the evaluation-function
ln coth|(ln / x)/2| a corrected transfer-function, with which lower frequencies are higher,
higher frequencies are lower evaluated. We don't want to pursue this here further however,
since the results are enough for an estimation.

The Q-factor of 0.5 corresponds exactly to the circumstances at the point of time t1/4 as well
as r1/2, just at our coupling-length. We want to notice this at first. With the second maximum,
we have to do it with a larger Q-factor. That means, should the emission of the cosmic
background-radiation occur ”continuously” according to the quantum-mechanical
understanding, we would have to do it with a very narrow spectral-line at the present point of
time, which overlaps in the area of the maximum of the cosmic background-radiation.
Unfortunately, many other spectral-lines are in this area at 178 GHz, caused by organic
radicals like e.g.  CN–, CH3

–, so that a proof is difficult. By application of (220) now we want
to specify an approximation for the present point of time. The emitted power follows the time-
function sin2x with the effective-value of Pv approximately then, this can be derived on several
manner:

  

Pv  =   ˙ W 0  =     
ˆ h i

4 t 2    =     2h1H
2    =     2hQ 0H

2   =    2h 0H   (381)

That corresponds to a present-day value of 9.6437·10–9W. At the above-mentioned frequency, it
would correspond to an emission-rate of 7.53·1013 photons as well as to the ”creation” of 64
hydrogen-atoms per second by one single MLE. But the cosmic background-radiation amounts
only to 500 photons per cm3 approximately. This is apparently a contradiction. Before we try to
solve this contradiction, we want to deal with the hitherto known qualities of the cosmic
background-radiation.

4.6.4.2.3. Qualities of the cosmic background-radiation

If one asks somebody, what is the cosmic background-radiation actual then, so most have
already heard about it. To investigate further then, one maybe even experiences that the
radiation-temperature, what is also that always, is about at 2.7K or at 3K or somewhere
between it and that somehow this radiation concerned with the big bang. These are all together
very inaccurate specifications. If one wants to learn more about it, so one has bad luck in
general. As technician, one is especially interested in details like e.g. the frequency and
particularly the field-strength. One can badly adjust a frequency of 3K on the receiver. But that
doesn't matter. With these few specifications, one can namely already calculate everything
itself. We now want to do this.

The cosmic background-radiation disposes of three further essential qualities: Firstly it's
isotropic, secondly it's not polarized and thirdly it's black, as has been determined with detailed
examinations clearly. The third quality is especially important. The cosmic background-
radiation behaves so as would it be emitted by an ideal black body. On the basis of this quality,
the PLANCK's radiation-rules can be applied. As technician, one is interested in the field-
strength and the frequency particularly. With thermal radiation, one is not concerned with a
discrete spectral-line however but with a steady spectral-function.
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The intensity of the radiation-field is a function of the frequency being clearly described by
PLANCK's radiation-rule:

  

dSk  =   
1

4 2  

h
3

c2  

1

e
h

kT 1

 es  d   PLANCK’s radiation-rule   (382)

T is the temperature here and es the unit-vector. For the case of very low temperatures (h »

kT) changes (382) into the WIEN radiation-rule (approximation). It is no mistake then again,
calculating always with (382. We want even to do this. Only to the information:
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h
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c2  e
h

kT
 es  d       WIEN radiation-rule   (383)

The logarithmic course of the intensity for a radiation-temperature of 3.03256K1 is shown in
figure 67 (graph 6). One recognizes that there is a definitive maximum. It can be determined
with help of the WIEN displacement law:

h max  =  2.821439372 kT WIEN displacement law (384)

Figure 67
Intensity of the cosmic background-
radiation with approximation

Furthermore, still interests the integral of the intensity across the entire frequency domain, the
POYNTING-vector. This is the STEFAN-BOLTZMANN radiation-rule:

  

S k  =   W d   =   T 4es   =   
2k4T 4

60  c2
h

3  es STEFAN-BOLTZMANN radiation rule (385)

with =5.669·10–8Wm–2K–4. Furthermore, we have overlaid in figure 67 the transfer-function
of an oscillatory circuit of the Q-factor 0.5 (curve 1). Because of the logarithmic represen-

                                                  
1  As latest observations with satellites (COBE) confirm, the real temperature of the maximum of the CMBR is somewhat lower at 2.7250K. A
correction of the value of H joined with it using (405) however leads to a value, that is outside the value-range, covered by astronomic observations
(61 Kms–1Mpc–1). This, and the fact that a certain fluctuation of the temperature-values within the CMBR has been observed, leads to the supposition
that there is another, additional process  responsible for the additional cooling of 0.3K. To this, e.g. the Multiple Scattering Theory of S. Roy and S.
Datta in [31] p. 103  would come into consideration. See also section 7.5.3.

Planck’s

radiation equation
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tation, the multiplication corresponds to the transfer-function with the maximum-value as well
as an attenuation only to a shift in y-direction, so that we can already take up a comparison
without knowing this value. Graph 1 just corresponds to the spectrum of the emission during
coupling into the metric transportation-lattice. The maximum-value has been chosen such that
both curves come to cover.

One recognizes, an exact cover of both graphs can be achieved in the lower area. However, a
decrease at the extreme frequencies, that doesn't correspond to the behavior of this oscillatory
circuit, occurs on the spectrum of the cosmic background-radiation. This could be the result of
the cut-off frequency of the metrics conceivably.  However, to check this, we require the exact
frequency, with which the cosmic background-radiation has been emitted, in order to
determine the amount z of the red-shift. The frequency must be in the area of 1 somewhere.
This results from the length T of the first maximum. The cut-off frequency would really come
into wear in this case (see also [46]).

Let's simply consider the problem as puzzle. The bandwidth of the Laplace transform of the
first maximum let's conclude on a Q-factor of 0.5. This would correspond to the circumstances
to the point of time t1/4 at r1/2, just our coupling-length. The frequency to this point of time
amounts to:

0.5 =  
1
t1

 =  
2 0

0

 =  1

Q0.5

 =  2 1  =  2.7982 10104s 1 (386)

This doesn't correspond to the value, that results from the impulse-length of the first maximum,
is in the magnitude then again. Now the circumstances in this time also are shaped by a very
large uncertainty and a part of the emitted frequencies are, because of the large bandwidth,
anyway above, others below of (386), so that it is well possible that the coupling-in of the
cosmic background-radiation exactly takes place to this point of time with precisely this center
frequency.

Up to the moment of the input coupling, the already emitted energy exists as free wave. Now
there's going to be the construction of the metric lattice and the signal is coupled in. Then
again, with the input coupling, a compression of the wavelength occurs i.e. a frequency-
increase about the factor 2 because of the rotation of the coordinate-system about 45°, that we
have taken up in the section 4.3.4.3.3. (the metric wave moves in r-direction, the overlaid
signals in x-direction). Now the frequency to be transferred would be higher than the inherent
frequency of the metric lattice indeed, so that no certain transfer is possible due to the
sampling-theorem.

An additional effect still occurs then again: In section 4.6.1 we have noticed, that a cube of
the edge length r0 contains not only one but six MLE´s. The energy must be apportioned even
onto six MLE´s with it. Since h is indivisible, the input coupling-frequency decreases again. It
now arises to s = 2 1 /3= 0,47 1 = 6,59542·10103s–1 and is, with it, so far below the inherent
frequency of the metric lattice, that the demands of the sampling-theorem are filled.

Now to the transfer itself. According to (278) is the frequency of time-like vectors
proportional to ~t–3/4. That equals ~Q–3/2 for the Q-factor. We do the following approach:
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z   =   k s
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  =   s

k

1    s

k

  =   2Q0( )
3
2   =   2 2  Q0

3
2 (389)

The factor 2 2  resembles that one of 2.8214 in the WIEN displacement law interestingly
enough. For k we get a value of 1.12584·1012s–1. Graph 1 in figure 67 corresponds to the si-
gnal s, red-shifted by (2Q0)3/2 with the frequency response of a filter of 1st order (oscillatory
circuit) with input coupling. This one is, with the exception of the decrease at the high frequen-
cies, identical to k. Graph 6 figures the course of a thermal emitter of the temperature
3.03256K1. This is precisely the temperature of a black emitter with the frequency k .

We want now to assume that the decrease with the higher frequencies is actually caused by
the existence of a cut-off frequency. Then the intensity of the cosmic background-radiation had
to trace the PLANCK's radiation-rule exactly. The fundamentals for the solution already have
been compiled in section 4.3.4.4.5. The exact proof is somewhat more complicated however,
particularly because of the integrals. First it's necessary to determine the time-function of the
frequency (302), incipient with t1/4 up to the event-horizon 2T, then to put it into the
expression of the amplitude response (150). I would like to postpone the exact calculation till a
later point of time, especially since a very good approximation can be achieved by an
approximative solution.

We have already determined that even the discrete MLE owns a solid cut-off frequency
(147). During propagation, only the active-part A( )·cos  with =B( )is been transferrred
(real part). With it, we get exactly the value g =2 1, it applies = /(2 1). With more exact
contemplation, one sees that the cut-off frequency actually can become effective only in the
first moments of propagation. Let's have a look at the moment of input coupling now: The si-
gnal (graph 1) is entered into the MLE and will be stipulated with the frequency response then.
As result, we obtain graph 2, which already properly approaches the PLANCK-graph. Now, the
signal is transferred onto a second MLE, at which point the frequency reduces to the value

s / 2  within this period. We now stipulate the signal with the frequency response anew obtai-
ning graph 3 (In the representation we have regarded the frequency as constant increasing the
cut-off frequency accordingly in exchange). Graph 3 approaches the result striven for even
better.

Figure 68
PLANCK’s radiation rule and approximation

                                                  
1 It’s based on a value of the HUBBLE-parameter of 75.9 kms –1Mpc-1. The latest temperature measured by the COBE-satellite of 2.725±0.002K
(Wikipedia) concludes H0 = 72 kms–1Mpc-1. See also  section 7.5.3.

Planck’s

radiation equation
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We repeat the entire process twice again obtaining graph 4 ( s /1) and finally graph 5 ( s /2),
which figures a very good approximation of PLANCK's graph. For reasons of clearness we have
figured graph 5 and the comparison-graph (black emitter) separately once again (figure 68).

It could be so just thoroughly that PLANCK's radiation-rules are really the result of the
existence of an upper cut-off frequency of the vacuum. In this connection is to be paid attention
to the fact, that that, which is applied to time-like vectors emitted directly after the big bang,
must apply to time-like vectors, emitted at a later point of time (e.g. today) too. With time-like
vectors, it is impossible to determine exactly, when and where they have been emitted. Since
no vector can be marked with respect to a second one, each thermal emission must run
according to the same legalities (PLANCK's radiation-rule) then. It remains only to determine,
which way the cosmic background-radiation has covered up to the present point of time. By
insertion of (389) in (309) we obtain for the distance r:

r  =   
˜ R 

2
z +1( )

4
3 1( )     

˜ R 

2
z

4
3   =   2 ˜ R Q0

2 (390)

r  =   r1Q0
2   =   R   =   2cT with  ˜ R  =  

r1
2

      (391)

The cosmic background-radiation has covered the distance of the local world-radius
precisely, just coming from the edge of our local universe. Temporally seen, it's coming from
the time immediately after big bang. With it, we have defined the distance to the event-horizon
precisely. This one is equal to R as well as 2T. Just, there are exactly two singularities/horizons
within our local universe (and even r0 and r1) In the distance R/2=cT there is the particle-
horizon. This is identical to the inner SCHWARZSCHILD-radius. In the distance R=2cT there is
the event-horizon. This is identical to the outer SCHWARZSCHILD-radius.
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Figure 69
World-model with the course of space-
and time-like vectors



115

Time-like vectors proceed on world-lines, that come from the particle-horizon. After  transit
through the point of zero they run into the direction of event-horizon asymptotically.  By the
way this agrees well with the energy W0 of the discrete MLE, that gains a maximum in the
particle-horizon (maximal emission). Therefore the particle-horizon figures a singular point for
time-like vectors, whereas the event-horizon forms a singular surface.

Space-like vectors however proceed contrary to the direction of time-like vectors on world-
lines coming out of the event-horizon (expansion-centre) directed to the particle-horizon after
transit through the point of zero. The event-horizon forms a singular point, the particle-horizon
a singular surface for space-like vectors (figure 69). The metric wave-field itself is a space-like
vector, as the name already says. Also the explanation of the opposite signs of phases- and
group velocity is here. Now the summary once again:

VI. Each time-like vector behaves as if it would come out of the particle-horizon
being directed to event-horizon. That also applies to the cases of incomplete or
interrupted vectors.

Each space-like vector behaves as if it would come out of the event-horizon
being directed to particle-horizon. That also applies to the cases of incomplete
or interrupted vectors..

These conclusions would also explain the most recent obtained results of the examination of
coherent photons (”memory”, tunnel through with ”warp speed”). The photons move on the
same time-like world-line being coupled via the vacuum, not via the metrics. The cut-off
frequency of the vacuum would be even an explanation for the question: Why does our
universe mainly contains ”normal” matter instead of antimatter or both? Antimatter as
autonomous solution of the field-equations has an inherent-frequency, that is above the
frequency of the metric lattice, while the frequency of ”normal” matter is below. With it, the
formation of antimatter has an inferior probability then, as a result of the existence of the cut-
off frequency (symmetry-breaking), which leads to the contemporaneous circumstances of
today.

According to our model, emission should take place with exact the frequency of the cosmic
background-radiation, even later. The frequency of the MLE´s but only traces the function

n = 1/Qn ~Q–1. In case of an emission with the frequency of n (now 0) then again, the cut-
off frequency would not become noticable and the spectrum should rather look like graph 1.
Furthermore, the bandwidth would become extremely narrow then. Now it would be possible
that each thermal emission, coming directly out of the vacuum, is taking place with the
frequency s, just without influence of the metric lattice. On coupling into the metric lattice,
just an immediate red-shift with frequency-response-adjustment (emission-red-shift) occurs to
the adaptation on already existing vectors.

Examples would be on the one hand direct particle-reactions (strong interaction) but also
thermal emissions being generated on thrusting processes of particles (heat-radiation) on the
other hand. To it, it would need the energy (mass) of the particles to be essentially larger than
the hitherto assumed h /c2 Let's assume the above-mentioned model, which assigns an
inherent-frequency below 0, just 0– , to the normal particles, but an inherent-frequency
above ( 0+ ) to the antiparticles, we would even have the higher energy then.

On interaction-processes with or via the metrics there only the difference-frequency has an
effect then (and only h, see further below), due to this red-shift, so that the shape of new
particles needs only the amount of energy h . The left-over is added by the metrics. As a
countermove (annihilitaion), even only this amount of energy is being released then. The
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frequency-response-graph at 2 1 would be the one non-linear graph, which is necessary to the
form of sum- and difference-frequency, then. Since sum- and difference-frequency occur
always together, according to cos  cos = [cos( – ) + cos( + )]/2 there's even always going
to be pair-creation.

By what such an immediate red-shift can be caused? Let's assume the metrics to be still
connected via the length r1/2 with the vacuum even nowadays, so that are about the same
conditions, as with the determination of the temporal dependence of wavelength in section
4.3.4.4.1. (277) und (278). There, we executed a transformation from a singular, purely
temporal, to a space-temporal coordinate-system, with which we obtained the expression

 ~ Q0
3/2 This however exactly corresponds to the red-shift of the cosmic background-radiation

of the first moments of expansion. On this occasion, the empty space corresponds to our
temporal, the metrics to the space-temporal coordinate-system (without metrics no space).
During the coupling into the metrics, the same transformation, as in section 4.3.4.4.1., still
takes place just even now. The immediate red-shift of time-like vectors also can be considered
as the introduction of an additional fourth dimension, the time. If one observes a process out of
the metrics, always all four dimensions need to be transformed.

With it, yields ~Q–3/2 also for the frequency arrived in space (CMBR-frequency). Because
during this transformation all frequency-relations survive, arise the same conditions
(bandwidth like at Q=0,5) for each point of time. With it, our model is confirmed and we have
explained the active principle of the WIEN displacement law and the PLANCK's radiation-rule
on the basis of this model on the side. To the better overview, the particular frequencies are
figured in table 3 once again:

Emission frequency e 2,79820 10104s–1 fe 4,4535 10103Hz

Imission frequency s 6,59542 10103s–1 fs 1.0496 10103Hz

CMBR-frequency k 1,12584 1012s–1 fk 179,183 GHz

Table 3
Frequencies of the cosmic background radiation

4.6.4.2.4. Emission-rate, energy

We have determined the frequency-relations of the cosmic background-radiation. With it, we
have noticed that the red-shift z gains a value of (2Q0)3/2 after input coupling. In ciphers, it are
5.858·1091. Calculated from the output-frequency 2 1 on, the red-shift even amounts to 12Q0

3/2.
With it, the power arrived in space (CMBR-power) Pk no longer equals the power dissipation
of the MLE and we have to change (381) accordingly:
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ˆ h i

48 Q 0

3
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   =     1

6
h1H

2Q0

3
2    =     1
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hH2

Q 0

           PT  = 0.5503 Pk  (392)

The real power PT results from the surface-ratio of the PLANCK graph (6) and the output-graph
(1). I determined it by numerical integration. Then the CMBR-power (new emission) cor-
responds to a present-day value of PT = 2,1307·10–101W. With the above mentioned frequencies

k and T the emission-rate n calculates as follows then:

nk  =
?
     H2

0

n
T
 =
?

    0.5503  

H 2

0

   =    1.795 10 79 s 1 (393)

That corresponds to approximately 1.43·10–91 hydrogen-atoms per second caused by a single
MLE. This value is more believable than the preceding one in any case. As more exact
examinations emerge, also this value is still too high however. Inside a sphere with a radius of
1m namely, in conformitiy with (342), approximately 2·10104 line-elements are positioned. So,
the emission of approximately 3.6·1025 photons as well as 2.86·1013 hydrogen-atoms per second
would still occur there even nowadays (without consideration of the fermion-/boson-ratio).
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This is apparently wrong. Expression (395) is just not yet complete. Hitherto, we regarded the
frequency-caused red-shift only. However, there is an additional energetic red-shift as well,
caused by the decrease of the value of PLANCK's quantity of action.

The emission with a frequency of 2 1 within the vacuum on the niveau r1/2 is not the only
peculiarity. Simultaneously, the value 2h1 of PLANCK's quantity of action at the point of time
t1/4, is applied instead of the “normal” h. It gets lost again during transformation however. So
the additional red-shift resulting from it does not have an effect onto frequency but only to the
emission-rate. The energetic overall red-shift just amounts to 12·Q0

5/2. Expression (391) reads
correctly:
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nk  =     H 2

1

n
T
 =    0.5503  

H 2

1

   =    2.38 10 140 s 1 (395)

With it, we get the final values for the present emission. Now this has a value of PT =
2.825·10–162W only. The emission-rate is about 2.38·10–140 photons per second caused by a
particular MLE. That is one single photon per year within a ball with a radius of 1.884 million
km (1.26AU).  For the shape of hydrogen-atoms, the frequency is too low anyway. These
values agree with the observations the best as well as are the most believable ones. The
difference between the values of (392) and (394) equals the introduction of the fourth
dimension, the time, again.

In section 4.6.4.2.5. we will determine, that the metrics beside emission according to (394),
also takes in energy (dielectric losses), whereby the magnitude is essentially greater than the
emission. That means, the emission of cosmic background-radiation to the present point of
time is equal to zero.

That with the emission-red-shift energy quasi “gets lost” is no contradiction. Even with the
normal cosmologic red-shift, energy goes “lost”. Really, the energy doesn't go lost indeed, it
only does not become effective, because the energy of time-like vectors is depending from the
valid frame of reference after all. Summarizing, we can write once again:

1. The emission doesn't take place with a frequency of 0, but always with 2 1

2. The emission-value of PLANCK's quantity of action is 2h1

3. The metrics is connected with space via the length r1/2 even nowadays
4. With the emission, the full power dissipation becomes effective
5. The output-signal is superposed with the frequency characteristic (382) and a

red-shift, so that only a fraction of the energy is transferred by the metrics
6. Cause of the red-shift is a coordinate-transformation

The conditions, that have on hand with the emission of the cosmic background-radiation
(2 1, 2h1, r1/2, Q=1/2), applies not only in this case but with all processes  taking place without
participation of the metrics like e.g. mutually impacts of particles and also the strong
interaction. If there's going to be emission of photons in this connection, so these are red-
shifted in the same way, as the cosmic background-radiation (Macroscopically, we are
observing the red-shifted values only).
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4.6.4.2.5. Field-strength of the cosmic microwave background-radiation

Having clarified the energy- and power-relations at a discrete MLE, also the electromagnetic
field-strength is of interest. Let's look at the field-strength of the cosmic background-radiation
first. We want to assume the present conditions to be the result of the 1st maximum with the
energy We=2,8967·10131J, which have been coupled in by one discrete MLE at the point of
time t1/4 into the metric lattice established just now. The coupling-length is r1/2.

Although an apportionment onto six MLE´s occurs with this input coupling, with which the
frequency decreases about the factor 6, the energy-density remains constant, since the other
five MLE´s also generate photons, that are in-coupled into the other ones. Only a
multiplication of photons occurs with constant energy-density. This results directly from the
energy-conservation-rule. Let's look at the discrete MLE first. The approximation of We results
in:

  

We   
8

h1 1   =    
2

2h1( ) 2 1( )    =    
2

h0.5 0.5 (396)

The fraction results from the qualities of the Bessel function. The energy is smaller than the
energy of the MLE to this point of time. Then, the energy-density amounts to:
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h1 1    =    2,309 10419 Ws

m3 (397)

To be able to take up a comparison with the field-strength of the cosmic background radiation
(spheric coordinates), we have to convert this amount accordingly. The ratio in volume
between a cube with the edge length r0 and a ball with the same diameter amounts to /6. The
cube contains 6, the ball on average  MLE´s therefore. This result can be obtained even from
(342). We just have to multiply (397) with  in order to get the real energy-density. We get the
electromagnetic field-strength by multiplication with c then:

  

we =       
64h1 1

r1
3 =    

2h0.5 0.5

r0.5
3  =    7.25 10419 Ws

m3 (398)

  

 Se =      
64h1 1c

r1
3 =   

64h1μ0 0
4

0
3   =    2.17 10428 W

m2 (398)

This value corresponds to a level of 4403.36 dBpWm–2. Now, we want to calculate the current
level. First, a geometrical attenuation Ag ~r–2 occurs. Because of r ~ Q0 applies Ag ~Q0

–2.
Furthermore, an attenuation appears due to red-shift as well as an energetic attenuation by
decrease of h. Red-shift and energetic attenuation amount together A ~Q0

–5/2. Since this
attenuation appears both in x- as well as in y-direction (with propagation in z-direction), it'll be
altogether A ~Q0

–5. With it, total-attenuation is at A ~Q0
–7. Now, let's assume the red-shift of

the field-strength to be equal to the red-shift of the wavelength (144Q0
5). This is not applied to

the geometrical part however. Here, the red-shift has only a value of (4Q0
2). The current

electromagnetic field-strength, just the POYNTING-vector, would have the following value then:
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m2 (399)

This value corresponds to a level of 114.336 dBpWm–2. Now we must already subtract the
attenuation by dielectric losses, as described in section 4.3.4.4. It amounts to
8.686dB/R=1Np/R for the electric field-strength being an additional geometrical attenuation.
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On the basis of the definition of the decibel, the same amount is applied to voltage and power.
Since we have to do it with two directions (x and y), we calculate with the square of the value,
obtaining a value of 2·8.686dB/R according to the logarithmic rules. Finally, we get a debit-
value of 96.96dBpWm–2, that is 4.971 mWm–2 respectively 1.369 Vm–1. Really, the field-
strength amounts to 66.8074 dBpWm–2 only. The difference of 30 dB can be attributed to the
fact, that a part of the cosmic background-radiation has been converted  to matter in the course
of expansion, a more inferior part even into heat, mechanical or electromagnetic energy with a
different wavelength during interactions with the very same matter.

Now we want to examine, if we succeed with the derivative of an estimation of the present
boson-/fermion-ratio from this difference. Also, a calculation of the average-matter-density
should be possible.

Value Poynting vector dB Energy density Symb. Definition Number/m3

Start 7.253 10419Wm–2 4403.36 2.1700 10428J m–3 we Emission —

Debit now 4.971 10–3Wm–2 96.96 1.6584 10–11J m–3 wk Total —

Actual now 4.797 10–6Wm–2 66.81 1.5990 10–14J m–3 w Bosons 1.350·108

Difference — — 1.6567 10–11J m–3 wM Fermions 0.2220

Density — — 1.845 10–31 g cm–3 n /nM Ratio 6.080·108

Table 4
Field-strength and energy-density
of the cosmic background-radiation

With the calculation of the fermions-quantity I assumed hydrogen to be the most prevalent
element in the cosmos. The table has been calculated as follows:
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2      (401)

ma is the atomic mass-unit. The value of 6.080·108 obtained for the boson-/fermion-ratio is very
close to that ones, determined with other methods. E.g. in [4] a value of 6.486·108 is specified,
which is only 1.06 times larger. Now, to the determination of the boson-quantity, we have
consulted even only the photons of the cosmic background-radiation. In reality of course, there
are also photons, which have nothing to do with it, stemming from interaction-processes or
such that have been originated by annihilation of matter and antimatter. A considerable part of
the cosmic radiation-spectrum e.g. is stemming from super-nova-outbursts. Therefore, we have
to correct the boson-number slightly upward, the fermion-number downward, approaching the
value of [4] more and more. The results obtained are another sign for it that we are close to the
reality with our model.

Finally, we already want to specify an estimation of the average-matter-density within our
”closer” surroundings, i.e. approximately 0.01R. By the assumption that all matter and
radiation within the universe (with exception of virtual particles) has been generated by the
cosmic background radiation exclusively, the calculation results in the following value
(including mass of radiation):

G
 
wk

c2   =   1,845 10 28kg m 3                1,845 10 31kg dm 3( )      (402)

In [4] a value of G 10–30kg·dm–3 is specified, which agrees very well with our value by the
way. In our model, the matter-density doesn't have that influence on the property, whether the
universe is close closed or open, as with other models, since also density is a function of time
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and space in it. The temporal and spatial dependencies are figured in figure 70 to 72. The
density is defined as follows:
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9e4

h1 0
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c3R2 (403)
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The factor e–4 arises from the dielectric attenuation, e is the EULER constant here. We have to
insert for Q0 as hitherto just now:

Q0 =   ˜ Q 0  1 +
t
˜ T 

2r
˜ R 
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Figure 72
Spatial dependence of the average

matter-density at the point of time T (nowadays)

To the moment of the input coupling, there is also a maximum matter-density, that achieves
a value of approximately 3.2871·10397kgdm–3 inclusive radiation once again. Before this point
of time, there is no metrics, i.e. no space and therefore even no density. With densities above
1.71222·1058kgdm–3 quantum-effects become effective with a magnitude of the entire cosmos
as well as the entire area with this density. This is closed outwardly then.

Furthermore it is of great interest, if there is a constant boson-/fermion-ratio over the entire
period. We cannot yet make any statement about it to the present point of time however.
Probably, it remained unchanged at least during last time, leading to the statement that also the
mass should be subject to a certain red-shift

Two contradictions result from it however. Firstly, the shape of the fermions ought have
taken place immediately after the input coupling. Because of the high temperature ruling at this
point of time, these would not be able to exist according to the classic understanding however,
i.e. they would immediately be reconverted into radiation. We will examine an approach to the
solution of this problem in the next section. Because PLANCK's quantity of action is time-
dependent, namely the fine-structure-constant, by which the action-profile of interaction of
matter and radiation is determined, is changing too. At the point of time of the input coupling,
it would be so small, that actually no interaction would take place, i.e. the photons would
behave just like neutrinos nowadays.

The second contradiction exists with our initial hypothesis that particles as spheric-
symmetrical solutions of the field-equations don't change. With constant boson-/fermion-ratio
namely also the mass of the fermions would be subject to the same red-shift as the cosmic
background-radiation. Considering the relationship h =mc2 where  corresponds to the DE-
BROGLIE-frequency, it's plausible. Even according to the special and universal relativity-
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principle, the mass is not constant at all but depends on the space-time-coordinates and the
gravitational-potential at the place of observer.

Here, one should refer to the model of the previous section once again, in which the particles
without metrics are being always in the state as in the moment t1/4. In this case, antiparticles
have a mass and inherent-frequency greater than, ”normal“ particles lower than the cut-off
frequency of the vacuum. From it, also the symmetry-breaking results, leading to a universe,
consisting of ”normal“ matter mainly. In this state, all particles remain, unless an interaction
occurs. The new particles possibly originated with it, are also formed with such qualities, as
they prevail at the point of time t1/4 (2h1, 2 1, r0/2, 1/2 etc.). The essential point is now, that
the observer himself is a captive of the metrics and therefore only the ”shadows“ of the real
conditions, just the red-shifted relative mass like e.g. mp can be observed (PLATO's cave
parable). This and not the absolute mass is a function of space and time then.
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Figure 73
Mass-red-shift at the example
of the proton

To it, however it's necessary, that the frequency of the metric wave-field shows the same
red-shift, as the frequency of the cosmic background-radiation (for h it's guaranteed anyway),
so that the frequency-ratii remain constant too. To the frequency 0~ Q0

–1 is applied.
Additionally, another difference exists with the propagation-velocity, that amounts a value of
Q0

–1/2 in the approximation. That'll be altogether Q0
–3/2, as with overlaid waves. The principle of

such a red-shift is figured in figure 73.

Here the metrics acts as a lens, we are looking through at the real conditions. The resolution
amounts to h/2 exactly. The magnification- or better reduction-factor is changing with time but
it's also a function of space and of the gravitational-potential. With a Q-factor of Q0=1 at the
point of time t1 a phase-jump appears, the phase rate of the metric wave-field has a zero-transit
(figure 23). Therefore, the frequency is defined negatively before this moment and positively
after it.

But how there shall going to be such a lens-effect e.g. with a proton? The particle as such is
embedded into the metrics, is even permeated by the metrics. If now a red-shift e.g. of the mass
should occur, the metrics around ought to show certain properties, that lead to a red-shift.
Namely, if we would work with the normal metrics of empty space, there wouldn't be such red-

Phase jump at

Cut-off frequency

Metric

»lens«
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shift anyway. By the way, the red-shift ought to achieve this value, for which the light requires
a distance from the ”edge of the world” up to us,  very quickly, within a very small distance to
the particle.

In [29] I found a very good model for it. There NANSTIEL describes a similar model, in
which the universe is composed of elements with the dimensions of PLANCK's fundamental
length (smallest increment). These elements he describes as bare singularities. Therefore his
model doesn't essentially differ from my model, though the PLANCK's smallest increments are
seen as particles only as well as particle-like. Either there aren't bare singularities in my model,
since they own an event-horizon in the distance r0 . In reality, PLANCK's fundamental length,
which is identical to the MINKOVSKIan line-element (MLE), owns both wave- and particle-
properties. In his model NANSTIEL describes an object, be called graviton, which reflects very
well the active-principle of the above-mentioned on-site-red-shift. It is, provided with one or
two modifications (It's not my opinion that this graviton is a matter of quantum of the
gravitational field here), figured in figure 74. Rather the MINKOVSKIan line-element itself is the
quantum of the gravitational-field with the additional feature that it forms also the space. This
is actually plausible.

Figure 74
Structure of the metrics
in the vicinity of a particle
by analogy with NANSTIEL

In accordance with NANSTIEL, free fundamental lengths have the endeavor to roll up around
itself as well as around particles. Let's assume more final case, so this could really be the cause
for an on-site-red-shift. The particle is in the basic condition (Q0 = 1/2). With the
electromagnetic and gravitative interaction, the action must take the detour across the rolled-up
metrics, with which above-mentioned red-shift occurs then. In truth, the action goes the direct
way along the curvature-gradient of course. At each new plane there's going to be an
adjustment of the frequency-ratio, so that total-red-shift really achieves the above-mentioned
high value, just much more quickly. The curvature ascends with decreasing distance to the
particle, but it does not become infinite anyway.

During the strong interaction, action uses the direct way without aid of the metrics.
However, the particles must be located so densely together then, that there is going to be a total
displacement of the metrics. The fundamental physical constants are having the value as in
basic condition (Q0=1/2) in this case.

4.6.4.2.6. Temperature of the cosmic background-radiation

While the temperature of the metric wave-field is equal to zero, it is not applied to the
cosmic background-radiation. Since it is about black radiation, we can declare also the black
temperature. By rearrangement of (384) and insertion of the energetic red-shift 12Q0

5/2 we
obtain for 2 1:
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Tk =  
1

2.821439

h k

k
 =  

1

2.821439

h1 1

6k
Q

5

2 =  0.059071
h1 1

k
 2 0t r( )

5

2       (405)

This is the temperature of the cosmic background-radiation under consideration of the
frequency response (see figure 75).

-0.5 0.5 1. 1.5 2.

1.

2.

3.

4.

5.

6.

7.

t
˜ T 

kT

K

Figure 75
Temporal dependence of the radiation-temperature
of the cosmic background-radiation (linearly)
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The temporal course is pictured in figure 76 to 77. Similarities exist to the energy-density1. We
will renounce the presentation of the spatial dependence, since it turns out similarly too.
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Figure 77
Temporal dependence of radiation-temperature of the cosmic background-
radiation considered from the beginning of the gravitational-universe on

4.6.4.2.7. Field-strength of the metric wave-field

Next we want toconsider the field-strength of the metric wave-field. In difference to the
cosmic background-radiation, the relations are not quite so simply because of the complex pro-
pagation-impedance and the propagation-velocity different from c. So, the expression c= 0r0

applies only for the approximation equations. Here applies c= 0r0 and r0=r1Z0
2/ZF

2 with
r1=1/ 0Z0. Normally, the POYNTING-vector is defined as S=E . With a complex approach
however according to [26] applies:

S  =   
1

2
Re  E H*[ ] (406)

Re is the real-part, H* the conjugate complex time-function. The direction of the POYNTING-
vector is always that of the propagation direction. E and H we had defined as:

E  =     ˆ E i  

H0
1( ) 2 0t( )    H*

=     ˆ H iH0
2( ) 2 0t( ) (407)

But this definition is only applied to a purely temporal coordinate-system (there is no
expansion), as e.g. we can find it at the expansion-centre (coupling-length). With it, expression
(237) as approximation equation becomes physically pointless. Now, we want to have a look at
the relations from the point of view on which we stay, from the metrics, however.

                                                  
1 It’s based on a value of the HUBBLE-parameter of 75,9 kms –1Mpc-1. The latest temperature measured by the COBE-satellite of 2.725±0.002K
(Wikipedia) concludes H0 = 72 kms–1Mpc-1. See also  section 7.5.3.
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First, we replace S i  with 2 S1, for better calculation. Then we have to correct (407) as follows:

E  =     2 S1 ZF J0 2 0t( ) + jY0 2 0t( )( )  eE (408)

H*
=           

2 S1

ZF

 J 0 2 0t( ) jY0 2 0 t( )( )  eH (409)

Now, there is another difference in the propagation-velocity in reference to the normal case
however. We have to multiply the expressions with the fraction c/|c|. Following substitutions
apply (M0(x) is the module of the Hankel-function and identical to the amplitude of the
associated Bessel function):

Q0 =  2 0t 0 0t  =  
c

c
 =  

Z0

ZF

 ~  

1

2
Q0

1

2 M 0 2 0t( )  ~  Q0

3

2         (410)

E  =    j 0 0t   2 S1 ZF J 0 2 0t( ) + jY0 2 0t( )( )  eE  e
j
1

2
arctan

    (411)

H*
=       j 0 0t   

2 S1

ZF

 J 0 2 0t( ) jY0 2 0t( )( )  eH  e
+ j

1

2
arctan

    (412)

The definition of 0 can be found in (209). Now, there is to pay attention to another anomaly
however. The electric and the magnetic field-strength is defined per meter. With a red-shift
caused by the anomalous propagation-velocity, even the “meter-rate“ is changed (stretched), so
that the total-red-shift will be determined by the square of the product of (411) and (412)
overall (without S1). Under application of (406) we finally get for the amount S0:

S0  =
?

        

2

4
 S1 2 0t( )

4
J0

2 2 0t( ) + Y0
2 2 0t( )( )

2

0
4  =   4 2S1 0

4
0
4t 4M0

4 2 0t( )  (413)

S0  =
?

              S1 2 0t r( )
4
       Approximation      (414)

The approximative solution has been found by trying. Because of r0~Q0 the POYNTING-
vector is also proportional to r0

–4. with it. This is the double geometrical attenuation because of
the transformation of the propagation-velocity (ever twice per dimension), just as expected. By
the way,  no imaginary-part appears in this case (blind-power), so that we can omit the Re[x] in
(406). Now we want to determine the absolute value of S1 using the following approach:

E  =    
q0eE

0 r0
2 =    

q0eE
C0r0

=    
1

c

i0

C0

eE    (415)

H  =    0eH
μ0r0

2 =    0eH
L0 r0

=    
1

c

u0

L0

eH    (416)

e is the unit-vector, q0, 0, u0 and i0 are time-functions. Finally, we get:

  

S0  =     
1

2
 E H*( ) =    

h 0
2

r0
2 er =    

P0

r0
2 er Q0

–5  !!! (417)

Expression (417) only containes effective-values. The factor 1/2 has been integrated into the
definition of S0 with it. But there is an aberration in reference to (413) and (414). The value S0

of (417) is proportional to Q0
–5 (as with overlaid photons) in contrast to Q0

–4 in (414). The
reason for the difference is the temporal dependence of the PLANCK'S quantity of action. In the
approximation applies h Q0

–1. In section 4.6.4.1.1. we had already tried to find an exact time-
function for it. We however do not use any function figured there but rather another. The
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problem was indeed, that PLANCK'S quantity of action is a median value, which was not yet
defined in the first moments after big bang. Even, h is a special quality of the metric wave-
field. If the metrics doesn't exist or does not yet have been established completely, even there is
no PLANCK'S quantity of action as well as it it would have a smaller value than depicted in
section 4.6.4.1.1. Therefore we will use the following exact time-function:

  
h  =  1.253314  h1  0 0t  M0 2 0t( )     h1Q0

–1     (418)

The value h1 and the factor 1/2, turning out by expansion of 2 0t are however already
contained in S1, so that the correct versions of (413) and (414) read as follows:

S0  =        

2

4
1.253314  S1 2 0t( )

5

0
5

 M0
5 2 0t( )  (419)

S0  =         S1 2 0t r( )
5

   Approximation      (420)

With it, the initial value S1, being applied as well for the exact function as for the
approximation, results to:

  

S1  =         

h1 1
2

r1
2   =          

h1μ0 0
4

0
3 =    3.3907 10426Wm 2     (421)

Figure 78
Temporal dependence of the electromagnetic field-strength
of the metric wave-field exactly and approximation

The approximation-value of S0 to the point of time of input coupling (S0.5) is exactly 35 times
larger than according to the exact formula. With it, the field-strength of the cosmic
background-radiation to this point of time would be approximately as large as that of the metric
wave-field. This one and the field-strength of the cosmic background-radiation here can be
traced back to the same function (figure 63). The function corresponding with figure 63 is the
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impulse-response of the empty space to a DIRAC-impulse as origin of the universe then. Cause
of the DIRAC-impulse on the other hand is one single powerful quantum-fluctuation.

Perhaps even this is the reason why the shape of fermionic matter occurs at all. The metric
wave-field can take in only a specific amount of energy, so that the left-over condenses inevi-
tably in form of fermionic matter. Let's assume, that e.g. only the half of energy can be coupled
in as radiation, the solid matter forms from the rest. Then, the ratio of both would not be
identical to the present-day one however. Because of the strong red-shift there's quickly going
to be, that the metrics is in the situation to take in more radiation-energy however.

Because of the low effective cross-section (to the point of time of input coupling it is equal
to 1), with the initially ruling high temperatures, but only a fraction can be re-converted to ra-
diation, so that quickly adjusts the prevalent ratio of nowadays. The course of the electroma-
gnetic field-strength of the metric wave-field (exact and approximation) in the first moments
after big bang is shown in figure 78. One realizes that there is still no metrics to the point of
time of big bang. It first forms just after it.

As next we want to determine the energy-density of the metric wave-field. Since the
POYNTING-vector and the vector of propagation-velocity have the same direction, we can cal-
culate with the absolute values. In this case, an essential difference exists to classic contempla-
tions however. We are used that the POYNTING-vector and the energy-density with technical
problems are joined together solidly (the proportionality-factor is 1/c). But with the metric
wave-field it is not the case. Here we have to divide by |c|.

Even here, we can use w1 for both, approximation and exact solution simultaneously again.
Additionally to the division by |c| (to the definition of w1 we set |c1|=c) we must take up the
transformation for the meter-rate, namely for the third spatial dimension. That does altogether
2 0 t 0M0(2 0t). It applies 1.253314 2 = :

w0  =    
3

8
w1 

2 0t( )
6

0
6

 

M 0
6(2 0t)                with    w1  =   

S1

c
(422)

w0  =    w1  2 0t r( )
6

          Approximation      (423)

The course of the energy-density precisely and the approximation is shown in figure 79. The
approximation equation has been determined by trial once again. We would obtain the same
expression even from the energy of a discrete MLE (~Q0

–2) under consideration of the geome-
trical dilution (~Q0

–3) and the shift of h (~Q0
–1).

There is a significant difference to the approximation in the time just after big bang. The
energy-density of the metric wave-field initiates with zero. Then it ascends quickly, gaining
coincidence with the approximative solution, coming from infinite, descending together with it
then. The maximum has been achieved to the point of time of input coupling. In comparison
with the power dissipation (figure 63) one can recognize, that the energy from the time
immediately after big bang has been used for the construction of the metrics. Once completed,
the excess has been emitted into the metrics i.e. coupled in. Here, it deals with red-shifted
values again, just like we observe them from inside the metrics.

Now we can finally state a solution for the problem (374), the energy-conservation-rule of
the MAXWELL equations. Here there's not much point in it, to calculate with approximation
equation. For that purpose, let's look at the derivative of the energy-density first. Admitteldly,
even an analytic solution exists for it, however it's so complicated, that the time needed to
calculate it would be essentially greater than the one of numerical methods. For the sake of
simplicity we will calculate with the difference-quotient therefore ( t=0.0001t1). It applies:
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Figure79
Temporal dependence of the energy-density of the
metric wave-field exactly and approximation

˙ w 0       =   8 3 ˙ w 1 

d

dt 0
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6t6

 M0
6 (2 0t) with   ˙ w 1  =    3
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r1

(424)

˙ w 0       =   ˙ w 1 

2 0t r( )
8
           Approximation      (425)

The value of we obtained by differentiation of the approximative solution (423) after time
and subsequent checkup. The factor 3 stems from the exponent of the time of the energy-
density (it’s proportional t–3). Now to the expression iE. For |ZF| Z0 and i= 0E applies:

iE       =      0E
2

=       0E
2  =      4 2

0Z0S1 0
4

0
4t 4M0

4 (2 0t)  (426)

iE       =      
4

3
2 ˙ w 1 0

4
0
4t 4M0

4 (2 0t) (427)

iE       =      
˙ w 1
3

(2 0t r) 4           Approximation      (428)

Here we insert consciously the square of (411) without additional correction for h as well as
q0

2. Since the MAXWELL equations shall be LORENTZ-invariant indeed, the correction in (426)
on both sides should cancel itself. With the following contemplations, we would get a sort of
reference-frame-independent result then (There is only a shift of the point of view of the
observer on the time-axis). However, I am not quite sure in this point, specifically with this
application. But now we want to insert the values in (374) obtaining finally:

divS0  =   0E
2 ˙ w 0     (429)
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According to definition, a positive value of the energy-flow-density-vector divS0 corresponds
to an emission of electromagnetic energy. The expression ˙ w 0 (figure 80) gives information
about the energy-balance of the metrics overall. One sees, first energy is taken in, which is
required to the construction of the metric wave-field. Later the total-energy-density decreases
again and tends against +0.

Figure 80
First temporal derivative of the
energy-density of the metric wave-field

Figure 81
Temporal course of the energy-flow-density-
vector and ohmic losses of the metric wave-field

Especially interesting is the energy-flow-density-vector divS0. Even this part is negative
initially. This corresponds to an influx. Then, energy is emitted again. This is the cosmic
background-radiation. But this step in evolution is very short, as already determined in the
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previous chapter. With a Q-factor of 1.5975, the energy-flow-density-vector has a further zero-
transit. Energy is taken in again, even if the amount tends asymptotically against zero. These
are nothing other than the dielectric losses during wave-propagation of overlaid photons. Just
no energy gets lost.

With large-scale values of t, the expression ˙ w 0  becomes small with respect to the other ones,
so that we can neglect it. Then applies:

divS0 + 0 E2  =   0 for  t»0 (431)

divS0  =   
˙ w 1
3

(2 0t r) 4
Approximation      (432)

Now we want to examine, whether the share 0E2 for the metrics really corresponds to the in-
taken energy of the cosmic background-radiation. An essential criterion for it is, that as well
the share of the metrics 0E2 as the one of dielectric losses of the cosmic background-radiation

0REK
2 have the same temporal course. It applies:

0R     =    2 0Q0
2   ~    Q 0

2 EK    ~    r0
1    ~    Q0

1 (433)

0REK  

2 ~    Q0
4

CMBR (434)

0E
2   ~    Q 0

4
Metrics (435)

The electric field-strength-vector of the cosmic background-radiation EK is subject to the
geometrical dilution only, caused by the expansion of space. Here is the “meter-rate” stretched
once again. An adaptation of velocity is not necessary, since the background-radiation always
propagates with speed of light and our observations take place with speed of light too. Since
only the red-shifted conductivity of the vacuum 0R (see 4.3.4.4.2.) becomes effective for
overlaid waves, the same temporal dependence arises for large t indeed.

In normal case (positive energy-flow-density-vector), the share 0E2 corresponds to  ohmic
losses, that lead to an additional diminution of the energy-density. A positive share divS0 espe-
cially describes the energy-(away-)transportation through the electromagnetic field. If the
energy-flow-density-vector becomes negative (energy-influx) however, so this energy either
can be added to the electromagnetic field or be changed into other energy-forms. Because of
˙ w 0 0, only the second case is possible. Since the appearance of such a share means a conver-

sion into other energy-forms in general (in a conductive medium always a part is changed into
other energy-forms) arises the question from it, into which?

Once let's be able to tell the energy-relations by the look of us more exactly, so these are
situated approximately in the area of the difference between debit- and true-field-strength of
the cosmic background-radiation. That means that the energy 0E2 would be fully transformed
into “solid” matter, while the share div S0 would be joined with the cosmic background-
radiation in principle.

The particle-formation already begins with the beginning of the expansion then. The metrics
is fully developed to the point of time t1/4 approximately and starts to emit radiation-energy
(cosmic background-radiation) thereupon. However, it would also be possible that the metrics
builds itself with the overlaid background-radiation in one piece quasi together.

Approximately from the point of time 2,552t1 on the metrics commences to re-absorb a part of
the energy of the cosmic background-radiation again (dielectric losses). This is changed
completely into matter then. Here, we just have answered the question, whether still cosmic
background-radiation is emitted to the present point of time. The answer is no. However, there
are areas in the universe (particle-horizon) in those an emission takes place even “nowadays“.
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If we completely assign the share 0E2 to the shape of matter on the one hand, the share
divS0 to the emission/annihilation of electromagnetic radiation on the other hand, so it should
be possible to determine the temporal course of the Boson-/Fermion-ratio. With the same red-
shift for radiation (bosons) and particles (fermions) the following expression would arise for it:
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(436)

The integration-constant has been determined with help of the function FindRoot under the
condition that the integral is equal to zero in the maximum of w0, the integral 0E2 by
numerical integration (NIntegrate). The associated temporal course is shown in figure 82.
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Figure 82
Integrals of energy-density and dielectric
losses of the metric wave-field

The calculation of (436) results in a course of the bosone-/fermion-ratio, as it is pictured in
figure 83. One recognizes, it turns out a value 6.080·108 being much greater than determined in
section 4.6.4.2.5. But with increasing age it decreases again approaching a value of 2.3864·1012

to the present point of time asymptotically.

The reason is that the fermion-number created by the process 0E2 of the metric wave-field is
not equal to the total fermion-number. The creation process of fermions taking place
immediately after big bang does not form particles, as they occur today most frequently
(electron, proton, neutron) but highly excited states of super-heavy subatomic particles, as we
still not know them at all. However, these particles are having the characteristic to decay into a
multiplicity of smaller and lighter subatomic particles with change of the outer relations. As a
result the fermion-number increases continuously or discontinuously and the graph in figure 83
descends much more intensive.
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Figure 83
Part of the boson-/fermion-ratio, determined by the metric wave-field
as a function of time without consideration of the fermion-multiplication

We cannot make any more exact statements about the magnitude of the multiplication. We
consider it by an additional factor , which we merge into expression (436) as follows:
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It turns out a value of =2.5939. With high probability, the fermionic matter formed by the
metrics doesn't amount the total fermionic matter however. Namely, there is another second
process, with which fermions can be formed too. The existence of such a process is substan-
tiated by the following contradictions:

1. The aberrant boson-/fermion-ratio.

2. The metric wave-field is established over a time period of t1/4. Energy is taken in
during this time continuously. To go out from a singular agitation in form of a
DIRAC-impulse, the energy of this impulse should have to be buffered somewhere
for this time period at least.

3. The function according to figure 83 has a negative domain, which equals to an
annihilation of bosons. However, these already must have been existed previously,
because where is nothing, even nothing can be destroyed.

4. The prior existence implies a prior formation, to assume an empty universe to the
point of time T=0 by exclusion of a “creation” of fermionic matter.
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This process have to see temporally be before the formation of the metrics and to start with
the point of time T=0. It would be also reason for the additionally generated fermionic matter
then. However, now the question arises about which process it could be. The simplest case for
such a process would be the solution of the MAXWELL equations for a loss-affected medium
without expansion according to 4.3.4.2, just the classic solution. On the basis of the high value
of the specific conductivity 0 of the vacuum this solution would have degenerated so strongly
that the response to a DIRAC-impulse would be one single impulse, which would fit into our
temporal screen very well. We want to call this impulse primordial impulse. The qualities of
such a primordial impulse we will examine in the next section.

4.6.5.          The primordial impulse

4.6.5.1. The DIRAC-impulse

We assume an unique agitation by a DIRAC-impulse (t). This impulse is actually no func-
tion but a distribution with the following qualities:

(t) =  
  für  t = 0

 0 für  t 0

 
 
 

(t) =  
d

dt
(t) (439)

(t) is the jump-function with the amplitude 1. Another essential quality results from the
second expression:

  
(t)  dt

0

 

     =      ( t)  e pt
 dt

0
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The integral as well as the surface below the DIRAC-impulse is equal to 1. On the basis of (439)
even the LAPLACE transform is equal to 1, which corresponds to a continuous spectrum, which
shows the same amplitude, namely 1, over the entire frequency domain 0    . The
bandwidth is infinite with it.

We just assume this impulse as base of our reflections. It comes closest to the imaginations
of a big bang too. Since it is about a degenerated case, we want to try to find a solution of the
MAXWELL-equations for it. First, we have to quantize the space for this purpose. We assume
our model 4.2.1. expression (70) however without expansion:
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Since we not yet know the quantization-factor, the coupling-length, we want first to assume it
as r1/n. Then, the ”components” are defined as follows:
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This leads to the following characteristic differential equation:
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(450)

The solution of the differential equation is dependent on (450) and with it on n. For n < 2 we
obtain the standard solution according to 4.3.4.2. and for n = 2 the aperiodic borderline case.
That means for values n 2, a wave-propagation is no longer possible because the solution of
expression (450) has no imaginary-part respectively there is no phase rate  defined. Of course,
even no phase velocity exists.

4.6.5.2. The aperiodic borderline case

Since we have already examined the case 4.3.4.2. in detail, we now want to consider the
aperiodic borderline case (n = 2) more exactly. Generally applies then:

U =  
2 0

0

 =  2 1    Ut =  
2 0t

0

 =  2 0t( )
2

           rU  =  
r1

2
(451)

Interestingly enough, the same coupling-length r1/2 arises here as with the metric wave-field.
Also the frequency U is the same like the output-frequency of the metrics and of the cosmic
background-radiation. Obviously all interactions can be lead back on one and the same
conditions, as they have been with the coupling-length r1/2. With it, one can assume with high
probability, that the primordial impulse has the same coupling-length too. Because of the
special conditions as they rule in cosmology, an exact proof is nearly impossible however.
Rather we are always dependent on certain assumptions and can only check, whether the
results agree with the observations or not.

The middle expression of (451) is advantageous in so far as it allows an exact temporal
comparison of primordial impulse with the metric wave-field and with the cosmic background-
radiation. Quite broadly seen the condition r1/2 (Q = 0.5) seems to represent a sort of basic
condition of the ”empty space without metrics”. Since the concept ”empty space without
metrics” has appeared already frequently being somewhat hard to handle, we want to call it
subspace in the future. It is to be supposed that also the subspace disposes of something like a
structure.

Now let's go on to the solution of our differential equation. With the initial conditions (0) =
we get the following solution for the aperiodic borderline case:
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For the transition  we must insert the coupling-length here again (453). The problem
now is that we don't know the value of  Therefore, we can first make general contemplations
only. Possibly the values can be derived from the boson-/fermion-ratio. However, with the
aperiodic borderline case, it is also about a borderline case for the classic MAXWELL model.
This is less valid for the field-strength itself as especially for the energy-density.

With a periodic function, the spectrum consists only of one single frequency with defined
propagation-velocity. Therefore the value and the shift of the energy-density, as well as the
energy-flow-density-vector can be described by this model very well. In the present case
however the ”signal” consists of one discrete impulse of defined length with a continuous
spectrum, whereby the different shares propagate with different velocities. Therefore, there is
no definite energy-density, rather an energy-density-distribution, which is highly dependent on
frequency, distance and time. This is not applied to solution 4.3.4.3.1. which is nearly periodic.
The temporal course of solution (455) is shown in figure 84. It corresponds to the requests put
in the previous section (energy-storage up to the formation of the metrics).
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Figure 84
Temporal course of the POYNTING-vector
of the primordial impulse at the point r=0
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4.6.5.3. Spectral-function

Since it's about a discrete impulse, which is defined from the point of time t = 0 first, a
continuous spectral-function arises. We obtain it by solving (447) with help of the LAPLACE-
transformation once again. The initial conditions f0(0)=  and f0(1)= 0 we gather from the
preceding section.
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2
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(458)

The retransformation leads to expression (452) again then. We are interested in the spectral-
function however. As a result of the substitution p j  we get the frequency response of the
medium (actually the amplitude-density), which is simultaneously our searched spectral-
function in this case (DIRAC-impulse = multiplication with 1). Under neglection of the factor
1/ U (amplitude-density) and scaling to the factor 1 at = 0 we finally get ( U= / U):
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 Amplitude response scaled (460)

The real-part of (459), the amplitude response of the magnetic flux and even the electric and
magnetic field-strength, is painted in figure 85 and 86.
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Figure 85
Scaled spectral-function of the electric as well as of the
magnetic field-strength of the primordial impulse (linear scale)
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For the POYNTING-vector, we must square (459) and (460). The 3dB-cut-off frequency is
situated at 0.776 U as well as 1.552 1. This agrees with the cut-off frequency for photons,
overlaid to the metrics, very well (figure 20) which stands as further argument for it, that the
coupling-length is also r1/2 at the primordial impulse.
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Figure 86
Scaled spectral-function of the electric as well as of the
magnetic field-strength of the primordial impulse (logarithmic scale)

4.6.5.4. Energy-density

We obtain the energy-density by division of the POYNTING-vector by the propagation-
velocity. But it must be determined primarily for that purpose. Since it's about a single impulse
with defined length, there is no uniform propagation-velocity, because the individual spectral
shares propagate with different velocity. Frequencies below U behave according to the
standard-model 4.3.4.2. (classic solution for a loss-affected medium). In this connection, the
propagation-velocity is depending on the frequency (178). The higher frequency, all the higher
velocity. It doesn't exceed the value of c however.

For frequencies above U there is no propagation at all, albeit their energy stays  within the
area of the metric wave-field for a certain time. The higher frequency, all the shorter the half
period, just all the more inferior the average temporal amplitude-density. Also applies on the
other hand, the larger frequency, all the larger energy. Therefore, we want to see, whether there
is a median value, that it suffices, to regard in order to determine the total-energy-density. We
don't actually want to know more at the moment. We first look at the energetic spectrum to it.
That is the weighted amplitude-density. We get it by multiplication of (458) with the
frequency. The course is shown in figure 87.

It shows, that the low frequencies have practically no share at the energy-content of the
impulse. Considered about the entire frequency domain a median value can be found, which
has the quantity 1.
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Figure 87
Energetic spectrum of the electric as well as of the
magnetic field-strength of the primordial impulse

With the POYNTING-vector, the maximum is situated at 4/3 by the way. The average tempo-
ral amplitude-density on the other hand is identical to the scaled amplitude response (figure
85). If we form the quadratic median value of both, so we get the course painted in figure 88.
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Figure 88
Quadratic median value of energetic and average temporal
amplitude-density (E- and H-field) of the primordial impulse

The quadratic median value of energetic and average temporal amplitude-density is situated at
U as well as 2 1 (aperiodic borderline case). So it is suitable the best to the determination of

the average energy-density of the primordial impulse. Now we want to determine the propaga-
tion-velocity for this case and want to look at another solution of the MAXWELL equations to it.

1.1547



140

4.6.5.4.1. Solution of the MAXWELL equations for the aperiodic borderline case

At first, we proceed like in section 4.3.4.2. but with a different approach for the magnetic
and electric field-strength:

curl H =  0 + 0 t

 

 
 

 

 
  E      curl  E =   – μ0

H
t

 (461)
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For the first derivative of the magnetic field-strength applies (always analogously for E):
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We also require the second derivatives once again:
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Now, we can insert into (461) with 0 U=2 0:
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On propagation in x-direction only re-applies:
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The factor 2  is inapplicable on mapping to the metrics, which propagates in an angle of 45° to
it. There is just even a solution for this special-case. With the interpretation however, we must
be very carefully. Since the solution is all-real, a propagation-velocity is not defined. It is ra-
ther about an expansion-velocity, as we had also already found it at the discrete MINKOVSKIan
line-element (57):
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Expansion-velocity of primordial impulse and
of the MINKOVSKIan line-element No. 1
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Also, the temporal validity of the solution is strongly restricted. Let's compare the two
expressions stated in (471), so the course sould have to be almost identical at U«1 We can
well recognize this in figure 89. It is applied to the expansion of the primordial impulse as well
as to the radius of the MINKOVSKIan line-element No. 1 (figure 90) too. That is the first line-
element, in which the entire energy of the universe has been concentrated at the beginning.

Up to the point of time t1 the expansion of the primordial impulse is approximately identical
to that of the line-element No. 1. Then the primordial impulse exceeds the limits of the first
line-element. Still a noticeable overlap survives however. Meanwhile, new adjoining line-
elements, which now can also gather energy from the primordial impulse, have already been
formed by wave-propagation. At the latest from this point of time on, expression (471)
becomes invalid, since we are concerned with the superimposition of two subsystems, which
are coupled together.

However, we can assume that the primordial impulse doesn't cross the outer limit of the
universe. Even a balance of different local energy-density-values occurs over the metrics.
Then, the same propagation-velocity for the primordial impulse like for the metric wave-field
would apply (210).

4.6.5.4.2. Determination of the average energy-density of the primordial impulse

The average energy-density is calculated by division of the expression for the POYNTING-
vector (455) by the value of the propagation-velocity (210):
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2 t2 )2 e 8 0
2t 2
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S

c
(473)

The course is shown in figure 91. It shows, that the lifetime of the impulse amounts to 3t1

exactly. After it, the entire energy has been transformed into other forms. The second zero-
transit of the function divS0 is at 2.55t1. With it, the model fulfills the demands with respect to
the buffering of the energy of the DIRAC-impulse. However, it must be pointed out once again,
that it is only about an approximation. The real relations are essentially more complicated.
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Figure 91
Average energy density of the primordial impulse



143

Now, we can reapply the energy-conservation-rule of the MAXWELL equations in order to
determine the magnitude of w  . But now we are concerned with an ”oversupply” of energy at
which point the outflow divSU doesn't emerge in the accustomed manner but from the
absorption capacity of the metric wave-field –divS0. The surplus energy is also converted into
fermionic matter then, making it even more difficult to make a moderately reliable statement
about the boson-/fermion-ratio for the time period immediately after big bang. It applies:

˙ w f  =  divS0 ˙ w U Power density fermion generation  ˙ w f  ˆ =  0E
2 (474)

With help of (474) at least the lower limit of w   can be determined. It results from the
assumption that the value of (474) must not become negative. At the metric wave-field, there is
a negative domain, in which energy has got from the primordial impulse. With the primordial
impulse itself that won't work any longer, because we otherwise should have to “borrow“
energy from the nothingness. The course of (474) for several values of w   is shown in figure
92. The first derivative of wU has been determined with the help of the difference-quotient once
again.
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Figure 92
Power-density of the fermion-generation at the primordial impulse

As lower limit for w   a value of 0.8533w1 arises here. The upper limit can be derived from the
boson-/fermion-ratio (438) assuming the fermion-multiplication-factor to be equal to one.
Attempting to determine w   exactly, we observe that this is impossible, since the integration-
constant of ˙ w udt  can't be determined.

The reason is that our average energy-density in figure 91 tends to infinity at the point t=0 Our
model just fails in this point. However, it's anyway only about a rough approximation. Hence,
the most probable assumption is w  =w1. As substantiation may apply, that, if energy is con-
verted into other forms, the total-energy-density does not change anyway. The second substan-
tiation is: The metric wave-field does not yet exist at the beginning. However it propagates
with approximately the same velocity like the primordial impulse. Here, also the phenomenon
of the infinite velocity to the beginning becomes clear: A not (yet) existing field may propagate
with infinite velocity perfectly well, at least mathematically. Unfortunately, further statements
can't be made. Also, a determination of the total-energy of the universe is impossible.
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5.                Light speed

In section 4.3.4.4. we achieved good results with the calculation of the cosmologic red-shift
in that we assumed the photons propagating rectangularly to the expansion-graph of the metrics
(figure 34). The frequency results from the product of the local growth of wavelength (growth
of world-radius), caused by the expansion of the MINKOVSKIan line-element, and the local
propagation-velocity of the metrics cM. In the approximation applies:
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with  Q 0 =1 and ˜  = 1 for the cosmic background-radiation. Otherwise, even other values can
be written here. But this is right in the approximation only and corresponds to the case that the
angle of intersection  between time-like and metric vector in the triangle always amounts to

/2. However, in the time just after big bang and with it also with strong gravitational-fields
and/or very high velocities it's no longer about a right angle indeed. Then, a completely other
behaviour arises with the addition of speeds.

First, we want to examine the relations more exactly, as they prevailed to this point of time
as well as near the singularity. Before however, our model of the photon, just as we know it
today, needs to be expanded a little bit. Until now, we assumed the photon to own the spin ±1
(±h) and the frequency ± , which leads to the result, that the photon is identical to its
antiparticle (–h)(– ). A negative frequency just does not cause any difficulties here. Now we
have seen further, that the metrics for photons behaves like a conduction and the conducting-
theory calculates not only with negative but also with complex frequencies.

The question is now, why it should not be so even in the theory of the photon? So, recently a
lot of models have been worked out, being based on the assumption that the rest mass of the
photon and even of the neutrinos could be different from zero. But exactly this, according to
the rules of the theoretical electrotechnics, corresponds to the introduction of complex
frequencies (comp. section 5.3.2.). According to this model, the rest mass of a photon arises to
m0 = hH/c2 = 2.886·10-69

 kg. This agrees with the statements in literature very well.

Purely mathematically seen, there is also a so-called longitudinal as well as a purely time-
like photon (don't confuse with the time-like photon described here, with which the concept
time-like refers to the propagation direction opposite to that of the space-like photon) in the
solution of the wave-equation of the photon. These two conditions are also called ghost-
conditions and are eliminated by means of laborious mathematical methods. That may be
applied to the purely time-like photon. What's about the longitudinal photons however? Is there
anything similar in nature?

Really, there are the neutrinos, which show the same qualities like photons in general. But they
are propagating in form of a “corkscrew-graph”. Let's assume simply, that these longitudinal
photons are the very same neutrinos. Then, they would be photons which occur twisted about
the angle /2 in reference to the propagation direction of the photons, i.e. they would propagate
around the angle /2 to the propagation direction of the photons (part c ). How that could look
is demonstrated in figure 93 and 98.

The neutrinos would have an imaginary frequency and a real spin with it. That would lead to
an imaginary energy too (blind-power). The neutrinos could perform practically no work then
and the intersection angle with the metrics would become virtually zero, the effective cross-
section extremely small. Exactly that are the qualities of the neutrinos however. The
propagation-velocity c  in propagation direction of the photons would become extremely small
too (cM), which would lead to the above-mentioned corkscrew-graph, because also in this case
the geometrical sum is equal to c.
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Figure 93
Extended photon model

It shows, even here the corresponding neutrino has an antiparticle, which is identical to itself
(antineutrino and anti-antineutrino). Now however, there are actually three different types of
neutrinos ( e, μ and ). But what's the difference between these three kinds of neutrinos? The
answer is: it's energy, frequency and/or character phasing. Neutrinos are only formed by
kernel-processes ( -decay, weak interaction). Therefore, because of quantum-effects, the
variance of energy is limited to the very same three quantities.

The hypothesis, that all three kinds of neutrinos are actually only different states of one
single particle, is substantiated by the recently executed neutrino-detection-experiments. So, it
has been determined that the detected neutrinos, ordered by its direction of arrival, are not
uniformly distributed. The number of neutrinos, which have traversed the earth's core before
detection, is more inferior, than that, coming from other directions. Thereby has turned out that
these does not have been “vanished“ by e.g. (weak) interactions with any baryons but, that they
have been converted into other kinds of neutrinos which cannot be detected with the
experimental arrangement (neutrino-oscillation).

How can this happen? The neutrinos already differ in a second quality from the photons, the
spin. While the photons have an integer spin, they are bosons, the neutrinos have a half-integer
spin, they are just fermions. As long as the neutrinos move in the vacuum, this quality is
insignificant. In the earth's core, they move through matter however. Even if the effective
cross-section for collisions with individual baryons is no much larger, as in the vacuum, so an
essentially greater probability arises after all that the neutrinos hit an electron shell, especially
since the earth's core is compressed very strongly and with it also the electron shells.

And in the electron shell, the fermion-qualities are suddenly no longer insignificant. If now
two neutrinos move through an electron shell in common, they cannot occupy the same energy-
state simultaneously. One of the two neutrinos must subordinate and shift to a different energy-
condition, i.e. it's converted into a different kind of neutrino. Therefore, the three kinds of
neutrinos are actually different resonances of one and the same particle. This would be possible
with e.g. a double or triple rotation-velocity with the same wavelength.

Whenever a particle-physicist reads these lines, he will probably have a good chuckle,
because we want to lump even neutrinos and photons together. We must first discuss the
problem with the spin for this purpose. I personally do not see any problem in assuming the
spin to be a function of the phase-angle of the propagation-function of the particle anyway.
Even if the neutrinos should have a rest mass different from zero (this would be equal to the
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one of the photon then and actually be caused by the metrics), also the neutrinos would have a
complex frequency and with it even a real spin, i.e. the spin could take on fractured values too.
This would be a particle with properties between photon and neutrino then.

Now such particles have not been observed until now, since they are not usually formed with
natural processes, but they would be quite possible. According to this model, they could have
existed just after big bang and should have to be observed near black holes even today. That
would be nor more implausible than some non-local model. One example would be photons
with circular polarization with a very high rotation-frequency around the propagation-axis.

However, this model implies also the existence of a so-called space-like photon, that is a
photon with negative propagation-velocity. That means it propagates “opposite to the
propagation direction”, just quasi stands still on it's position forming a standing wave. There is
also something similar in nature, namely the so-called DEBROGLIE-matter-waves, which are
associated with the particles. With the exception of the standing-wave-properties these are
subject to the same inherent laws like “normal” photons. That is applied also to the red-shift.

If you should now be of the opinion, the neutrino is definitely a different particle as the
photon, i.e. both cannot be unified in a common model by no means, please take notice of the
following: With this model, we have introduced only one single new particle, the space-like
photon, which is besides similar to or identical to the DEBROGLIE-matter-waves.

But now, to assign a rest mass as well to the photon as to the neutrinos, considering both as
different particles, we would wear not only one but 7 or even 15 new particles (15, if we would
insist on three different for each individual kind of neutrino e, μ und ). Because then, there
would be also neutrino-like photons/anti-photons and photon-like neutrinos/antineutrinos all at
once, and these in time- and space-like implementations. I cannot simply believe that.

Therefore it’s just the statement from photons and neutrinos. But if the just named case
should become true, please replace the terms neutrino/antineutrino by neutrino-like as well as
antineutrino-like photon independently. However, the said, analogously should have to be
applied also to the neutrinos then, how much there may even be. At first, just let's have a look
at  the quite normal photon.

5.1. Photons

Near the singularity, the relations are just like shown in figure 94. In this connection I must
clarify a contradiction, which otherwise could be charged against me as error. Until now, I
have always called photons as time-like vectors, although they generally are identified as zero-
vectors (velocity c). If I speak of a time-like vector, I always mean the part c . The part cM is a
space-like vector and c the zero-vector, which we measure.

Now however let's go on to our problem. Particularly we are interested in , the angle of
intersection with the derivative cM along the metric expansion-graph and also the amount of
|c |=c . Since it's not about a rectangular triangle, the sine-rule applies:

c2
=  cM

2
+ c2 2cMc cos (476)

c2 c 2cM cos( ) + cM
2 c2

=  0    (477)

c =  cM cos ±  cM
2 cos2

+ c2 cM
2     (478)



147

-0.25

-0.25

(Q=2/3) (Q=1/2)

1

t

x
r1

y

r1

0

2

·

c

cm

c

/4

 – m

/4

Figure 94
Vectorial speed-addition with
photons near the singularity

c

c
=  

cM

c
cos ±  1

cM
2

c2 1 cos2( )      (479)

The positive sign is applied to ”normal photons”  (arises from the approximative solution).
The negative sign applies to space-like photons *, which behave differently near the singu-
larity.
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 Space-like photons (481)

For the angle  applies in both cases (see (209)):

=  
4

argc  =  
2

1

2
arccot  =  

3

4
+

1

2
arg ((1 A2

+ B2) + j2AB) (482)

The course of the individual speed-components for the two kinds of photon as well as for the
neutrino and antineutrino is shown in figure 95. It shows that individual components also can
have a larger velocity than c. But just always c becomes effective. The low graph figures the
course of the expansion-velocity of the metrics. The behaviour of the diverse particles and
antiparticles differs all the more, the closer we come to the point Q=1 (symmetry-breaking), to
decrease again thereafter.



148

-7.5 -5. -2.5 2.5 5. 7.5

0.25

0.5

0.75

1.

1.25

1.5

1.75

2 0t

0

lg

c 
c 

cM

Photonen (+)

Raumartige

Photonen (–)

Antineutrinos (–)

Neutrinos (+)

Figure 95
Course of the individual speed-components (absolute value)
for photons and neutrinos near the singularity

The intersection angle  with the metrics of the (normal) photons we get by application of
the sine-rule ( = ):

cM
c
=
sin

sin
sin =  

cM

c
sin  =  

sin

0 0 t
(483)
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 =  
1

2
arctan + arccos 

1

0 0 t
sin

4

1

2
arctan

 

 
 

 

 
 

 

 
 

 

 
 +

4
(486)

Figure 97 shows the course. But figured is the value sin , which carries an essentially major
weight as the angle itself. In order to avoid miscalculations, the function argc always has been
determined directly from (206).

As for the rest, to the calculation of arctan q we should better work with (211), since one
would get a partially wrong result because of the ambiguity of the arctan-function else. For the
absolute phase-angle  of of the resultant c applies:

 =  arccos 

1

0 0t
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1

2
arctan
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Time-like photons (487)
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We will dispense with the presentation of 
here. Another approach is applied to the space-
like photons:

In the prolongation of c  namely another
second triangle can be constructed alongside cM

with the angles * (complementary-angle to ),
* (angle of intersection with the metrics beside
) and * (opposite to cM). This corresponds to

the second solution of (479) and applies also for
antineutrinos.

Figure 96
Complementary triangle and angle as
second solution of the quadratic equations
with reversed speed-vector  c 

c

cm

c

c
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For the complementary angles applies:

*
=  sin *

=  sin( )  =  sin (488)

cM
c
=
sin *

sin
(489)

*  =  arcsin 

sin

0 0t

 

 
 

 

 
 

*  =  * *  =  *   (490)

Figure 97
Course of the function sin  of the angle of intersection with the metrics

for time-like (normal) and space-like photons near the singularity
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*  =  arg c arcsin 
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The course of sin * is also shown in figure 97. For the absolute phase-angle * of the
resultant c applies:
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Space-like photons (493)

5.2. Neutrinos

We now look at the model according to figure 98. Once again, it interests the angle of
intersection  with the derivative cM along the metric expansion-graph and even the amount of
|c |=c .

Figure 98
Vectorial speed-addition with
neutrinos near the singularity

Since it is not about a rectangular triangle, the sine-rule applies again with the solution:

c  =  c  

cM

c
cos +  1

cM
2

c2 sin2
 

 
 

 

 
 Neutrinos (494)

-0.25

-0.25

(Q=2/3) (Q=1/2)

1

t

x
r1

y

r1

0

2
c

cm

c

·

– m

/4

 – m



151
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For the angle  applies in both cases (see (209)):
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(496)

The angle  just figures a sort of complement-angle of , i.e. we can dispense with the
value  With , we just always mean . Important relationships can be obtained from the
reduction-formula for arbitrary angles: sin = –cos , cos = –sin , cos = –sin , and
tan = cot . The course of the functions (495) and (496) is painted in the figure 95 (amounts)
in turn. The intersection angle  of the neutrinos with the metrics we obtain also directly by
application of the sine-rule ( = ):

cM
c
=
sin

sin
=

sin

cos
sin =  

cM

c
cos  =  

cos

0 0t
(497)

 =  arcsin 

cos

0 0t

 

 
 

 

 
  =   =  

4
arg c (498)

 =  arg c + arcsin 

1

0 0 t
cos 

4
arg c 

 
 
 

 

 
 

 

 
 

4
Neutrinos (499)

*  =  arcsin 

1

0 0t
sin 

4

1

2
arctan 

 
 
 

 

 
 

 

 
 

4
      (500)

We can see the course of sin   in figure 99. It is also well to be seen that the interaction-cross-
section of the neutrinos increases with ascending energy, which corresponds to the present
knowledge-level. For the absolute phase-angle  of the neutrinos applies:
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Yet another approach is applied to antineutrinos in turn. The angles in the triangle are defined
as follows: * (complementary angle to ), * (intersection angle with the metrics beside )
and * (opposite to cM). It applies:

sin *  

=   sin( )  =   sin
*  =  cos *

=  cos( )  = cos (502)
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=
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Figure 99 shows the course of sin *. For the absolute phase-angle  of the resultant c we
finally get:
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Course of the function sin  of the angle of intersection with
the metrics for neutrinos and antineutrinos near the singularity

With it, we have proven that, at least according to this model, photons in the time just after
big bang and also in very strong gravitational-fields and with very high relative velocities
behave like neutrinos and vice-versa. To the conclusion once again a summary of the essential
expressions:
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5.3. Red-shift of photons and neutrinos

5.3.1.          Fundamentals

Since all photons (and neutrinos) are really or/and virtually connected with the temporal
singularity, there are two types of photons at the observer. The photons with a frequency above
the frequency of the cosmic background-radiation, are the first type. I would like to call them
contemporary photons, since their origin is within our universe. The so-called orphan photons
are the second type with a frequency below the frequency of the cosmic background-radiation.
Orphan, because their origin is outside our universe, i.e. in order to be red-shifted to their
present frequency the age 2T is not enough, the origin not yet exists. Nevertheless they are
likewise already connected with the temporal singularity, because the time stands still there.
Past, present and future form an unit.

We want to try to find an exact expression for the red-shift of photons and neutrinos which is
independent from their frequency. As already noticed in the preceded section and in section
4.3.4.4.3. the relations are being determined as well by the side-relations as by the angles in the
metric triangle. Therefore, based on (297) we consider an arbitrary frequency =2 c/  at the
temporal singularity, i.e. before the transformation. Since it is about a temporal singularity in
this case, each frequency there has the value 2 1 and s= 1 2 /3 after splitting into 6 MLEs.
This equals the frequency of the cosmic background-radiation at the input coupling by the way.
The effective frequency at the observer “arises“ only by the application of the frame of
reference. Ignoring the frame of reference, we obtain the desired universal relationship. Let's
employ 2 1 for the initial-value ˜   and 1/2 ( ) as well as 2/3 (  ) for the associated Q-factor ˜ Q ,
we obtain with the help of (623) and (671c):
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This result apparently corresponds to expression (274) with 2=y=Q0
–1. We employ again:

  H /2  0t 1  =  H / 2  2 0t               ~Q0
– 32 (275)

This also exactly agrees with expression (275), as not otherwise was to be expected. That
means, there is only one approximation for time- and space-like photons, but two different
exact expressions. With the space-like photons, there is a problem by the way. The solution of
the phase-function  at the reference point 2/3 namely is plain imaginary, so that there is no
real reference of the space-like photons to this point, which leads, amongst other things, to the
result that these have particular qualities. So, the rest-velocity is equal to zero and the photons
can be shifted at will which equals the qualities of the DEBROGLIE-matter-waves.  However,
problems result from it with the application of (299) during the conversion to the reference
point.
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Figure 100
Red-shift of photons exactly and approximation

Only to determine the red-shift of a matter-wave with a start-point greater than Q=2.318249
(phase-jump), (299) can be applied, as it is. With the reference to the point 2/3 the expression
must be modified indeed, namely in the following manner:
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This corresponds to an imaginary frequency at the reference point 2/3, of which we want only
take notice for the moment. The values emerge from the necessary convergence of both
functions for Q . For the approximation function applies exactly:
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     for Q and ˜ Q »1        0.4073456 1Q
– 3

2      for Q»1 (514)

The course of the three functions is painted in figure 100. It shows, the approximation is
sufficiently exact downward till Q=103. Only in very strong gravitational-fields the exact
expressions are required. In the cosmologic scale suffices the approximation equation.

With it, we have found the solution for both types of photons. What we do not know yet, is
the solution for neutrinos and antineutrinos. This is also the reason why we have derived the
approximation so detailed. Other rules are now applied to neutrinos. With help from (299) and
(622) for a reference point of 1/2 we obtain:
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Figure 101
Red-shift of neutrinos exactly and approximation
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For antineutrinos we obtain the same result. Obviously, the neutrinos with Q7/4 are more red-
shifted than the photons with only Q6/4. Therefore they converge even more slowly with the
approximation function, as it shows in figure 101. And with the antineutrinos, there is a similar
problem like with the space-like photons. While with latter ones the numerator of the radicand
of (299) has been negative at the reference point 2/3, that means an imaginary root-expression,
it's exactly vice-versa with the antineutrinos. Here just a real solution arises for the reference
point 1/2. Starting with Q=0.54107 however all solutions become imaginary. Even here it
becomes noticable only if we want to determine the red-shift in reference to the reference point
1/2. The problem can be solved then again with an imaginary frequency, but negative
imaginary this time:

 =   j
1 

 

R( ˜ Q )

R(Q)

 
˜   

4 1

  

4 1
  18.2787 1

1

Q2

0.03086

 1  

4
  

1

Q2

0.56408 1

 1  

4
(521)

For references above Q=0.54107 however there is no effect, since then as well the numerator
as the denominator becomes negative, the root-expression real again. Expression (299) can be
used unchanged with it.
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In the approximation, the most naturally originated photons are polarized purely linearly, the
neutrinos on the other hand behave circularly, they are polarized longitudinally however. Since
the respective field-strength-maximum with circularly polarized waves migrates according to a
periodic function between x and y, there is even another additional frequency, the rotation-
frequency HF. This depends on the angle = HFT . The expression T  is the period of the
time-function. But how do we now get the rotation of the polarization direction into our
propagation-function? This is achieved by the introduction of complex frequencies. We first
define four complex frequencies, for each particle one, to it:

 =   + ˜   cos ± jsin( )    Time-like photons (523)

 =   ˜   cos ± jsin( )    Space-like photons (524)

 =  + ˜   sin ± jcos( )    Neutrinos (525)

 =  ˜   sin ± jcos( )    Antineutrinos (526)

˜  is the amount of . The upper sign applies to the x-coordinate, the lower sign to the y-
coordinate. The relations cannot be derived directly from (479), (494) as well as (495), since
these are based on a universal triangle, the complex exponential-function however on a
rectangular triangle. Instead of the real and imaginary part of the frequency  therefore the
projections on x and y are used as it is shown in figure 104.

For the lineup of an absolutely correct propagation-function, the complex e-function namely
is not well-suited, one requires the Hankel-function to it. Because in reality, there are not any
sine-functions in the nature. These would be defined up to the point of time t=–  and such a
point does not exist for known reasons. With it, for small values of Q a minor residual error
remains. But since the wavelength is correctly calculated by the factor (r), this does not
express itself in a wrong character phasing but in a drift of the wave off the straight line R. But
if we define the propagation-function along the arc of r, this deviation plays no more role.
Then, the curvature of r is determined by outer influences and is not a component of the
propagation-function.

The wavelength, that we measure, is always the real-part. With the photon, this equals the
actual wavelength, with the neutrino the rise of the “screw thread”. The imaginary-part at the
photon on the other hand corresponds to a rotation of the direction of polarization (there are
just actually circularly or elliptically polarized photons only), at the neutrino, it is joined with
the “screw thread-diameter”.

Figure 102
Photon-circle, variance of the properties
of the kinds of photon on change of Q and v

So, the multiplication of the time-function with
±j means the transformation of a particle into a
second one, i.e., the properties of the photons
and neutrinos change with the occurence of
imaginary frequencies. This is always the case
with a very small Q-factor or a very large velo-
city v, i.e. at very strong gravitational-fields,
just after the big bang or when the velocity is
close to c (c–10–50ms–1).

Figure 102 shows the situation of the individual
particles in the phase space and the variance
with changes of Q and V. In principle doesn't
change the particles themselves but the metrics.
It's therefore only about an observational phe-
nomenon, even if the varied properties are phy-
sically real.

The transition takes place nor gradually but abruptly and that the steeper, the major the value Q
in the frame of reference of the observer. That's why this effect cannot be detected e.g. with



158

accelerator-experiments, neither today, nor in far future, since the energies needed are outside
the availability of mankind. As later examinations will show, the particles, even with strongest
curvature, doesn't exceed essentially the coordinate-axes x and y. Therefore, a photon remains
a photon, a neutrino a neutrino etc. That means, the reference point of the antineutrino is with
2/3.

With technically generated circularly polarized photons the rotation-frequency HF can take
on arbitrary, even negative values (righthand screw) which depend on the discretion and the
possibilities of the technician. This happens e.g., in that we use a circularly polarized
transmitting-antenna or a polarization-filter in front of a light-source rotating with a certain
velocity.

According to [26] a circularly polarized wave can be depicted as the superimposition of two
by x and y linearly polarized waves with the same amplitude which are phase-shifted by 90°
against each other. This however is the special case, when HF and  are of the same size.
Then, the direction of polarization of the wave rotates around 2  exactly one time when it has
covered the distance . With a therefrom aberrant rotation-frequency naturally, the phase-shift
is smaller (photons) or even greater (neutrinos). Now, with (522) we have already found such
an equation-system, however without phase-shift. If we add these, it has only effects to the
time-function. The actual transfer-function e– r remains untouched, i.e. it doesn't matter to the
metrics, which type of signal is transferred. Although, different functions (r) are applied.

Considering only purely linearly polarized photons or purely longitudinally polarized neutri-
nos, the rotation-frequency HF is defined by the angle N. Decisive is the phase-angle, the ar-
gument of the complex frequency . It applies:
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The term ±j /2 with the neutrinos corresponds to a rotation of the coordinate-system by ±90°.
The transfer-function (522) namely is in the form, we used it until now, not suitable for neutri-
nos, since the neutrinos are propagating in the right angle to the photons (see figure 94 and 98).
Rather, the universal propagation-function ej t– r describes only the wave-propagation along the
real coordinate of the phase space. Herewith, the part j t represents the time-like, the part r
the space-like vector, both standing perpendicularly one against the other. In order to describe
a wave-propagation along the imaginary coordinate, above-mentioned rotation is necessary.
This happens, in that we multiply the whole time-function with ±j. And this multiplication
exactly turns out the expression ±j /2 in the exponent. We just take up a transition from the
real to the imaginary coordinate. With it, we obtain for the universal transfer-function:

Ex0 =  ˆ E xe
j( t + N )      Ey0 =  ˆ E ye

j( t N )        Time-function

 (531)

Ex  =  Ex0  
e– r          Hy =  

1

ZF

Ex       Ey  =  Ey 0  
e– r       Hx =  

1

ZF

Ey

Thereat a positive value N corresponds to a lefthand screw, a negative to a righthand screw on
propagation in r-direction. With technical photons, the unnatural rotation-share K= HFT  adds
up to the natural N. As already mentioned more above, N does not exceed the value /4,
neither with strongest curvature. Thus, the individual kinds of photon cannot be converted in
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one another. They only show similar properties then. The angle , different from zero, is also
responsible for the occurence of a rotation of the polarization direction of linearly polarized
photons in the cosmologic time frame. This effect is however very bad to demonstrate, since
it's extremely weak. After we have worked out the universal propagation-function, as next we
want to look at the “normal“, i.e. time-like photons more exactly.

5.3.2.1. Time-like photons

At first, we want to figure the expression for the propagation rate  once again. It doesn't
differ from the already known expression (306):
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  ( )           Phase rate (532)

The phase rate is independent from the respective coordinate. Interestingly enough, the angle 
doesn't appear at all. Only the amount ˜  of the complex frequency  is used. However, always
only the real-part of the wavelength can be observed. The rest is  hidden in the third dimen-
sion y.

Since the attenuation  with its share 1/R=H/c is a function of the distance r, it is because of
r=ct a function of time too. And this dependence must express itself also in the relation j t at
the signal-source. It arises from the introduction of an additional cosmologic component, the
imaginary frequency jH. With disregard of the cut-off frequency, it plays no role at the source,
we obtain:

j t =  j  j ˜ H + ˜  (t)( )  t  =   ˜ H + j ˜  (t)( )  t     Time-function (533)

The part –H corresponds to the time-dependent expansion and attenuation at the observer at the
point r=0. Of course, like each point in the universe, this is even subject to a temporal red-shift
and attenuation. Therefore, there is also a share divS at the point r=0, which is now a function
of time however. Going back in time (–t), so there is also a larger amplitude, i.e. to an earlier
point of time natural emissions took place with higher energy. The origin of the time-like
photons is at Q=1/2.

But we have only characterized the wave-properties of the photon with it, however it dispo-
ses of particle-properties too. In this point I affiliate the current doctrine, with one excep-
tion—namely, with the help of (528), a photon rest mass different from zero can be defined, as
it is postulated by several modern, local and non-local theories. The value agrees very well
with the there made projections1:

  

˜ m 0 =  
h ˜ H 

c2  =  2,73727 10 69kg     Rest mass photons (534)

5.3.2.2. Space-like photons

As next we look at the propagation rate  for space-like photons. Next in turn we start from
(306). Since space-like photons however propagate opposite to the propagation direction
(velocity –c), we must take this into account accordingly:
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1 By the way, in the time just after big bang and in strong gravitational fields, the photons dispose of a non-considerable rest mass.
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  ( )       Phase rate (536)

Since space-like photons are moving opposite to time-like ones, they have a negative phase
rate exclusively. Especially interesting is this in connection with the expression j t. We want
to determine this as next. Because finally standing waves come out, the expression ( ) for
the cut-off frequency at the source this time cannot be disregarded:

j  t =  j   j ˜ H + j ˜  0 ( )( ) + ˜   (t)( )  t (537)

j  t =   ˜ H ˜  0 ( )( ) + j ˜   (t)( )  t     Time-function (538)

For the difference j t– r with r=(–c+v)t, v=const we obtain by expansion:
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v is the velocity, with which the wave is moved by external inducement, (translational motion).
The positive term of H/c describes the energy-increase during acceleration, i.e. the relativistic
mass-increase as a function of the velocity as well as the mass-increase by approach to the
temporal singularity. The linear addition of the velocities is correct, since both velocities are
referred to the same system. Now let's substitute v=0, so we receive a plain real result, the
propagation rate has the value zero. With it it's about a standing wave:
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˜ T  

= 0,  v = 0 (541)

The approximation is is valid for « 0. Since the angle  is untouched, a possible rotation of
the polarization direction (spin?) survives. The occurence of a twofold attenuation-factor
2/R=1/(R/2) let's still presume, that it's about a space-like vector in this case.

With it the question arises afterwards for the actual character of the space-like photons. Until
now we had assumed, that the fermions somehow consist of them. But it does not seem to be
the case. So the space-like photons are bosons with integer spin, while the fermions have a
half-integer spin. It is however hard to imagine that particles with half-integer spin should
consist of such with integer spin, rather the other way round.

Let's further do a comparison with the time-like photons, these mediate the mutual
electromagnetic interaction of the fermions via the metrics, the space-like photons could be
responsible for the same interaction of the fermions with the metrics. For that purpose however
they must move into the same direction as the fermions (space-like vector) and with the same
velocity (arbitrary). Since the metrics is omnipresent, they even don't need to cover large
distances (limited lifetime). With it, the space-like photons mediate the metrical properties of
the particles (mass, length etc).

As well, as the time-like photons the space-like photons naturally dispose of particle-
properties too. These however rather resemble those of the DEBROGLIE-matter-waves than
those of the time-like photons. It is yet about bosons. The origin of the space-like photons is at
Q=2/3. The rest mass equals to that of the time-like photons.

(539)
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5.3.2.3. Neutrinos

Now, it is absolutely necessary to write down the relationship also for neutrinos and
antineutrinos. We expect a behaviour similar to the one of the time-like photons, since
neutrinos also propagate with light speed. Let's begin with the neutrinos for one thing. We start
with expression (306) once again looking at the relationship for r at first. This time however
we have to take into account, that the wave doesn't propagate with c but with jc, i.e. in the right
angle to the photons, and to consider it in the denominator of  accordingly. Then, the function
is neither defined along the arc r, but along jr, so that the factor j cancels out in turn. But if we
define r as the actual propagation direction of the neutrinos, we can assume an unchanged
expression for :
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With exception of , the phase rate doesn't differ from that one of the photons. This was not
otherwise to be expected by the way, is it about the same medium after all. The neutrinos are
also subject to the red-shift and cut-off frequency.

Since the angle  is positive because of (529), neutrinos are rotating in a mathematical posi-
tive manner (counterclockwise/lefthand screw) with propagation in r-direction. This property is
also called (negative) helicity and is the substrate of the weak charge. At the neutrino, it has the
value –1. With inversion in all dimensions the helicity survives. So the neutrino is its own anti-
particle. By the way, this applies even to both kinds of photon. As next, we want to determine
the time-function j t:

j t =  j   j ˜ H + ˜  (t)( )  t  =   
˜ H + j ˜  (t)( )  t             Time-funktion (545)

It shows, a real attenuation appears at the signal-source. Neutrinos in the same way are subject
to the parametric attenuation, like the photons. These are only the wave-properties then again.
The particle-properties are characterized by the fact that the neutrinos are fermions with half-
integer spin. This seems to be associated with the location of the propagation direction in the
complex phase space therefore. For j (2n)/2 an integer spin emerges, for j (2n+1)2 a half-
integer spin. The sign is defined by the phase-angle j /2. The origin of the neutrinos is at
Q=1/2. The rest mass equals to that of the photons too.

5.3.2.4. Antineutrinos

As we know, even antineutrinos propagate with speed of light, in contrast to the neutrinos
however along the negative imaginary axis with the velocity –jc. It applies:
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Since the antineutrinos are antiparticles, they actually should have also a negative phase rate.
According to (545) it is really the case, only it's negative imaginary, because of 1/j = –j. But we
can also work with the same phase rate, as with the photons, if we define the propagation-
function along the arc r, that coincides with the real propagation direction, once again. The
antineutrinos are subject to the red-shift and cut-off frequency once again.

The only difference from the neutrinos is the negative sign of  , see (530). Thus, antineu-
trinos rotate mathematically seen negatively (clockwise/righthand screw) with propagation in
r-direction. They have a positive helicity and the weak charge +1. With inversion the helicity
survives too. So also the antineutrino is its own antiparticle, not the neutrino. This condition is
called parity violation. As next, we want to determine the time-function j t:

j  t =  j   j ˜ H + ˜   (t)( )  t  =   
˜ H + j ˜   (t)( )  t  Time-funktion (549)

A real attenuation appears at the signal-source in turn, antineutrinos are subject to the
parametric attenuation like the photons and neutrinos. The particle-properties are following:
Antineutrinos are fermions with half-integer spin. The phase-angle is –j /2. Since it is about
antiparticles, the origin is at Q=2/3. The rest mass also equals that of the photons.

With it, we have worked out a maximally efficient, contradiction-free, extended photon-model,
which is able to explain also the behaviour of the neutrinos and antineutrinos, that is valid even
under cosmologic points of view.

As one can well recognize at (538), neutrinos and antineutrinos dispose of essentially more
degrees of freedom than the photon. Thereat, the spin is defined by the propagation direction,
the weak charge by the helicity, just N. We could allocate two particle properties with it.

In section 5. I already formulated the hypothesis that with the three hitherto identified kinds
of neutrino ( e, μ, ) it's actually only about resonances of one and the same particle, at
which point the neutrino-oscillation prevents a violation of the PAULI-principle, if several
neutrinos of identical “construction“ are crossing an electron shell simultaneously.

In what however turns out the difference between these three kinds of neutrino, more it
shouldn't be indeed, in the propagation-function? We only can make guesses about it, which
would be there:

1. It's about different particles indeed.

2. It's about the same particle with different frequency/energy.
Neutrinos are only generated or resorbed with certain reactions
within a definite energy band. Thereat, the value depends on the
type of reaction.

This is the simplest answer, but it wouldn't explain the neutrino-oscillation anyway.

3. It's about different resonances of one and the same particle. With violation
of the PAULI-principle, a particle adapts its energy to an already free
energy level. But for neutrinos, it's only of interest during the stay within
an electron shell.

This would be a practicable option. It would explain the neutrino-oscillation. But it remains the
open question, in what extent this manifests in the propagation-function. A fixed additive
phase-angle to the angle N would be practicable (additional phase-shift). Here, an angle of e.g.
2/3  would be possible in order to guarantee the number of three. Another option would be a
multiple of 2 . Then, more than 3 kinds of neutrino would be possible however. Perhaps, 3
kinds of neutrino are sufficient however? Another option would be the occurence of a positive
or negative twofold frequency in the y-component of the wave-function. The neutrino-wave
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consists of two components x and y indeed. If one of it has the twofold frequency, a periodic
solution occurs too. The corkscrew becomes a rotating 8 as with the LISSAJOUS-figures.
Thereat, there are parallels to the atom, what lets appear this explanation quite possible. The s-
orbital is also circular in the top view, the p-orbital looks like an 8 and there are altogether four
of them. But one of them is dropped, since it lies in propagation direction, that makes three
altogether. And here still the last option:

4. The difference between the three kinds of neutrino cannot be figured in the
propagation-function.

However, I would like to leave open the final answer to this question turning over to the
following section as next.

6.                The special relativity-principle

Originally, this topic should be treated first to a later point of time. In the next section
however, special new, SRT related information is used, so that I decided to anticipate the
chapter velocity and relativity.

6.1. Velocity and relativity

Having hitherto looked at the temporal and spatial dependence of different quantities, it's
time to examine also the dependence from the velocity. Still interesting are the relationships to
the newly introduced quantities Q-factor (phase-angle), 0 and 0. As starting point, we assume
the statements of the SRT, just as they have been formulated by EINSTEIN. Therefore, by
velocity, we understand the relative velocity of one observer to another (frame of reference).

6.1.1.          Fundamentals

We first of all assume an imagined Cartesian coordinate-system. In its zero is the observer.
This coincides with the centre of the universe (each point, at which an observer is, is always
the centre of the universe for him). With it, the relative-velocity of the observer is equal to
zero, not only in reference to the coordinate-system but also in reference to the metrics, but not
in reference to the empty space (cM). Furthermore, we observe a body from this point, moving
with the relative-velocity v in reference to the coordinate-origin. We measure the length x´ in
ratio to the rest-length x, that we determined, before we have accelerated the body to the
velocity v. According to the just yet classic statement of the SRT applies to the observed length
(doesn't apply to wavelengths!):

 x =  x  1
v2

c2

 

 
  

 

 
  

 

1

2

(550)

We don't want to question this relationship in principle, is it proven by a lot of spectacular
experiments after all. Although, these proof don't apply to the entire range 0 v c. The largest
hitherto reached velocity, with which measurements have been taken up, is about
approximately 0.997c for the time being (I can be wrong here) and was achieved in a particle-
accelerator. At this velocity, no dissents with respect to the statements of the SRT, especially
expression (550) have been found. Nevertheless, it's well possible that there is a velocity v<c
from which on the statements of the classic SRT apply only restrictedly or no more at all. If we
should come to a statement, aberrant from the SRT, in the course of the further contemplations,
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so this must be of line with the statements of the classic mechanics for very small velocities,
and with the statements of the SRT and the yet gained observation-results in the range above it
up to 0.997c.

LANCZOS assumes in [1], that the relativistic effects first result from the existence of the
metric lattice, with which the fermionic particles even figure autonomous spherical
symmetrical solutions of the field-equations which exist independently from the metric lattice.
But we observe them only via an indirection by means of bosons (photons) which propagate
across the metric lattice, which behave like a lens with the resolution h/2 (uncertainty).

If our particle now is moving in reference to the metrics and with it in reference to the ob-
server, there's going to be the occurence of a definite difference-frequency , which depends
on the velocity, the particle moves through our ”crystal”. The particle even owns wave proper-
ties simultaneously indeed. The frequency depends on the number of MINKOVSKIan line-ele-
ments the particle ”grazes” during its motion within a certain time period and with it also on
the local MLE-density (age, gravitational-potential).

After I have read the lecture of Professor LANCZOS, I got on the occasion of another physics-
lecture (this is already behind a while now and herewith I would like to thank the lecturer
Mister Dr. Propp warmly once again) an essential suggestion to this model. Subject of this
lecture was the mechanical oscillator.

The mechanical oscillator is an externally agitated system with the differential equation [5]:

˙ ̇ x + 2k˙ x + 0
2x  =  

F0

m
cos t (551)

x is the deflection, 0 the resonance-frequency,  the frequency of the exciting oscillation,
F0  the force and m the mass of the oscillator. By the way, the quotient F0 /m also equals to the
gravitational-field-strength. The coefficient k is a measure of the attenuation. This is microsco-
pic in general. Interestingly enough, a similarity exists with (76). A comparison leads to the
essential statement k ˆ =  H. For the amplitude A applies then:
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With k  0 we obtain the following expression:
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To compare the result with (550), so are both expressions identical with exception of the expo-
nents, i.e. there is a similarity between the behaviour of the mechanical oscillator and the rela-
tivistic mass-increase. Particularly interesting is the fact that the amplitude during an agitation
with a frequency of zero is equal to 1—in contrast to the electric oscillatory circuit—here it is
the amplitude equal to zero, since the signal is short-circuited by the inductivity. An exception
forms the model according to figure 10 with input coupling over the capacitor. With approach
to the resonance-frequency, an amplitude-increase appears. The amplitude tends against infi-
nity with vanishing attenuation—in turn exactly as with the relativistic mass-increase. Then
however, the behaviour above 0 deviates: A phase-jump about –  appears while the solution
(550) becomes imaginary. This is not further remarkable, in the one case, it's about a deflection
(energy), in the second case about a length, which cannot be compared without further ado.
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6.1.2.          Velocity and length

6.1.2.1. Relations between length, velocity and Q-factor

Therefore I have wondered, whether a particle with acceleration not also could behave like a
mechanical oscillator, with which is the mass proportional to the amplitude of the externally
agitated inherent oscillation (DEBROGLIE-matter-wave). The same should be applied analo-
gously even to quantities like length and time then. If 0 is the frequency of the MLE at the
place of the observer, the velocity-dependent frequency  at the place of the particle arises to

=v/r0. Now, we only have to insert into (553) obtaining the classic expression of the SRT for
wavelengths, however in the square ( 0r0 = c):
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6.1.2.1.1. Approximative solutions

The relativistic dilatation-factor  apparently results from the reciprocal of the root of the
bracketed expression of (554). Furthermore, we require an expression, in which the velocity is
joined with the Q-factor. But this is not so simple, as it appears for one thing. Therefore, we
want to try next to determine one or even more approximative solutions for it. For that purpose,
we don't simply want to assume expression (552) and (553), taken from [5], but examine, how
to acquire it in general. At first, we start from (551) comparing with equation (76). Then,
expression (551) corresponds to the inhomogeneous differential equation of (76), if we set
x= 0. It applies:

˙ ̇  0 + 2H˙  0 + 0
2

0  =  ˙ u a cos t    (555)

To the finding of the first approximative solution, first of all we want to ignore the HUBBLE-
parameter completely, since it is extremely small (H=0). Furthermore applies ua= d /dt=– 0

and d2 /dt2= 0
2 . The angular frequency 0 just works like a differential-operator. Sought is

the amplitude response A( ). According to [5] we obtain it by solving the inhomogeneous
differential equation (556). For the solution, we use the LAPLACE-transformation:

˙ ̇  0 + 0
2

0  =  0
2

a cos t  (556)

    L ˙ ̇  0{ }  =  p2
0 p  f 0
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(1)
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L ˙ ̇  0{ }  =  p2
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L cos t{ }  =  

p

p2 + 2 (558)

After substitution in (556) we get the following characteristic equation:
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The function (561) looks like a 100% amplitude-modulated signal, at which point the
enveloppe traces the frequency  both in the positive as in the negative range. Thereat, there's
going to be constrictions in which the amplitude is equal to zero. With it, the energy is not
equally distributed along the way. Rather, the transportation takes place in ”packages”, the
photons (particles). Since the value of the sum, but even that of the difference of two cosine-
functions is always in the range –2 y 2 and the value a doesn't play any role (for =0 we
obtain a value of 1), applies generally for the amplitude and the relativistic dilatation-factor :
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Another exception exists in the resonance-case = 0. Here, the function actually is not
defined (0/02). The value tends against infinity however. With it, expression (562) equals to the
classic EINSTEIN solution. According to our model, this can be true only in a loss-free medium
however. An expression for the Q-factor in dependence from the velocity cannot yet be
declared here, since the function doesn't contain the Q-factor.

We have found a result, based on the solution of the inhomogeneous differential equation
(556). We however want to examine, whether there is a second possibility to acquire the same
result. The reason is, that considerable mathematical difficulties will appear during the search
for an exact solution, if we try to solve the inhomogeneous differential equation.

We have already applied the second solution-method in section 4.3.2. It is based on the
solution of the homogeneous differential equation with help of the LAPLACE-transformation
with subsequent transition p j , at which point a retransformation L –1 is not necessary. We
just start from (543). The approach:

˙ ̇  0 + 0
2

0  =  0            p2
0 + 0

2
0  =  0 (563)

(563) first of all leads only to the trivial result 0= 0. We just have to modify the initial-
conditions, namely in the following manner:
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Both solutions are just identical and we can declare also an expression for the phase-angle .
The finally applied procedure has the advantage of a simpler calculation. A function Q=ƒ(v)
we still cannot yet declare however. We have to coinclude the HUBBLE-parameter into the
contemplation for that purpose. To the certainty, we apply both solution-procedures once
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again. For the second approximation, we consider H as a constant, since the value practically
doesn't change to the present point of time (adiabatic principle). Then however, the factor 2
before ˙  0  is allotted. If we assume H as constant, namely the expansion-share ˙ r 0 /r0 becomes
equal to zero, i.e. the factor is equal to 1 (see (72)). It applies:
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2
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After substitution in (570) we get the following characteristic equation:
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2( )  p2
+

2( )
   (577)

Here, our endeavours already finish, because this expression is not contained in the correspon-
dence-table and even the BRONSTEIN doesn't help. One gets a solution after the decomposition
into partial fractions. However, we don't want follow up this turning to the second procedure
immediately:

˙ ̇  0 + H ˙  0 + 0
2

0  =  0    (578)

  
L ˙  0{ }  =  p 0 f 0

(0)     f 0
(0 )
= 0   (579)

  
L ˙  0{ }  =  p 0 (580)

  
L ˙ ̇  0{ }  =  p2

0 p  f 0
(0) f 0

(1)          f 0
(0 )
= 0       f 0

(1)
= 0

2
a   (581)

  L ˙ ̇  0{ }  =  p2
0 0

2
a       (582)

We substitute again in (570) obtaining finally:

0p
2
+H 0p + 0

2
0  =  a 0

2    0 p2
+Hp + 0

2( )  =  a 0
2       (583)

G(p)  =  0
2

p2
+Hp + 0

2    G(j )  =  0
2

0
2 2( ) + jH

 (584)
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G(j )  =  0
2 0

2 2( ) jH

0
2 2( )

2
+ H2 2

(585)

A( )   =  0
2 0

2 2( )
2
+H2 2

0
2 2( )

2
+ H2 2

  =   0
2

0
2 2( )

2
+ H2 2( )

1

2        (586)

With the exception of the factor 4 this exactly equals to expression (552) stated in [5]. We have
calculated just right. But expression (586) can be transformed even more (HQ0= 0):

A( )   =   0
2

 H( )2
+ 0

2 2( )
2

  =   

0
2

H

 1 + 0
2 2

H

 

 
  

 

 
  

2
 (587)

A( )   =   

˜ Q 0
0
2

0

 1 + ˜ Q 0
2 0

2 2

0

 

 
 
 

 

 
 
 

2
  =   

˜ Q 0
0

 

 1+ ˜ Q 0
2  

0

0

 

 

 
 
 

 

 
 
 

2
     (588)

A( )   =   
c

v

˜ Q 0

 1+ ˜ Q 0
2V2

  =   
˜ Q 0

 

v2

c2 + ˜ Q 0
2 1

v2

c2

 

 
  

 

 
  

2
      with  V  =  

v

c

c

v
    (589)

Thereat (capital letter) V is the detuning (380), as we know it from the electrotechnics. After
substitution of  by v, we receive for the dilatation-factor :

(v)   =   
 

˜ Q 0

 

v2

c2 + ˜ Q 0
2 1

v2

c2

 

 
  

 

 
  

2

4

      1
v2

c2

 

 
  

 

 
  

1

2

     for Q0 » 1   (590)

The approximation (590) is identical to the EINSTEIN expression and with our first
approximation. We can specify also a phase-angle. Based on (585) applies:

B( )  =  arctan
H

0
2 2( )

  =   arctan
1

Q 0

0
2

0
2( )

  =   arctan
1

Q 0V
(591)

B( )  =  + arccot Q0V( )   =   
2

arctan Q0V( )    (592)

(v)    =       
B( )

2
            =   

4

1

2
arctan Q0 V( )    =

?
  

2
      (593)

The last expression is very interesting. It could give us a relation between Q-factor, velocity
and the angle  anyway. Unfortunately this doesn't work, since both functions have a different
value-range. So,  covers the range – /4…–3/4 , but the function – /2 the range – /4…– .
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If we want to determine the Q-factor, we must make another approach. The substitution
= v/r0 applies to the moved body. Really, we still have gotten an expression for the relativistic

dilatation-factor . What however we look for now, is a relation for the Q-factor.

If we say Q-factor, we mean the Q-factor of the metrics at the position of the moved body
and for this applies = 0+v/r0. Thereby we take advantage of the fact, that the resonance-
superelevation always exactly equals the value of the Q-factor. In expression (589) the
superelevation in the case v = 0 has the value 1 and the value Q0 for v = c, exactly vice-versa as
with the metrics. Here, the Q-factor amounts to Q0 for v = 0 and 1 for v = c. So, we have good
reasons to assume that the Q-factor traces a sort of mirrored function (589). We obtain this by
inserting the expression = 0–v/r0 in (584) to:

Q0  =   ˜ Q 0

1

1
v

c

 1 + ˜ Q 0
2

 

1

1
v
c

1
v
c

 
 

 
 

 

 

 
 
 

 

 

 
 
 

2
    Mirrored function (594)

Unfortunately, this function doesn't fulfill the set standards, since it's not symmetrical
concerning the y-axis. So, the value Q0(–c) amounts to 1/3, the value Q0(+c) to 1. The reverse
relation exists at the displaced function (595) with = 0+v/r0:

Q0  =   ˜ Q 0

1

1+
v

c

 1 + ˜ Q 0
2

 

1

1 +
v
c

1 +
v
c

 
 

 
 

 

 

 
 
 

 

 

 
 
 

2
    Displaced function (595)

So, this is not suitable too. Now, we however know that both, the sum- as well as the
difference-frequency, appear simultaneously with the multiplication of two frequencies. This
approach leads to the correct solution then:

Q0  =   ˜ Q 0

1

1+
v

c

 1 + ˜ Q 0
2

 

1

1 +
v
c

1
v
c

 
 

 
 

 

 

 
 
 

 

 

 
 
 

2
   =    

˜ Q 0

 1+
v

c
 
 

 
 

2

+ ˜ Q 0
2 v2

c2

      (596)

with the approximative solution:

Q0    
1

1 1
v2

c2

 

 
 

 

 
 

  =   
c2

v2    for  Q0 » 1 (597)
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For v= 0 expression (597) has an infinite solution, which not quite corresponds to the
observations. Let's however insert the propagation-velocity of the metrics cM as basic-velocity,
then applies v=cM+vM, so we receive for vM=0 precisely the local Q-factor:

Q0    
c2

cM
2      Q0

2         because of (224)     (598)

We must just add the space-like vector of the metrics to the velocity here. Thus, it's about an
approximative solution with definition of the velocity in reference to the empty space (absolute
velocity). This corresponds to an imagined Cartesian coordinate-system, which normally does
not carry weight in the relativistic physics, with exception on the definition of the metrics
itself. In contrast, the velocity in (596) is defined in reference to the metrics (frame of
reference). In this case, we must not add the metric vector cM, since it already has been
considered during the definition of the frame of reference (Q0) Following basic rule applies:
Always if the function contains the Q-factor, r0 or 0, cM must not be added. The reason
follows later.

As well with the function of the Q-factor by the velocity (596) as with the expression for 
(590) it's about approximative solutions, since the angular relations does not have been taken
into account here. An important question is also that for the physical content of (596). The
expression describes the Q-factor, which an observer would measure at a body moved in
reference to its local frame of reference. This depends on the velocity v.

For an exact solution however (596) does not carry weight. The course of both functions is
presented in figure 103, at which point cM has been added in (590) on a trial basis. To the
comparison, also the classic EINSTEIN solution is to be seen including the imaginary branch and
the course of Q0 With small Q-factors there's going to be an asymmetry of the function (596)
around the point zero. One clearly realizes, that the maximum has been displaced into the
negative range. It coincides with the minimum of the dilatation-factor, however not quite
exactly. This is not a slight blemish but the transition to the universal relativity-theory. In a
strong gravitational-field, the dilatation-factor with committed Q-factor Q0 and v= 0 is
automatically smaller than one. This is the effect of the non-vanishing basic curvature in the
strong gravitational-field, i.e. a length with zero-velocity already appears smaller than in
reality. Usefully, the minimum of the relativistic dilatation-factor should coincide with the
maximum of Q. With the addition of cM this is guaranteed for larger Q-factors only. This was
even to be expected, as it contravenes against the basic rule stated above, since the expression
contains Q0.

Thus, we want to determine the value of displacement needed to obtain a coincidence of
minimum and maximum. The function to be displaced is (590). This results from the fact that
we have committed the value of Q0 for v=0. Therefore of course, we cannot suddenly calculate
a Q-factor different from the committed value for v=0. A displaced function (590) also fulfills
the differential equation (578).

We primarily calculate the first derivative of (589) and (596) in that we equate them to zero.
In order to simplify the calculation, we however don't calculate the derivative of the function
itself but that of its square. For a wonder, one time, we set c=1 here. This should not turn into
the habit however:

2
 =   

˜ Q 0  
2

4 ˜ Q 0
2v  1 v2( ) 2v

v2 + ˜ Q 0
2

 1 v2( )
2( )

2  =  0 2 ˜ Q 0
2v  1 v2( ) v  =  0 (599)

v3 v   1
1

2 ˜ Q 0
2

 

 
 

 

 
  =  0          v1 =  0  Minimum v2,3 =  ±  1

1

2 ˜ Q 0
2   Maximum (600)
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Q0
2
=  ˜ Q 0 

2 2 ˜ Q 0
2v2 + 2  1+ v( )

˜ Q 0
2v2 +  1 + v( )2( )

2  =  0 ˜ Q 0
2 v +  1+ v( )  =  0 (601)

v   1+ ˜ Q 0
2( ) +1 =  0 v  =  

1

1 + ˜ Q 0
2

         Maximum (602)

With it, following substitution applies for (590) with c 1:

v

c
 =  

vM

c
+

1

1+ ˜ Q 0
2

(603)

For the extreme values applies under consideration of (603) with vM = 0 resp. v = vmax:

Q(0)  =  ˜ Q 0       Qmax =   1 + ˜ Q 0
2        (604)

(0) =  
 

˜ Q 0

 

1

(  1+ ˜ Q 0
2 )2

+ ˜ Q 0
2 1

1

( 1 + ˜ Q 0
2 )2

 

 

 
 

 

 

 
 

2

4

       max =   

˜ Q 0 (605)

With (590) it's nevertheless still about an approximation. Simultaneously, we have revealed
even the secret of negative velocities. The SRT knows only positive velocities in the actual
sense. This is also of line with our model in so far as an observer is always in the centre of the
universe.

Figure 103
Relativistic dilatation-factor  and
Q-factor as a function of the velocity
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Regardless into which direction, the observer or object always moves toward the particle-
horizon cT (with positive velocity). Therefore, the classic EINSTEIN expressions result the same
even if negative velocities are used. If however, each velocity always is defined as the sum of
the metric and the speed-vector, just altogether in reference to the empty space, in strong
gravitational-fields (small Q-factors) there is a point, at which this symmetry is broken, since
the metric vector no longer can be disregarded. Obviously, it's neither irrespective of whether
you move toward or away from a black hole.

Now, with (404) and (596), we have found two relations, which are independent from each
other, describing the dependence of the Q-factor from space and time on the one hand and the
dependence from the velocity on the other hand. The task consists in that we bring together
both relations. Let's start with expression (404). It reads as follows:

Q0 =   ˜ Q 0 1 +
t
˜ T 

 

 
 

 

 
 

1

2 2r
˜ R 

 

 
 

 

 
 

2

3
 

 

 
  

 

 

 
  

(606)

At all, there are three output variables included (Q0, T and R) which are coupled tight
together. If we want to bring this expression (596) together, it is useful to reduce the quantity to
one. Therefore, we want to substitute T and R, so that in the end only Q0 and true constants
appear in the equation. For that purpose let's have a look at the Q-factor once again. This is of
central importance in this model, since it affects nearly all rulers in the universe. In table 5 are
shown (not completely) the most important relations between the quantities of the empty space
(left column, all are proper constants), the microcosm (middle column, variables) and the
macrocosm (right column, variables).

r1 — [ Q0] r0 — [ Q0] R Elementary length/World radius

t1 — [ Q0] t0 — [ Q0] T Smallest time unit/Age

1 — [: Q0] 0 — [: Q0] H Frequency MLE/H UBBLE-parameter

2 0 — [: Q0] ——————  [: Q0] 0R Specif. conductivity vacuum/Metrics  

??? — [: Q0] h1 — [: Q0] h PLANCK’s quantity of action

Table 5
Relations between the fundamental values

 of space and of the micro- and macrocosm

Our model owns the essential quality of the logarithmic periodicity with it. Then, under
application of the relation stated in the table, we can transform expression (606) as follows:

Q0 =   ˜ Q 0 1 +
1
˜ Q 0

2

t

t1
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2 2
˜ Q 0

2

r

r1

 

 

 
 

 

 

 
 

2
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         with    t1 =

1

2
0

0

   and   r1 =
1

0Z0
    (607)

Now, we can merge this expression with (596). For it there are two options in principle. The
first one describes the case, where the velocity is defined in reference to the coordinate-origin.
Thereat is to be paid attention to the fact, that the basic Q-factor in (607) depends on the result
of (596) and vice-versa. There is just a reciprocal dependence:
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Q0 =   
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   (608)

A solution is possible, if v is small in reference to c and t is small in reference to T and r is
small in reference to R. Then, we can assume both values (T and R) as constants obtaining an
analytic solution. Otherwise, a solution is got using numerical procedures by solving the
equation:
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+ ˜ Q 0
2 v2

c2

 1 +
1

Q0
2

t

t1

 

 
 
 

 

 
 
 

1

2 1

Q0
2

2

r1
vdt

 

 
 
 

 

 
 
 

2

3
 

 

 
 
 

 

 

 
 
 

Q0  =  0 (609)

This way however the frame of reference gets lost, so that the solution is physically useless.
The observed body moves out off the range of our frame of reference. Then we are concerned
with a second, independent frame of reference and have to take up a LORENTZ-transformation
for the velocity. In the second case, here is the velocity referred to a point in the distance r from
the coordinate-origin, it doesn't look better. Now, we must take up a LORENTZ-transformation
for the distance r. However, the associated relation should not be further presented.

This problem appears by the way even in the classic EINSTEIN theory. So, a frame of
reference always applies locally only. How large the local area is, depends on the initial
conditions.

Now, we want to continue our examinations with the reserve that the results exactly apply
only for the moment dt and in the area dr.

6.1.2.1.2. Exact solution

To obtain an exact relation both, for the dilatation-factor as well as for the Q-factor, we first
of all try to solve equation (76), at which point we don't regard H as constant this time. Also
with other output-conditions we obtain the same result as in section 4.3.2.

Neither with the variation of the integration-constants nor with other methods however it's
possible to get a result, which agrees even only approximately with the observations. On the
contrary, the results are standing in a glaring contrast to it. The question is, why? Another
question is, why are the approximative solutions so approximate to the verity?

The answer is in the physical content of the used equations. The solution of (76) results in a
time-function. But we look for a function in dependence from the velocity dr/dt just the first
derivative of the way by the time. In (78) except for t is only contained the frequency 1. This
is a genuine constant admitting only the introduction of an absolute velocity with it (in
reference to the empty space), if such a one should exist. Indeed, there is an absolute velocity
but only just one, namely the speed of light.

If we just want to determine the function in dependence of another velocity, we first have to
define a coordinate-system (frame of reference) and that's exactly our problem. At first, we
define a location. A definite longitudinal ruler (r0) applies at this and also an associated
temporal ruler (T). Furthermore, also the associated value 0 applies. All these values are tight
coupled over the parameter Q0 (space-temporal coordinate-system). With the definition of the
zero, all scales and values are just explicitely defined.
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Also in the inverse case, with the definition of Q0, the frame of reference is explicitely
determined. By the way also a fixed value of H belongs to it, i.e. with the definition of a frame
of reference one accepts H as constant automatically ( ˙ r 0 /r0 = 0). That is the reason that we
could achieve so good results with the solution of (578). To the value Q0 still belongs a fixed
value cM and the angle  is fixed explicitely too. Furthermore follows that also the angle  has
a fixed value (482).

But we have to consider the limited spatial and temporal range of each frame of reference,
mathematically seen actually only for an infinitesimal segment dr and for an infinitesimal time
period dt. For a higher Q-factor, the solutions are passable also for larger sections and time
periods. For small Q-factors however (high curvature) the relations really apply for dr and dt
only. If we want to determine the exact function, we have to integrate over dr and dt. Then
however, the result depends on the way covered and the course.

We have proven with it, that we are unable to get a physically useful relation by the solution
of (76) and (78). The exact solution rather arises by the application of the fundamentals gained
in section 5.1. and 5.2. under consideration of the angular relations. Thereat, we obtain the va-
lue of a by substitution of the basic-Q-factor in (482). While the angle  just has a fixed value,
the angles  and  are dependent on the velocity v. In this connection, the speed-vector v points
into the same direction as the metric vector cM. With it, for the angle  applies for all kinds of
photons:

 =  arcsin 
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 (610)

This once again, has effects on frequency and wavelength of photons and neutrinos, which are
tightly joined with the angle . The angle  is differently defined for photons and neutrinos just
as for their antiparticles:
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Time-like photons (611)
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Space-like photons (612)
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Neutrinos        (613)

  =   arg c arccos
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Antineutrinos  (614)

6.1.2.2. Relativistic length contraction

In the preceding paragraph, I already implied, that the hitherto obtained solutions are
approximative solutions, which are based on the assumption, that the angle  between the
photon and the metrics always amounts to /2 exactly. If this is not the case, with it also
changes the hitherto as unchallengeable considered EINSTEIN expression for the relativistic
length contraction. To my apology, I would like to declare here, that the modification results
from the basic assumpton of this model, namely that the relativistic effects should result from
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the existence of the metric lattice only macroscopically. In a manner of speaking, we have
taken up a ”digitalization” (better quantization) of the space and this leads inevitably to an
offset on higher frequencies (velocities). With it, the ”guilt” is at Prof. LANCZOS, which had the
idea to this model. To the determination of the exact solution, we first of all assume expression
(516), which is correct under acceptance of the validity of the Pythagoras theorem. We reduce
this as follows:

1   =   1
v2

c2
2c2  =  c2 v2 (615)

c2  =  2c2
+ v2 (616)

Wanted now is a new value  with application of the cosine-rule instead of the PYTHAGO-
RAS. Expression (616) must be expanded then as follows:

c2  =  2c2
+ v2 2 1cv cos (617)

2c2 2 1cv cos + (v2 c2 ) =  0 (618)

2 2 1 v

c
cos 1

v2

c2

 

 
 

 

 
  =  0 (619)

1,2
1  =  

v

c
cos ±  1

v2

c2 +
v2

c2 cos2  =  
v

c
cos ±  1

v2

c2 1 cos2( ) (620)

We find a congruity with (479). With it, the positive sign is applied to time-like photons ( )
and neutrinos ( ), the negative to space-like photons (  ) and antineutrinos (  ). Expression
(620) finally dissolves into the final, corrected version of the EINSTEIN expression for the di-
latation-factor , which now applies also for velocities near c and in very strong gravitational-
fields ( = , ):

1  =  
v

c
cos  ±  1

v2

c2 sin2
     Exact expression of the (621)
     relativistic dilatation-factor

The discovered expression now no longer alone depends on the relative velocity but also
from the angle , which has been established with the definition of the frame of reference. The
velocity v is equal to the sum of metric and speed-vector. It applies v=vM+cM and v=vM+cM.
With the approach:

v

sin
 =  

c

sin
 =  

2
sin =  cos       (622)

we get following expressions for the dilatation-factor  ( = ):

1
     =  

v

c
 =  

sin

sin  

Time-like
photons  

1
    =  

v  

c
 =  

sin  

sin  

Space-like
photons

(623)

1     =  
v

c
 =  

sin

cos  

Neutrinos  

1    =  
v  

c
 =  

sin  

cos
Antineutrinos (624)
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With it, we have derived the refraction-rule for all types of photons and neutrinos at the same
time. That shows, that we are on the right way. The angles can be determined with the help
from (482) resp. (611-614). The test results in an exact match with (621) in the case v=vM+cM.
The expressions (623) and (624) correspond to the product of the temporal and geometrical
part of the total red-shift (511), as it easily can be verified. The spatial part with the velocity-
induced red-shift does not become effective, since it's caused by the motion of the photons
through the space (wavelength-gradient). So we can present expression (621) also in the
following form:

,  

1  =  
v

c
cos  ± cos   ± cos (625)

,  

1  =  
v

c
sin  ± cos   

v

c
±1 (626)

In this connection, we must be quite careful. The part v/c cos  namely does not equals the
value sin  at all, as one may think with fleeting glimpse. Rather it's about the projection of the
speed-vector v on the vector c , as one can recognize in figure 104 very well:

 ˜ 
v sin2 cot

vRe( )
Im( )

x

 ˜ 
c cos2

sin ˜ 
c sin2

 ˜ 2 c sin2 +cos2( ) = 2  ˜ 
c

 ˜ 
c sin2

sin ˜ 
c sin2

c cosv

Figure 104
Effect of the relativistic
dilatation-factor 

According to the direction of propagation it adds to or subtracts from c . Under usual conditions
(very high Q-factor) however, the value is extremely small and can be disregarded. Then, only
the value cos  d  for the photons resp. sin  for the neutrinos remains, which agrees with the
phase rate  of the propagation-functions in section 5.3.2.

In order to get an exact solution here, we must expand the corresponding -values with the
expressions v/c cos  resp. v/c sin . The course of the function  for time- and space-like
photons for a Q-factor Q0 > 105 is presented in figure 105.

Here, a contradiction arises with the space-like photons (and fermions) which is based on the
observation, that the reciprocal of  is used for them in contrast to the time-like photons and
neutrinos, whereas in section 5.3.2. except for a different sign, we got the same expression for
the phase rate  for both kinds of photon. How this contradiction can be solved now? In section
5.3. we just had introduced the complex frequency of a time-like photon. Generally, it consists
of a real- and imaginary-part:

 =    cos + jsin( )    (627)

The tangentially red-shifted frequency however doesn't arise to , as suspected first of all.
The reason is, that the relation c=  is not really correct, if we insert the measured values
(real-part) for  and . Really, in the theoretical electrotechnics the relation =2 /  ( =phase
rate) applies. That means, that with the shape of the wavelength becomes effective actually
only the imaginary-part of the phase rate, just as it's being observed (real-part). This
corresponds to the case that the total-wavelength (amount) is distorted by a certain angle in
reference to the propagation direction, exactly as in our model.
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Figure 105
Relativistic dilatation-factor  for time- and space-like photons
in comparison with the classic EINSTEIN solution (Q0>105)

Of course, even a complex wavelength of  can be defined, the measured wavelength
corresponds to the real-part of  then, and the first relation is right: c= ·  (see figure 104).
Then applies:

 =   2
c

 cos jsin( ) (628)

And exactly the space-like photons were the only ones with a negative phase rate, i.e. they
move opposite to all other kinds of photon on a space-like vector. The cause that the reciprocal
of  becomes effective is the particular characteristic of the exponential-function (e– r = 1/e r) in
connection with the Pythagoras of the trigonometric functions (cos2x+sin2x=1). Where is now
however the point, at which the relativistic dilatation-factor  applies? This problem had not
yet been noticed in the SRT, but it should be known actually.

Expression (628), with regard to the contents, agrees with the relation =2 / . Obviously, 
influences the amount of the wavelength-vector | |=2 /| | working simultaneously on  and 
with it. Since we observe only the real-part of , that is the part 2 c/ sin /sin  resp.
2 / (c cos –v sin cot ),  presented in figure 104, applies altogether: ´= sin /sin
(space-like) as well as ´= sin /sin  (time-like). Both solutions are identical to the ex-
pressions ´=2 / (v) (space-like) resp. ´=2 (v) (time-like). We get the function (v) (phase
rate) by substitution of the part of the metric vector cM by v = vM+cM in all expressions inclu-
ding (v,r) and  That corresponds to the application of the velocity-dependent expressions
(610-614) for  and . Since the function (v,r) already turns out the real-part of , we must
make a projection for the amount . We choose the exact space-like vector and not the projec-
tion. Expression (532) and the corresponding expressions for neutrinos and antineutrinos
would read then as follows:

 =  

˜ H 

c
+

˜  0
c

( ) +
˜  

c

sin cos

sin
 (v,r)

 

 
 

 

 
 + j

˜  

c
 (v,r)

 

 
 

 

 
  ( ) (629)



178

Both cM as well as sin  a are stipulated with the definition of the frame of reference. Here, the
part /c·sin cos /sin · (v,r) doesn't describe an additional attenuation but a deviating of the
wave from the original propagation direction r into the direction of the space-like vector v.  It
shows, our simple model reaches it’s borderline. Therefore we did not defined the propagation-
function in section 5.3.2. in {x,y,r,t}, but along the arc r having substituted the real-part for .
The attenuation rate is equal to zero then and the propagation-function independent from the
direction of propagation. For the exact calculation under consideration of the propagation
direction, there are essentially more comfortable methods. The most important is the notation
in tensorial form (comp. Section 7.2.5. ff).

Since the angle  is extremely close to /2 in the normal case, it shows no difference to the
classic EINSTEIN solution, both graphs cover each other completely. How would this classic
solution look for neutrinos however? This shows figure 106:
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Figure 106
Relativistic dilatation-factor  for neutrinos and antineutrinos
 in comparison with the hypothetical classic solution (Q0>105)

Here,  bn traces the function v/c+1 resp. v/c–1. With it, also real solutions exist for velocities
greater than ±c. But there are differences to the EINSTEIN solution with smaller initial-Q-
factors, since the value cos  is different from (near to) zero and sin 1. The course of  for
the four different kinds of photon and for several smaller Q-factors is presented in figure 107-
110. With the time-like photons, we observe the same displacement as already with the appro-
ximative solution, however caused by the part cM at this point. Thereby there's going to be a
displacement of the polus in the negative range out of the definition range (real solution), so
that the maximum for –v is smaller than infinity. Beyond, the solution becomes complex.

At least, it's just theoretically possible, to jump over the ”edge”. On the other hand there is a
negative branch behind the polus in the positive range. With extremely small initial-Q-factors
there's going to be a rotation around the angle /2. The photons behave similarly like neutrinos
then.

The course of  for space-like photons appears as a (not quite exact) inversion of the condi-
tions with the time-like photons. Even here there is the same displacement into the negative
range caused by cM. The maximum superelevation, different from infinity, is now located at
positive velocities. The minor the initial-Q-factor, all the minor the maximum superelevation.
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Relativistic dilatation-factor (v) for time-like photons for small Q-factors
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Figure 108
Relativistic dilatation-factor (v) for space-like photons

Analogical are the relations for neutrinos and antineutrinos. However, there is no maximal
superelevation but only one polus and a sort of minimum. That is the boundary of the real
definition range (branch point of 1st order). On very small Q-factors neutrinos behave like
photons. Then there is also a maximal superelevation, which coincides with the branch point,
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(the maximum at the photons is a branching too). We get the location of the polus using
v=cM+vM by solving the equation:

  

m
v

c
cos +  1

v2

c2 sin2  =  0    to   v = ±  c cM( )       (630)
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Figure 109
Relativistic dilatation-factor (v) for neutrinos

By the way, expression (630) applies even to neutrinos. The maximum superelevation
(branching) we find always on the side with opposite sign. The values calculate as follows:

cM + vM( )
2

c2 sin2  =  1         
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cM        (631)
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Herewith, the upper sign is applied to the time-like, the lower one to the space-like photon.
To the comparison, the course of the exact (632) and of the approximative solution (633) for
photons is presented in figure 111. It shows, the approximation is good for values down until
Q0=1. This would be the relations directly at the SCHWARZSCHILD-radius.

So we have to relativize the good news, that it is possible, to jump over the ”edge” in turn.
Indeed the polus in the classic EINSTEIN solution are the reason why it's impossible for a mate-
rial body to achieve a velocity greater than c. There is, at least theoretically, a chance in this
model that this body may overcome the wall with a positive velocity. However, the thereto ne-
cessary velocity at the current Q-factor of approximately 1060 is so close to c that such a que-
stion becomes physically pointless. If we really should be successful in building a spaceship,
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able to achieve a velocity greater than c, the temporal dilatation up to the achievement of this
point would be so large, that, even if it should last only one second for the passengers, on the
earth would have passed a time period greater than the present age.
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Relativistic dilatation-factor (v) for antineutrinos
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At a possible return, one would not find the earth. Even, there would be problems with the
propulsion, specifically when braking. A photon-drive would turn into a neutrino-drive, which
shows no action. They just should have to take along an additional antineutrino-drive in order
to achieve a retardation.

What does a negative or complex solution mean for  then again? If a negative solution
appears, the wave executes a phase-jump and the frequency becomes negative. In the
conducting-theory, this is synonymous with a negative phase velocity. The wave propagates
into the opposite direction then, a time-like photon turns into a space-like one, a neutrino turns
into an antineutrino and vice-versa. But the frame of reference remains still intact, we can
receive an action from the moved signal-source. In contrast, a complex solution means the
breakdown of the frame of reference, i.e. a LORENTZ-transformation is no longer possible. That
however also means that there is no more causal correlation between source and observer.

At the end, it should still be pointed out that the tangential part of the time-like photon
(rotation of the direction of polarization) is subject to the doppler shift too — a fact, which
easily should can be demonstrated by experiments. A circularly polarized wave turns into an
elliptically polarized one. With it, the relations are essentially more complicated than usually
presented in literature. Popularly, an ”ideal”, purely horizontally or vertically polarized wave is
assumed without attenuation, which doesn't exist. The proof is the existence of the cosmologic
red-shift, which doesn't have stated this way.

Therefore, I would not like to deepen the contemplations more in this direction, but rather
encourage a discussion in that I imply only popularly, what the physical content of a complex
solution could mean. We get a complex solution, if the root-expression becomes negative or if
the argument of arcsin as well as arccos becomes greater than one. Then, e.g. a complex
solution for =cosec =a+jb with b>a turns out and it applies:

sin
=   ˜   a + jb( )   (634)

While both parts of  are only stretched with a real solution, an additional rotation of the
wavelength-vector around the angle arctan(b/a) occurs with a complex solution. Since this
however contains an however small imaginary part, so there is still a certain real part after
multiplication with j, which also should can be detected, unless the energy vanishes in the
noise. Then, the energy h  splits into a real and into an imaginary part, at which point only the
real-part is able to perform work.

The imaginary part is the equivalent to the blind power (ask your electrician). Since b> a
applies the photon now behaves like a neutrino, which is just hardly detectable as you know.
But there is a chance of detection with the help of the weak interaction. With ist, the causality-
principle is violated.

Now, what's the accordance like between our exact and the approximative solution found in
the previous section? I have checked that. The course of the approximation agrees with the
exact solution downward until about Q0=105 However, the approximation has two instead of
one maximum and the value is too small. If we use the sum cM+v instead of v, there is another
good accordance downward until Q0=103.

Furthermore, we are interested in the relation to the classic EINSTEIN solution. For that
purpose first let's have a look at the square of the classic dilatation-factor :
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To assume idealized conditions, this expression can be combined in the following manner:
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According to the rigid EINSTEIN expression, there is actually no difference between time-like
and space-like photons, adsum it's only the sign. And which rule applies to the neutrinos, just
can be suspected only. We are glad, if we are able to dectect some of them at all. We however
can assume, that (622) applies. After all, we have succeeded in finding a new inherent law:
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The classic value  represents the geometric mean of the dilatation-factor of particles and
antiparticles with it. We check further:
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Expression (638) which we have gotten with the help of the approximation, applies exactly
with it. Still remains to examine, whether it is possible to find a simplification of the calcula-
tion of sin , which makes it possible to reduce the number of values to be calculated, e.g. to
replace one or several values with another, as we have done it successfully with the angle .
An exact examination of (614) immediately leads to the result:

sin  (v) =  sin ( 2cM v)         and sin  (v)  =  sin ( 2cM v) (641)

The angle  just cancels out. It has been successful with it to reduce the number of values to be
calculated more and more. Furthermore we have proven, that antiparticles move opposite to
particles. Finally, we want to specify the relations for the relativistic length-contraction
referred to the real-part of the (wave-)length once again:

 x =     xsin  cosec             Space-like photons + fermions (642)

Herewith we have accepted on the quiet, that even a macroscopic body can be observed
warped in reference to the metrics, of course not in total, but as the sum of the particles of
which it consists. And these particles are described by, although special, wave-functions. What
else should the relativistic length contraction occur then? Solution (640) and the following are
applied to R, at which point R represents the multitude of the real numbers. For ”usual”
wavelengths other relations apply. Without consideration of the doppler shift applies:

  =     cosec sin               Time-like photons (photons) (643)

  =  cosec cos              Neutrinos (644)

  =     cosec  cos            Antineutrinos (645)
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The expressions (642) until (645) in all represent the temporal part of the relativistic red-
shift, the so-called radial doppler shift, which appears, when the signal  incidents/is emitted in
the right angle to the direction of motion, plus geometrical share (perspective). With axial/-r
incidence/emission the share of the axial doppler shift comes into addition, at which we want
to have a look in the next section.

6.1.2.3. The relativistic doppler shift

In principle there is the doppler shift only in the cases (643) until (645), since space-like
photons don't propagate, they are only moved. Furthermore we have to distinguish the case the
source is approaching (–v) and that it's moving away from the observer (+v). Generally, the
second case is considered, namely that where the source is moving away. Alternatively, we just
have to employ a negative velocity v. We even only want to examine the purely axial doppler
shift, since all other cases can be split into a radial and axial vector. According to the classic
view applies generally:
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The bracketed expression is called k-factor by the way. The root-expression represents the
radial share. This is always a red-shift. Therefore, the root-expression is even always in the
denominator. The signal reaches the observer in a manner of speaking ”from the back around
the corner”.

We want now to derive the exact expressions for photon, neutrino and antineutrino. For one
thing, we have to replace the root-expression in (646) by the exact expression (621). This is
however not yet the final solution:
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The reason is, that our photon should behave like a neutrino with higher velocities.
Furthermore, the expression (647) cannot be correct, since the angle a doesn't appear in the
numerator. But since the wavelength-vector is distorted in reference to the metrics about a
certain angle, which draws attention to itself at the transversal doppler shift, also the radial
share must be concerned, since it's oriented to it in the angle /2 precisely.

Just an expression is wanted to avoid this dilemma, turning out expression (646) in the case
of smaller velocities. To neutrinos, the following approximation is applied in the case of
smaller velocities (cos  is always negative):
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But the second expression is exactly equal to the expression in the numerator of (649). We now
suspect that the numerator exactly equals the left part of (649). Then the measured wavelength
is equal to the wavelength in the rest-condition, multiplied with the quotient of the extension-
factor of the imaginary-part and the one of the real-part of the wavelength. Our problem would
have been solved with it. The expression for time-like photons reads then exactly:

=  

v

c
cos  1

v2

c2
sin2

v

c
cos +  1

v2

c2
sin2

     Photons (650)

This corresponds to the temporal and perspective share in total. With it, expression (650) is
already identical to the exact solution, which can be read also as follows:
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Ratio between k-factor and relativistic

dilatation-factor  classic and model-solution Q0>105

In this case,  is the wavelength of the zero-vector and ´ the real-part of the complex
wavelength-vector, i.e. the value, which is measured. For the neutrino and antineutrino similar
relations can be found. Here, we however want to figure only the trigonometrical expressions
according to (552):
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Relativistic doppler shift (wavelength) of the
time-like photons and neutrinos at a Q-factor of Q<105
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The idealized course for time-like photons and the two kinds of neutrino is presented in
figure 112. It shows the graph for Q0>105, which covers the classic k-factor, in comparison
with the classic expression .

Figure 113 and 114 show the relations for smaller initial-Q-factors. The function-course for
time-like photons and neutrinos is identical, the one for antineutrinos mirrored in x and y. With
somewhat good will, one also recognizes the asymmetry caused by the share H/c.

There is no expression for space-like photons for the known reasons. In terms of figures, this
also exists of course. Then, it's identical to that one of the anti-neutrinos. But it has no physical
meaning anyway. With it, we have explicitely characterized the relativistic doppler shift. As
next, we want to have a look at the relativistic temporal dilatation.

6.1.3.          Velocity and time

The fundamentals to this subject we have already formulated in principle in the preceding
section. It applies [30]: If a body (system S´) is moving relatively to another with a definite
velocity v, so the time t passes for him more slowly (in reference to the rest-system S). If he
now observes a process, which has the duration of t in the rest-system S, so the time period has
the duration t´ for him (system S´):

 t  =  t cosec sin        Relativistic temporal dilatation (654)

t´ is essentially longer than T. for him. The occurence of the expression  already shows that
the observation takes place by means of photons. That means, that even the temporal vector is
observed skewed about a certain angle in reference to the metrics (space-time), exactly as the
wavelength. Because it's about a space-temporal coordinate-system, this is no further re-
markable.

We can recall the temporal dilatation even like that: The observed photons have a certain
wavelength. If we mark the start and the end on the ray of light (e.g. by a short intermission),
the moved observer would receive the ray with a larger wavelength because of the red-shift (at
this point only the transversal, time-like doppler shift is regarded). Since the wave count and
even c are constant, it lasts of course longer, until the observer receives the second pause.

If we would observe the process by means of neutrinos (if possible), we would have to insert
 here obtaining and measuring a duration different from t´.

6.1.4.          Velocity and mass

The dependence of the mass of the relative-velocity is an indisputable fact and is secured by
a lot of experiments and applications. According to the classic theory (SRT) following applies
[30]: We look at a body with the rest mass m0 in the coordinate-system S (with the
determination of the rest mass we have automatically accepted the coordinate-system). If we
now accelerate this body to the velocity v in reference to S, so it now has the mass:

m  =  m0 cosec  sin             Relativistic mass increase (655)

I have already put in the value  in this place, since the body consists of a specific layout of
fermions, which interact with the metrics with the help of space-like photons. Therefore, the
inert mass would be the resistance, with which the metrics counters a body during acceleration.
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The greater the energy of the space-like photons, all the greater the resistance. With it, the inert
mass and even the gravitating mass obey the inherent laws of the space-like photons.

If we accept this, we accept the existence of negative, just even imaginary masses at the
same time. Negative masses would attract each other just as positive ones. As far as their
character goes, they would have to be assigned to the antimatter. In contrast, two bodies, the
first made from ”normal” matter, the second from antimatter would repel each other. Negative
masses would have also a negative energy. If we would define the energy m0c2 as the
difference-energy to the energy of the metric wave-field (like in section 4.6.4.2.5.), this would
be quite possible. With the definition of the frame of reference, we commit a fixed value for
h 0 and with it also for the difference to the energy of the particle, that means the rest mass.

What does it look like with imaginary masses then again? If we accept an imaginary
frequency , we must accept also the existence of imaginary masses and the acceptance of
imaginary masses implies the existence of negative masses automatically. An imaginary mass
for example, would be the imaginary part of the energy h  of an electromagnetic wave, at
which we look from the side, twisted about a certain angle. Since it's about an energy-form at
this point, which is impossible to perform any work, an imaginary mass wouldn't wield any
force-action respectively be subject to a force-action. Neutrinos and antineutrinos own a high
ratio of imaginary mass hIm( )/c2 (the rest mass is zero or better hH/c2). Since there is still an,
although microscopic, real-part, neutrinos can even only propagate with lightspeed. They are
just no tachyons.

Now, one should think, expression (655) would already be the correct, exact solution. But
this statement is not yet unique. So (655) only corresponds to the product of temporal and
geometrical part. With wavelengths and time periods, it is easily to be understood that these
only are subject to the temporal and geometrical share of the red-shift, whereas the spatial
share is specified by the definition of the coordinate-system. Whether it's the same with the
mass, we want to examine as next.

We have already noticed that the fermionic matter owns wave properties, the so-called
DEBROGLIE-matter-waves. Of course, these are also subject to the red-shift then, be it the
cosmologic red-shift or the one, caused by a relative-velocity. Starting from (348), with a
temperature T=0 of the metric radiation-field, we acquire the fundamental expression:

  W  =  h  =  mc2      resp.    
  

m  =  
h

c2 (656)

In section 4.6.4.2.3. we had determined that the frequency  is proportional Q0
–3/2 (approxima-

tively). A comparison with (521) immediately leads to the solution:
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If we insert the exact expression  and for v the sum v=vM+cM in exchange, the result is not
yet identical to the one, found in section 4.6.4.1. The PLANCK's quantity of action namely is
also a function of Q0 according to this model. It applies h~Q0

–1. With it, we get in total the
expression for the energetic red-shift W~Q0

–5/2, as already found during the examination of the
cosmic background-radiation:
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If we just regard the PLANCK's quantity of action as variable, the mass would be proportional
Q0

–5/2, then, which is easily to accept. The ”difference” of Q0
–1 however exactly equals the

spatial share of the red-shift. The navigation-gradient and the magnitude of h is dependent on
the frame of reference. We have proven with it, that only the product of temporal and
geometrical share comes into effect for the mass within a frame of reference.

The spatial share is considered with the definition of the frame of reference. Cosmological
seen, all natural bodies are located along r in the free fall, so that they don't move in reference
to the metrics (v=0), as we will already see, whereby v is the velocity in reference to the
metrics. The right-hand bracketed expression in the navigation-gradient is dropped completely
then and we get for the mass:
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Here, a thought Cartesian coordinate-system applies outside the metrics and the angle  is not
constant. We have used such a coordinate-system in order to define the qualities of the metrics.

What means however a non constant PLANCK's quantity of action for the physical rules? If
we assume h to be no constant, on the basis of the definition of h (37) the charge and the
magnetic flux would be no constants too. The same is applied even to the electron charge then.

  
h  =  q0 0  ~  Q0
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2 (660)

Similarly, the relations are with the gravitating mass (gravitative attraction), since the
gravitational-constant is dependent from the frame of reference too. See section 6.2.4. for
details. The universal action to the physical inherent laws shall be examined on the basis of a
simple example, the HEISENBERG's uncertainty principle. As well m, as  are subject to a red-
shift thereat:
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With it, the electrons e.g. in a particle-accelerator (see section 6.2.2) are, in terms of quantity,
subject to completely different physical rules, as hitherto assumed. The measurable result
however agrees with the classic model, i.e. the changes cancel each other, since as well mass,
length and PLANCK's quantity of action are depending on the frame of reference. That means an
observer sees, even quantitatively, always the same physical rules, independently from the
frame of reference.

As a consequence, we also have to revise the statements concerning the uncertainty of place
and impulse of electrons in the time just after big bang, made in section 4.6.4.1.2. There, we
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had assumed a constant mass for the electron. This however ascends about the factor Q0
–5/2 the

more we draw near the point of time t=0, so that the uncertainty of that time would have had
the same value as nowadays. Finally, we can make the following statement:

VII. Regarding the PLANCK's quantity of action as variable, one observes the
same as by analogy with the classic model, since also values like charge and
magnetic flux are no longer constants then and the changes cancel out.

Well, if we don't exactly want to formulate a gravitational-theory or to explain the
cosmologic red-shift, we can lean back comfortably leaving the PLANCK's quantity of action a
constant, and we will obtain the regular results nevertheless.

6.1.5.          Velocity and other values

In the preceding sections, we have seen that values like length, time and mass depend as well
on the velocity as on the frame of reference. Furthermore, we have noticed that other values,
like e.g. charge and flux depend on the frame of reference only. This dependence is caused by
the spatial share of the red-shift and corresponds to the navigation-gradient at the fermions. But
these values also depend on time and the distance to the coordinate-origin and thus indirectly
on the velocity (integral) with it. For the charge applies e.g.:
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This corresponds to the dependence of Q0 (660) and applies precisely. If we for example want
to transform the charge from one to another frame of reference (LORENTZ-transformation), in
contrast to the prevailing opinion q0~Q0

1/2~ 1/3. applies. In this connection,  is the classic
relativistic dilatation-factor. However, the charge and flux-increase is balanced by an
additional mass-increase of the same magnitude in turn, so that we observe the same, as if q0

and 0 would be invariant in reference to LORENTZ-transformations and it applies m~ .

Thus however, even other values, as e.g. voltage and current depend on the frame of
reference. By application of relations like q=C·U= 0 r·U and =L·I=μ0 r·I one gets the
following subjections: U~Q0

–3/2 ~  and ~Q0
–3/2~ . In the normal case however, all these

values can be considered as constants.

The electron charge forms a special case. For one thing, this depends also on the frame of
reference and traces the value of q0. On very high velocities (near c) and/or small Q-factors
there is however another additional dependence on the velocity. Let's have a look at this in the
next section.

6.2. Physical quantities of special importance

Hence, we want to continue this work with the examination of physical constants, that has
large influence on the construction of our world. One of these is SOMMERFELD's fine-structure-
constant.
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6.2.1.          The fine-structure-constant

The fine-structure-constant a is  characteristic fundamental quantity of DIRAC's theory of
the electron. It is a measure for the strength of electromagnetic interaction, i.e. for the coupling
of loaded subatomic particles with photons. According to [5] it is defined as follows:

  

 =   e2

4 0hc
    =   

1
137.038

  =     
1
4

0.0917   =    0.007297 (666)

e is the electron charge in this case. The fine-structure-constant has been well proven with the
description of the decomposition of the atom-spectra (Lamb-Shift) yet. Also, it is used to
explain the dissent between spin and magnetic moment, as it appears with the electron. Now
we want to see, whether there is not hidden another essential, more fundamental legality
behind expression (666).

It is obviously opportune to calculate on the interaction of electrons or protons with photons
with the electron charge. In section 4.6.3 however we have noticed that there is another second
charge, namely the charge of the ball-capacitor in the MLE q0, which is with 3.301378 e near
that value (350).

With a constant, it has no influence on the physical content in general, to multiply it with
another constant. It's about time to try, what happens, if we would substitute the electron
charge in (666) with q0:

  

0  

=   q0
2

4 0hc
    =  

h

4 0chZ0

 =     
1

4
  

q0  =  
h

Z0

(667)

We have uncovered the nature of SOMMERFELD's fine-structure-constant with it. Following
clear statement applies:

VIII. The SOMMERFELD fine-structure-constant is the square ratio of electron
charge and charge of the MINKOVSKIan line-element multiplied with a
geometrical factor.

The geometrical factor corresponds to the full space-angle of 1sr and is equal to the factor
applied on the calculation of the surface of a ball. This is not further remarkable, have we to do
it here with the mutual interaction of two different solutions of the field-equations after all. The
first one is the electron (ball), that second one the photon (wave/cube).

We have uncovered the nature of the fine-structure-constant with it indeed, but it turns out a
new question, that we have already asked in the course of this work:

1. Why does the electron charge just amount to 0.302822q0 ?

This is however not yet everything. From this question and the assumption, that PLANCK's
quantity of action is not a constant, arise a row of more questions:

2. Is the ratio constant between both? If yes, why?
3. If no or don't know:

Is it a coincidence that the electron charge is close to q0 today of all days?
4. According to which legality does the value of the fine-structure-constant change

or does it remain constant?
5. Which effects does it have on other areas of the physics (atomic-model)?
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As fundamental, question 3 crystallizes here, that we cannot answer with absolute certainty
however. With great probability, we can say that it is no coincidence. That would mean how-
ever, that the electron charge is not constant. We don't want to exclude the second case
however. See next chapter.

6.2.2.          The electron charge

6.2.2.1. Static contemplation

Already DIRAC has formulated a hypothesis, as per which the electron charge is a function of
time, (DIRAC's hypothesis). In his model the gravitational »constant« is no constant too. That
means, one cannot exclude this possibility and it is worthwhile in any case, to engage further
examinations at this point.

If we assume, that it is not a coincidence, that the electron charge is near q0, so it's also
obvious to say that a ratio exists between both, which acts according to a certain inherent law.

The definition of q0 contains the PLANCK's quantity of action, which is of essential meaning
nevertheless for the theory of the bosons (e.g. photons) as for fermions (e.g. elec-
trons)—combined with the wave-propagation-impedance Z0 of the vacuum. This suggests the
conjecture that both charges are actually one and the same, at which point the electron charge,
on the basis of particular conditions, only seems to be smaller. Therefore we want to examine,
whether it is possible to calculate the electron charge from the charge q0 of the MINKOVSKIan
line-element. Let's consider the model according to figure 115 for that purpose.

We have yet noticed that the basic condition of the metrics is located near the expansion
centre (0) at a Q-factor of Q=1/2 (1). The expansion-graph in this area is sketched in in figure
93. Furthermore we have noticed that there must be something like a basic condition even for
the fermionic matter, whereby we can observe both types of matter only red-shifted through the
lens of the metrics. It turns out the question: What's the Q-factor the basic condition of the
fermionic matter is located at?

The most obvious assumption would be that this is at the point Q=1/2 too. Now, we have
noticed that this point (1) forms the aperiodic borderline case, in which no periodic wave-
function can exist anyway. This is however a necessary condition for the existence of e.g. the
electron as matter-wave (DEBROGLIE). Matter-waves are moving, according to our definition,
opposite to the propagation direction of the metrics, which has the consequence, that they don't
move anyway. They persist quasi on the position forming standing waves. Furthermore arises,
that these waves, in contrast to time-like vectors, cannot surmount the (3) point Q=1, in which
a phase-jump appears, since they are been reflected there. With it, a matter-wave would be
”locked up” between the points 1 and 3.

We now assume further, that the electron in reality has the charge q0 too, of which we only
”see” the share e, since the electron is warped about an angle  into the phase space in
reference to the observer, who is positioned far on the r-axis.

The (shifted) r-axis is the asymptote of the track-graph of expansion (figure 25) and behaves
near the zero like a parable, farther, like a hyperbole. First of all, we are interested in the angle
, which emerges, from the argument of the integral of the complex propagation-velocity c of

the metrics (206). It applies:

 =  arg c  dt   =
0

T

arg j2
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 1 2(2 0t)0

T

(668a)
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At this point the integral of c and not the value itself comes into effect, since not the velocity c
of the electron but his location is of interest for the further calculations. With the help of (209)
we are able to transform (668a) in the following manner:
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2
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1

2
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0
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dt (668b)

The integral by the time is not particularly well-suited however, since the frequency 0 itself is
a function of time. Therefore we substitute t by the phase-angle Q=2 0t obtaining for the angle
 and for the amount of the zero-vector rN:
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QdQ (669a)
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With r1=1/( 0Z0). Although, the left expression of (669c) is not yet complete. It only describes
the propagation of the wave. It still lacks the expansion-share Z of the constant wave count
vector rK across the entire world-radius R, otherwise applies Z= 2mQ1/2 see (329). It has the
characteristic of a zoom-factor and is to be placed before the integral, since it influences all
elements dr simultaneously (see section 4.5.2.). Altogether applies:

rN =    3r1 Q
1

2 1

0

e j1
2(arg + )

0

Q

dQ      (669d)

Now certainly an analytic solution of this integral can be found, if there is enough time. This
however would go beyond the scope of this work. Therefore, we determine the integral with
the help of the »Mathematica«-function NIntegrate numerically. With it however the function
1/ 0 makes particular difficulties, namely because of the many nulls of the Bessel function. In
order to make possible an exact solution nevertheless, we substitute the expression 1/ 0 by an
interpolation-function with list (function Interpolate). Then, expression (669b) Ep[Q] and
(669d) Rn[Q] can be calculated as follows (without r1):

A=Function[(BesselJ[0,#]*BesselJ[2,#]+BesselY[0,#]*BesselY[2,#])/(BesselJ[0,#]^2+BesselY[0,#]^2)];

B=Function[(BesselY[0,#]*BesselJ[2,#]-BesselJ[0,#]*BesselY[2,#])/(BesselJ[0,#]^2+BesselY[0,#]^2)];

RhoQQ=Function[If[#<30,Sqrt[Sqrt[(1-A[#]^2+B[#]^2)^2+(2*A[#]*B[#])^2]],2/Sqrt[#]]];

ArgThetaQ=Function[Arg[1-A[#]^2+B[#]^2+I*2*A[#]*B[#]]];

rq={{0,0}};

For[x=-8; i=0, x<4, ++i, x+=.01; AppendTo[rq, {10^x, N[1/RhoQQ[10^x]]}]]; (669e)
RhoQ1=Interpolation[rq];

RhoQQ1=Function[If[#<10^4,RhoQ1[#],.5*Sqrt[#]]];

Ep=Function[Arg[NIntegrate[RhoQQ1[x]*Exp[-I/2*(ArgThetaQ[x]+Pi)],{x,0,#}]]];

Rn=Function[Abs[3*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[-I/2*(ArgThetaQ[x]+Pi)],{x,0,#}]]];

The absolute error is smaller than 10–7. Then the electron charge is the rectangular mapping of
the charge q0 upon the r-axis as presented in figure 115:

sin  =  cos  =  sin 

4

 

 
 

 

 
  =  

e

q0

  e  =  q0 sin (670)
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The exact calculation with the help of the function FindRoot results in values of =–2.04854 as
well as Q=0.656724. for the basic condition of the electron. Since the observer to the point of
time T»t1 (approximately) is positioned directly on the r-axis, thus the electron charge results
from the actual charge of the electron q0 multiplied with the sine of the difference angle
between the phase-angle of the electron in the basic condition and the phase-angle of the
observer (– /4).

Figure 115
Ratio of electron charge and charge of the

 MLE in the phase space of the electron

This is constant over a large area (sin 0.302822). With it, the electron charge traces the
charge q0 of the MLE directly. Only on extremely relativistic conditions, the ratio between q0

and e varies according to figure 96.

With the fine-structure-constant itself it are just actually about two different “constants”
which only coincides to the present point of time. Firstly it's about the ratio of the observed to
the actual electron charge, secondly about the angle of intersection between electron and
photon. It can be interpreted even like that the charge of the electron itself is a wave-function
and it's periodic. Because of the spin (rotation) the measured charge is a function of the angle
of incidence  then (figure 115).

On this occasion, the photon always incidents with the angle –3/4  This corresponds to the
real-part, because only this is able to perform work during an interaction. During the
calculation of action, we must multiply with the value sin  therefore. The same is applied also
to the interaction with neutrinos (inverse b-decay  +p n+e+). Latter one also today yet
figures one of the some many options to the proof of neutrinos. First of all, only the extremely
small real-part (in this case),  becomes effective during the reaction of the proton with the
antineutrino, which leads to the so small effective cross-section. Then, in the subsequent
reaction of course the entire neutrino is absorbed, including the “blind energy”.

On higher velocities (near c), near the particle-horizon or even in strong gravitational-fields
thus the uniform “constant“ splits into two different variables. The weak interaction becomes
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strong quantitatively seen, since the neutrinos behave like photons then. At the same time
there's going to be a symmetry-breaking.

However back to the electron: While the basic condition of the metrics is settled at Q=1/2,
we have found a value of Q=0.656724 for the electron, but we expected a value of Q=2/3.
Using Q=2/3, we obtain a value for e, which is about 2.54% beyond the really observed one.
How this deviation can be interpreted?

As is generally known, the fine-structure-constant is used in the interpretation of interaction-
processes between electron and photon, at which point the observer usually is located far away
on the constant wave count vector rK at a point Q»1. In a large distance, this coincides with the
r-axis. Even the electron as a fermion only moves along the constant wave count vector. Since
the Q-factor is identical to the phase-angle of the Hankel function, it is defined along rK, i.e.
along the arc. The wave-function of the electron shows a certain curvature with it. The photon
itself, the zero vector rN in contrast, is rectilinear i.e. not curved. Since it's about a photon,
which is observed at a point with Q»1 the angle  is extremely close to /2.

The real interaction indeed takes place in the basic condition of the electron at Q=2/3 i.e. the
zero vector is being upscaled with all its angles to the phase space of the electron. The result of
the interaction on the other hand is being observed downscaled at Q»1 then. And an adaptation
occurs obligatorily during the real interaction (stretching) of the curvilinear wave-function of
the electron onto the non curvilinear zero vector. For this reason, it is of interest to determine
the arc length of rK. Even if we weren't able to find any analytical solution for (669d), we can
say yet, that the determination of the arc length is not impossible. With the help of (668b) we
obtain:
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=  ˙ x 2 + ˙ y 2dt    =     0

0

Q  x 2
+  y 2dQ

0

Q

t1

t 2

(671a)

rK  
=  2r1

Q

Q

1

0

 cos2 1

2
arg + sin2 1

2
arg  

0

Q

dQ    =    2r1
dQ

00

Q

   (671b)

This is however only the share of the wave-propagation in turn. Together with the expansion-
share, this is applied to the arc length too, we get:
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Also for the expression (671c) there is certainly an analytic solution, this is however still too
complicated, so that we will determine this integral numerically too, at least for small values Q,
because to large values, the approximation 2/ 0 Q1/2 is applied and the integral turns analyti-
cally solvable with it:
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This is a known relation, which we have derived with it. It is applied however only to values
Q»1. For the numerical determination of the integral we apply usefully the following
expression in »Mathematica«:

Rk=Function[If[#<10^4,3*Sqrt[#]*NIntegrate[RhoQQ1[x],{x,0,#}],#^2]]; (671e)

Now, we are particularly. interested in the ratio between rK and rN. The course is presented in
figure 116 with and without expansion-share.
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Figure 116
Ratio between the length of the constant wave-count vector
rK and the length of the zero vector rN as a function of Q0

The expansion-share cancels out in this case. And it shows following at this point: If we
assume the basic condition (rN) of the electron to be at Q0=0.656724, so the associated constant
wave count vector rK is exactly about 1.0151826 longer. If we however multiply the phase-
angle Q0=2 0t= 0.656724 with 1.0151826, so a value of 0.6666946. turns out. This is a
deviation of only 2.794·10–5 to 2/3. The reason could be the computational error during the
numerical integration. Having duplicated the precision of the calculation however, we got
exactly the same result up to the last position. It could only be about a systematic error then or
about others, not considered influences (e.g. hyper-fine-structure) during the determination of
the electron charge in the experiment. Or however the value is really not exactly at 2/3 but at
0.6666946. This should not necessarily figure a problem and a deviation of only 2.794·10–5 in
the QED is already a full success.

Figure 117
Ratio of electron charge and charge of the MLE
in the phase space of the electron (larger scale)
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In figure 117 the exact relations are presented in a larger scale once again. One recognizes the
two basic conditions of the electron e (blue) and e´ (red), at which point more final should be
equal to the stretched constant wave count vector of e. This is not the case by the way, since
the angle  and with it also  varies negligibly with the stretching. We determine the lengths of
rK as well as rN for the three values to:

rK (0.656724) =   3r1 0.656724  

dQ

0
0

0.656724

                =  0.178510  r1 (672a)
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It shows, there is no match in length. Even if we deduct the expansion-factor from the result we
always get a deviating result (the best fit would be at a phase-angle of 0.660147). That means,
the basic condition e is not with Q=2/3 but with an arc-length rK=2/3r1. Furthermore, with
good probability we can assume the condition e´ to be located at a phase-angle of Q=2/3. This
value also often occurs as a factor in the QED by the way. Now, we already want to calculate
the corresponding charges:
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   =  1.0253956  e  =   e (672e)

Thereat, I would call the condition e´ the activated condition of the electron. Just with the fine-
structure-constant (coupling-constant for interactions between photons and electrons) always
corrections must be taken up, in order to bring the arithmetical result in accord with the
measurements. At this point generally the all-over published value (666) is assumed to be the
basic condition of  with an energy W=0, which increases all the more, the greater the energy
of the interaction. On average,  is being corrected about 10% upward. Now of course, we can
assume also an upward corrected electron charge e´ instead of a corrected  and because e
occurs in  to the square, the value (672e) would offer itself here, now and then, because
1.02542=1.05144. That's already less than 10% admittedly, but if the charge is corrected, the
mass must be corrected too in the same course and it applies 1.051442=1.10552.

It would be possible of course, that there is a variety of different activated conditions of the
electron besides e´, which all are situated on the constant wave count vector. We have proven
with it that it is possible, to find a relation between the charge e of the electron and the charge
q0 of the MLE. Maybe, these two charge-bearing particles are actually identical, one time as
free particle (electron) one time bound in the metrics?

6.2.2.2. Dynamic contemplation

We have determined yet that the electron charge is (could be) equal to the rectangular
mapping of the charge q0 of the MLE onto the metrics-axis of r. What now happens, if the
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observer moves with a certain velocity or is located in an area of strong curvature or quite
simply, what's the spatial and temporal dependence of the electron charge?

If the observer is moving with a relative-velocity different from zero in reference to the
coordinate-origin, he is, in terms of physics, moving backwards on the expansion-graph in the
direction to the zero. The same is applied in the proximity of a strong gravitational-field or that
of the particle-horizon. The temporal dependence is inverse. In the natural time-direction, he
moves away from the zero of the expansion-graph.

All this depends on the value of Q0 (frame of reference), on time, distance, velocity and/or
the gravitational-potential. In order to determine this dependence, let's have a look at the model
according to figure 115 once again, namely without expansion (plays no role at this point).

Is the observer far away on the r-axis, so the phase-angle –  of the metrics, that is the
vector from the origin to the point of the observer on the expansion-graph, amounts to (almost)
– /4 (r-axis). The r-axis forms the asymptote of the expansion-graph. If one now approaches
the origin, so the value of the angle becomes greater (the r-axis turns to the left). The charge
now arises to e´=q0sin ´ (not identical to e´ and ´ of figure 117). On this occasion the right
angle ( ) survives, because with the turnover also the propagation direction of the photons
changes. In the triangle e´rT´q0 then the following relation applies:

       =  
2

 =  
2 e + arg c  dt( )        (673)
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  =  cos 2.04846 + arg c  dt( ) (674)

 e       =  q0 cos  2.04846 + arg c  dt( )      (675)

The course of the associated function in dependence of Q0 is presented in figure 118. It shows,
that the ratio of the electron charge and the charge of the MLE is almost constant across a large
area. The fine-structure-constant is just really a constant, at least in the nowadays technically
accessable domain. If approaching the origin, e.g. with velocities near c, the ratio changes. The
maximum is at Q=2/3.

Since for the angle sin g not the function c itself but their integral comes into effect, it's even
more difficult, to formulate the function in dependence of the velocity v in this case. Then, a
possible approach would be, that instead of the relativistic dilatation-factor also its integral
arcsin(v/c) would come into effect. This already an angle turns out and the relation (675)
would be then as follows:
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But the last both expressions cannot survive anyway, since there are contradictions with the
measuring results of accelerator-experiments. A noticeable discrepancy of the electron charge,
which does not have been found yet, should appear already with the now reached velocities.
Also, expression (676) corresponds to the application of the angle   from the theory of the
photon, i.e. it can be figured with the help of the angle   with (v=cM+vM). However the
integral to the time, just the way, becomes effective.

With the help of expression (675) at least it's possible to figure the function cos  in
dependence of the Q-factor. If we now would be able to figure the Q-factor as a function of the
velocity, we would have found the function cos (v) in turn. In section 6.1.2.1 we found an
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approximative solution for cos (v) ). At the same time, with the expression for the relativistic
dilatation-factor  we however found a phase-angle (v) with which we couldn't do anything
yet (593).

If we now want to express our angle  with the help of , we must take up an adjustment of the
value-ranges before (phase-adjustment), because both are different. Wanted is the difference
– , which runs over a range of 3/4  i.e. (– /4…– ):

 =  arg c  dt   
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In this connection, V is the detuning according to (589). Inserted in (675) we finally get:
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Figure 118
Ratio of electron charge and charge of the MINKOVSKIan
line-element as a function of time/Q-factor according to (675)

The small zero-angle of 0.0849646 once again seems to be a curvature-phenomenon of the
QED, at which point the value could be quite equal to zero when assuming the exact initial
conditions. Wherefrom however the factor of 3/4 exactly has been acquired? The multiplica-
tion of a phase-angle with a factor of 3/4 corresponds to the exponent 3/4 in the value. If we
look at the expression arg c dt more exactly, so c depends on the time dt. In the approximation
applies c~Q0

–1/2~t–1/4. Put into the integral we get in turn:
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R is the world-radius and  the classic relativistic dilatation-factor. Adsum, we just really
obtain an exponent of 3/4 for t and this equals the reciprocal of the relativistic dilatation-factor
directly. Thus, expression (679) would not become implausible. But it figures only an
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approximative solution in the strict sense, since it is based on the (right) solution of the wrong
differential equation. We get the exact expression by expansion of (679) with the help of (149)
as solution of the exact differential equation and comparison of coefficients ( =Q0V) to:
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 (682)

The course of both solutions is presented in the following figures. The characteristics of (682)
are following: For large-scale values of Q0 the fraction can be disregarded and the value sin  is
constant until close to c. After it  jumps up to –  directly. With an initial value of Q0=1060 e.g.
not until a velocity of c(1–10–30) a noticeable variation arises, i.e. just outside the technical pos-
sibilities. Differently, it looks like with smaller initial Q-factors. In this case there is a smooth
transition.

0.5 1. 1.5 2.

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

v

c

101100
102 106

Exactly

Approximation

Exactly

Approximation

Figure 119
Phase-angle  of the observer
as a function of the velocity v=vM

Here, a value of v=vM for the velocity has been assumed, just in reference to the metrics. But
with smaller initial Q-factors, this case does not correspond to the realities, since the angle 
already with v=0 should be different from – /4. So we have to add the metric vector cM even
here, in order to take the influence of the non-irrelevant basic-curvature into account, as it e.g.
appears near a particle-horizon. This stands in contrast to the original statement, made in
section 6.1.2.1, which I withdraw herewith. The metric vector just have to be added to all
velocities, even if the corresponding expression is containing Q0, 0 or r0. The real(?) course of
the phase-angle  as well as of the ratio between the electron charge and the charge of the MLE
resulting from it, is presented in figure 120 and 121.

For the decisive Q-factors between 103 and 1060 the fine-structure-constant is just really a
constant (the value 103 already has been achieved 3.2·1099s after big bang). Within or behind a
particle-horizon, it has a different value however. If we would move the origin of the frame of
reference into the proximity of a singularity, we would measure a total different charge-ratio
dependent on the velocity, apart from the spatial share, which has an effect on e and q0 at the
same time, and is available in each frame of reference. Additionally of course, e is varying with
q0, which should not be forgotten.
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But expression (679) and (682) are applied for positive velocities only. If we are e.g. near (out-
side) a SCHWARZSCHILD-radius, the velocity is directed toward the centre of the singularity. If
we now are moving off this place with a velocity, with which the sum cM+vM becomes nega-
tive, we would have left the region of influence of the singularity. The new velocity is positive
in turn, directed toward the particle-horizon of the universe R/2.
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Figure 120
Phase-angle  of the observer
as a function of the velocity v=vM + cM
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Ratio of electron charge and the charge of the MINKOVSKIan

line-element as a function of the Q-factor and the velocity v=vM + cM
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To the conclusion still to the topic particle-accelerators. I had promised to examine this point
once again concerning the additional share of the mass- and charge-increase more exactly. The
question is, do the additional shares cancel out even in the particle-accelerator? First let's recall
the different dependences:

  
mc2 ~  Q 0

5

2 h  ~  Q0

5

2 (683)

  
 ~  Q0

3

2 h  =  q0 0  ~  Q 0

2

2 q0  ~  Q0

1

2
0  ~  Q0

1

2 (684)

The approximation equation suffice for the technically accessible area. At present, as well
the electron charge as the PLANCK's quantity of action are assumed to be genuine constants.
The same is applied also to the magnetic induction B = d /dA, by which the electron is kept on
its track in the accelerator.

Now we are concerned with two different kinds of forces. On the one hand, the electron is
subject to the centrifugal force FZ = mev/r, on the other hand it generates a LORENTZ-force
FL= e (v ). Both are opposite to each other. It applies v r, just FL = e v . For the cyclotron
(B=const) and even for the synchrotron (B const) we get the classic expression with it:

r    =  
( ˜ m ev)

eB
  ~  v       (685)

According to this model as well me, e as the induction B are now subject to an additional red-
shift. Altogether applies to the electron mass me~Q0

–5/2~ 5/3, to the electron charge
e~Q0

–1/2~ 1/3 and, based on the fact, that the track-radius r and with it also the surface-elements
dA of the magnetic field B are not subject to a length contraction (for the observer), to the
induction B~ ~Q0

–1/2~ 1/3. Inserted in (685) we finally get with

r    =  

5

3 ( ˜ m ev)
1

3 ˜ e 
1

3 ˜ B 
  ~  v     (686)

the same result as with the classic model, where we have regarded e and B as constants. The
additional mass-increase just really cancels out.

6.2.3.          The classic electron radius

Meanwhile, we know that there is actually none, the electron is described by a wave-
function indeed. But the electron disposes of particle properties too. Now, we have described
the MINKOVSKIan line-element as a ball-capacitor which moves in its inherent magnetic field.
Additionally, we have assigned a radius of r0 /(4 ) to it, which shows similarities with the
procedure on the definition of the classic electron radius.

In this connection one assumed at that time that also the electron resembles a ball-capacitor
with a certain capacity, which should depend on the radius of the electron. Since the charge
was well-known, there was only a certain radius, at which energy, charge and capacity could
be brought in accord. This is defined as follows:

re    =  
e2

4 0 

mec
2   ~  1 (687)

Here we have applied the relativistic dilatation-factor  for the mass on the spot. With it, the
classic electron radius, according to the classic understanding (interesting doubling), traces the
function of the relativistic length contraction, which is not a contradiction. Now we insert the
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real values for the mass and the charge of the electron obtaining the expression for the
”modern” classic electron radius:

re    =  

2

3e2

4
0 

5

3mec
2

  ~  1  ~  Q0

3

2       (688)

The additional mass-share and the charge-increase cancel out even here. Even according to the
”modern” opinion the radius is subject to the plain relativistic length contraction with it. So
there is an essential difference to the capacitor of the MLE, whose radius is only proportional
to Q0.

6.2.4.          The BOHR's hydrogen-radius

Even at the atom, a similar effect can be observed. For that purpose, as a simple example,
let's consider the classic BOHR's hydrogen-radius, which of course does not correctly reflect
the real conditions, but it can serve as a ruler for the proportions within the atom. According to
[5] it is defined as follows (we make use of the approximation once again inserting  for the
mass immediately):

  

r    =  
4 0h

2

mee
2   ~  1      (689)

Even the BOHR's hydrogen-radius is subject to the plain relativistic length contraction with it,
i.e. the atomic scales are observed shortened about the factor –1 exactly like a macroscopic
body. What does it look like with the additional shares however?

  

r    =  
4 0

4

3h
2
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3me

2

3e2

  ~  1  ~  Q 0

3

2   (690)

The additional shares cancel out even in this place. That means, as well the dimensions of the
particles as the ”track-radii”, i.e. the dimensions of the orbitals, are subject to the plain relativi-
stic length contraction only. Else, the atoms would have had different chemical qualities to a
former point of time of the expansion of the universe.

6.2.5.          The COMPTON wave-length of the electron/proton/neutron...

By analogy with [5] it is defined as follows (representatively, we consider the electron only):

  

  =  
h

mec
  ~  1 (691)

Even this expression well agrees with the statements of the SRT in turn. Now, with the
additional relativistic shares, we obtain the following expression:

  

  =  

2

3 ˜ h 
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3 ˜ m ec
  ~  1  ~  Q0

3

2                =  
˜ h 

˜ m ec

2

3
sin  

sin  

       (692)

The shares cancel out even here in turn. But the exact expression reads different and is
presented on the right-hand side, since it's about a (space-like) wave-function.
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6.2.6.          The BOHR's magneton/nuclear magneton

The BOHR's magneton is the magnetic dipole-moment of the electron, the nuclear magneton
the magnetic dipole-moment of the proton. Both differ only in the mass (me respectively mp) in
the denominator. According to the classic opinion applies:

  

μB =  
eh

2 me

  ~  1         (693)

Inserting the additional shares we get here:

  

μB =  

1

3 e
2

3h

2
5

3me

  ~  
2

3  ~  Q0       (694)

In this case, we obtain an aberrant result. Since the magnetic moment however always is to be
considered in connection with a charge or a magnetic flux, these are proportional –1/3, the
balance of the additional shares occurs even here. In sum, one can say that the spatial share at
the total-red-shift has no quantitative or qualitative influence on the physical rules at the
observer. It has only a cosmologic meaning and plays an essential role on the specification of a
gravitational-theory.

6.2.7.          The gravitational-constant

We have seen, that PLANCK's quantity of action is not a constant but a function of space and
time. From the definition of 0  (55) arises, that this must be applied even to NEWTON's
gravitational-constant. We get after rearrangement:

  

G  =   
c3

μ0 0hH
    =     

2c3t

μ 0 0h
    =    

c2

μ0 0h
R     (695)

By substitution of (138) we finally get:

  

G  =   

c2

μ0 0h1

 Q0R (696)

At this point, the product Q0R appears for the first time, which leads, because of the
logarithmic periodicity of the universe, to the interesting question, what is in the distance Q0R
at all? Possibly there is a superordinated universe of which our own  forms a microscopic part
(r0) only? The cosmic background-radiation, be continued accordingly, would form the metric
radiation-field of that superordinated universe then.

6.2.7.1. Temporal dependence

We replace Q0 and R with the corresponding time-functions (697) and transform onto our
local coordinates (698) afterwards:

  

G  =     

2c3t

μ0 0h1

 2 0t         (697)
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The temporal course at the point r= 0 is presented in figure 122 and 123. The value of the
gravitational-constant at the beginning of the expansion has been zero, as we can well
recognize in figure 120. In figure 123 is also filled in the value of the gravitational-constant 1s
after big bang.
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Figure 122
Temporal course the gravitational-constant
at the point r=0 (linear scale)

Therefrom results, that gravity could not have played an essential role to a point of time
t<7.747ns (quantum-universe). Therefore gravity and quantum-effects are excluding each
other. Only, this exclusion is not absolute. Rather there is a transition-zone, in which as well
gravity as quantum-effects in the scale of the entire universe have been existed. To the point of
time t=0 and, qualitatively seen, shortly thereafter there was no gravity anyway.

By the way, that could be the explanation for the fact, that no gravitational-quanta could
have been detected until now—there is no quantum-gravity. This circumstances actually
should be clear. It does no sense however, to calculate the gravitational-force of a particle,
about which one doesn't know at all, at which point it's located at present or where it will be
soon. With somewhat good will, one could call the space-like photons gravitational-quanta or
even the MINKOVSKIan line-elements themselves. More final particularly for that reason,
because their qualities (they are bosons with the spin-quantum-number 2) give the best match
with the quanta of the gravitational-field predicted by the SRT. In this connection however is
to be paid attention to the fact, that they aren't freely manoeuvrable but rather are forming the
space respectively the space-time itself.

The expansion of the universe, increases also the distance of two masses, which are coupled
by gravitational-forces. That increase is compensated by the increase of the value of the
gravitational-constant. Whether this compensation is complete, we will examine more exactly
at the end of this section.



206

lg
G  

m3kg 1s 2

5. 10. 15. 20. 25.

-30.

-20.

-10.

  7,31143 10
37

lg
t

s

Figure 123
Temporal course of the gravitational- constant

with respect to the local age (logarithmic scale)

6.2.7.2. Spatial dependence

If a temporal dependence exists, so there is also a spatial dependence. We directly get the
relation by expansion of (697), the local world-radius depends on the time only.

  

G  =   
2c3t

μ0 0h1

 (2 0t r)   (699)
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(700)

Expression (700) can be split also into a spatial and a temporal share. Here the spatial share
goes down with the double exponent. Actually also a rotation belongs to it, particularly on
small values of Q0, which did not has been considered here (sin ?). This however doesn't act
on on G but on the involved masses, as we will see yet. The functional course is presented in
figure 124. The coordinate-origin is the point r=0.

It shows an interesting phenomenon. The value of the gravitational-constant decreases down
to zero when approaching the local world-radius R/2. Beyond this point however, it becomes
negative, the attraction turns into a repulsion. The attractive effect of the gravity is just
restricted to a maximal distance. Objects as well as structures, whose dimensions are greater,
cannot exist in consequence. This is probably the reason, why no larger structures could be
found above the superclusters in the cosmos. Directly at the particle-horizon, the gravitational-
constant is equal to zero. Maybe a space traveler, who overcomes a SCHWARZSCHILD-horizon,
doesn't come out respectively come in as a stamp as expected.
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Spatial dependence of the gravitational-constant
to the point of time T (linear scale)

The course behind the event-horizon is hypothetical. One can understand from figure 61 that
the energy of the metric wave-field decreases very quickly behind R. Probably there is even
nothing, unless other universes, whose external fields are overlaid our inherent one. An action
out of this area into the our cannot take place anyway. The not insignificant negative value of
the gravitational-constant at this place may be the cause for the expansion of this
superordinated universe however.

In figure 125 the course of the gravitational-constant for the case of a constant wave count
vector is presented. This corresponds to a body moved with the metrics. For the distance-
function (329) has been inserted. Expectedly, the course depends on the initial-distance (R is
the present-day value). With it, a body, which is initially behind the particle-horizon (–G),
already can be overtaken by this.

With any initial-distance the gravitational-constant increases proportional to t3/2 With
distances greater than 0.01R however there's going to be a temporal shift, i.e. the local value is
achieved later on. This can be seen very well, if a logarithmic scale is applied to both axes of
the function of figure 125 (not presented in this place).

Finally we want to examine, whether the spatial share cancels out even on the gravitational-
constant. First of all we want to have a look at the entire case for that purpose, including the
spatial share and expression (698) which we will transform into units of Q0 (approximation):

G  =   G1Q0
3  =  G1 

2 (701)

With it the gravitational-constant depends on the velocity too, a fact, which actually already
emerges from the classic theory (SRT), because the distance between two celestial bodies, with
an observer moving with the speed v, is observed shortened about the factor –1. This would
correspond to a temporal increase of the distance r~t3/4 as with the wavelengths. Only, it is not
accepted in general. Rather the gravitational-constant is assumed as constant. Then, according
to the classic opinion, the distance r would not increase then again but decrease proportionally
to t–3/4, which actually cannot be the fact, isn't it?

Particle-horizon Event-horizon
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Temporal course of the local gravitational-constant
in the distance r with constant wave count vector

Back to the space-like share: For that purpose, simplifying, we look at two bodies with the
masses M and m which are in the distance r«0,01R to each other. Another restraint is that
M»m should apply, furthermore m should describe an orbit around M, just all together
conditions, with which the classic NEWTON's relation can be applied.

We place the coordinate-origin into the centre of M which only works, if M»m applies.
Otherwise, both masses would rotate around a common center of gravity outside both bodies.
The kinetic energy of m amounts to 0.5·mv2 and is subject to the same energetic red-shift as all
other energy-forms with it. The velocity v is constant, since as well dx as dt show the same
red-shift which cancels out with it. Thus the velocity within a frame of reference is absolute. It
only must be transformed with an observation from another frame of reference off, a fact,
which is misinterpreted frequently. The mass M wields a gravitational-force Fg on m with a
magnitude of:

Fg  =  G
Mm

r2  =  
mv2

2r
      (702)

The right expression is the centrifugal force FZ of the mass M located in the orbit. We get after
cancelling and rearrangement to r:

r  =  
2MG

v2 (703)

The track-radius just only depends on the velocity and on M, not on m. Similarly, it appears
with the acceleration of gravity g, obtained by rearrangement of expression (702):

g  =  
MG

r2 (704)

Therefore equation (704) also is called the classic gravitational-field-strength. Since it's
however based on the relativistically wrong relation F= m·g, it is not the wanted exact
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expression. With distances of r»0,01R another problem comes into addition. This is given by
the fact, that expression (700) no no longer applies to two bodies in the distance r to each other
(gradG 0). That means G is only the value observed off from the coordinate-origin (we),
which is valid for two bodies standing locally close together in the distance r from that origin
(close may indicate even the magnitude of an entire planetary system in this case). With it, G
becomes a local quantity or with other words: Since the far distant area is, in terms of
cosmology, younger, we even observe a smaller value of G. there.

If we want to determine the gravitational-constant, which comes into effect across the entire
distance r, we have, purely formally, to replace r by dr in (700) and to integrate with respect to
r afterwards. Since we are actually interested in the distance r only, we start from (703)
immediately differentiating both sides first of all:

dr  =  
2

v2 d(MG)    (705)

On this occasion, we have already factored out constant factors. This case corresponds to an
”apportionment” of the gravitational-constant to the intermediate line-elements dr, which
already indicates a non-insignificant deviation from the classic model. According to this, a
gravitational-action namely should propagate instantaneously. As a result of astronomic
observations we however know, that even gravity propagates with speed of light only. The won
result would not correspond to the physical facts with it. Because of the apportionment, we
avoid some of the disadvantages connected with it. But we must not forget, that we look at one
special case (M»m) only, which just agrees with the classic model, in this connection.

As next, we substitute the exact expressions for M (659) with v=0 and G (700). That means,
if we find a solution for the distance r, so this is valid only then, when we get as result the
distance-function with constant wave count vector (v=0). The expression dr is actually our
line-element r0. This increases according to r0 ~ Q0 ~ t1/2 ~ –2/3 Therefore, we must multiply it
with (1+t/T)1/2 in order to take the temporal dependence into account. We get the following
expressions with it:
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Since r0 is not infinitesimal (infinite structure) but has a certain minimum-size (finite
structure), the laws of the differential calculus actually are applicable only then and even only
approximatively, when r0 is small in reference to the world-radius R. Since the ratio is given by
the relation R = Q0 r0 = Q0

2 r1, thus we can apply differential calculus even only from a Q-factor
of Q0 103 on, according to the demanded precision.  Then the value of both trigonometric
functions is 1 however, so that they can be disregarded:
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 d( ˜ M ̃  G )       for Q0  > 103 (708)

The accomplishment of the calculation for Q-factors Q0 <103 we totally could have spared
ourselves, since the other physical conditions are so extreme then, that macroscopic bodies
cannot exist at all. Additionally quantum-effects get the upper hand, so that it becomes useless
at all, to talk about a ”distance” between two ”bodies”. Therefore from now on, we use the
equality-sign continuing with the following transformation of (708):
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We have already solved this integral in section 4.5.1. We make use of the same substitution:
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With the substitution  r =  F˜  r  we acquire the final solution:

a  artanh 

 ˜ r F

a
artanh  ˜ r  ˜ r (F 1)  =   0      r(t) =  ˜ r F 3(t)     q.e.d. (713)

This however is nothing other than our distance-function with constant wave count vector
(322), our approach just has been correct. Particularly, we can draw the following important
conclusions from it:

1. A body, which doesn't move in reference to the metrics initially, will not do
this (by itself) even in future.

This statement is identical to the impulse-conservation-rule.

2. The distance between two bodies, which don't move in reference to the metrics
(free fall), rises according to the distance-function with constant wave count
vector.

3. The equation-system to the calculation of the distance between two bodies is
under-determined. Thus, there is an infinite number of possible solutions with the
initial conditions v =v0 .

The last statement is of particular importance, since it results directly from equation (659), in
which we had set v=0. But any time-functions are possible in this place, which lead to the
infinite number of possible solutions. This even cannot be different at all, otherwise each
navigation would become impossible, each body, what is not the case as you know, would be
bound to its hereditary place forever. Thus, it is also pointless to look for an universal solution
for this problem. Of particular interest however is the examination of the conditions on bodies
in the free fall, which we have taken up here.

Now at this point, we are started from the classic model for the special-case M»m having
considered the masses and the gravitational »constant« as a variable. At the same time
however, we have succeeded to eliminate as well the masses M and m as G from the solution
(713). And if these values can be eliminated with an orbit, this is working even with other
track-forms. In consequence, we can say generalizing:
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IX. For the cosmologic expansion of masses coupled by means of gravity, the
properties of the involved masses are not responsible, but the qualities of
the space exclusively. Thereat the shape of the tracks of the involved bodies
is irrelevant. All average distances and proportions are changing according
to the same function, the distance-function with constant wave count vector.
This depends on the initial-distance.

Then again even the question for the propagation-velocity of gravity becomes pointless with
it. The case is interesting as well, when a macroscopic body is approaching a singularity with a
velocity v 0.

With strong curvature then, we have to consider the angles  and  after all. As a result the
field-lines of the gravitational-field near a black hole are ”rolled up”, so that material bodies, in
terms of cosmology, are “moving away“ from the source not axially but warped around a
certain angle. Since they are attracted at the same time, they finally fall into the singularity,
when the approaching-velocity becomes greater than the expansion-velocity of space, which is
essentially higher than usual there.

This case however we cannot treat exactly with the classic approach. This has been
recognized by EINSTEIN already soon and he developed the universal relativity theory (URT) to
which we will devote ourselves in the next chapter. In this connection the fact, that we have
acquired a contradiction-free result in this work even with a strongly changed classic approach,
does not indicate, by no means, that the statements of the URT are wrong. Rather, latter ones
figure a ”simpler” and more exact description of the same facts. For that purpose we must
examine then again, whether the statements of this model are compatible with the URT (or
vice-versa).
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7.                The universal relativity-principle

7.1. The fundamental values of the gravitational-field

7.1.1.          Potential and field-strength per length unit

Before we employ deeper examinations in this section, we first want to deal with the
fundamental values of the gravitational-field, since generally ignorance or confusion exists at
this point concerning the individual quantities and names. Once again, we want to apply the
approved method of the comparison with other physical field-quantities e.g. with the electric
and with the magnetic field, even if a takeover 1:1 to the gravitational-field won't be possible
because of it's particular properties.

Let's begin with the gravitational-potential: With the electric and the magnetic field in
general, there is a potential [V] as well as [A], at which point after division by a length
unit 2 r (circumference of the field-line around an imagined punctual source) the expression
for the field-strength per length unit is acquired (btw. even a second field-strength per surface
unit exists). The unit [m] always is written in the denominator then, the field-strength results in
units like [V/m] as well as [A/m] with it:

H  =  
2 r

 
 

 
 

 er  =  
2 r

er         Magnetic field-strength     H-field (714)

E  =  
2 r

 
 

 
 

 er  =  
2 r

er         Electric field-strength        E-field (715)

In this case, er is the unit-vector. With the magnetic field in general,  is to equate with the
current i through a conductor. With it, the field-strength in the vicinity of a discrete conductor
arises from the difference of the potential in the infinite, this is equal to zero (it however can be
even another potential, e.g. that of a second conductor ( 0)), and the potential in the distance r.
For this reason, the field-strength of a single punctual as well as of a linear source is negatively
defined in general.

What does it look like with the gravitational field-strength however? The unit in the denomi-
nator probably would be [m] in turn. But what is written in the numerator then? The answer is:
also a length. Then, the unit of measurement would be [m/m], that means [1]. About which
length could it be here? Best suitable would be the PLANCK's fundamental length (r0), which, as
we have seen, figures a gauge for all local proportions. We however use the value r0 /2, which
figures the smallest possible space-like vector. With it, the gravitational-potential, which we
want to mark with U for the moment, would be defined as follows:
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r0
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The factor 2  doesn't appear in this place, since gravity should not be joined with a rotation but
with an elastic deformation of the individual line-elements. Now, from the preceding
contemplations, we know that the maximum space-like distance in the universe is R/2. This
actually is applied even to the electric and the magnetic field. Since both fields however are
oriented in an inverse manner, i.e. time-like (the utmost time-like vector is R), the difference is
microscopic. The corresponding term is just not exactly but only almost equal to zero then, not
so at the gravitational-field. So, expression (716) reads correctly:
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U  =  1
1

Q0

 

 
 

 

 
  er (718)

From the URT, we now know the relation for the g00 -component of the metric tensor, which
has the form of expression (718) approximately. It applies:

g00 =  1+
2

c2 +O
v

c

 

 
 

 

 
   1

2MG

rc2      with  =  
MG

r
(719)

In this connection,  is NEWTON's classic gravitational-potential and O(x) a series converging
against zero. In the approximation, with small curvature-values (x) 0 applies. It however
has not been successful until now to determine this function exactly. Rather, it belongs to the
most wanted expressions in the URT. In general the calculation is aborted behind the linear
term. Therefore only estimations for the case of weak gravitational-fields can be stated.

Expression (719) on the left (g00) is even wrongly called the relativistic gravitational-poten-
tial. The right name had to be gravitational-strength however. Then the gravitational-potential
is, in terms of correctness, identical to the half PLANCK's fundamental length r0 /2 at the place
of observation (frame of reference).

Using our model, we can specify the exact expression for g00 without problems however. By
substitution of (695) we obtain at first:

g00 =  1 2

M

r
m0

r0

with
  

r0

m0

 =  
G

c2  =  
R

hμ0 0

 =  
r0

2

h 0 Z0

(720)

a simple ratio mass/radius to the corresponding values of the MINKOVSKIan line-element. The
right-hand expression of (720) equals, with the exception of a factor 8 , the coupling-constant
in the field-equations of the URT:

  

G ik
=  

8  r0
2

h 0Z0

 Tik  =  
8  cr0

2

h
 T ik (721)

In this connection, Gik is the geometry of space, Tik the energy-impulse-tensor (inside the frame
of reference). With it, gravity rather seems to be an electro-dynamic effect. However back to
g00. Since g00 is quadratic, we better use the value (–g00 )1/2. From the SRT we know that this
value is identical to the reciprocal of the relativistic shrink factor . This appears even in the
expressions of the LORENTZ-transformation. It is responsible for the relativistic red-shift of
time- and space-like photons. In section 6.1.2.2. we had determined that this deviates from the
classic value :

1
=  g00  =   1

v2

c2  Classic (722)

Really, the value :

1
=  g00  =  

v

c
cos +  1

v2

c2 sin2  =  
sin

sin  

      (723)

becomes effective, by which the reciprocal of the relativistic shrink factor  becomes
proportional to the phase rate  of the propagation-function of an EM-wave. That's correct,
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since the relation = 2 /  directliy turns out the wavelength. Thus we can say that (723)
exactly applies. We only have to find a possibility to substitute the velocity v by MGr–1c–2 We
get the solution by rearrangement of (703) with respect to v:

g00  =  
 2MG

rc2 cos +  1
2MG

rc2 sin2  =  
sin

sin  

(724)

g00  =  
sin

sin  

       Gravitational field-strength     g-field (725)

But expression (724) only applies with disregard of cM and for vM = 0. On the calculation of the
trigonometric function sin  in (725) we must use the following substitution for the velocity v:

v  =  cM + vM +
 2MG

r
(726)

With it, we would have clearly determined the function (x) for the velocity, with the result,
that it's no longer required, since we know the exact expression. However, expression still
contains (726) the space-, time- and velocity-dependent values M and G, so that we cannot do
much with (724) and (726). By substitution of (658) and (700) we acquire the following
expression (vM+vG = 0):
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(727)

But the variables r in the numerator and in the denominator of the right side are identical only
then, when the mass-centre coincides with the zero of the coordinate-system. The navigation-
gradient appears here once again. By comparison of coefficients with (718) we get for the Q-
factor:
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(728)

Q0 =  
c2r

2 ˜ M ̃  G 

sin

sin  

 =  
r
˜ R S

sin

sin  

(729)

RS is the SCHWARZSCHILD-radius of M. Expression (729) applies because of (404) but only
outside the mass-distribution. Thus the point Q0 = 1 is not in the distance RS but negligibly
inside. With disregard of the trigonometric functions we now are able to rearrange (728) in the
following manner:
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(730)

With larger values of r, we have to replace r by dr in turn, further see (710). With it, even here
we acquire the same result as with our half-classic approach, the distance-function with
constant wave count vector. Since the radius r ascends continuously during expansion, the Q-
factor in the proximate vicinity of a body moved with the metrics ascends continuously too.
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If we want to determine the exact solution (727) inclusive the trigonometric functions, we
first require a solution for c = ƒ(M, G, r). On this occasion, we use the relation Q0 = 2 0 t
applying (728) in (206) or (209). Since expression (729) is containing the function we actually
want to determine, a variable-separation is impossible, there is only an implicit solution in turn,
which can be calculated with the known numerical procedures. We expect a solution behaviour
like that of the distance-function with constant wave count vector (322) with a limited validity
range.

For the reasons already discussed in the preceded section, there is however, in terms of
physics, no point in it, to determine the solution under inclusion of the trigonometric functions.
By the way, these only have an effect on objects in the free fall in a distance of r R/2, i.e.
directly at the particle-horizon, so that we can calculate with the plain distance-function for the
most part (99.99%).

After equate of (718) and (719) with the approach g00 =U and comparison of coefficients we
obtain with (723) an important relation:

g00 =  
1
˜ Q 0

cos +  1
1
˜ Q 0

sin2
Gravitational field-strength  g-field (731)

g00  
1
˜ Q 0

+  1
1
˜ Q 0

   1
1
˜ Q 0

Approximation (732)

That means nothing other, than that the value    is identical to the frame of reference, as we
already had suspected (  is a direct function of Q0 and independent from v). Since even the
velocity depends on the frame of reference, we get for:

˜ Q 0 =  
c2r

2MG
=  

c2

v2 with  v=cM+vM+vG     (733)

Is in this connection is to be paid attention to the fact, that M and G depend on cM and vM at the
same time. Now one could think, we would have solved even the problem from section 6.1.2.1.
with it, namely in what extent the Q-factor depends on velocity and time and space?
Unfortunately, this is not the case. If we set vM and vG to zero, namely only approximatively
applies:
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(734)

It agrees with our approximative solution for a non-expanding universe (597) indeed, but it
cannot be quite exact, since the Q-factor for an observer moved with the metrics could not
become smaller than 1.378 in this case. At least (734) applies for Q-factors greater than 10
even for an expanding universe. For the area below we must come up wit something else,
which is problematic in so far, as there is no explicite inverse function Q0 (cM) defined (the
inverse function of the phase-angle Q0 (arg c) does). But if we regard the frame of reference as
primary, expression (734) is no longer needed at all.

In the URT, space and time are equal dimensions. The definition of the gravitational strength
as dimensionless quantity admits even another interpretation with it. Beside [m/m] even any
other combinations are possible like e.g. [s/s], [kg/kg] or [Js/Js]. As is generally known, the
gravitational-field affects the time lapse and even quantities like e.g. the PLANCK's quantity of
action doesn't remain unaffected with it. Generally applies: The gravitational-field is connected
to everything. Thus we should not be surprised, if e.g. the time appears in the denominator of
an expression instead of a length unit. More in the next section.
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7.1.2.          Charge and field-strength per surface unit

In the electrotechnics, there is even another kind of the field-strength. This is defined as flux
resp. charge per surface unit. The units of measurement are [Vs/m2] for the magnetic induction
as well as [As /m2] for the electric charge-density, even called influence. The proportionality-
factors for the calculation from H and E are μ0 and 0 resp. μ and .

B  =  
d

dA
 er  =  μ0H        Induction      B-field (735)

D  =  
dq

dA
 er  =  0E        Influence      D-field (736)

These are exactly the factors of the COULOMB's and the FARADAY's rule (see table 6). Both
have large similarity with the NEWTON's gravitational-rule. In this the gravitational-constant
steps in place of 0 as well as of μ0. Even in the gravitational-field there is a similar quantity,
which we can compare with induction and influence, the NEWTON's gravitational field strength
(acceleration of gravity). This is defined as follows:

a   =  
MG

r2  er        Gravitation     a-field     (737)

We use better the letter a for the universal acceleration, since we cannot use the expression g-
field twice. The unit of measurement is [m/s2]. Here, a difference exists to the electric field-
quantities however. But since space and time are equal dimensions, this is no contradiction.
Looking at expression (732) more exactly, so there is a surface in the denominator even here.
The numerator figures something like the gravitative ”charge” as well as the ”flux” then. By
expanding with m2, we can write the unit of measurement even as [(m3/s2)/m2], at which point
the bracketed expression corresponds to the product MG, and that without change of the
physical content. Since we do not know exactly yet, what it is all about, we will call this
product the gravitational »flux«  for the moment.

a   =  
d

dA
 er        Gravitation   a-field (738)

A calculation from the field-strength (726) with the help of a coefficient, like in the
electrotechnics, is unfortunately impossible. Now, we are able to declare both, the relations for
the charge as well as for the flux:

 =  BdA        Magnetic flux (739)

q  =  DdA        Electric charge (740)

 =  adA        Gravitational »flux« (741)

Now we want to examine, what's the physical meaning the expression . So, the unit of
measurement [m3/s2] contains the length and the time, just only parameters of the space-time.
Even with our semi-classic approach, we could observe the same. That well agrees with the
statement of the URT that macroscopic bodies are moving on world-lines, for whose course the
qualities of space carry responsibility. As a result the guess arises, that the actual gravitational-
charge is not inside, but rather outside the involved bodies.

According to the classic theory, the mass is equal to the gravitational-charge. We want to
maintain this name, since there is also a retroaction of the mass onto the metrics. The expres-
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sion  would be something like a description of the condition of the metrics outside the mass-
distribution then, an ”induction” of the mass.

A comparison of the unit of measurement with (721) finally leads to the solution:  is
identical to the geometry Gik of space. Because Gik is a tensor however, we cannot directly
equate it with  (scalar). Thus we keep the symbol . From the same reason, the application
of  is unusual. Instead, the classic NEWTON's gravitational-potential  (719) is being used.
Nevertheless we can excellently calculate with . Here just some examples:

a  =  
r2  er RS =  

2

c2 with  =  MG (742)

RS is the SCHWARZSCHILD-radius again. And even the NEWTON's gravitational rule has the
same shape as the COULOMB's rule then (proportionality-factor in the denominator, see table 6).
Thereat however, we must not forget, that the mass itself is depending on the properties of the
surrounding space at the same time.

Table 6
Field-quantities of the electric, magnetic                                                  1) Physically pointless
and gravitational-field in the comparison                                                  2) Permanent magnet                  3) Q0 10 5

Field quantity Nomenclature

Description MMF -- EMF -- MLE -- --

Potential [A] [V]  [m]
Planck's fund. 

length

Description Magnet. fieldstr. -- Electr. fieldstr. -- Grav. fieldstr. -- --

Fieldstr. 1       
Gravity-

potential

Description Mag.motive frce -- El. charge -- Grav. charge -- --

Charge V [V]  [As] M [kg] Mass

Description Magn. flux -- El. current -- Geometry -- --

Flux  [Vs] I [A]
 = GM

 Unusual
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 --
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With the action of the mass on the geometry, it's just really about a sort of induction.
Although, this is only of 1st order, while the action at the EM-Feld is of 2nd order. That has
effects on the symmetry of the considered field-quantities. Because of the order 2 there is an
electric counter-quantity to each magnetic quantity and vice-versa (cross-symmetry). With the
gravitational-field, this is not the case. If there are any symmetries, then these exist to other
quantities of the gravitational-field itself (self-symmetry).

More about it we can find in table 5, which specifically has been worked out, to uncover
such symmetries. Indeed, some appear fetched far however. So, some relations apply only
theoretically, as e.g. the expressions marked with a star (there are no magnetic point-charges).
The magnetic charge-density (dipoles!) appears only with the permanent magnet and is depen-
dent also from their orientation. The electric current-density actually belongs to the electric
current-field and the gravitational-pressure is an unusual quantity. More final, one could des-
cribe as the pressure a mass-distribution exerts on the metrics, (applies only inside a mass-dis-
tribution).

However even the examination of the product MG is interesting. If we replace M by the
expression h D /c2  ( D is the DEBROGLIE- angular frequency of a particle) and G by (695), we
acquire the following relations:

 =  MG  =  
c

μ0 0

D

H
 =  r1c

2 D

H
 =  r0c

2 D

0

 =  r0
2c D       (743)

RS  

=  
2

c2  =  
2

0Z0

D

H
 =   2r1

D

H
 =   2r0

D

0

 =  2
r0

2

c D       (744)

Except for the frequency D only fundamental values of the metrics and the subspace appear
even here. With it, we can say, the gravitational »constant« is actually only an artificial
mathematical structure, in contrast to μ0 and 0 as genuine fundamental physical constants.

How could the gravity work however? The masses interact with the metrics, not however
together. The gravitative action itself is wielded by the metrics or more simply, without metrics
no mass and no gravity. In absence of the metrics, any bodies or particles would be subject to
the strong interaction only, since this is mediated by the subspace. On the other hand, the
presence of the metric wave-field prevents the particles to be subject to the strong interaction
across larger distances.

We already had determined, that the inert mass is nothing other, than the resistance, with
which the metrics counters the body during acceleration. On the other hand, one also can
imagine the active and passive gravitating mass to be caused by the action of the mass on the
metrics as well as vice-versa.

If a mass-distribution exist at a place in the metrics, so this consists, for one thing, of a
certain number of particles (fermions) with the DEBROGLIE-frequency D. We had worked out
a model in section 4.6.4.2.5. explaining the redshift of masses and the symmetry-breaking
between normal and antiparticles. According to this model, the particles actually have a very
much larger mass, than we can observe through the metrics, at which point normal particles are
associated with a frequency smaller than, antiparticles on the other hand, with a frequency
greater than 0.

During the interaction of a particle with another across the metrics, only the energy h D

becomes effective then and even to the shape of a discrete particle only this amount is required.
The left-over should be added by the metrics. With the pair production however (even
virtually) we require no additional energy at all. The energy-transfer between particles and
metrics happens by means of space-like photons.

So simply as expected, the relations the relations doesn't seem to be however. For one thing,
the dimensions of the particles are essentially greater than r0, so that there is a large number
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of line-elements within a particle. Both, as well the particle as the metrics, however are wave-
functions too, which overlay each other, so that, because of the non-linearity, the difference-
frequency – D occurs with ”normal”, the summary frequency with antiparticles indeed. Then,
this summary- respectively difference-frequency determines our ”actually very much larger
mass” and with it even the dimensions of r0 within the particle, at which point a lower
frequency corresponds to a higher value of r0, (larger Q-factor, larger dimensions).

These larger line-elements however occupy more space than usual, so that in the effect there
are even less line-elements within a macroscopic body, than usual. Line-elements are quasi
pressed out off the body. In order to find place, there's going to be a compression of the
PLANCK’s fundamental length outside the body, which corresponds to a smaller Q-factor as
well as a higher curvature. Only with increasing distance the value r0 re-adapts to the average
of the universe. As a result of the contraction there's going to be an attraction between the
involved bodies. The pressing out itself is not the induction but the gravitation of the mass
then.

This model is contradiction-free for ”normal” particles, but it demands the existence of ne-
gative masses (with antiparticles the relations are inverse,  is negative), which is not a pro-
blem because of the line-theoretical contemplation of wave-propagation. Whether these nega-
tive masses exist in a sufficient quantity, we must answer with no however, since there was a
symmetry-breaking caused by the upper cut-off frequency of subspace to the point of time t1/4

(input coupling), the point of time, at which most fermions have been formed. In this case, the
shape of particles with the (higher) summary frequency (antiparticles) has been less probably
than that of normal particles with the (lower) difference-frequency. Then, after the unavoidable
annihilation the supernumerary ”normal” particles survive.

4.4. The nature of gravity

We have succeeded successfully until now in avoiding the usage of tensors. This will be
different from this point on. The reasons are the properties of gravity, which in contrast to the
EM-field, does not shall be connected with a rotation but with an elastic deformation of the
metric space-lattice (crystal) [1].

And this just not can be  processed with a purely vectorial contemplation. For that purpose,
the mathematical tool of the tensor-algebra has been created, originally used to the calculation
of tensions in crystals. Thus, it appears quite reasonable to use this tool even for the processing
of gravity problems. Interestingly enough, even authors, who don't consider the space as a
crystalline structure, are using the tensor-algebra for the same purpose.

Primarily, I intended to interrupt this work at this point in order to reserve a course in
cryptology. Fortunately, d´INVERNO has pulished a textbook [30], in which the ways of solving
such tasks are described in detail. Although these descriptions are evenly distributed across the
whole book, so that we are bound to read everything.

Simultaneously, I recommend, to review the lecture of LANCZOS [1] as well as section 3.1.2.
once again. This just in order to determine, in what extent we already have animated his model.

7.2.1.          Once again the MINKOVSKIan line-element

Now, in the course of the work, we often used the expression MINKOVSKIan line-element
(MLE) without going into it's actual meaning. Rather, we hitherto interpreted it as a physical
object with certain characteristics, having an effect on the local condition of the universe. The
reason is, that even LANCZOS used this expression in his model and there is yet no other name
for this object, describing its physical content a quarter as good. So the expression PLANCK's
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fundamental length isn't out of the question if only because of that it's not only about a length
but about much more. Some authors are using the expression graviton for it. I neither would
like to use this then again, since the suffix -on in general is associated with a freely
maneuverable particle (the MLEs on the other hand are fixed, they rather form the space itself)
and even the prefix gravit- would be only a partial description, because the electromagnetic
properties fall flat.

In the URT in contrast the concept MINKOVSKIan line-element (MLE) has to be understood
in a some broader sense. So, there it is about a mathematical construct describing the local
properties of the (empty) space. In [1] LANCZOS (and even EINSTEIN) is using expression (0.23)
in the form:

s2  =  x2
+ y2

+ z2 c2t2 (745)

with the signature + + + –. which are the signs of the individual components of a fourfold-
vector. This signature is generally used in the SRT, whereas the standard in the URT is + – – –.
On this occasion, even the sorting-sequence is reordered (ct is at the first position). In general,
the differential form of (740) is used, which leads to the expression stated in [30]:

ds2
=  dt2 dx2 dy2 dz2 (746)

Here we are unfortunately concerned once again with the standard notation of the SRT and
URT, veiling the correlations by setting c= 1 which makes the whole nice mathematical
construct a priori unusable for further contemplations (predetermined structure). Now however,
we had sworn ourselves from the beginning to don't participate in this fashion but rather to
fully write out all variables and constants. Expression (746) had to be correctly then:

ds2
=  d(ct)2 dx2 dy2 dz2       resp. (747)

ds2
=  d(x0 )2 d(x1 )2 d(x2 )2 d(x3)2  =  ab dxadxb (745)

with (dx)2 = dx2. And just this ds2 figures the actual MINKOWSKIan line-element then, whereby
the indices of the discrete (xi ) = (ct, x, y, z) are written inside the brackets (superscript), in
contrast to the normal approach (subscript). Thus, the component x0 is correctly ct (length) and
not t. For once, I applied the complex phase velocity c instead of c at this point (for zero
vectors applies c =c). If an expression should contain more than one superscripted characters,
so the outer one always is used for numeration, at which point it is to be added-up across
duplicate appearing indices additionally.

In terms of mathematics all three expressions in (748) are identical, i.e. they describe the
same, namely the MINKOWSKIan line-element. Although, only the right expression admits di-
rect calculations with tensors (matrices). The expression ab is called as well metrics as metric
tensor, at which point the letter  is reserved to the MINKOWSKIan metrics only. Thus, a tensor
is always a matrix, whereas a matrix is not automatically a tensor. Here it's about a tensor of
2nd grade. Tensors of 1st grade are being vectors, whereas scalars even can be interpreted as
zero grade tensors.

Using another metrics (e.g. spherical coordinates) in general the letter g is applied, written as
gab or gik. The index-letters can be chosen freely, but taking its pattern from LANCZOS we will
use gik in future.

The difference between the URT and our model now consists in the fact that as well the
MLE itself, as the metrics have got a physical content. Furthermore, the increments dxi are
infinitesimal in the URT (indefinite structure), whereas they have the quantity r0 in this model
(definite structure).
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Because of the extreme smallness of r0 however the difference does not carry weight. If we
have spoken of the metrics until now, we always meant the metric wave-field with it. In the
URT in contrast, the expression ab is meant, which is defined as follows:

ab  

 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

 =  diag  1, 1, 1, 1( ) (749)

The individual elements of the matrix are called 00, 01, 02, 03, 10, 11,… 33 at which point
the line is specified by the first, the column by the second number. In this case, only the
elements 00, 11, 22 and 33 are different from zero.

The rules of calculating with matrices are applied, whereby addition, subtraction, multipli-
cation, the partial derivative (with matrices even called common derivative) and the so-called
covariant derivative are defined [30]. There is no division. Instead, one executes a multiplica-
tion with the inverse matrix ab then. It applies: ab 

ab (1). The expression (1) marks the
unit-(diagonal-)matrix diag(1, 1....., 1) at this point.

Another notation is           . The expression on the right-hand side is the KRONECKER-
symbol, which yields 1 always then, when a and c are equal. As for the rest, it has the value
zero.

 In section 4.3.4.3.3. we were already engaged with the MLE. There, we had used spherical
coordinates however. The reason was that the distance r with smaller Q-factors
traces a simple linear function (figure 27) by which the calculation essentially simplifies in
reference to Cartesian coordinates. Then, the MINKOWSKIan metrics gik in spherical coordinates
looks as follows:

gik  

 1 0 0 0

 0 1 0 0

 0 0 r2 0

 0 0 0 r2 sin2

 

 

 
 
 
 

 

 

 
 
 
 

 =  diag  1, 1, r2, r2 sin2( ) (750)

The transition to Cartesian coordinates is defined in the following manner:

ct  =  ct       x  =  r sin cos       y =  r sin sin       z  =  r cos (751)

Then, the line-element written out becomes to:

ds2
=  d ct( )

2
dr2 r2d 2 r2 sin2

 d 2 (752)

ds2
=  d(x0)2 d(x1)2 d(x2)2 d(x3)2  =  gikdxidxk      (753)

In this connection the g00 -component of the metrics (this is equal to 00 ) plays a quite special
role. In terms of physics it corresponds to the temporal share and it is identical to our frame of
reference, as we have already noticed in the previous section. Therefore, it is also decisive on
coordinate-transformations and the LORENTZ-transformation as factor (–g00 ) 

1/2.

In the matrix (749) and (750) there is on position (0,0) the factor 1 in each case. That
indicates a genuine MINKOWSKIan line-element in turn and corresponds strictly speaking to the
zero vector ct. In the URT, the zero vector plays an important role, it declares the surface of the
beam separating the different types of vectors from each other after all. In this model we
however did a quite extraordinary assumption at the beginning, namely that the speed of light
(c) should be constant only in reference to the subspace. Thus within the metrics, and we are

ab
bc
= a

c

(xi) = (t, r, , )



222

finally within, there are no zero vectors at all, only time-like and space-like vectors, which are
rectangularly to each other in the approximation. Therefore, in section 4.3.4.3.3. we did not
apply c but the complex propagation-velocity c of the metric wave-field (252). Then, with
expression (257) we got the following expression (now in new notation):

ds2
=  

4˙ r 0
2

 dt2

 1 (A( ) jB( ))2 dr2 r2d 2 r2 sin2
 d 2 (754)

On this occasion, we could observe the sign-switch at the x0-component, already predicted by
LANCZOS, which arose from the addition-theorems of the trigonometric functions. Apparently,
we did a bad turn with the change to the signature-convention of the URT, because now the
entire right-hand side is negative. In terms of mathematics however it's irrelevant, so that we
want to stick to it.

In this connection g00 is the (0,0)-component of the metric tensor Tik which is marked in the
same way. With rigid contemplation, we see that the expression is not only negative but
complex at the same time, by which the negative sign is relativized in turn. What however
means an imaginary share of x0? According to the prevalent doctrine, this is identical to a
rotation of the vector into the tangentially-space, which puts up at each point of the universe.
Now we yet earlier had ascertained that always only the real-part can be seen by an observer,
whereas the imaginary-part can be detected only indirectly e.g. as rotation of the polarization-
plane. Therefore, it's necessary, to transform expression (754), so that really only the real-part
appears. First, we must determine the value and the phase-angle to it. We consider the x0-
component only; the calculation submits:

  (dx0 )2       =  
c2dt2

0
2 t2

 (1 A2 + B2 )2 + 4A2B2
 =  

c2dt2

0
2

0
2 t2 (755)

arg((x0 )2 )  =  arctan 

2AB

1 A2
+ B2  =   arctan (756)

Because of the quadratic function, even the duplicate phase-angle  appears here. Conside-
ring the value-function (755) more exactly, so there our non-rectangular triangle (figure 94) is
actually already implicitly included. This is an universal characteristic of the Hankel function.
Furthermore congruences with (552) and (587) can be found.

With the comparison of –g00 from (755) with expression (732), immediately attracts
attention, that both components are strongly differing in the magnitude. While –g00 in (732) is
about equal to 1, the value in (750) at least for the present-day values of Q0 is extremely close
to zero. Obviously we did a mistake in the approach in section 4.3.4.3.3., which doesn't mean
that the whole calculation has been for nothing. So (732) describes the dependence of the time-
coordinate in the surroundings of a mass (when applying (728)), whereas in (754) the
time-coordinate of the metric wave-field is meant.

Nevertheless, the deviation cannot turn out so extremely, because if M would be chosen
sufficiently small, both solutions should show the same result approximately. Also we just
know, that gravity is propagating with light speed, so that we can assume (754) to be incorrect
respectively partially correct only. If we apply  expression (733) instead of (728) with (732),
we likewise get a value close to 1, as long as the velocity v is small in reference to c.

If we now assume that the angle between the zero vector and the metric vector amounts to
/2 approximately, then we can make the guess that (754) actually has the following form:

ds2
=  1

1

0
2

0
2t2

 

 
 

 

 
  c2dt 2 dr2 r2d 2 r2 sin2

 d 2     (757)
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(dx0 )2
=  1

1

0
2

0
2t2

 

 
 

 

 
  c2dt2   1

cM
2

c2

 

 
 

 

 
  c2dt 2   1

v2

c2

 

 
 

 

 
  c2dt 2       (758)

The right-hand expression corresponds to (731). That means, it’s valid for time-like photons
(g00). To it applies the reciprocal of the bracketed expression. Now, the angle  is not a right
one as you know then again, so that (757) and (758) not can be accurate at all. On the other
hand, in the mentioned expressions the same angles occur, as in figure 94, so that it seems to be
quite practicable, to slide the contemplations made thereto in the specification of our line-
element.

Also we have noticed that there are no real zero vectors for an observer trapped in the
metrics, at most almost-zero vectors. And just such a vector we had already found in section
5.1. (478). It's about the time-like vector c , which, measured by its qualities, approximates c
close enough, if only the Q-factor is sufficiently large (>105).

Hitherto, with the measurement of the velocity of light always was the saying from the speed
of light c generally. For the electrical engineer however also the question arises, which velocity
specifically is meant? The answer is: The phase velocity. This is equal to c only with respect to
the classic MAXWELL theory for a loss-free medium.

That this classic model can be correct only approximatively, shows the fact of the occurence
of the cosmologic red-shift alone, which doesn't have stated with it. If we now assume an
anomalous phase velocity being smaller than c, the red-shift states by itself. So, the amplitude
with a certain phase-angle just needs somewhat more time than according to the classic theory,
in order to arrive at the observer.

The phase straggles, by which the entire wave-train spreads out. Just an enlargement of the
wavelength occurs. In principle, even the wave-front hangs behind, only we cannot ascertain
this because of the special relativity-principle, which we just have used in order to synchronize
our clocks, and/or to determine the distance to the source. The special relativity-principle
triumphs, exactly as anticipated by LANCZOS.

The result of our contemplations is: we really measure the phase velocity c . Because of the
for the time being high Q-factor Q0 1060 we cannot at all detect the microscopic difference to
c, since it's far outside the measuring-precision. Also we will measure exactly the value c
nevertheless, because our measuring-equipment consists of fermionic matter, which is as such
actually within the subspace and it is permeated by the metric wave-field at the same time.
Thus, the physical fundamental values will always change in such a manner that the variance
cancels out then again. Even our brain works with fermionic sensors (eye) and depicts the
environment with the help of zero vectors (light).

If we want to place c  into our line-element, we have to figure it as a function of c. The
corresponding expression is (479). As we have determined with the antecedent contemplations,
it's identical to the function sin /sin  For time-like photons, we use the expression for time-
like photons (625) usefully. In this case (wavelength!) applies the reciprocal however.

With neutrinos in contrast (626) is applied. Then however, we are concerned with four
different line-elements at the same time, or better, with three line-elements, because sin   is
definitely assigned to the component g11. At this point we want to leave the answer to the
reader, in what extent a neutrino-based line-element should be considered as reasonable. Most
likely, we require just only one, which describes as well the temporal component g00 (time-like
photons) as the spatial component g11 (space-like photons).

Thus, both components are subject to the relations of the red-shift already worked out in this
work, namely to the spatial, temporal and geometrical share as well. Therefore we can write:
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gik  diag   
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(759)

Considering bodies in the free fall only, so (759) simplifies once again:

gik  diag   

sin2

sin2
 

1 +
t
˜ T 

 

 
 

 

 
 

1

,  

sin2
 

sin2
 

1+
t
˜ T 

 

 
 

 

 
  , r 2, r 2 sin2

 

 

 

 
 

 

 

 
 
vM + vG =0

(760)

Overall, we are no longer concerned with a genuine MINKOWSKIan— this only applies to the
subspace—but with an almost-MINKOWSKIan line-element. Usually this transition is associated
in the URT with the occurence of matter (the genuine MLE describes a mass-free empty
space), whereas the line-element of this model differs from the genuine one already without
matter. That means, in this model, the space is curved even without matter, whereby the
curvature is caused by the metric wave-field almost exclusively. Thus for once, we can put ad
acta the Principle of the Minimum Gravitative Coupling, because it’s useless. According to
d´INVERNO [30] we however should take it with a pinch of salt anyway.

X. Principle of the Minimum Gravitative Coupling (doesn't apply!):
No terms, which contain the curvature tensor explicitly, should be added on the

 transition from the special to the universal theory.

This principle is generally used, in order to set a boundary between the SRT, which has been
stated for an empty space, and the URT, which applies in a space with mass-distribution.
According to the 1st MACH’s principle the curvature the space arises only from the distribution
of the masses within the universe or shorter: The matter-distribution determines the geometry.

If the masses are shifted somehow, the qualities of space change too. But if there is no empty
space at all for any arbitrary observer (all are within the metrics), there is no more reason, to
perpetuate this distinction. With it, even this last boundary has been fallen and we must reflect,
how to transform the inherent laws of the SRT in order to give consideration to the existence of
the metric wave-field.

We have done this in the preceded sections. Then, as result, we obtain a so-called ”special
URT“ which unifies the inherent laws of SRT and URT. In this the macroscopic metrics of
space is determined by the metric wave-field only, exactly, as anticipated by LANCZOS because
the energy-density of the metrics is about magnitudes greater than the one of local matter-
distributions. An arbitrary mass-distribution affects only the local metrics with it in form of an
infinitesimal interference of the metric wave-field. However these interferences can become
quite as large to force a body onto an elliptical track or an orbit.

During cosmologic contemplations, the existence of matter can be completely ignored. With
it it's about a pure radiation-cosmos. Thus, all three MACH’s principles apply on condition that
we also consider the metric wave-field as matter (energy = matter).

There is another more difference between this model and the standard-model. Most authors
already in their approach assume the gravitational »potential« to vanish in the infinite. In this
model there is no infinite distance at all and the proper potential according to (718) does not
vanish anyway. And just this non-vanishing share turns out to be extremely important for the
curvature of space at the place of the observer.
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7.2.2.          The line-element as a function of mass, space, time and velocity

Although the curvature in the cosmologic scale is determined by the metric wave-field
exclusively, there is still the local influence of a mass-distribution. Therefore we require a
function, which describes the local characteristics of the space not only in dependence on time,
distance and velocity (734), but even on an existing mass-distribution. Now, we must find a
way to bring these expressions somehow together. The reason is, that we have resigned the
Principle of the Minimum Gravitative Coupling. Therefore we must define a new principle
describing this dependence.

In section 7.1.1. with expression (724) we had already found such a relation. Considering
this expression more exactly then again, so it fulfills the requests of the URT with a mass of
M=0 indeed. That means, the curvature vanishes and the line-element becomes exactly
MINKOWSKIan. But according to our model that should be unlike. The basic-curvature of space,
caused by the metric wave-field itself, still remains here. We just have to think up a relation
fulfilling this additional condition, which turns out expression (719) in case of minor masses
coincidently (approximation).

During the study of the special relativity-principle, we already had found a similar problem.
The problem was, to unify the basic-curvature of space with an arbitrary relative-velocity in
one expression. We solved it by adding the metric vector of the relative-velocity vM to the
likewise metric vector of the propagation-velocity cM of the metric wave-field, whereby both
point exactly into the same direction.

Now the question arises, whether we cannot proceed similarly in the case of the existence of
a mass-distribution. We must find just only a metric velocity vG, whose magnitude depends on
the mass and the distance to the centre of that mass. Thus, we only must add these to the two
already existing speed-vectors obtaining a relation, which takes into account even the existence
of the mass-distribution. As additional-condition arises that this velocity must become zero, if
the mass M is zero.

There is really such a velocity. If we split the approximate expression (719) by analogy with
1–vG

2/c2 we obtain with (v, M and G depend on the frame of reference):

vG
2
=  

2 ˜ M ̃  G 

r
vG =  ±

2 ˜ M ̃  G 

r
(761)

the expression for the escape-velocity or the 1st cosmic velocity. That's the minimum-velocity,
which a body must have, in order to move on an orbit with the radius r around a body with the
mass M, without falling back on the surface. Generally one applies the radius of the body for r,
since the starting point is usually on the surface of the body. But in the orbit, the velocity must
be only as large, as the solution of (761) with the radius of the orbit turns out.

And exactly this velocity we must add to the other two velocities and we have got the
wished expression with it. It applies v = cM+vG+vM. In the approximation for velocities v« c,
with small curvatures as well as with disregard of the spatial share we can write then:

g00  =  
sin

sin  

 =  
v

c
cos +  1

v2

c2 sin2   +  1
v2

c2 (762)

g00      1
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0 0t
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2

(763)
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To a body with a fixed position at the surface, applies vM =  0 and the following expression:

g00      1
1

c2

c

0 0t
+

 2 ˜ M ̃  G 

r

 

 
 

 

 
 

2

(764)

g00      1
2 ˜ M ̃  G 

rc2 for  M» 0  and/or  Q0 » 1 (765)

With it, also the condition for M  0 is filled, the basic-curvature of the metric wave-field
really remains:

g00      1
1

0
2

0
2t2   1

1
˜ Q 0

for M  0 (766)

It would be favorable for the component g11 , if we could replace          by        . Usefully, we
use the relations (621) and (623) for it. It applies without the navigation-gradient again:

(767)

Here, also the conversion-factor  between space-like and time-like distance appears, as
already anticipated with (280). For the approximation by analogy with (765) we get the
following expression:

g11  1
2MG

rc2
 
 

 
 

1

 1
2MG

rc2  =  1
2MG
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1

2
(768)

g11       1
2MG

rc2
 
 

 
 

1

(769)

After substitution in (760) we approximately obtain the SCHWARZSCHILD line-element as -
solution. Re-applying the velocities, we can see even here, why the relativistic dilatation-factor

 comes into effect with time-like vectors, but the reciprocal –1 with space-like vectors.

Thus we can expand the relations for the angle  and the several angles  about the expressi-
ons for the mass-influence. To the angle  applies generally:

 =  arcsin 
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(770)

and to the angle  according to the kind of photon:

sin  sin

g11 =  
sin  

sin  

=  
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 =   argc + arccos
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Time-like photons (771)
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Space-like photons (772)
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Neutrinos        (773)
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Antineutrinos  (774)

Then, the classic NEWTON’s gravitational potential is defined in the following manner:
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      with   a =  – grad (775)

As next, we want to examine the relation for the escape-velocity (761) more exactly once
again. According to the kind, it's about a propagation-velocity too. After substitution of G by
(695) and of M=h D/c2 we obtain the following relation:

vG =  
2 ˜ M ̃  G 

r
 =  c   

˜ R 

r
D

1

 =  c  

˜ r 0
r

D

˜  0
 =  c   

˜ r 0
r

0
˜  0

˜  0
(776)

In this case, D is the DEBROGLIE- angular frequency of an arbitrary particle. We had already
determined that ”normal” particles (fermions) are reducing the frequency of the metric wave-
field within the body. That means, the length r0 inside the body is stretched (larger Q-
factor—smaller propagation-velocity). Outside the body, and this area we now look at, the
relations are the other way round. Here, the length r0 is compressed (smaller Q-factor—larger
propagation-velocity). Therefore, the positive sign applies here. But how does the situation
look like, when the body consists of antimatter? According to this model, it would have a
negative mass and the regions of the stretching and compression would be reordered in turn.
Expression (776) for antimatter would read then as follows:

vG =  
2 ˜ M ̃  G 

r
 =  c   

˜ R 

r
D

1

 =  c   

˜ r 0
r

D

˜  0
 =  c   

˜ r 0
r

˜  0 0

˜  0
(777)

The negative sign of the root-function is applied to antimatter. Expression (777) well agrees
with the doctrine, that antimatter even possesses a negative energy. Only, in this model it's
about a negative difference energy, which is to be accepted much more easily. Therefore, we
must insert the negative sign into the expressions (770-775) whenever the mass is negative.
Thus, we are concerned even here with a symmetry-breaking between ”normal” and antimatter,
which never carries weight because of the nowaday's extremely small value of cM. For the time
just after big bang however the magnitude of cM cannot be disregarded, so that the symmetry-
breaking became essential for the further expansion of the universe.
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To the conclusion, we already want to examine the influence of the speed-component vM.
This cannot be chosen freely in general, unless, it's about a spacecraft. We want to attempt a
gedankenexperiment to it. As already determined any observer is always in the centre of the
universe. This is correct in so far, as it is about an empty space (I want to exclude the observer
itself). But what does it look like, when this space is not empty, just when the observer is
positioned inside the gravitational-field of a body?

Then, we must distinguish two cases. The first case is that where the body in the free fall is
unable to move in reference to the attracting body, like e.g. an observer on the earth's surface
(inhibited free fall). This is subject to the full influence of the gravitational-field then. There is
an attraction, which is identical to a lower Q-factor (= compressed metrics) outside the body.
In this case, we must add the value of the escape-velocity to the propagation-velocity cM of the
metric wave-field. The space is just more strongly curved, as normal.

The second case is that of a body in the non-inhibited free fall. This is the legendary eleva-
tor-experiment [30]. In this case of course, except for a minor angular aberration to the mass-
centre, there is no difference to an observer in an empty space, (only cM applies). The same
case applies to an observer moving in the orbit with the 1st cosmic velocity. Also this is a
free case, even associated with the phenomenon ”weightlessness”.

In this case, only the share cM may come into effect to the observer. But it can be achieved
only, when the speed-component vM becomes negative. Now however, for an observer in the
centre of the universe, always only positive velocities are possible. These are defined toward
the world-radius (margin), which is equally far away irrespective of the direction. Thus, all
forces exerted on the observer by the marginal singularity cancel themselves, so that the
observer remains in the centre.

Now, we had already posed the question, what a negative velocity, if there should be such a
one, actually could mean. This is per definitionem a velocity directed from the margin to the
centre of the universe, which is only possible, when the observer is outside the centre. We can
draw the conclusion from it that an observer being in a gravitational-field but not in the free
fall, neither is in the centre of the universe (then, the center of gravity of the system mass-
observer steps in place of this position) or vice-versa:

XI. An observer in the free fall stands always in the middle of the universe.
His relative-velocity in reference to the metrics is equal to zero.

But for an observer in the orbit this is applied only to the radial, not to the tangential
component of velocity. For generic speed-vectors, we must already multiply the amount with
the cosine of the angle to the radius r. Since almost all matter in the universe is in the free case,
it's moving with the metrics (constant wave count vector).

To the better overview, the three cases empty space, gravitational-field and free fall are
presented in figure 126 once again. It's about the relations for a mass-system, consisting of
”normal” matter.

In the case, that the gravitating mass consists of antimatter, the relations are (with respect to
this model) completely different. Now the escape-velocity is negative, as we can recognize in
figure 127. That means, an observer (of antimatter) in the free case must have a positive
velocity, whereas a freely navigating body of antimatter is moving with a negative velocity.
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»Middle« of 

the universe

   Observer

cM cM cM

Empty space Gravitational field Free fall

vG vG –vM

Subspace

World radius

Def +vM

Def +vM

Def +vM

vM = 0

Figure 126
Definition of the velocity and the centre of the universe for the cases

empty space, body in the gravitational-field and free fall for ”normal” matter

Let's think exactly once again. The velocity c is defined as c= 0r0 whereas for an any velocity
v the expression v= Vr0 applies.

»Middle« of 

the universe

   Observer

cM cM cM

Empty space Gravitatio-

nal field

Free fall

–vG +vM

Subspace

Def +vM

World radius

vM = 0

Def +vM

–vG

Def +vM

Figure 127
Definition of the velocity and the centre of the universe for the cases

empty space, body in the gravitational-field and free fall for antimatter
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Thus, we obtain a frequency V which is equal to the number of line-elements, a body with
the velocity v within a certain time period ”streaks”. As we know, bodies of antimatter are
having a negative (difference-)energy. Thus, the difference-frequency becomes negative too,
which leads to the result, that material bodies of antimatter are moving with a negative
velocity—opposite to ”normal” bodies. This is a generally accepted statement.

The summary-speed of a body in the free fall in reference to the metrics (as well of matter as
of antimatter) in both cases turns out zero. Only the temporal share ct remains then, i.e. almost
all bodies are moving on plain time-like world-lines in the average, whose propagation is
caused by the continuous increase of the phase-angle 2 0t Another conclusion is that two
bodies, the first of matter, the second of antimatter, would repel each other.

7.2.3.          LORENTZ-transformation and addition of velocities

With (759) we have formulated the line-element of this model. Before further examination
we must still deal with another problem, which actually belongs to the preceding section, the
transformation and addition of velocities. From the SRT, we know a relation for the addition of
velocities, which is liked to consult as example for the opinion, that velocities greater than c
are impossible. In terms of physics, this is wrong however. In reality, such velocities are possi-
ble perfectly well and they are prohibited by no means. According to the classic EINSTEIN
theory, these can never be achieved, because the energy W = Mc2 contained in the matter is not
enough for that purpose. With 100-percent efficiency c is exactly achieved in that moment,
when all fuel, inclusive drive etc. and even the crew, just the entire mass M has been converted
to radiation.

Now, we did not used the addition-theorem for velocities in the previous section but added
airily all three vectorial part-velocities in fact. This has a specific reason, which applies even in
accordance with the classic theory: Viz all three velocities are defined in reference to the same
frame of reference. But the addition-theorem applies only, when the velocity v  is defined in
reference to another frame of reference, which in turn is moving with a velocity v, in reference
to the observer:

  v  =  
v +  v 

1+
v  v 

c2

           Classic speed-addition       (778)

Does this relation now apply in our model too? This is an important question, which we have
to answer here and now. It is closely connected with the coefficient of the LORENTZ-transfor-
mation = (–g00)–1/2 (SRT-sign-convention). Therefore, we want to deal with this at first.
According to [30]  is equal to the cosine of the angle  describing the rotation of the
coordinate-system in the (x,t)-plane, which is caused by the velocity v:

cos  =  
1

sec
 =  

1

 1+ tan2
 =  

1

 1 v2 c2
(779)

This expression is identical to the classic dilatation-factor of the SRT and can be figured as
special-case of this model, when the angle  (209) is equal to – /4, just with very large Q-
factors. In order to answer the question asked above, we will derive the relation exactly once
again, whereby we closely want to follow [30].

Two inertial-systems S and S  (free fall) are starting point, whose coordinate-origins are of
line at the beginning. In both frames of reference, the clocks are synchronized (t = t  = 0).
Mathematically, the problem is described by the coordinate-transformation:



231

 S  t ,x ,y , z[ ] =  L S  t,x,y,z[ ]{ } (780)

at which point the system S  should move with the velocity v in reference to S. This
transformation is even called LORENTZ-transformation (L). If we now send out a light-flash
from the origin, so this will propagate with the velocity c, whereby we will observe it
differently in both systems. Since it is about the same event, the problem can be traced back on
the equating of the two (real)  MINKOWSKIan line-elements, whereby we will always use the
sign-convention of the SRT in this section:

x2
+ y2

+ z2 c2t2
=   x 2

+  y 2
+  z 2 c2

 t 2        (781)

In an isotropic space and if the motion of S  takes place only in x-direction, applies y = y and
z = z, which reduces the problem to the relation:

x2 c2t2
=   x 2 c2

 t 2      resp. r2 c2 t2
=   r 2 c2

 t 2 (782)

In contrast to [30] we want to work on with the second relation (polar-coordinates)  which, in
terms of mathematics does not make any difference. Thus, the model can be brought much
better in accord with our new photon-model, when the r-axis coincides with the r-axis of the
expansion-graph. In contrast to [30] in turn we will exchange the axes however. Never fear, we
will get the same result nonetheless. Furthermore, we introduce imaginary time-coordinates,

T = jct  T = jc  t      (783)

which are perpendicular to the other, already existing coordinates of the expansion-graph and
put up an additional tangentially-space at each point. Thus, we hve answered the question,
whereabouts the sum of the plenty speed-vectors we have introduced until now, actually aims
in. They don't run along the expansion-graph but into the tangentially-space. Therefore it also
makes no odds, if they move away from the expansion-graph all-too much. The exact relations
( = /2) are presented in figure 128.
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Rotation in the (T,r)-plane
during the LORENTZ-
transformation
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After insertion of (783) in (782) we obtain the following expression:

r2
+ T2

=   r 2
+  T 2

=  2   (784)

For v = 0 both frames of reference coincide and the angles are equal to the angles ,  and  of
the preceding sections. With it, we have been able to bring in accord the classic case with our
new photon-model. In this case, r corresponds to the metric vector cM, T to the time-like vector
c  and  to the zero vector c. This is inevitably alike in both systems. Let's have a look at (784)
more exactly, so it's about the relation for the radius  of a circle and this points on the point P.
Now, let's rotate the coordinate-system S , instead of the point P, at which point the size of 
doesn't change. In this connection, the rotatory-angle is represented by .

Now, the observer B  should move together with his frame of reference with the velocity v in
reference to S, whereby r specifies the distance between S and S . Therefore, the velocity v  of
S  in reference to the inherent frame of reference S  and with it even the distance r  of the
observer B  in reference to the coordinate-origin of S  is equal to zero. It applies:

 r = 0  r = vt r = j
v

c
T (785)

We obtain the right expression by insertion of (783) into the middle expression. Now, with a
rotation of the coordinate-system according to [21] the following relations apply:

 r =  r cos + Tsin  T =  r sin + T cos (786)

0  =  r cos + Tsin because  of (785) (787)

The angle  is actually negative however. If we define it positive from now on, after substi-
tution of the right expression of (785) applies for r:

0  =  j
v

c
Tcos Tsin resp. j

v

c
cos = sin (788)

tan = j
v

c
resp.  =  arctan j

v

c
 =  jartanh

v

c
    (789)

cos  =  
1

 1 + tan2
 =  

1

 1 v2 c2
 =  

1

g00

 =  (790)

If we take up a comparison of coefficients, we get the following important expressions:

cos  =  
1

cos
 =  jartanhsin  =  jartanh

v

c
   sin  =  

v

c
(791)

The relations for the LORENTZ-transforms finally can be determined by rearrangement of (786)
and substitution of (785):

 r =  cos r + T tan( )  =   r + jct j v c( )[ ]  =  r vt( ) (792)

 T =  jc  t =  cos r tan + T( )  =   r  jv c( ) + jct[ ]  : jc (793)

 t =   t vr c2( ) (794)
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and in summary:

 t =   t vr c2( ) ,  r =  r vt( ) ,     = ,     =      Classical   (795)

Now, according to [30] he sum of two velocities arises from the addition of the angles . By
analogy with the addition-theorem of the area-functions applies:

j  artanh
v

c
+ artanh

 v 

c  

 

 
 

 

 
  =  jartanh

v

c
+

 v 

c  

1+
v  v 
c2

(796)

tan     =  j
  v 

c  
 =  j  

v

c
+

 v 

c  

1 +
v  v 

c2

  as always (797)

It becomes interesting, when the angle  is unlike /2, as in our model. For that purpose,
let's have a look at the expressions for the LORENTZ-transformation next in turn. If we assume,
that a rotation of the coordinate-system into the tangentially-space, which is described by the
relations (786) occurs even here, we must look once again for an expression for the angle 
describing this rotation. Inevitably this will differ from (789). In the special-case = /2
however it must turn out the same solution. The substitution (783) applies even in this case,
since we want to work with a rectangular coordinate-system.

From the examinations done in the antecedent sections, we know that

cos   
1

g00
 =    (798)

must apply. If we just assume, that this is the case, using the component g00 from our line-
element (759) we get the following expressions for the trigonometric functions and the value of
the angle :

cos      
1

g00
      =       

sin  

sin
        =    (799)

sin   j   

1

g00
1 =  j   

sin2
 

sin2 1 (800)

tan   j   1+ g00    =  j   1
sin2

sin2
 

  j
v

c
(801)

 jartanh  1+ g00  =  jartanh  1
sin2

sin2
 

  jartanh
v

c
(802)

To the determination of the LORENTZ-transform we proceed by analogy with the classic case:

 r =  cos r + T tan( )  =  
1

g00
 r + jT  1+ g00( )  =  

1

g00
 r ct  1 + g00( ) (803)
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 T =  jc  t =  cos T r tan( )  =  
1

g00
 jct jr  1 + g00( )  : jc (804)

 t =  
1

g00
 t

r

c
 1 + g00

 
 

 
 

(805)

and in summary:

 t =  
1

g00
 t

r

c
 1 + g00

 
 

 
 
,    r =  

1

g00
 r ct  1 + g00( ) ,   = ,   = (806)

Btw. these relations apply independently from our model and using ”our” g00 even simulta-
neously for influences of velocity, matter-distribution, distance and time, just in general
(SRT+ART). In the special-case = /2 (806) yields the classic solution of the LORENTZ-
transform. With velocities v«c the solution graduates into the one of the GALILEI-transforma-
tion. We have found a contradiction-free solution, which fills the made requests, with it.

Now, we want to deal with the addition-theorem of the velocities. One can assume that the
individual angles  will add up again even here. Thus, the following relation applies = + ,
respectively:

   =  j artanh  1 + g00 + artanh  1+  g 00( )  =  jartanh
 1 + g00 +  1 +  g 00

1+ 1 + g00( ) 1 +  g 00( )
(807)

 1+   g 00 =  
 1 + g00 +  1 +  g 00

1 + 1 + g00( ) 1 +  g 00( )
(808)

  g 00 =  1
 1 + g00 +  1 +  g 00

1+ 1 + g00( ) 1 +  g 00( )

 

 
  

 

 
  

2

=  X2 (809)

  g 00 =  
  v 

c  
cos    +  1

  v 2

c2  sin2
    =  X (810)

 1
  v 2

c2  sin2
    =  X

  v 

c 
cos           

  v 2

c2 2 Xcos    ( )
  v 

c  

+ X2 1( ) = 0 (811)

  v 1,2

c
=  Xcos    ±  1 X2 sin2

   (812)

The upper sign is applied to time-like vectors

  v 1,2

c
=  1

 1+ g00 +  1+  g 00

1 + 1+ g00( ) 1+  g 00( )

 

 
  

 

 
  

2

cos    ±  1 1
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1 + 1 + g00( ) 1 +  g 00( )
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(813) 
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For = /2 the solution (813) turns out the classic expression (778). In contrast to (806)
applies (813) but not independently from our model, but (808) applies. The reason is, that we
have reduced the left side with respect to v  and this depends on the used line-element of
course. Combining (808) with the line-element of this model even problems of the URT can be
solved with it. A good example is the special-case on the three-body-problem, if all three
bodies are in a line (opposition or conjunction). Then the shares add up linearly only then,
when the curvature is not all too large.

Even if one does not see it so clearly, a problem turns out here, which there is none in the
classic case raising a whole lot of more questions. So, we require from the frame of reference,
which is moving with v, additionally to the detail of the velocity v  also the angle , which
results from the conditions in the system S . These however depend on the velocity v, with
which this system is moving in reference to the frame of reference S. In contrast, the angle  is
well-known. To the calculation of (813) we already require the angle  in addition. This is
unknown too.

Before we want to examine the different solving-options, we will do a gedankenexperiment
first of all: If we assume, that the observer in S is in the free fall, so he is in the middle of the
universe, he doesn't move in reference to the metrics and he is positioned on the expansion-
graph, at which the angle  is defined at the same time. The second observer should now be
located in the system S . If he moves in reference to S with a velocity greater than determined
by the distance-function, so he is now in the tangentially-space outside the expansion-graph
seen from S. Thus, each observer, who is not in the free fall, is always in the tangentially-
space. Now, we come to an important question:

Where is the observer in S  situated seen by himself?

We cannot answer this question without further ado. There are several options, which are
closely connected with the definition of the angle :

1. The angle  is the same for all observers and only a function of time.

In this case, all observers would be located on the same point of the expansion-
graph. This would be the classic case of the genuine MINKOWSKIan line-element.
Then, different velocities have only a different rotation of the various coordinate-
systems to the consequence. This case obviously disagrees with relation (734) as
per which the Q-factor and with it  depend on the distance.

Status: rejected.

2. The angle  depends only on distance (and time).

Then the observer in S  and with it each observer, seen by itself, always would be
situated on the expansion-graph. But this disagrees with the above mentioned
statement, that an observer being not in the free fall is always in the tangentially-
space. When both conditions shall be coincidently fulfilled, an observer, seen by
itself, would have to be always in the free fall, which is not correct (conditions at
the earth's surface). Also one could say that we would introduce an absolute frame
of reference with it. But since there is an inherent ”absolute” frame of reference for
each observer, which is different from the others, the special relativity-principle is
not violated.

Status: not impossible but not very probable.

3. The angle a depends on the time, distance and the velocity.

Then an observer, seen by itself, would be on the expansion-graph only then, when
he is in the free fall. In all other cases, he would be in the tangentially-space. This
case appears to be most probable. Then however, there should be an expression for
the Q-factor as a function of the velocity. But since the Q-factor (phase-angle) also
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determines the size of the angle , even this would depend on the velocity with it.
Another question results from it then again: Does the value of  arise from the
conditions before or after the addition of the other velocity-components? At
least it is to be understood that an observer sees even the size of r0 shortened, since
with motion with the velocity v all distances are observed shortened about the
factor 

–1
. Since the value of r0 is linked via the relation r0 = r1Q0, also Q0 changes

with it (r1 is fixed). Against a fixation of  before the addition of the other
components speaks, that these would no longer be equal then. But this is really the
case, because we can cancel the shares vG and vM, in that we move with negative
velocity indeed, but the share cM not at all. Latter one actually sticks out on it's own
into the tangentially-space, even if the velocity with repect to the metrics is zero.

Status: very probable.

We just want to favour the third option. But we want for a function, which figures the
dependence of Q0  on the velocity, to it. This should redeem certain requirements. So, in the
approximation with large initial-Q0, relation (597) should apply. If the velocity is equal to c, a
Q-factor of 1 should turn out and there should be a certain asymmetry with small initial-Q-
factors (Q0(c) only 1). With (596) in section 6.1.2.1. we already found such a function,
although on a system without expansion. But if we limit the validity of the sought relation to a
time period dt—with small Q-factors each frame of reference lapses after a short time
anyway—then (596) can be used even in the case of a metrics with expansion, because for the
time period dt the expansion plays no role.
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Figure 129
Course of the Q-factor being relevant for the system S´ with respect
to the velocity in reference to the system S (metrics) for Q0 103.

But since Q0  additionally should depend on distance and time, yet the navigation-gradient
must be integrated in (596). It applies:
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   Velocity vs. metrics (814)

That means, at the ”edge of the universe” the Q-factor turns to zero. If we once have
determined the initial-Q-factor Q0  for the system S , we are able to determine all other
corresponding values without any difficulties too, including the angle . The logarithmic
course of (814) for several initial-Q-factors is presented in figure 129.

What does it look like however with the angle ? In terms of figures, we not necessarily
require this to the solution of (813), since  even somehow depends on v . However there is
no explicit solution then. In order to describe the exact relations during the addition of
velocities according to (813), the effect of different angles (n) is pictured in figure 130 by
means of vectors.
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Effect of different angles  on
the addition of speed-vectors
(schematic presentation)

Input variables are the vectors BE and EC as well as the angles  and  at this place.
Wanted is the vector BC and the associated angle . But figure 130 merely describes the
effect of the different angles  on the velocity-addition in the subspace. The rotation of the
coordinate-systems S  and S  caused by the share tan , is unaccounted for in this place.
Therefore, the distance BC doesn't equal the real velocity v  which is observed from inside the
system S. Therefore, figure 130 neither can be used for the determination of this velocity with
the help of trigonometrical relations. The same is applied even to the angle . To determine
this, there is more than one option. One proceeding to determine the value of  is the repeated
application of (814), using Q0  and v  as input variable on the second run. This way, we first
get the value Q0  with whose help all other associated values can be determined in turn,
including . The whole issue works even if the observers are exchanged, although only under
the condition, that the Q-factor really depends on the velocity.

A so far unknown problem however arises with application of (814). So, the velocity in
(814) is defined with respect to the metrics. Now however, all relativistic relations always refer
to the matter of fact, that the speed of light is constantly c. Since we have done the assumption
in the first sections, that the speed of light in this model is also constantly c in fact, but not in
reference to the metrics but in reference to the subspace, a contradiction arises here concerning
the velocity v.

If we have applied the expression v for the velocity anywhere, so this is always related to the
subspace with it. Since there is no subspace known in the SRT therefore always the velocity in
reference to a frame of reference is meant, which usually (but not always) is assumed as
resting. In general (if no rotation comes into play) this is associated with the free fall. But by
analogy with our model the free fall is being granted, whenever an observer/body/particle

for v«c
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doesn't move in reference to the metrics. Now, this observer in the free fall, according to this
model, still is moving in reference to the subspace (cM) then again, for which reason we added
the share cM(v=0) to a velocity defined in reference to the metrics (only this can be measured)
in all cases with the exception of figure 119, which leads to the shifting of the functions
towards a negative v, as we can well recognize e.g. in figure 107-110.

Now of course, it's possible to calculate even with the velocity in reference to the subspace.
Then, (814) would have to be altered in the following manner:

˜ Q 0  =  
˜ Q 0
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            Velocity vs.

subspace   
(815)

In both cases there is however another essential circumstance to take into account. If the
relativistic mass-increase is calculated with e.g. the help of the relativistic dilatation-factor  ,
at which point the velocity is referred to the subspace, so, beside v as further input variable
even the rest mass m0 is needed. According to the SRT, this is defined as the one mass a body
owns, when it doesn't move in reference to the frame of reference. In this case however, this
frame of reference is the subspace and the body cannot be in rest to it, because the metrics,
even if the body remains in rest to the metrics, still is moving with the velocity cM in reference
to the subspace. And this share neither can be balanced by a negative velocity, since the body
is in the centre of the universe simultaneously, so that only positive velocities are defined,
directed onto the world-radius.

With small initial-Q-factors, this share cM can take on a magnitude, which no longer can be
disregarded, so that   already at v=0 in reference to the metrics has a value, which strongly
differs from 1. Now let's apply the ”classic” value, determined in accordance with the SRT, i.e.
with a velocity of zero in reference to the metrics, so we'll get a wrong result, because with
v=0 the relativistic mass should have to be equal to m0 then. But this is not the case. Although,
with normal conditions, this difference appears only from the 30th decimal place on, we cannot
disregard it.

In order to reduce this contradiction, we we are forced to redefine the quantities rest mass,
rest-length, rest-period etc. From now on, we want to mark the value in effect with a velocity
of zero in reference to the subspace as UR-rest-mass/-length/-period etc. and, since already
many times used, we want to maintain the designations m0, x0, t0… for them. The ”classic”
value for a velocity of zero in reference to the metrics on the other hand, we will mark as SR-
rest-mass/-length/-time period from now on, using the variables m*, x*, t*… *… etc. for them.
Whereas there is no need to redefine the SR-rest-mass/-length/…, to the UR-rest-mass/-
length/… the following definitions apply:

The UR-rest-mass/-length/… etc. is equal to the mass/length/… etc. at a
gravitational fieldstrength (gravitational potential –g00)  of 1.

These would be the conditions in a true MINKOWSKIan space. So, the UR-rest-mass/… even
could be called the MINKOWSKIan rest-mass/… Although, this is not identical to the rest-
mass/… at the point of time T , since then the cosmologic red-shift, caused by the
expansion of the metrics, would not have been considered. Both, UR- as well as SR-rest-
mass/… still remain reference-frame-dependent quantities with it.

Because of the two options of definition for the velocity v and the two rest masses/-
lengths… with it four different combinations turn out on the calculation of the relativistic
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mass/length… etc. We want to consider this at the example of the relativistic mass-increase
more exactly. Based on (612) and (655) applies:

m  =  m0  

sin  

sin  (v ˜ c M )
          v-subspace   

UR-rest-mass    (816)

According to (612) cM is already contained in  . Therefore, we must subtract this part. The
function-course of x (x= , , , ) distinguishes itself by the fact, that all graphs at v=0 go
through the point 1 and there is no shifting in v-direction. If we define the velocity in reference
to the metrics, which is the normal case, so we have to modify (816) as follows:

m  =  m0  

sin  

sin  (v)
                   v-metrics        

UR-rest-mass    (817)

If not separately declared, all formulae and graphic representations in this work are based on
this combination. Examples are presented in the figures 107…110, 113 and in figure 114. What
does it look like however, if we do not want ot work with the UR-rest-mass, which is only an
imagined value, but with the SR-rest-mass, which one can really measure? Is there a relation,
with whose help both can be converted in one another? This is the case indeed, there are
actually four relations in sum:

m0  =  m* 

sin  (0)

sin  

 =  m* 

sin ˜   

sin  

     Mass        

space-like

x0   =  x* 

sin  

sin (0)
  =  x* 

sin  

sin ˜  
     Length  

time-like

(818)

0 
 =  * 

cos

sin (0)
  =  *  

cos

 sin ˜  
         Wavelength

neutrino      

0 
 =  * 

cos

sin  (0)
  =  *  

cos

 sin ˜   

         Wavelength
antineutrino 

In this connection, the velocity is referred to the metrics once again. With the neutrinos it's to
be recognized that the difference between both wavelengths under normal-conditions (Q0) is
vast. Now, using the first expression of (818) in (816) and (817) we obtain the missing two
combinations:

m  =  m* 

sin  ( ˜ c M )

sin  (v ˜ c M )
          v-subspace    

SR-rest-mass    (819)

m  =  m* 

sin  (0)

sin  (v)
 =  m* 

sin ˜   

sin  

                   v-metrics        

SR-rest-mass    (820)

It shows, the expressions sina cancel each other, because the vectors cM and vM point into the
same direction and the angle  always derives from the frame of reference (cM) The same
applies even to the time-like expressions and to the neutrinos by the way, even if the reciprocal
comes into effect for them. At the neutrinos, instead of sin  the value cos  cancels out
including the sign. Thus, simplifying we can say, only the expression sin  as well as ±cos
must be replaced by the equivalent sin x (x= , , , ), if we want to use the SR-rest-value
instead of the UR-rest-value. Btw. this applies even to expressions being differentiated or
integrated, as e.g. the tensor-expressions at the end of this work, because  and ˜   are
constants.
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After all, these relations apply independently, whether the Q-factor Q0´ depends on the velocity
or not. In combination of this dependence with the determination of it's commendable to
calculate with expression (820). Therefore this combination carries a particular weight.
Therefore, the course of   for certain Q-factors Q0 103 is shown in figure 131 once again, in
order to work out the difference to figure 108 more exactly. With larger Q-factors there is no
difference anyway (identical to figure 105). In terms of physics, it's about the same
phenomenon however. The different courses are caused by the different definition of velocity
and rest mass only.

Figure 131
Course of the relativistic mass-increase in dependence of the velocity in
reference to the metrics under application of the SR-rest-mass for Q-factors Q0 103.

Since even this problem has been solved now, another question remains open:  What like is
the speed-component vG, caused by the gravitative action of a nearly located mass-affected
body, to be classified? This share is to assign to the metric share cM definitely, because the
properties of space outside this body really change in such a manner, as if there would be a
lower Q-factor. This applies independently from the fact, that this share (at least temporarily up
to the impact) can be evened out by a negative velocity. Let's recapitulate once again. We said,
that a lot of the MLE´s inside the body are quasi pressed-out by the space-demanding action of
the particles from which it consists. As a result the metric lattice outside is compressed, which
leads to a smaller value of the PLANCK’s fundamental length r0. These are however exactly the
qualities of a space-segment with smaller Q-factor.

If the Q-factor really should depend on the velocity, another last, further effect arises. If a body
is moving with the velocity v in reference to the frame of reference S and we put the centre of
the frame of reference S  into the centre of this body, so the velocity of S  in reference to the
subspace must be of the same size, irrespective of the frame of reference on which the
observation takes place. If the velocity in reference to S has a value v, so the velocity v  of S  in
reference to the metrics does not have the value zero, as expected, even if assuming the
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value Q0  for S . Rather, it has a value different from zero. This is based on observations and on
the fact that cM never can be greater than 0.851661c. Another reason is, that S  is no longer in
the middle of the universe then. We just can say, only a body in the free fall, which is in the
centre of the universe, doesn't move in reference to the metrics. That means furthermore, the
value Q0 measured at an arbitrary position, applies everywhere. It figures something like an
universal frame of reference. But the relativity-principle is not injured nevertheless, since there
is a quasi infinite number of these ”universal” frames of reference, at which point no one of
them is marked.

That means, if I accelerate a body, being in rest to the metrics (system S) initially, onto a
velocity v in reference to the metrics, so it will move even in its inherent frame of reference
with a definite velocity in reference to the metrics.
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Figure 132
Entrainment-effect during acceleration: Course of the difference-velocity to the metrics in S´
in dependence of the velocity v in reference to the metrics in S for Q-factors Q0 103

The fact, that he measures a lower Q-factor in its inherent system, also means then again that
the velocity cM  is greater than cM in S, whereat the velocity in reference to the subspace
remains constant (cM+v=cM +v ). With acceleration so to speak, the body picks up a part of the
metrics, it accelerates these. Therefore, I would like to call this effect the entrainment-effect.
This is caused by the interaction between body and metrics, which is mediated by the space-
like photons. During acceleration the metrics counters the body with a certain resistance (inert
mass). As a countermove, on overcoming of this impedance (force), the body entrains a part of
the metrics accelerating it in turn (cM ).

During acceleration of the body, just the difference-velocity v+cM(0)–cM(v). is changing.
The course of the difference-velocity with certain initial-conditions is diagramed in figure 132.
In this connection, the velocity v is defined in reference to the metrics and it shows, the
difference even can become negative. But with most calculations this can be ignored in peace.
One must only know that the velocity in reference to the subspace is constant.
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I don't want to brush a possible fourth alternative under the carpet at this point, which means
that this model is wrong. Maybe, I have overlooked something…

7.2.4.          Principle of the Maximum Gravitative Coupling

We have seen that there are essentially no fundamental contradictions with the idea of the
universal relativity, considering this model. Also, we have seen that and why we get involved
in a row of additional problems, if we abandon the principle of the minimum gravitative
coupling.

Now there is a multiplicity of other models which, already in the formation, are incompatible
with the statements done in this model. These are the ones particularly, which are based on a
disappearance of the gravitational-»potential« in the infinite. But this is not applied to the
statements done by EINSTEIN, because these have been formulated so universally, that they are
applicable even to a pure radiation-cosmos and that's about here. If we just want to calculate
e.g. the curvature of space, we only must insert the corresponding values of the metric wave-
field as output variables.

For a minimum gravitative coupling applies: The mass determines the geometry, but the
geometry does not determine the mass. It reigns something like the ”free market economy”, the
inherent laws of the SRT are independent from those of the URT and therefore we don't require
such relation at all. But now, we have the inverse case on hand: The geometry (r0) determines
mass, time, energy, wavelength etc. in all.

Now one could think, there should be even the inverse dependence, namely that, where the
mass determines the (local) geometry. Although, the mass is just determined by the relation
M = h D /c2 whereby as well h as D depend on the frame of reference (r0) in turn. The mass
just already somehow is contained in the energy-impulse-tensor of the metric wave-field from
which arises, that the field-equations of the URT are filled automatically, a fact, which already
d’INVERNO pointed out in [30]. That means, not the mass determines the geometry but only the
existence of particles within the metrics, at which point the metrics (the metric wave-field)
dictates, how much mass these particles have.

So, all quantities seem to be coupled somehow together. Therefore, I would like to name this
new principle the Principle of the Maximum Gravitative Coupling. With IX. in section 6.2.7.
we already formulated something similar. Here some more detailed:

XII. Principle of the Maximum Gravitative Coupling: All physical quantities like
space, time, mass, energy, wavelength etc. form a canonical ensemble, at
which point the exact values are determined by the phase-angle of the metric
wave-function (Q-factor) only. The progression of the phase-angle is synony-
mous with the progression of time (tics). The existence of fermionic particles
resp. particle-concentrations as space-demanding interference of the metric
wave-field as well as its existence is cause for the gravitative effects. The
boundary between special and universal relativity-theory is annulled.

7.2.5.          Metric functions

After we have formulated the line-element for this model having made even deeper
contemplations about the angles in the triangle as well as about their physical meaning and
dependences of the discrete coordinates, it's opportune to calculate certain values, which carry
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a great weight in the SRT. Basis for it is always the metric tensor resp. the line-element, which
in terms of physics both characterize the same phenomenon.

7.2.5.1. The  metric connection

One of these ”certain values” is the RIEMANN curvature tensor. In order to calculate it, we
require a function bc

a called the metric connection. According to [30] this is defined as follows:

bc
a  =  

1

2
gad bgdc + cgdb d gbc( ) (821)

On this occasion, gad is equal to the component gad of the inverse matrix gab and b equal to the
partial differential-operator / b. The rest remains incomprehensible for the reader with
”normal” engineer-education first of all. Unfortunately, one does not go more into detail in
literature more often than not.

But since we want to determine the values of our line-element, we don't get around an exact
calculation of (821). The simplest way, to understand an expression exactly, is, to try, to
automate the calculation. Then, one usually does even no errors, unless, the formula is wrong.

As tool for it, we use the program »Mathematica« in turn, which is, among other things,
even able, to calculate the partial derivative (D[f(x),x]). As input-values we are concerned first
of all with the matrix of the metric tensor, which we assign to the variable Mx. Furthermore,
we require the inverse matrix, which we can compute with the built-in function Inverse[Mx]
and another function Di, with whose help, on the basis of the subscript, we can infer the
coordinate, with respect to which shall be differentiated. For the genuine MINKOWSKIan line-
element we obtain then:

Mx={{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}}; (822)
Inx=Inverse[Mx]; (823)
Di=Function[Part[{ct,x,y,z},#+1]];      (824)

In order to access the individual components of Mx resp. Inx, we define another function
MPart[Mx,a,b], whereby the individual coefficients can take on the value 0 a 3 in each case
(Part[x,n] is implemented in »Mathematica«).

The function of the metric connection itself we want to name with MGamma[a,b,c,Mx].
With it, the values a, b, c and Mx a priori are fixed as input variables.

But what's about the component d? This is first no input variable. It's value arises from the
EINSTEIN summation convention, which implies, that there is always to be added up across
doubly (or multiple) appearing indices, at which point the value-range arises from the input
variables, (here 0…3). That means we have to calculate (821) four times in total, whereby the
value of d is incremented by one each time, beginning with zero, adding up the results
afterwards. That looks as follows in »Mathematica«-notation then:

MPart=Function[Part[Part[#1,#2+1],#3+1]]; (825)
MGamma=Function[For[Mg=0;n=0,n<4,n++, (826)
Mg+=(1/2 (MPart[Inverse[#4],#1,n] ) (D[MPart[#4,n,#3],Di[#2]]+

D[MPart[#4,n,#2],Di[#3]]-D[MPart[#4,#2,#3],Di[n]] ))]; Simplify[Mg]];

The function Simplify[x] only is used to simplify the result (summarizing of equivalent
expressions). Thus, this function has been uniquely defined and we can begin with it's
calculation. Altogether there are 64 possible solutions whereby in general only a part of them
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will be different from zero. Because bc
a
= cb

a  applies, it can be derived directly from (821),
there are merely 16 independent solutions (bb=bb).  But before we'll determine the solutions of
our line-element, it's opportune, to calculate first the solutions of the MINKOWSKIan line-
element.

With (822) we obtain bc
a
= 0  as solution(s), i.e. all connections vanish. This is synonymous

with the disappearance of the RIEMANN curvature tensor, as we will already see, or said more
popularly, at the MINKOWSKIan line-element the curvature is equal to zero. Then, we are
concerned with an even or flat metrics.

This statement well agrees with the cited facts in [30], our program seems to be just right.
How does it look like with spherical coordinates however? This question is important, since
our line-element is using spherical coordinates too.

In [30] it states to it: »… In an universal coordinate-system won't necessarily vanish the
connection-components however. For example, we find in spherical coordinates that bc

a  is
having the non-vanishing components

22
1

= r; 33
1

=   r sin2  

12
2

= r 1; 33
2

= sin cos  

13
3

= r 1; 23
3

=   cot  

 

 
 

 
 

Annotation: 

      (8.5 [30])

Let's calculate the RIEMANN Curvature tensor however, so we find Ra
bcd = 0  in turn, as

demanded by the theorem (§6.11 [30]).« This appears plausible, but it's unfortunately not
correct. In [30] namely there is a misprint. Using the corresponding spherical initial values
instead of (822) and (824)

Mx={{1, 0, 0, 0},{0, -1, 0, 0},{0, 0, -r^2, 0},{0, 0, 0,-(r^2*Sin[theta]^2)}};
Di=Function[Part[{ct,r,theta,phi},#+1]]; (827)

we obtain with the exception of the component 33
1  the same results, as in (8.5 [30]). The

negative sign is missing with 33
1 . With the exact values:

22
1

= r; 33
1

= rsin2  

12
2

= r 1; 33
2

= sin cos  

13
3

= r 1; 23
3

=   cot  

 

 
 

 
 

(828)

the RIEMANN curvature tensor really vanishes. Before however, we first have to compute it. We
will do this in the next section.

7.2.5.2. The RIEMANN curvature tensor

This is commonly marked with the symbol Ra
bcd.  It is just about a 44-matrix with 256

components overall. We take over the definition of the individual components from [30] in turn
hoping, that it is correct:

Ra
bcd  =  c bd

a
d bc

a
+ bd

e
ec
a

bc
e

ed
a (829)

We name the function to the determination of an individual component of the RIEMANN

curvature tensor with RAbcd[a,b,c,d,Mx], at which point the upper-case A should refer to a
superscript index (RAbcd Rabcd).
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Thus, the values a, b, c, d and Mx are input variables. We add-up across e. Please add-up
only the two last products, since only they are containing e. I would have been able to spare
unnecessary work and four weeks endless searching, if I would have taken this into account
from the beginning. Furthermore, we must be careful, that we don't use the same symbols for
the loop-variables and we obtain as »Mathematica«-program:

RAbcd=Function[For[RA=0;m=0,m<4,m++,RA+=
MGamma[m,#2,#4,#5] MGamma[#1,m,#3,#5]-

MGamma[m,#2,#3,#5] MGamma[#1,m,#4,#5]]; (830)
Simplify[RA+D[MGamma[#1,#2,#4,#5],Di[#3]]-
D[MGamma[#1,#2,#3,#5],Di[#4]]]];

With the genuine MINKOWSKIan line-element with Cartesian and spherical coordinates all
solutions become zero. According to [30] the solutions must fill the relationRa

bcd = Ra
bdc

which is the case indeed (trivial). The program seems to be just right.

The RIEMANN-tensor vanishes, but what does it look like with the RICCI-tensor Rab or with
the curvature-scalar R? In order to compute them, first of all let's have a look at the lowered
tensor Rabcd. By analogy with [30] we obtain it with the help of the following relation:

Rabcd  =    gaa R
a
bcd (831)

The following permutation-rules apply:

Rabcd  =  Rbacd =  Rabdc =  Rbadc Rabcd  =  Rcdab      (832)

It becomes more difficult with it to sort out the dependent components. Expression (831) can
be transformed into the following simple program:

Rabcd=Function[MPart[#5,#1,#1] RAbcd[#1,#2,#3,#4,#5]];   (833)

A summation doesn't take place here. With Cartesian coordinates, all results are equal to zero,
as well with spherical coordinates. The conditions (832) are filled trivially. Also Rabcd vanishes
with it. Thus, we can set about to compute the RICCI-tensor.

7.2.5.3. The RICCI-tensor

This is marked with the symbol Rab. Thus, it's about a 42-Matrix with 16 components overall.
According to the definition in [30] applies:

Rab = R
c
bcd = gcdRdacb    (6.83 [30])

Even this expression cannot be correct like that. Now I found a second source indeed,
unfortunately just there the middle part, which is of immense importance, has been calculated
by another way namely with the help of the KRONECKER-delta-function, being easily to
program on the one hand, being unhelpful on the other hand, since D’INVERNO does not
provide any further information, whether and in what extent is to be added-up. Therefore we
want to proceed the other way in that we compute Rab without the aid of Rabcd. According to my
opinion, expression (6.83 [30]) should correctly read:

Rab = R
c
acb = gcdRdacb (834)

Let's just start from (834) and define the function Rab[a,b,Mx] to:

Rab=Function[For[Ri=0;n1=0,n1<4,n1++,Ri+=RAbcd[n1,#1,n1,#2,#3]]; (835)
Simplify[Ri]];
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In both cases, the result is zero for all components again. To the conclusion still the the scalary
curvature R=gabRab remains, even called RICCI-scalar. Here, the definition in [30] is correct in
turn. In »Mathematica« the value arises to:

RaB=Function[MPart[Inx,#2,#2] Rab[#1,#2,#3]]; (836)
Rr=Function[For[R1=0;n2=0,n2<4,n2++,R1+=RaB[n2,n2,#]];Simplify[R1]]; (837)

RaB is the raised tensor Ra
b=gbbRab. The value of the scalary curvature for the genuine

MINKOWSKIan line-element in Cartesian and spherical coordinates is equal to zero.

7.2.5.4. Solutions for this model without navigation-gradient

Now, let's take an observer being in the free fall and in the point (T, 0, 0, 0). With it applies
R=0. Considering the current condition, we can also set t=0. Thus, the navigation-gradient
becomes equal to one and can be disregarded.

In terms of physics, we look at the observer in his frame of reference. Then, the metric
tensor is defined as follows:

Mx={{(Sin[GammaPQV[Q,0]]/Sin[AlphaQ[Q]])^2, 0, 0, 0},

{0, -(Sin[GammaPQV[Q,0]]/Sin[AlphaQ[Q]] )^2/(1-RhoQ[Q]^2)^2, 0, 0}, (838)
{0, 0, -r^2, 0}, {0, 0, 0, -(r^2*Sin[theta]^2)}};

Inx=Inverse[Mx]; (839)

For reasons of simplification we reckon with the angle  only. Therefore, we must still
multiply g11 with 2. Since the angle  depends on the frame of reference, being a constant with
it, we must not define on the function AlphaQ. The same is applied even to RhoQ(cM), which
depends on the frame of reference too.

Then, we obtain the following independent solutions, different from zero, for the connecti-
ons bc

a :

22
1 = r  

sin2
 

sin2  
; 33

1 = r  sin2
sin2

 

sin2  
 

12
2

=   r 1; 33
2

= sin cos  

13
3

=   r 1; 23
3

=   cot  

 

 

 
 
  

 

 
 
 
 

(840)

Just only 22
1  and 33

1  are involved. All other solutions resemble those of the MINKOWSKIan
line-element. As next, we want to specify the solutions, different from zero, for the RIEMANN
curvature tensorRa

bcd :

R2
323 =  R2

332 =  sin2
 1

sin2
 

sin2  

 

 

 
 

 

 

 
 R3

223 =  R3
232 =   1

sin2
 

sin2  

 

 

 
 

 

 

 
 

All solutions fill the demand Ra
bcd = Ra

bdc  with it. Particularly the bracketed expression,
which corresponds to the difference 1–g11 is interesting. It appears in all expressions and can be
traced back, based on (762), on the following approximation:
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1
sin2

 

sin2   =  1 g11   
1
˜ Q 0

+
v2

c2 +
2 ˜ M ̃  G 

rc2

 

 
 

 

 
       (841)

Therefore, from here on, we will not state explicitelely any approximative solutions. To the
calculation of the lowered tensor Rabcd  we use the formula (833) as well as the input-values
(838) and (839). We get only one single independent, component, different from zero. It reads:

R2323 =  R2332 =  R3223 =  R3232  =  r2 sin2
 1

sin2
 

sin2  

 

 

 
 

 

 

 
 (842)

For the RICCI-tensorRab  we obtain the following solution:

Rab =  

   0 0 0 0

   0 0 0 0

   0 0 1
sin2

 

sin2  

 

 

 
 

 

 

 
 0

   0 0 0 sin2
 1

sin2
 

sin2  

 

 

 
 

 

 

 
  

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

   (843)

Applying the present-day values, all components are directed to zero, which agrees with the
observation very well. To the conclusion still the scalary curvature. This arises to:

R =  
2

r2   1
sin2

 

sin2  

 

 
 

 

 
 Scalary curvature (844)

Interestingly enough, the factor 2 in (844) cancels out with the factor 1/2 in (0.25). Even here,
the curvature tends against zero, if we apply the current values. But if r is very small, i.e. it
tends against the value r0, the curvature no longer vanishes but ascends very quickly. This
shows very good, if we apply the approximation for the bracketed expression in (844):

R  
2

r2 ˜ Q 0
Scalary curvature approximation (845)

If we assume a certain distance r in the microscopic range, so this also depends on Q0, i.e. on
our frame of reference. It applies: r~Q0 and with it R ~ Q0

–3. Thus, we have described the
curvature for microscopic dimensions. But if we move far, far away from the coordinate-
origin, coming into the proximity of the world-radius, the curvature should increase too. Also
this varies with time, which doesn't have derived from the former relations. For that purpose,
we must include the navigation-gradient into our contemplations.

7.2.5.5. Solutions for this model with navigation-gradient

We reconsider only the solution for a test-body in the free fall to the point of time T+t in the
distance r of the coordinate-origin without presence of matter (vacuum-solution). The
following expressions apply locally with it, not however across the entire distance. Then, we
would be forced again to integrate with respect to r, obtaining only an implicit solution like
with the gravitational-»constant«. Since the test-body is in the free fall, it doesn't move in
reference to the metrics. Else, the solution would be even more complicated, because the
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distance r would depend on time and way additionally then. In terms of mathematics, such a
solution would not be impossible, but we don't want to pursue it in this place, since it would go
beyond the scope of this work.

Another option would be the inclusion of point-masses resp. mass-distributions, when the
body is not in the free fall. On this occasion, we should have to insert the sum cM+vG instead of
v, making the solution much more complicated in turn (the angle  should have to be co-
included into the derivatives), so that we neither want to examine this case any longer. Rather,
this could be object of an autonomous work being published to a later point of time.

Just let's begin in that we define the metric tensor Mx and it's inverse matrix Inx. We take
expression (759) as template. Since now there is a cross-over-dependence between r and t, we
must move the speed of light c from the 00-coordinate to the metrics itself:

Mx={{(c*Sin[GammaPQV[Q,0]]/Sin[AlphaQ[Q]])^2/(1+t/T), 0, 0, 0},

{0, -(Sin[GammaPQV[Q,0]]/Sin[AlphaQ[Q]])^2/(1-RhoQ[Q]^2)^2*

((1+t/T)^(1/2)-(2r/R)^(2/3))^2, 0, 0},
{0, 0, -r^2, 0}, {0, 0, 0, -(r^2*Sin[theta]^2)}}; (846)
Inx=Inverse[Mx]; (847)

From reasons of performance, it's opportune, to calculate expression (847) only once, and to
replace it with a fixed definition then. Otherwise the expression is recalculated with each call
and the computing-time for the determination of the scalary curvature can amount to 24 hours
now and then. We just replace (847) by:

Inx={{(1/c*Sin[AlphaQ[Q]]/Sin[GammaPQV[Q, 0]] )^2*(1+t/T ), 0, 0, 0},
{0, -(Sin[AlphaQ[Q]]/Sin[GammaPQV[Q,0]] )^2*(1-RhoQ[Q]^2)^2/ (848)
((1+t/T)^(1/2)-(2r/R)^(2/3))^2, 0, 0},
{0, 0, -r^(-2), 0}, {0, 0, 0, -(1/(r^2*Sin[theta]^2))}};

With it changes even our function Di, giving the parameter, with respect to which should be
differentiated:

Di=Function[Part[{t,r,theta,phi},#+1]]; (849)

By the way, the function Simplify should be applied as early as possible. Unfortunately it is not
almighty, so that we doesn't come around to post-simplify by hand. In the following
calculations, the chain-rule is applied repeatedly to the differentiation with the effect, that the
results strongly increase in their complexity. Since the differentiation takes place automatically
at this point, each human error is ruled out a priori. If errors should appear nevertheless, so
these are to be attributed to the manual simplification.

At first, we want to compute the independent metric connections again. To the simplification
of the representation, we will take up following substitutions:

t  =  1 +
t
˜ T 

 

 
 

 

 
 

1

2
               r  =  

2r
˜ R 

 

 
 

 

 
 

2

3
 
macroscopically

 r  =  
2r ˜ r 0

˜ R 

 

 
 

 

 
 

2
3

 
exactly

  (850)

More final expression arises directly from (236). To the calculation of the solutions, we can
work with the left-hand expression then again, at which point we can substitute only when
exercising in such ranges whose dimensions are in the proximity of r0 and in all strongly
degenerate conditions. The validity of the following solutions is not restricted thereby, because
r0 is a reference-frame-dependent constant. Then, we get for the metric connections:
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00
0 = H  ; 11

0 =   

4

˜ R c
 t (t r)

01
1 =   ˜ H 

1
t (t r)

 ; 11
1 =

2
3

r 1 r

t r

22
1 = r  

1

t r( )
2

sin2
 

sin2  ; 33
1 = r  sin2 1

t r( )
2

sin2
 

sin2    

12
2 =   r 1; 33

2 = sin cos

13
3 =   r 1; 23

3 =   cot

 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

(851)

Please pay attention to the italic notation by all means. From security-reasons however, the ita-
lic parameters t and r are always collected in an individual partial expression in all expressions,
so that a mix-up with t and r becomes nearly impossible. Furthermore, we benefit from the
following relations:

˜ H  =  
1

2 ˜ T 
  H  =  

1

2  ( ˜ T + t)
˜ R  =  2c˜ T R  =  2c  ( ˜ T + t) (852)

as well as from (767). The expression  is the classic relativistic dilatation-factor (1–v2 /c2 )–1/2,
in which we apply the propagation-velocity of the metric wave-field cM in place of v. In the
normal case, the value is extremely close to one. For t = 0 (nowadays) even t in italics is one
and it applies r(0) = 0. Then solution (851) passes into in (840), which is an evidence for that
we have calculated correctly.

To the further saving of computer-time, even the connections can be defined as functions.
Then, the associated »Mathematica«-program looks like this:

MGamma=Function[Which[

{#1,#2,#3}=={0,0,0},-1/(2(T+t)),
{#1,#2,#3}=={0,1,1},(1+t/T)^(1/2)*((1+t/T)^(1/2)-(2r/R)^(2/3))/

                               (2*T*c^2*(1-RhoQ[Q]^2)^2),
{#1,#2,#3}=={1,0,1},1/(2T)/((1+t/T)^(1/2)*((1+t/T)^(1/2)-(2r/R)^(2/3))),

{#1,#2,#3}=={1,1,0},1/(2T)/((1+t/T)^(1/2)*((1+t/T)^(1/2)-(2r/R)^(2/3))),
{#1,#2,#3}=={1,1,1},-2/(3r)*(2r/R)^(2/3)/((1+t/T)^(1/2)-(2r/R)^(2/3)),

{#1,#2,#3}=={1,2,2},-r/(((1+t/T)^(1/2)-(2r/R)^(2/3))^2)*

                       (Sin[AlphaQ[Q]]/Sin[GammaPQV[Q,0]])^2*(1-RhoQ[Q]^2)^2,
{#1,#2,#3}=={1,3,3},-r*Sin[theta]^2/(((1+t/T)^(1/2)-(2r/R)^(2/3))^2)* (853)
                       (Sin[AlphaQ[Q]]/Sin[GammaPQV[Q,0]])^2*(1-RhoQ[Q]^2)^2,
{#1,#2,#3}=={2,1,2},1/r,

{#1,#2,#3}=={2,2,1},1/r,

{#1,#2,#3}=={2,3,3},-Cos[theta]*Sin[theta],
{#1,#2,#3}=={3,1,3},1/r,

{#1,#2,#3}=={3,2,3},Cos[theta]/Sin[theta],
{#1,#2,#3}=={3,3,1},1/r,

{#1,#2,#3}=={3,3,2},Cos[theta]/Sin[theta],
True,0]];

The number (853) doesn't belong to it of course. The formula has been checked with (826).
Thus, as next, we can set about to determine the independent solutions for the RIEMANN
curvature tensorRa

bcd . To the better check and because I have made the effort now and then,
we want to present all dependent and independent solutions ( 0):
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R0
212  =  

˜ H r

c2

t

t r
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sin2      R0
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t
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1
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R1
330  =  ˜ H r  sin 2

 

1

t (t r)3  

sin2
 

sin2       R1
303  =    ˜ H r  sin2

 

1

t (t r )3  

sin2
 

sin2  

R1313  =  
2
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sin2
 

sin2              R1331  =    2
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(t r )3  
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sin2  

R2
012  =  ˜ H r 1 1

t (t r)
          R2

021  =     ˜ H r 1 1

t ( t r)

R2
102  =  ˜ H r 1 1

t (t r )
          R2

120  =     ˜ H r 1 1

t (t r )

R2
121  =  

2

3
r 2 r

t r
     R2
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r 2 r

t r
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332  =   1

1

(t r )2  

sin2
 

sin2  

 

 

 
 

 

 

 
  sin2      R2
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R3
013  =  ˜ H r 1 1

t (t r)
          R3

031  =     ˜ H r 1 1

t ( t r)

R3
103  =  ˜ H r 1 1

t (t r)
          R3

130  =     ˜ H r 1 1

t (t r)

R3
131  =  
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r 2 r

t r
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2
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r 2 r

t r
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      R3
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(t r) 2  
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All remaining components are zero. The solutions fill the demand Ra
bcd = Ra

bdc in turn, albeit
there are more than before. That's not astonishing, because g11 depends both on the time t, as on
the distance r.

For the lowered RIEMANN curvature-tensor Rabcd  we obtain the following solutions, different
from zero:
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____________________________________________________________________________

R0212  =  ˜ H r  

1

t ( t r)
R0221  =     ˜ H r  

1

t (t r )

R1202  =  ˜ H r  

1

t (t r)  
R1220  =     ˜ H r  

1

t (t r)

R2021  =  ˜ H r  

1

t (t r)
R2012  =     ˜ H r  

1

t (t r)

R2120  =  ˜ H r  

1

t (t r )
R2102  =     ˜ H r  

1

t (t r)
____________________________________________________________________________

R0313  =  ˜ H r  sin2
 

1

t (t r )
R0331  =     ˜ H r  sin2

 

1

t (t r)

R1303  =  ˜ H r  sin2
 

1

t (t r )
R1330  =     ˜ H r  sin2

 

1

t (t r)
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R3130  =  ˜ H r  sin2
 

1
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2
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r

t r
     R1212  =     

2
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r

t r

R2112  =  2

3
 
r

t r
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3
 
r

t r
____________________________________________________________________________
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2
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r

t r
 sin2 R1313  =     

2
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r

t r
 sin2

R3113  =  2

3
 
r

t r
 sin2 R3131  =     

2

3
 
r

t r
 sin2

____________________________________________________________________________

R2323  =  r2 sin2
 1

1

(t r)2  

sin2
 

sin2  

 

 

 
 

 

 

 
 R2332  =     r2 sin2

 1
1

(t r)2  
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sin2  

 

 

 
 

 

 

 
 

R3232  =  r2 sin2
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1

(t r)2  
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 R3223  =     r2 sin2

 1
1

(t r)2  
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____________________________________________________________________________

The related components have been collected to the better overview. So we can better see, that
condition (832) is filled. Particularly interesting is, that a part of the solutions are velocities
(escape-velocity Hr) having even a physical meaning without doubt.
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For the RICCI-tensorRab  now we get the following solutions, which unfortunately no longer can
be presented in matrix-form, unless in the landscape view:

R01  =  1
˜ T 

r 1 1

t (t r)
R10  =  1

˜ T 
r 1 1

t (t r)
   R11  =  4

3
r 2 r

t r 

R22  =  1
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(t r)2 +
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r

(t r )3

 

 
  

 

 
   

sin2
 

sin2  

 

 

 
 

 

 

 
       RICCI-tensor (854)

R33  =  1
1

(t r)2 +
2

3

r

(t r )3

 

 
  

 

 
   

sin2
 

sin2  

 

 

 
 

 

 

 
  sin2

The rest is equal to zero. If we apply the present-day values, so all components incline to zero
in turn. Thus, the metrics behaves approximately in a MINKOWSKIan manner, exactly, as
anticipated by LANCZOS. For the scalary curvature applies:

R    =  2

r2  1
1

(t r)2 +
4

3

r

(t r )3

 

 
  

 

 
   

sin2
 

sin2  

 

 

 
 

 

 

 
 Scalary curvature   (855)

The course of the scalary curvature for several initial-Q-factors under application of the
complete expression (850) is presented in figure 133. It is here only about relative values in
comparison with the world-radius, i.e. it's possible to infer on the course of the curvature, but
the values aren't comparable with each other.
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Figure 133
Relative scalary curvature for
various initial-Q-factors

Particularly interesting is the course for an initial Q-factor >106, which corresponds to the
standard-case of an observer in a space of vanishing curvature (nowadays). Here it shows again
the ascend in the microscopic range, which we could already observe in the previous section.
But in contrast, the curvature escalates too, when approaching the half world-radius. To the

curvature
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better overview, the course for Q0>106 for positive (space-like) and negative (time-like
distances) has been separately presented once again in figure 134. In principle, no difference
appears there, only a small asymmetry around the point zero.
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Figure 134
Relative scalary curvature for
the standard-case Q0>106

The curvature within the ”limits” of the universe is positive, i.e. the space is closed as well at
the microscopic as at the macroscopic end. A singularity resides at both ends. Outside, the
space is open, in so far as an ”outside” should exist at all.

It will be interesting, when the initial factor becomes minor, e.g. if we put the origin of our
frame of reference into an area of high curvature or if we simply go back on the time-scale to a
point of time just after the big bang. Now the macroscopic singularity moves from R/2 to the
point R at Q0 =1, This corresponds to the conditions directly at the SCHWARZSCHILD-radius,
which well agrees with our prevision of a phase jump to that point of time. This must include
the entire universe in order to be complete.

If we go back any farther, so we come upon an open universe with negative curvature. In the
chosen case Q0 =2/3 the singularity is at the point R/4, however only for positive (space-like)
distances. Just a not negligible asymmetry appears here. The exact course is presented in figure
135, under use of the exact expression of (850) in turn. Which exact physical conclusions can
be derived therefrom, I would like to leave to the reader. In any case I believe, that there will
be a lot of them, since the last-named case corresponds to the conditions within the
SCHWARZSCHILD-radius of a black hole.

To the conclusion we already want to specify the determinant of the metrics, as it is frequently
used, namely in the form (–g)1/2. We use the built-in function Det[M] for it. It applies:

g  =  cr2 sin2
 

t r

t
 

sin2
 

sin2
 

Determinant (856)

curvature
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Figure 135
Relative scalary curvature

for the case Q0 =2/3

Thus, we have established a sound basis, in order to compute the energy-impulse-tensor of the
vacuum, based on this model.

7.2.6.          The energy-impulse-tensor

At first we compute the lowered tensor Tik namely for a body in the free fall, i.e. the
vacuum-solution. To the calculation, we can use the famous EINSTEIN equation (0.25) which is
generally valid. Expression (0.25) means at the same time, that the so-called cosmologic
constant  is equal to zero. As input variable, we require the metrics and the therefrom derived
functions RICCI-tensor and the scalary curvature.

Rik –
1

2
R gik  =  Tik (0.25)

For the calculation, we use the program »Mathematica« in turn and the following script:

Rr00=-2/r^2*(1-(1/(tt-rr)^2+4/3*rr/(tt-rr)^3)*Sin[Al]^2/Sin[GaGa]^2*beta^-4);

Mx={{c^2*Sin[GaGa]^2/Sin[Al]^2/tt^2, 0, 0, 0},
{0, -Sin[GaGa]^2/Sin[Al]^2*beta^4*(tt-rr)^2, 0, 0},

{0, 0, -r^2, 0}, {0, 0, 0, -(r^2*Sin[theta]^2)}}; (857)

Rik={{0,1/(T*r)/(tt*(tt-rr)),0,0},{1/(T*r)/(tt*(tt-rr)),-4/(3*r^2)*rr/(tt-rr),0,0},
{0,0,(1-(1/(tt-rr)^2+2/3*rr/(tt-rr)^3)*Sin[Al]^2/Sin[GaGa]^2*beta^-4),0},

{0,0,0,(1-(1/(tt-rr)^2+2/3*rr/(tt-rr)^3)*

Sin[Al]^2/Sin[GaGa]^2*beta^-4)*Sin[theta]^2}};

The calculation itself takes place by the execution of the following line:

Simplify[Rik-1/2*Rr00*Mx]      (858)

curvature
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Since it is about the multiplication with a scalar, the asterisk is written here and not the point
(the * even can be omitted). After the simplification by hand, we get the following components
different from zero:

T00  =  
1

4  

c2

r2  

1

( t r) 2 +
4

3

r

(t r)3  

 

 
  

 

 
  

sin2
 

sin2
 

 

 

 
 

 

 

 
  

1

t2

T01  =  
1
˜ T 

 r 1 1

t (t r)
     T10  =  

1
˜ T 

 r 1 1

t (t r)
(859)

T11  =     
1

r2  1 (t r )2 sin2
 

sin2
 

 

 

 
 

 

 

 
 

T22  =     
2

3
 

r

(t r)3  

sin2
 

sin2
 

T33  =     
2

3
 sin2

 

r

(t r)3  

sin2
 

sin2
 

Please pay attention again to the italic variables, which have been defined in the previous
section (852). Since no more differentiation takes place, we can work on with these from now
on. An examination of the units of measurement leads to the interesting result that we are
concerned here neither with energetic nor with impulse-units. This is just right, because the
energy-impulse-tensor is not called so, because it describes energy or impulse on any way but
because it, among other things, results from the energy- and impulse-distribution in space.

Indeed, the components are containing all these information, including the probable existence
of one or more mass-distributions, the mass of the test-body, its impulse, velocity and direction
of motion. More final although not in (859), since these components are applied only to a body
in the free fall. Thus, also the existence of an any mass-distribution cancels out then
(equivalence-principle).

If we would want to co-include all these values into the calculation, we would have to
calculate all expressions anew, incipient from the line-element, now applies r = ƒ(t,s) and
sin =ƒ(v,r,m) additionally. Because of the multiple derivatives, then additionally expressions
appear in the results like the acceleration a, the integral across the way s and the way s itself.
Because of the pathway-dependence and the infinite number of options of matter-arrangement
therefore no universal solution can be given, so that we have to determine all tensors and
scalars for each problem anew. By no means the solutions will be simple, even the vacuum-
solution in the free fall is already complicated enough.

In terms of mathematics however, we have put all fundamentals in order to reach an explicit
solution, unless we have to integrate across a larger distance r at the end in order to get a not-
local result. Then there is no explicit solution, as we have already seen. Fortunately this case
plays no role, if we consider bodies in the free fall only. These, that is to say, don't move in
reference to the metrics and the distance-function with constant wave count vector is known.

Now however back to the energy-impulse-tensor. As next, we will calculate the inverse tensor
Tik, which we require to the determination of the geometry Gik benötigen. Now please don't get
the idea, to calculate the inverse tensor directly with the help of the »Mathematica«-function
Inverse[Tik]. You still get a result indeed, but this is so complicated, that you cannot use it in
this form. The simplification with the help of Simplify[Inverse[Tik]] finally breaks down
because of memory-lack.

The solution is in following approach: First, we generally calculate the inverse tensor under
exploitation of the fact, that, on the one hand, a bulk of the components is zero and, on the
other hand,  T01 =T10 applies. After subsequent simplification, we foist the component-
definitions, in that we define them only now (use the function Clear[] for additional run). We
do the following approach:
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MPart=Function[Part[Part[#1,#2+1],#3+1]];
Tik1={{t00,t01,0,0},{t01,t11,0,0},{0,0,t22,0},{0,0,0,t33}}; (860)

TIK2=Simplify[Inverse[Tik1]] (861)

        t11              t01
{{---------------, --------------, 0, 0},
      2               2
  -t01  + t00 t11  t01  - t00 t11

        t01              t00                       1                  1
  {--------------, ---------------, 0, 0}, {0, 0, ---, 0}, {0, 0, 0, ---}}
      2                2                          t22                t33
   t01  - t00 t11  -t01  + t00 t11

I just presented the result in the original-output-format, since it's only about an intermediate-
solution, which speaks in behalf of itself. In any case, it's not all too complicated. Now, we
foist the component-definitions:

t00=c^2/(tt^2*r^2)*(1-(1/(tt-rr)^2+4/3*rr/(tt-rr)^3)*beta^-4*

Sin[Al]^2/Sin[GaGa]^2)*Sin[GaGa]^2/Sin[Al]^2;
t01=-1/T*r^-1/(tt*(tt-rr)); (862)
t11=1/r^2*(1-(tt-rr)^2*beta^4*Sin[GaGa]^2/Sin[Al]^2);

We can dispense with T10, T22 and T33 since we can write down the result immediately. We get
the other components by execution of:

Simplify[MPart[TIK2,i,k]] (863)

The results must be simplified by hand once again and are being pretty complex. To the
simplification of the representation and avoidance of errors, we take up a substitution again,
namely as follows:

A 2
=  

1

(t r )2

sin2
 

sin2
 

B2
=  

4

3

r

(t r )3

sin2
 

sin2
 

(864)

The components, different from zero, of the inverse energy-impulse-tensor Tik are then:

T00
=  ˜ T 2

1 A2

A2  

t2  (t r )2

1+
1
4r 3

1 A2( )  1 A2( ) B2( )
A4

(865)

T01
=  r˜ T  

t  (t r )

1 +
1
4r3

1 A2( )  1 A2( ) B2( )
A 4

     (866)

T11
=  

˜ R 2

4  
 

1
4

 

1 A2( )  1 A2( ) B2( )
A2

1 +
1
4r 3

1 A 2( )  1 A2( ) B2( )
A4

     (867)

T10
=  T01 T22

=  
2

B2 T33
=  

2

B2 sin 2 (868)
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As it shows, the components of the inverse energy-impulse-tensor are already quite complex
however. They will simplify with the calculation of the geometry Gik then again. The
examination of the components T0k. For a MINKOWSKI-world namely applies:

kT
0k  0 (869)

This expression is generally [30] interpreted as the energy-conservation-rule. It can be easily
shown, that expression (869) doesn't apply for this model. Is this perhaps a fundamental error
of this model? This is not the case, because according to [5], the energy-conservation-rule is
»only an empirical rule, thus it could be violated by yet unknown physical phenomenons«.
There is just no definite proof for its universal validity and indeed with e.g. the cosmologic
red-shift it seems to be about an effect, by which the energy-conservation-rule is violated.
Here, energy quasi is discreated by the increase of the wavelength of the cosmic background-
radiation.

Now, one could modify the rule in such a manner that energy can be discreated indeed,
however not recreated from the nothingness. But including the primordial impulse into the
contemplation, we would have to reject even this weakened form. The primordial impulse
according to this model just results from the inherent-solution (initial-value = 0) of the
corresponding differential equation. Furthermore, this model permits even imaginary energies
as well as masses. It would be possible with it that energy ”vanishes” temporarily (being
inactivated), in order to ”reappear” later on. An example would be the weak interaction in form
of the neutrino-capture.

Altogether it's possible to say that no arguments can be derived from the violation of the
energy-conservation-rule in order to discard this model.

7.2.7.          Solution of the field-equations of the relativity-theory

7.2.7.1. The coupling-constant

After we have completed all pilot surveys and specified the energy-impulse-tensor of the
vacuum for test-bodies in the free fall, finally remains, to compute the associated geometry Gik.
According to [30] this arises to:

Gik
=  T ik (870)

In this connection,  is a proportionality-factor, which is even marked as the coupling-constant
of the URT. It must not be mixed-up with the specific conductivity of the subspace 0. Its value
arises from the NEWTON’s borderline case, which, of course, must be filled also for this model.
But before simply substitute here we want to re-engage with the substantiation of (870), as it
has been presented in [30] from p.189 on.

We first of all assume, that the energy-impulse-tensor in MINKOWSKI-coordinates fills the
conservation-equations:

kT
ik
=  0 (871)

However we are concerned neither with MINKOWSKI-coordinates, nor (871) is fulfilled, as we
have seen exactly in the previous section. Now D´INVERNO assumes that the principle of the
minimum gravitative coupling suggests the universal-relativistic generalization:

kT
ik
=  0 (872)
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(covariant derivative). Furthermore, the EINSTEIN-tensor should vanish because of the contrac-
ted BIANCHI-identity: 

 

kGi
k  0   therefrom follows  kG

ik  0    (873) 
 

The condition (873) is really filled, as from the properties of the RIEMANN curvature tensor in 
section 7.2.5.5. under application of 

 
aRdebc + cRdeab + bRdeca  0          ([30] 6.82) 

 
easily can be shown. From (872) and (873) concludes D´INVERNO, that both tensors must be 
proportional to each other. The problem now seems to be, that D´INVERNO with the derivative 
of (872) refers on the principle of the minimum gravitative coupling, which we just have 
declared as invalid for our model. Instead, we have replaced it with the principle of the 
maximum gravitative coupling, which as such demands the proportionality of both tensors 
even much more strongly. That's tantamount to the statement: ”The matter determines the 
geometry”, so that there don’t should be any problem in this sense. 

 
A question however remains open with respect to the classic interpretation, respectively it 

results from the principle of the maximum gravitative coupling additionally. Whereas, 
according to the classic theory, we can write down the coupling-constant immediately after it's 
determination with the help of the NEWTON’s borderline case ( [30]), there are two options 
available with this model: 

 

=  8
G

c2       or   =  8
˜ G 

c2    (874) 

 
On this occasion, the choice is not necessarily easy for, since the (local) gravitational-constant, 
according to this model, is a function of space and time once again. By the following 
gedankenexperiment however we acquire the right solution: When the principle of the 
maximum gravitative coupling truly is so much more powerful, the proportionality must be 
guaranteed (870) always and everywhere, otherwise the NEWTON’s borderline case would be 
fulfilled only in the point r = 0. But since the energy-impulse-tensor already contains a space-
temporal dependence, only the right-hand expression (874) remains as single option. 
Therefore, after substitution of (700) applies: 

 

  

=  
8 ˜ R ̃  Q 0
μ 0 0 h1

 =  
8 ˜ R 

μ0 0
˜ h 

 =  
8  c˜ r 0

2

˜ h 
            (875) 

 
Since expression (875) contains reference-frame-dependent values (

  
˜ R ,  ˜ r 0 ,  ˜ h ) the geometry 

now depends additionally on the frame of reference, a fact, which actually goes without saying, 
if we rescind the limit between SRT and URT. Considering a body from another frame of 
reference, we will observe not only the condition-variables of the body itself by different 
means but also the geometry of the space around, since it now owns a structure. In the classic 
relativity-theory, one assumes, that the universe, with exception of matter and radiation, is 
filled by »NOTHING«. And a »NOTHING« doesn't change because of that it's observed from 
another frame of reference. We can write therefore: 
 

 
XIII.  The geometry is determined by matter and the frame of reference. 
 

 
Now we want to continue in that we compute the geometry, associated to the energy-

impulse-tensor. The geometry Gik is also known as EINSTEIN-tensor. 
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7.2.7.2. The geometry of the vacuum

After the determination of the inverse energy-impulse-tensor and the coupling-factor, we
must only form the product of both, in order to get the (inverse) geometry Gik. Since this is
trivial in terms of mathematics, the results should not extra be presented.

We however do not actually look for the inverse geometry Gik, whatever should be that, but
for the geometry Gik. Furthermore we have seen that the inverse energy-impulse-tensor alone
consists of very complex expressions. If we now try to calculate the normal geometry from the
inverse geometry (under application of the function Inverse[GIK]), so we are right next to the
limits of the program »Mathematica« in turn. These express themselves in it that the computer-
time rises into the immeasurable. But I did not watched for the result at all. Instead I have been
concerned about, whether the calculation of Gik can take place even more simply and
particularly more quickly. Expression (870) in combination with Inverse[GIK] namely is not
especially well-suited for the calculation of Gik. With a similar approach like in the previous
section now can be shown, that Gik can be calculated directly from Tik. For symmetrical tensors
applies then:

Gik =  
1
Tik (876)

As it looks like with asymmetrical tensors and universal matrices, we do not need to examine
in this place, since Tik is always symmetrical. Then, we get for the geometry:
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On this occasion, I applied all possible transformations from the premier sections. Also the
units of measurement have been presented, so that you can imagine, at least approximately,
which physical content do the individual components have. This fact is also the reason, why
the work cannot be continued at this point. Indeed, it's possible to calculate a stuff, but that
does not satisfy anyway, especially since we already have gone off on a tangent from the
standard-model.

Particularly interesting at (877) are the components G00 (pressure) and G11 (density). More
final only can be the density of the empty gravitational-field without matter. Unfortunately, all
interesting components depend on the distance rs. For a test, we just want to calculate the
density for the entire universe (r = R/2). Then, we get:
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G11( ˜ R 2)  =     
1

2
 

μ0 0
˜ h 

˜ R 3
   =    1.443 10 29 kgdm 3 (878)

This value is about 3 magnitudes above the matter-density of 1.845·10–31 kg·dm–3, determined
in section 4.6.4.2.5., which may be regarded as proof, that we are concerned with a radiation-
dominated universe or said else, the matter is only of local influence, being irrelevant for
processes, which include the entire universe. Therefore, it even does no sense, to search-on for
”hidden“ masses.

7.2.7.3. The 3-layer-model of the metrics

Considering the expressions of (877) once again, so it shows, that they are containing
(partially hidden) quantities of the subspace (μ0, 0, c), the metric wave-field ( 0, r0), the
quantum-theory (h) and quantities of the macrocosm (T, R) at the same time. In this
connection, all quantities, marked with a tilde (~) including h are part of the same canonical
ensemble, called the frame of reference. All these quantities have influence on the geometry of
the universe. On the other hand (877) describes only the upper level or layer, the macroscopic
metrics, that is the space or better the space-time, we live in.

To the better understanding the basic construction of the metrics is presented in figure 136
once again. It consists of three overlapping layers. Therefore, I would like to name this model
the 3-layer-model of the metrics.

Layer 0

Layer 1

Layer 2

Subspace

Metric wave-field

Macroscopic metrics

r2 ?

r1

r0

R

Magnitude
Area of application

Subatomic particles
and atoms

Figure 136
The 3-layer-model of the metrics

The magnitude of the individual layers, the scale is logarithmic, is logged at the left margin.
Therefore it is possible that the subspace owns a lower limit and a structure too. Unfortunately,
we can only suspect this. The only one we know about subspace is, that it owns the physical
properties μ0, 0, Z0 and c. That means, the speed of light in reference to the subspace is always
c constantly.

Above, there is the metric wave-field, described by the relations in the premier sections. The
PLANCK's fundamental length r0 forms the upper ending.
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All processes, running in areas of larger dimensions than r0, are described by the macroscopic
metrics gik. For the sake of completeness, the location of the atoms and subatomic particles is
presented within this macroscopic metrics as well. But since these are independent spherical
symmetrical solutions of the field-equations, they appear only in passing at this point, as
interferences, the gravitative effects are caused by.

The deeper we go down, all the greater the field-energy, which is masked by quantum-
effects in reference to the superjacent layer. Such a quantum-effect e.g. is the spin of the MLE,
which compensates the energy of the metric wave-field in reference to the macroscopic metrics
(T = 0K). This structure figures an essential advantage in reference to other models. It just
allows the existence of areas with negative (difference-)energy, which e.g. LANCZOS disclaims
as unphysical. Also the question would be become clear, where the energy comes from to the
production of virtual particle-antiparticle-pairs. This ”borrows” the universe from the subjacent
layer.

The whole matter becomes more interesting, if we extend the contemplation to the underly-
ing subspace. If this should own inherent energy too, so it's density should be even more es-
sential above the one of the metric wave-field, namely in the magnitude of the primordial im-
pulse. On the other hand this would explain, from where its energy could come. Then, similar
to the processes with the (quantum-)pair production (virtual or real), it may be, that there are
analog effects within the subspace, allowing the pair production of whole universes. In this
sense, I only hope that we don't live in a virtual universe… Quantum theory is very strange.

7.3. Even gravitational-waves

D´INVERNO reminds in [30] on the possibility of the existence of even-frontal gravitational
waves. Now, we could try, based on the relations of this model, to define such a wave-function,
especially since D´INVERNO presents an usable approach for it. Although I am of the opinion
that such a wave-function would not correspond to the realities, since we have already found a
metric wave-function. Such a course of action would be approximately comparable with the
attempt, to define a wave-function for the enveloppe of an amplitude-modulated radio-signal,
when the wave-function of the carrier wave is already known. Here it's much more opportune,
to assign the transportation-function (wave-function) to the carrier wave and to consider the
enveloppe only as a function of it's own. And with the macroscopic metrics it's the same. This
can be compared with the enveloppe, whereas the transportation takes place by the metric
wave-field.

Nevertheless we should not reject the explanations of D´INVERNO, because they still contain
a lot of interesting information. Also, they aren't flatly to be regarded as wrong.

Based on the linearized form of the field-equations and with the help of the calculus of
variations D´INVERNO draws the conclusion that these waves should consist of two
independent components (h22 and h23) having transversal character, and whose polarization-
planes are oriented in the angle of 45° to each other.

Furthermore, the amplitude of the h23 -component should be about the factor 1/ 2  smaller
than that of the h22 one. I would not like to go more in detail (these you can look up in [30]
looks). but only examine, in what extent our model turns out to be compatible with the
statements of D´INVERNO. In figure 1 we had already pictured the crystalline structure of the
metric wave-field, just as predicted by LANCZOS. If we look for independent components,
filling the conditions named above, so we find the subsystems painted in figure 137 and 138,
which are twisted to each other about an angle of 45° in all three spatial dimensions indeed,
and also the geometrical ”dimensions” are right. The metric wave-field of this model could just
really be the legendary gravitational waves.
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Figure 137      Figure 138
h22 -component of an oscillating even- h23 - component of an oscillating even-
frontal gravitational wave (+ polarization) frontal gravitational wave (  polarization)

By the way, our model avoids some inconsistencies addressed by D´INVERNO. One of it is
the problem with colliding even-frontal gravitational-shock waves. D´INVERNO draws the
conclusion that these no longer remain even-frontal then, just that the shape of intrinsic
singularities must actually occur, which never have been detected. All together, the problem is
elusive, mathematically and physically.

This disadvantage is avoided by our model. The reason is, that the metric wave-field forms
the space itself, being everywhere and always and it's isotropic besides. Therefore, not at all
there's going to be a „collision” of two waves and the problem is not a real one. Thus, also the
search for gravitational (shock-)waves does not make any sense. And we can relativize even
another statement of D´INVERNO. On p. 373 namely he writes: »Although such solutions—as
infinitely extended objects—are extremely unphysical, so one however hopes that they
describe some characteristics of real waves of isolated sources in the long-distance-zone...«.
Now the expansion of course is not infinite but nearly infinite only. But if there is a grain of
truth at this model, so such waves would not be unphysical by no means then.

7.4. Experimental tests

To each reasonable theory normally the verification belongs on the basis of experimental
tests. Now, it is not always easy, as a general rule with cosmologic problems actually
impossible to enforce experiments at all. Thus, in the end only the standard-set remains,
consisting of following components:

1. The gyration of perihelium of the Mercury
2. The light-distraction in the gravitational-field
3. The gravitative red-shift
4. The delay of light
5. The Eötvös-experiment

These are all described in [30] in detail. But the exact verification we could have spared our-
selves in this case. The reason is, that we have come to relations or statements in our model,
which match those of the classic EINSTEIN theory in the approximation. But since the measu-
ring results of the above mentioned experiments are partially quite inaccurate, we will come to
the result that our model is (can be) right automatically, exactly as the classic EINSTEIN model.
Partially, the measuring-precision is not even enough thereto. Since maximally one of both
model can be right (minimally none), it's about no exact proof therefore. The only experiments
as well as measurements, which could result in a proof, may be:

6. Proof and determination of the value of the specific conductivity of the vacuum by
measurement on the basis of quantum physical effects (e.g. superconductivity,
ratio between gravity and strong interaction). Status: didn't take place. Chance of
success: low, because value too extreme.
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7. Determination of the exact value of the electron charge as a function of q0 on
the basis of quantum-electro-dynamic contemplations using the exact curvature-
function. See section 6.2.2. The result however still differs negligibly, possibly
the QED-differences must be accepted durably.

8. Determination of the value of the HUBBLE-parameter on the basis of locally
measurable quantities. See section 7.5.

9. Determination of the value of the HUBBLE-parameter on the basis of the exact
temperature of the cosmic background-radiation. See section 7.5.3.

10. Verification of the value of the HUBBLE-parameter, calculated according to this
model, with the help of exact astronomic measurements. The value determined in
section 4.3.4.4.6. is already quite passable. In section 7.5.5. is taken up a
comparison with more actual measurements.

Maybe, the proof even takes place in a completely different domain.

7.5. Relations between the HUBBLE-parameter and locally measurable quantities

7.5.1.          EDDINGTON’s numbers and the unity of the physical world

On the occation of the then 100th birthday of A. S. EDDINGTON in [32] an article has been
published, in which his efforts were appreciated, to develop an uniformly built physics . So,
EDDINGTON assumed, that „all structures (and the corresponding operators) can be referred on
one unique »operand«, namely the universe“. Because from the basic-constants of the physics
dimensionless numbers can be formed, of which some directly regard the ratio of micro- and
macrocosm. Particularly, we are interested in the following value, given by him:

C =
1

4 0G

e2

memp
(879)

Of course, EDDINGTON had withhold 0 and the factor 4  at that time, „as these are equal to
one“. However, for the sake of completeness, we insert it at this point because we would get a
wrong result otherwise. Expression (879) is equal to the ratio of electric and gravitative
attraction between an electron and a proton, just at a hydrogen-atom. It's about a dimensionless
number with the value 2.26903·1039 resp. 2.85135·1040, when omitting the factor 4 . Now it
would appear, that C somehow corresponds with a dimensionless number of this model. Here
the Q-factor Q0 7.5419·1060 would offer itself, which is equal to the phase-angle of the
metric's wave-function being identical to the frame of reference. In order to test, whether such
a relation is possible, we first of all proceed like with the examination of the fine-structure-
constant. We replace the electron charge e by the charge of the MLE q0, as well as the electron
mass me and the proton mass mp by the mass of the MLE m0 under application of (29), (31),
(36) and (37):
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4 0G
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4
(880)

Exactly like with the fine-structure-constant we obtain the geometrical factor 1/4  even here.
Therefore we can assume C to be really suitable for this purpose. Since the electron charge and
–mass at Q0=1 are equal to the charge and mass of the MLE in the approximation and this and
C also would have to be equal to one then (in reality it is the case at Q0=2/3 ), we leave out the
factor 1/4  in future considering the value
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C =
1

0G

e2

memp
 =  2.85135 1040 (881)

This equals to Q0
2/3 approximately, as a comparison with the astronomic value [] shows:
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 =  4.81478 1060 [7.5419 1060]    (882)

Now, with the help of H = 0

Q0

 (54) the HUBBLE-parameter can be calculated:

H(C
3
2 ) =118.885  kms 1Mpc 1 [75.9] (883)

Obviously, the left-hand value doesn't match the astronomic observations. Maybe there is a
constant factor, to multiply expression (882) with, in order to find out a better matching result.
With a constant factor (we already omitted 4 ) the expression still can be used in the thought
manner, because it's a constant. During the determination of H for a constant wave count
vector we had also noticed, that the HUBBLE-parameter H1 for the entire universe (R/2) is
exactly 3/2 times greater than the local value H0. Let's give a try to 2/3 therefore:
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Now the result fits the value determined in section 4.3.4.4.6. (75.9 kms–1Mpc–1) very well. But
this match can be a pure coincidence. Therefore, we must examine, whether the temporal shift
as well as the shift with Q0 of the values, used in (884), are being consistent with the shift of
H0. Therefore we combine (884) with (29) and (54) under consideration of the following
dependences:
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Applying these dependences to the left expression, we get the following:

H0~Q0

5
2    Actual as per expression (886)         H0~Q0

4
2    Reference due to  H0 =

1

2T
(887)

Once again to the information: T is the local age, a time-constant of this model, and not to be
mixed-up with the total-age 2T. What like however to interpret this difference? The most
simply it would be to argue that it is really about a coincidence, when the left value of (885)
matches the observations. But we don't want to make it so simple. Therefore let's return to the
supposition of EDDINGTON, that „all structures (and the corresponding operators) refer to one
unique »operand«, namely the universe“ (as a whole). What would it mean, when expression
(886) really would describe the properties of the universe as a whole?

In the course of this work, we have worked out the dependencies of the various quantities on
Q0. And in section 4.5.2. we determined, that the expansion-velocity for distances greater than
0.01R is not given by H0r, but by Hr, at which point H, according to the distance, takes on
values between 1/(2T) and 3/(4T) (330). For the universe as a whole (distance R/2) applies
H=3/(4T) then. This arises from the demand that for such distances the distance-function with
constant wave count vector is applied. Now, also explains the excessive value of (883) and
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why we had to multiply it just with 3/2. This alone could already be regarded as appearance-
proof. But further applies:

r0
2

~Q0

2
2      Local metrics

R

2
~Q0

3
2         Universe as a whole

x ~ Q0

3
2      Material bodies ~Q0

3
2         Wavelengths

      a0 ~           Atomic distances re ~         Electron radius

As it shows, all quantities, except for the local metrics, which determines also the distances
between bodies, connected by means of gravity in the local area (<0.01R), expand according to
the same function of the universe as a whole. Neither this can be else. If really all quantities,
including the local metrics, would expand according to the same function, no expansion would
be detectable at all. Here turns out a weak point of all so-called standard-models: They either
all work with a linear metrics or with a patchwork as metrics and thereat actually should be to
be detected no expansion at all. Therefore the universe may own only a non-linear metrics, as
described in this work. Calculating the expansion-velocity as well locally as for the universe as
a whole, so we obtain:
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It can be shown, that this is applied to any distances between r0/2 and R/2. The expansion-
velocity just changes according to the same function, irrespective how far away the considered
area is. As a result, the structural integrity of the universe remains intact. The contradiction has
been solved.

With it, we have proven, that expression (886) according to this model is really suitable to the
determination as well of H1 (universe as a whole) as of H0, at which point the more final value
always amounts to 2/3 of H1.

Do we must worry about our metering rule? The answer is no. Since at present, the meter is
defined on the basis of the speed of light and a time-etalon oriented at atomic scales and these
all trace the universe as a whole, the same is applied even to the metering rule. But there
should still be specialists, who reckon with miles...

Now, we have found a possibility to determine H0 with the help of locally measurable
quantities. This is based on the hydrogen-atom. The question is, is there yet another one?
Indeed. In (888) we can read, that the fundamental length r0 and the electron radius re are
varying according to different functions on Q0. Thus, also should have to be determined Q0 and
with it H0 too. Under application of (3), (27) and (687) applies:
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This on the other hand corresponds to a value of H0:
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This value is based only on the electron and the metrics and is proportional to Q0
–5/2. Thus, this

is been suitable to the determination of Q0 and H0 too. Interestingly enough, the just determined
value differs from the first one, namely about 10.102%, which corresponds to the average
QED-correction-factor. Obviously, the usual QED-specific inaccuracies, which result from the
logarithmic periodicity of the universe, appear here in turn.

Even this value fits the one, determined with the help of the propagation-function of this
work, this is compatible with the distance-function with constant wave count vector, and can
be brought in accord with the astronomic measurements in the next section too. Even if we
have gotten two different results, we already are able to specify H0 more exactly than the
astronomers. But that is not yet enough. Combining both values, the first amounts to
approximately 1040, the re/r0-based to approximately 1020, we acquire an especially simple
relation:

Q0 =   
3

2

re
r0

1

0G

e2

memp
   with     

  

re =  

e2

4 0mec
2 ,     

1

r0

=
c3

Gh
(892)

  

Q0 =  
3

8

e4

0
2me

2mp

1

G3
hc

   with             
  

H0 =  0

Q0

 =  
1

Q0

c5

Gh
(893)

H0 =  
8

3

G

 μ0Z0

me
2mp

e4  =  76.7544  kms 1Mpc 1 [75.9] (894)
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Here, even the factor 4  has been taken into account, being omitted in (881). The expressions
are proportional to Q0

–5/2 in turn and do not contain the PLANCK’s quantity of action
surprisingly (no QED-difference?). In the numerator are only mechanical, in the denominator
only electric quantities. The coverage is with Q0 103, i.e. starting with the time just after big
bang. Since the expression also form a sort of median value between the two other relations
and both, the relations in the atom and in the vacuum are considered at the same time, I would
mark it as precise. Whether that is correct, we will see. To the comparison once again all three
results in table-form:

Expression Q0 H0 H0 H1 H1 QED V
[1] [s–1] [kms–1Mpc–1] [s–1] [kms–1Mpc–1] Correct. factor ?

(884) 7.2222·1060 2.569·10–18 79.257 3.853·10–18 118.885 1.10102
3  

(892) 7.4576·1060 2.487·10–18 76.544 3.731·10–18 115.132 1.06626
2

H

(890) 7.9518·1060 2.333·10–18 71.985 3.499·10–18 107.977 1.00000
0

Table 7
HUBBLE-parameters as a funktion

of local quantities (overview)

7.5.2.          Distance-vectors

Due to the progress in the technical domain taken place in the most recent time, the
astronomers are able to look into the universe deeper and deeper and with it even farther back
in time. The farther one looks however, all the more the structure of the universe becomes
notably and must be taken into consideration on the interpretation of the measuring results.
Otherwise the much money would have been poured down the drain.
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But before expanding further, just let's have a look at a so simple quantity, like the distance
respectively the spacing to a stellar object. The astronomer just sits in front of his telescope,
observing an object and he tries to determine with different methods, how far away it is. And
before he can determine the HUBBLE-parameter, he must determine the distance respectively
the spacing to the object of course. And the first problem already appears here: What do we
actually mean by distance as well as spacing? And what do we really want to determine?

In the close-up range this question can be answered relatively simply: The spacing is equal
to the distance and the light from the object has covered this, when it has arrived at the obser-
ver. But if we leave the close-up range, looking at objects farther away, it's no longer like this.
At first, we look at the object by means of photons, which have moved from the object into our
direction. Thus, in reference to the metrics, it's about an (incoming) time-like vector (figure
139 and 140 rT red pictured), a negative distance. We call it time-like distance. It corresponds
to the constant wave count vector of the metrics. On this occasion, we however actually ob-
serve the zero vector and not the time-like vector. With vanishing curvature both coincides in-
deed. As it looks like, when there is a curvature, will be presented later on.

But the object, we observe nowadays, is already located at a completely different position, as
our observation-data want to make believe, since these are already totally ”outdated“, when
they reach us. One feature of this model is now, that this is not the case. Even when the signals
are already very old, the object really resides in reference to the observer's R4-coordinate-
system at that very position, where he observes it. The length of the vector from the object to
the observer however cannot be influenced by him, because he is just only observer.

Figure 139 Figure 140
Distance-vectors with an object Distance-vectors with an object
at the edge of the universe (schematized) in the close-up range of the observer (schematized)

But if the observer has the intent, to visit the object, that would be an (outgoing) space-like
vector then, a positive distance/spacing, this cannot take place on the same way, which the ray
of light has covered, because the observer would have to move with c thereto and each zero
vector is unique. Now, another distance/spacing is applied to him.

To the difference between distance and spacing: These are (approximately) equal in the close-
up range only. With larger distances, objects in the free fall remove themselves according to
the distance-function with constant wave count vector. That would be the real spacing (rK blue
pictured). With it, also the definition of the space-like distance arises (rR green pictured). This
is the shortest way between the observer or better the traveler and the object. It is an imagined
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line and coincides with the coordinate r of the coordinate-system. Locally, it is equal to the
space-like vector of the metrics.

But this way, the destination cannot be reached in the free fall, as an analogy from the
navigation suggests, the difference between latitudinal and great-circle-distance. When start
and destination are on the same latitude and if it's not exactly about the equator, the great-
circle-distance is always smaller than the latitudinal-circle-distance. During great-circle-
navigation however, the captain must change the course continually, just accelerate, whereas
he could theoretically continue his journey without acceleration on the latitudinal circle, just in
the free fall, when the water-widthstand would be zero. Thus, the voyager has the chance, to
influence the distance, namely by means of navigation. To the better overview the definitions
once again:

1. The zero vector rN is the way, a ray of light covers, at which point the velocity in reference
to the subspace is c constantly. In the local range it is equal to the geometrical sum of
space- and time-like vector.

2. The time-like distance rT is the way, a ray of light, starting from the source, has covered,
when it has been arrived at the observer. In the local range, it corresponds to the time-
like vector of the metrics. But actually the zero vector rN is observed.

3. The spacing rK is the distance between two objects in the free fall. The vector proceeds
along the field-lines of the gravitational-field and varies according to the spacing-function
with constant wave count vector. It corresponds to the zero vector rN of the metrics.

4. The space-like distance rR is the shortest vector between a traveler and his destination.
It's about an imagined line. It is identical to the coordinate r of the coordinate-system. In the
local range, it corresponds to the space-like vector of the metrics. If one wants to travel
along this line, permanent navigation (acceleration) is necessary.

But let's descend to the time-like distance once again. This is the distance, the astronomer
determines, when he analyzes incoming light- or radio-signals (zero vectors). They are subject
to a red-shift according to the propagation-function in section 4.3.5.4.3. resp. 5.3.2. The time-
like distance is limited to the maximum time-like distance, which results from the total-age 2T.
It applies rTmax = R = 2cT. In the course of this work, we had learned that the maximum space-
like distance amounts to only the half of it: rRmax = R/2 = cT. Furthermore we had demonstrated
that, on the basis of the efforts of EINSTEIN it's possible to convert both distances in one another
namely according to (280):
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 1
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      rR =  
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2
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   (280)

Considering the two expressions now, one recognizes that these fail at the “edge“ of the
universe. The left-hand expression submits a negative infinite time-like distance for R/2, the
right-hand expression a space-like distance of 0.447214R=0.894427cT for –R/2. Actually, a
value of 0.5R=cT should arise however. In section 4.3.5.3. on the other hand we have learned,
that the maximum propagation-velocity of the metric wave-field is 0.851661c and not c to the
point of time 0.748514t1. With it, the maximum space-like distance would actually have the
value 0.851661cT only and not 0.894427cT respectively cT. Are EINSTEIN’s expressions
useless because of that? I say no.

The reason for the discrepancy is, that “edge“ of the universe is not simply an edge but,
according to it's nature, a SCHWARZSCHILD-radius and a singularity resides behind it. As
determined in section 4.3.5.3. the maximum propagation-velocity of the metric wave-field
amounts to 0.851661c indeed, namely to the point of time 0.748514 t1. At the same time we
have learned, that the metric wave-field already existed before, having propagated with a lower
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velocity. What actually has happened to this part of the universe? Definitely, it should have to
be “passed“ somehow by the later, more quickly propagating part.

On the other hand we know that the physical relations differ in this part from those of the
other one, namely to the effect that the more aged part is spatially closed, whereas the junior
part is spatially open (Q0>1). That means, the part of the universe we live in, is not the whole
thing. There is a small part, which is neither accessible, nor observable for us. Thus, derived
from a known SF-series, I would like to call it hyperspace. In figure 141 I just tried to
demonstrate the relations at the “edge“ of the universe.

Figure 141
Relations at the edge of the universe

With the time-like vector is to be paid attention to the following: This can be both, an
incoming (negative distance), as well as an outgoing vector (positive distance). An observer
always is concerned with an incoming vector, whose length is limited to –2cT. The light has
traversed the entire universe then and has been rearrived at it's starting point, a time-like
singularity (event horizon). The farthest starting point of an incoming time-like vector is in the
distance –cT. The maximum length of an outgoing time-like vector on the other hand is
unlimited because it directs to future. Of course, it is even subject to the parametric attenuation.
It's impossible to send signals back in time.

For that reason it's also impossible, to look back simultaneously up to the point of time –T
(reckoned from now on) and up to a distance –R/2, because the elder signals have passed us
long ago. What we see, are all junior signals, maximally half as old as the universe. Spatially,
we can look back up to the “edge“ –cT with it, temporally not at all (see also figure 69). The
signals directly from the big bang –2T form an exception. These have reached their starting
point again and are to be observed as cosmic background-radiation, although with extreme red-
shift. The picture, which it generates, is really the view from the point of observer to the point
of time –2T, however mirror-inverted in all four dimensions (an outgoing time-like vector
becomes an incoming one). The range between –2T and –T is also accessible indeed, but these
signals come from areas at the opposite end, with a lower distance than –R/2, at which point
the signal is coming “from behind“ on a detour. In this case applies, the older the signal, the
nearer the source (neater).

Concerning the space-like vectors an observer in the free fall resides on a space-like
singularity, even if he does not take notice of it. This expresses itself to the effect, that no
negative distances are defined for him. As comparison, the North-pole may act in this place.
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Being situated on this, all ways lead southward, the individual does not take notice of it
however. The maximally possible spatial distance would be –cT with it. Thus, time-like
vectors from the past and space-like vectors would be approximately equally long.

In that regard, the result of the left-hand expression of (280), which we get for a time-like
distance –cT, namely – , is not really wrong. Since this spacing borders directly on a
SCHWARZSCHILD-radius no light from there can reach the observer. However, the expression
submits a wrong result for a distance of –0.851661cT. And similarly it's with the right
expression of (280).

With it, both expressions are been suitable only conditionally for the calculation of problems
involving the universe as a whole. Nevertheless they are perfectly enough for the calculation of
astronomic data, since only objects with a fraction of the spacing –cT can be observed until
now. For deeper contemplations however, we require the correct expression, which results
from section 6.1.2.1.2.:
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(896)

The angle  is given by (482) in connection with (206). The expressions don't shall be
presented again but the course as a function of Q0.

Figure 142 Figure 143
Angle  as a function of Q0 Functions sin  and cos  as a function of Q0

As it shows, both trigonometric functions from a value of Q0>102 on are equal to one resp.
zero, so that (896) coincides with (280). But this value is first underrun almost directly at the
SCHWARZSCHILD-radius so that (280) can be used as approximation almost for the entire
universe. For the point with the maximum propagation-velocity, the so-called wave-front, we
get with the help of (53) a value of Q0= 0.865167 and for =2.41953. Thus, it's within the
SCHWARZSCHILD-radius (Q0= 1) and cannot be observed.

For an angle = /2 in expression (896) on the right we obtain for the space-like distance a
value rR(–cT) = cT/ 2 , as presented in figure 141. This value is indeed somewhat lower, than
the maximally possible space-like distance rRmax = 0.851661cT, which indicates, that the wave-
front is moving resp. has moved on a curvilinear track. The value for rT, we have inserted,
however is not exact. It only applies “almost at the edge“. Directly at the SCHWARZSCHILD-
radius applies Q0= 1 and the angle  has another value. The exact behaviour of the distance-
vectors is presented in figure 144 and 145.

What does it look like however with the spacing with constant wave count vector? From
figure 140 emerges that this, with small distances, must be equal to the other two vectors
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(approximately). Directly at the SCHWARZSCHILD-Radius it should exactly amount to cT
according to our model. If we look for a conversion-function turns out, that (280) which we
already wanted to discard, is been suitable for it very well, however with rK instead of rT:

rK =  

rR

 1
4rR
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 1+
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2
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   (897)

Both expressions are defined positively only and apply even exactly. For rK and rT applies:
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rK =   
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2

    (899)

For an angle /2 just almost in the entire universe, the constant wave count vector coincides
with the (negative) time-like distance-vector. Therefore it also seems to be that a conversion
can be taken up with the classic relations of the SRT from space-like into time-like
coordinates. The SRT describes nothing other than observation-phenomenons of moved bodies
by means of photons. Simultaneously, we can see here, why the SRT fails with strong
gravitational-fields (e.g. black holes) and with it even at the edge of the universe, because there
the vectors diverge, and that all.

And some more we see: Because of the coincedence of the constant wave count vector with
the time-like distance-vector, of course also the gravity propagates on the same way like the
photons, namely as zero vector, that means with lightspeed. Otherwise, even no real R4-
coordinate-system would be possible. We have found a contradiction-free solution with it. Our
guess (897) had been right. In the close-up range and even far in excess actually all three
vectors coincide. For example with 400 Mpc distance, the difference between rR and rT is about
2% and with it far below the observation-error.

Now we want to try to demonstrate, like the three distance-vectorsbehave at the “edge“ of
the universe in general and specifically. For reasons of recognizability, we want to display the
distance-quantities as a function of the Q-factor Q0. For that purpose indeed, we require a
function of the space-like distance with respect to the Q-factor. With (606) we already had
found the inverse function Q0(rK) (all functions, hitherto occuring in the course of this work are
always based on r=rK). Disregarding the time t applies:
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Applied in (896) and (897) under consideration of the angle a, according to (482) and (206)
with 2 0t=Q0 we obtain the courses shown in figure 144 and 145.
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Figure 144
Length of the distance-vectors rR, rK and rT as a function

of the phase-angle (Q-factor Q0) at the location of the signal-source

Figure 145
Course of the distance-vectors rR, rK and rT

at the SCHWARZSCHILD-radius (Q0=100)

Whereas all vectors in the large scale proceed in the same way as expected, the time-like
vector deviates just before the SCHWARZSCHILD-radius and takes a different course.
Interestingly enough, only the time-like vector is influenced by the singularity. This is even no
miracle, is it about a temporal singularity after all (no values t<0 defined). In this connection is
to be paid attention to the fact, that the light is actually a zero vector and disposes as well of a
space-like, as of a time-like component. When only the time-like vector is influenced, it means
that the wavelength changes admittedly, but not the propagation-velocity c, a known
phenomenon. But actually the zero vector has the value c only in reference to the subspace.
however, the difference is not measurable at all, because it's all too little. Therefore, an
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observer, who doesn't move in reference to the metrics (free fall), always measures the time-
like vector. Under regular conditions (Q0) however, the difference is not measurable at all,
because it's all too little.

At the SCHWARZSCHILD-radius the time-like distance shortens locally on –0.264589R and
sinks to –0.25R in the point of the maximum propagation-velocity of the metrics, the wave-
front. This point is an inflexion point at the same time. Finally, rT achieves a minimum of
–0.2071071R, reascends and tends toward a value of –0.2578068R. Even in accordance with
the SRT, at a singularity a shortening should occur, however boundless with the exception of
the value zero. Although, at that time EINSTEIN did not reckon with the possibility, that the
right angle  could vary. The same behaviour as in the distance R/2 would be to observe also
at the SCHWARZSCHILD-radius of a black hole, if we could take up measurements there.

7.5.3.          Determination of the HUBBLE-parameter with the help of the CMBR-temperature

In section 4.6.4.2.6. with (405) we already formulated a relation between the phase-angle/Q-
factor of the metrics Q0 and the therefrom resulting temperature of the cosmic background-
radiation. With the astronomically specified value of the HUBBLE-parameter of section
4.3.5.4.6. (75.9 kms–1Mpc–1) and the therefrom resulting value Q0= 7.5419·1060 arises a
temperature of 3.0477K for the cosmic background-radiation. Since I primarily worked with an
approximation of 2 2 for the proportionality-factor of the WIEN’s displacement law and
because of truncation-errors (Z0) all statements and calculations starting with section 4.6.4.2.3.
are based on a temperature of 3.03256K however. This would correspond to a value of
H0=75.14 kms–1Mpc–1, is within the tolerance of H0 and doesn't meet the eye in the chart.
Therefore, I have leave it with the value 3.03256K, up to this section.

Interestingly enough, this value agrees quite well with the value of 3.18K predicted by
GUILLAUME and EDDINGTON (=82.63kms–1Mpc–1) already 1896. Both assumed at that time,
that in the 10pc-surroundings of a star there are 2000 stars on average (converted) with the
magnitude 1m. The energy emitted by these stars leads to an energy-density in the final result,
which corresponds to a radiation-temperature of 3.18K. See [39] for details.

Although, the calculation contained an essential error. One assumed in those days that the
supposed average star-density should be available throughout the whole universe, because the
existence of external galaxies did not have been commonly accepted as well as was known
until 1924.

Fortunately, now we are in a better situation. So, we don't need to calculate the radiation-
temperature but we can measure it absolutely accurate. The average radiation-temperature,
determined with the help of the COBE-satellite, is about 2.7250±0.002K (Wikipedia). Now, it's
no problem of course, to determine the corresponding values Q0 and H0 by rearrangement of
(405). Indeed it is to be pointed out, that neither 1 nor h1 are exactly defined by locally
measurable quantities. Rather, they depend on Q0  as well as H0 themselves, the values, we
actually want to determine. We however know the values h and 0 . It apply 1=Q0 0 and
h1=Q0h:
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The approximation equations with 24kTk are based on the approximation 2 2  for the
proportionality-factor of the WIEN’s displacement law. Applying the above-mentioned
measured value 2.7250K, we get a value of von 9.4340·1060 for Q0. This corresponds to a value
H0= 60.675kms–1Mpc–1. This value agrees to the best with our solution (890), but it's somewhat
too low, since the latest studies submitted H0 to be somewhere between 71 and 75kms–1Mpc–1

(FREEDMAN, KIENZLER 72). But it may be, that the CMBR-temperature, for which reasons
ever, is lower, as it should actually be just only. Possibly, beside the expansion and the
cosmologic red-shift, there are still other effects, which lead to an additional cooling. Adsum,
as one possibility [40.1] shall be mentioned. The non-linearities just after the input coupling
could be another cause for the difference (see section 5.3.1.).
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[1] [s–1] [kms–1Mpc–1] [K] [K] [%]

(884) 7.2222·1060 2.569·10–18 79.257 3.1145 +0.1463 +4.929

(892) 7.4576·1060 2.487·10–18 76.544 3.0649 +0.0968 +3.260

(TAB1) 7.5419·1060 2.460·10–18 75.900 3.0477 +0.0796 +2.681

(890) 7.9518·1060 2.333·10–18 71.985 2.9681 ±0.0000 ±0.000

(COBE) 9.4340·1060 1.966·10–18 60.675 2.7250 –0.2431 –8.232

Table 8
Calculated and measured CMBR-temperature in comparison with the

values of the HUBBLE-parameter determined  in section 7.5.1.

To the conclusion, we want to determine the real difference to our calculated temperature
(890). Inserting (890) into (902) we get a reference-temperature of 2.96813K. With it, the
measured temperature is about 0.243129K lower than the calculated. For solution (892) a
temperature of 3.0649K would be necessary, for (884) even 3.1145K, which shows up both as
less realistic. Therefore, we can assume solution (890) with 71.985kms–1Mpc–1 to be the most
probable one.

In table 8 all values, even the ones used in former sections, are recapitulated. The answer on
the question, why the measured temperature of the CMBR is about 0.243129K smaller than
calculated, stays on open. A delta of only 0.243129K with such a large period and such a high
initial temperature however already can be rated as full success. Therefore it's possible to say,
the model predicts the temperature pretty exactly. But this method is unsuitable for the
determination of the exact value of the HUBBLE-parameter.

7.5.4.          The supernova-cosmology-project

Another option to choose the correct one from the three solutions, is the comparison with the
latest astronomic observations. The most important project of late has been the super-nova-
cosmology-project. One observed a lot of type Ia supernovae, which all own the particular
property, to have the same luminosity approximately, so that they can be used as a standard-
candle. Aim of the research [45] was the determination of the HUBBLE-parameter and of
course, to determine, which of the world-models stated until today comes closest to the reality.
The examination indeed has caused more confusion, than that it has led to rational results, as
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we will see yet. Reason however is not the research itself but the missing of a correct world-
model, as I intended to make it with this work.

Before we go on into detail, at first another section, which deals with the fundamental values
of observation being focused to physicists, astronomers and technicians, which work with
different units of measurement as known and it's difficult to understand one another therefore.

7.5.4.1. Measurands and conversions

Since we want to deal only with one concrete project, only the quantities, which are
specifically relevant for the supernova-cosmology-project, should be exemplified. In reality, in
physics, astronomy and radio-astronomy there is yet a large number of further quantities.
Whom it interests, I recommend [44], which also the declarations, done in this section, are
based on.

Initially with the project, astronomic objects, supernovae of the type Ia, which appear to the
observer as punctual objects with a certain luminosity, have been observed. The measured
luminosities have been compared with the red-shift z (307) and have been collated with the
luminosities predicted by the various world-model. What however do we mean by luminosity?

In astronomy there are four types thereof at all, once the apparent brightness, the bolometric
brightness, the absolute and the absolute bolometric brightness. It is given in magnitudes [m,
mb, M, Mb]. It is about a logarithmic unit of measurement, which is defined historically. With
the bolometric brightness, the entire frequency domain in accordance with the STEFAN-
BOLTZMANN radiation-rule is considered, it's about the logarithm of the quotient of the two
values power and surface [Wm–2], which the physicist marks as POYNTING-vector S . In the
astronomy, this value is called flux F, in the technical department field-strength S. With the
non-bolometric values the unit of measurement [Wm–2Hz–1] is used. The measurements are
dependent on frequency and bandwidth then. But for us only the bolometric values are of note.
Another important value is the (bolometric) luminosity L. In the physics and in the technical
domain it is marked as power P as well as level p. Unit of measurement is the Watt [W] as well
as the decibel [dB]. Thus, we can define:

Mb =  2.5lg
F  

F0

 =  2.5lg
L 4 r2

L0 4 r2  =  2.5lg
L  

L0

 Brightness (906)

As usual with logarithmic units of measurement, always a reference-quantity F0 as well as L0 is
needed. The values has been taken from [42] and [44] and read as follows:

F0 =  2.51 10–8Wm–2 L0 =  3.09 1028W (907)

A star with the luminosity L0 has exactly 0 magnitudes (written 0M). The absolute brightness
(flux) is defined in a distance of 10pc of the source, but it has no meaning for us. Even in the
technical domain there is such a logarithmic dimension, the dB (decibel):

S = P =  10lg
S  

S0

 dB =  10lg
P 4 r2

P0 4 r2  dB =  10lg
P  

P0

 dB Field-strength/level (908)

Another, more rarely used logarithmic unit of measurement is the Neper p[Np]=ln(P/P0). The
original definition of P0 comes from the telecommunication and is defined as a power P=1mW
on 600 . But in the radio-technology and with it even in the radio-astronomy this value is not
used, since we are concerned there with much smaller quantities in general. Therefore, the
following relative values are used:

S0 =  1 pWm–2
=  10 12Wm–2 P0 =  1 pW =  10 12W (909)
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In order to avoid a mix-up with the historic definition, instead of dB mostly the unit dBpWm–2

or dBpW as well as dBpWm–2Hz–1 or dBpWHz–1, when there is not the entire spectrum
included. The power P at the input of a receiver with adaptation simply results from the
POYNTING-vector S, the effective surface A of the antenna used and the gain G of the antenna:

P[dBpW] =  S[dBpWm 2] +10lgA[m2] + G[dB] (910)

Since the decibel is also a logarithmic unit, a simple conversion is possible into the astronomic
units. For P[dBpW], Mb[M], S[dBpWm–2], mb[m], L[W], F[Wm–2] applies:

P  =  404,9 4Mb       Mb =  101,225 0,25P   (911)

S =  44 4mb       mb  
=  11 0,25S (912)

P  =  120 +10lgL       L   =  100,1P 12   (913)

S =  120 +10lgF       F   =  100,1S 12 (914)

L  =  1028,5 0,4Mb       Mb =  71,225 2,5L   (915)

F  =  10 7,6 0,4 m b       mb  
=  19 2,5lgF (916)

All obscurities should be removed with it, so that we can turn to the results of the supernova-
cosmology-project.

7.5.4.2. Results of the supernova-cosmology-project

The results of the project have been published by PERLMUTTER in [45] in detail. To the better
understanding, what's actually a supernova of the type Ia, I recommend the work of
HERRMANN [42]. The most important is, a SN Ia has a maximum absolute brightness, which
results from its structure. If the star is greater, a supernova of other type, which can be
recognized by its characteristic, develops. Therefore it's possible to use a SN Ia as a standard-
candle, at which point the brightness mostly is something smaller than the maximum indeed,
because not all SN Ia achieve the maximum brightness.

The apparent bolometric brightness at the observer has been compared by PERLMUTTER in a
diagram with the associated red-shift z. Even HERRMANN [42] and HEBBEKER [43] are using
the same diagram, at which point in [43] is deferred in detail to the common standard-big-
bang-model once again, being based on the classic EINSTEIN evolution-equation with and
without cosmologic constant.

The observations now submitted, that further (older) SN Ia appear somewhat darker, as they
actually should be according to the standard-model without cosmologic constant ( =0). The
case =0 just doesn't fits the observations. The option, that SN Ia earlier could have had other
qualities, is being excluded by all authors and even by myself.

Rather the discrepancy is interpreted in such a manner, that  should have a value different
from zero, which means, that the expansion-rate of the universe, just the HUBBLE-parameter,
doesn't decrease, as always assumed until now, but increases on the contrary. Thus, the
observed SNae would be farther away, than it would arise from the measured red-shift z. The
lower brightness would be explained with it. Although this leads to incongruities with other
observations. In order to avoid these, a complicated construct is used, which demands
extremely exact synchronizations to the point of time T=0 and even afterwards, which appears
to be pretty implausible, because nobody can exactly say, on which physical phenomenon this
effect should be based on.

Power
Absolute bolom. brightness

Poynting-vector
Apparent bolom. brightness

Power
Luminosity

Poynting-vector
Flux

Luminosity
Absolute bolom. brightness

Flux
Apparent bolom. brightness
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While PERLMUTTER contents himself with the hint on the option 0, HERRMANN and
HEBBEKER even demand the existence of “dark matter“ with hitherto yet unknown qualities
and of an effect with the name “quintessence“ which should be the cause for the increasing
expansion-rate, quasi a sort of anti-gravity. For my part however, I consider this hypothesis to
be off the point, since the discrepancy can be explained even more simply, only with the help
of known physical rules (Ockham's razor). Only, one must have the courage then to use an
alternative model. The standard-big-bang-model has failed for a long time, even in other
points. Unfortunately, the common view latterly seems to tend more and more into the
direction “dark matter“ and “quintessence“, which can be regarded as criterion, that the
proponents of the standard-model are at their wit's end.

But when the HUBBLE-parameter should decrease on and the observed objects should be
located in the correct distance, as only explanation remains, that the photons during their
propagation are subject to an additional attenuation, not known until now. And exactly this is
an essential quality of the model on hand1.

In section 4.3.4.4. we had worked out the propagation-function for a loss-affected medium
with expansion and overlaid wave. Different from the propagation-function for a loss-free
medium there the attenuation rate  is different from zero. It has the value 1/R. Therefore we
want to forecast the observed brightness of SNae Ia with the help of this function. For the
graphic representation, we need the function mb(z). Based on (906) we obtain for the apparent
brightness mb then:

mb =  2.5lg
F  

F0

 =   2.5lg
LIa

4 r2 2.51 10–8Wm 2 (917)

In doing so we notice, that the value LIa, the luminosity (power) of the standard-candle
supernova Ia is missing. And indeed, neither in [42], [43], [44] nor in [45] such a one is
specified. Fortunately, the colleague Wolfgang Hillebrandt from the Max-Planck-Institute for
Astrophysics (MPA) Garching could help me with this problem. According to his information,
the maximum luminosity of a SN Ia has a value of 1036W approximately. That's the upper
limit. If we put it into (917) still the distance r is missing Since we look at the matter starting
from the source toward the observer, we obtain it with the help of (309a) without correction-
term. It applies:
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That is the function mb(z) without consideration of the additional attenuation. Since also the z-
axis must have a logarithmic scale, we apply the value 10w with –2 w 0 instead of z. Now,
PERLMUTTER has published all measurements in [45] indeed, but since I do not dispose of any
procedure, to present it so nice, including the tolerance-limits, I made the decision, to take up
the comparison with (919) by overlay of both charts.

In figure 146 are presented the relative brightness, calculated with the help of (919), in
comparison with the observations of the supernova-cosmology-project. Also to be seen are the
courses calculated by PERLMUTTER for various adjustments of the standard-big-bang-model.
The overlay-markers (+) are to be seen at all corners except for left above.

                                                  
1 Of course, already previously models existed (e.g. tired light) which work with an additional attenuation. All they have failed however, since they
wanted to attribute the attenuation to the particle properties of the photons only. But the wave properties are the cause in reality. Nevertheless, the
tired-light-hypothesis appears essentially more plausible, than the assumption of the existence of dark matter and quintessence..
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Figure 146
Calculated apparent bolometric brightness for the three values of the HUBBLE-parameter in

comparison with the observations of the supernova-cosmology-project (standard-candle = maximum)

In the presentation meets the eye that the three brightness-functions (according to this model
without consideration of the parametric attenuation) are below the observed values, just they
have been computed too bright. This is even no miracle, since we used the maximum-value as
standard-candle. Figure 146 also shows, that solution (890) with 71.985 kms–1Mpc–1 for the
HUBBLE-parameter comes closest to reality in turn, since it's located at the outer margin of the
error-tolerance-corridor. Therefore we'll use this value for the further contemplations. We
determine the real value of the standard-candle, which is the statistical median value of all
SNae Ia, numerically with the help of (890) for a value at the lower end of the z-axis to
LIa = 6.1097·1035W. We apply it in (919) obtaining:
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4
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We need the function mb(z) with parametric attenuation as well. On this occasion we have to
consider the factor e–r/R=10–r/R·lge from the propagation-function (305). It applies:
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3 1)         With param. attenuation (924)
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Figure 147
Calculated apparent bolometric brightness for solution (890) of the HUBBLE-parameters in
comparison with the observations of the supernova-cosmology-project (standard-candle = median value)

Figure 147 shows the graphs of expression (921) and (924) in comparison with the
measurements of the supernova-cosmology-project for solution (890) of the HUBBLE-
parameter. The thin black lines show the expectation-values of the standard-model for =0
with a mass-energy-density M=0, 1 and 2. For one time, it is an empty universe (0), for the
other time an universe with “normal“ energy-density (1) and at last an universe with double
energy-density (2). In this connection, the standard-BB-solution for the “normal“ universe
covers the propagation-function for a loss-free medium (921). That is also no miracle, because
both have the same exponent 4/3 in (309a). This case however is not confirmed by the
observations, just as little an empty universe. For =0 even an universe with negative mass-
energy-density (filled with antimatter) would be necessary. For the optimal conformity, we
already have to successfully ignore EINSTEIN’s conclusion “the introduction of the cosmologic
constant was the greatest foolishness, which I ever have done“. Then, according to [45] the
best match is with M=0.28 and =0.72. Thereat, all along, the sum of both values must
always be equal to one. The value  is the so-called “dark energy-density“ which indeed
could be identical to our metric wave-field (0K = absolutely dark).

As I said, the whole issue sounds rather improbable indeed, especially since “coincidentally“
this optimal course is exactly described by our function (924) (blue graph in figure 147), and
the whole thing only with the help of known physical objects and relations. It fits!

XIV. The observation-data of the supernova-cosmology-project are exactly
described by the propagation-function (305) under consideration of the geo-
metrical and parametric attenuation (284). The assumption of the existence of
any new exotic kind of matter or unknown physical effects is not necessary.

There is neither dark matter, quintessence nor increasing expansion!!
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The only dark matter there is in the heads, that once had to be said. But since science requires
always new, even more unique evidence, I computed the expectation-values of the apparent
brightness for SNae Ia, which are even farther away, than the ones, observed within the
framework of the supernova-cosmology-project, with the help of (921) and (924). They are
presented in figure 148. Surely, the opportunity arises in the closer or farther future, to observe
such an object.

Figure 148
Calculated apparent bolometric brightness for
solution (890) of the HUBBLE-parameter for farther SNae Ia

The only true quintessence is, that the present model has been confirmed by the observations of
the supernova-cosmology-project. Thus, the current value of the HUBBLE-parameter amounts
to 71.985 kms–1Mpc–1 exactly. That corresponds to solution (890).

7.5.5.          The meaning of the second and third solution

After we had tried to calculate the HUBBLE-parameter with the help of locally measurable
universal constants in section 7.5.1. we found with (884), (890) and (892) not only one but
even three solutions with different values. In the preceded sections, we verified expression
(890) as the best corresponding with the observations. Assuming it as the proper value for H0,
the question arises for the meaning of the second and third solution. Also there is properly
speaking only one metric wave-field with only one metric wave-function and this has even
only maximally one actual phase-angle, i.e. there is only one value Q0.

Since the difference between solution (884) and (890) amounts to only 10.102%, which
approximately corresponds to the effect of the various correction-factors of the fine-structure-
constant in the QED, one could assume, that it is about another QED-phenomenon. This
however would disagree with the above-mentioned assumption, because the precision of the
value H0 calculated with (890) wouldn't be guaranteed then. In the QED namely we never get
an exact result at all. Now however, it may be possible that even the second two results are of a
certain physical meaning, that a still unknown inherent law is assigned to the difference
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between the three results. This in turn, would not be part of, but the solution of the problem. To
this purpose, we want to analyze the three results more exactly.

Dividing all three values by each other, we find out that the variation can be explained by a
factor , which appears once in the zeroth, once in the first and once in the third power (see
table 7). In that sense, yet a fourth solution would be possible then, which we however want to
sort out as “artificial“ in this place, since we would have to multiply the root of (890) with the
square of (884) to get it. In contrast (892) as the product of both expressions figures a sort of
geometrical mean. The factor  e.g. can be determined, in that we form the quotient of (884)
and (892). We obtain:

 =  

1

4
 

e

q0

mp

me

 =  1.0326001 2
=  1.0662629           3

=  1.1010232 (925)

1
2 =   =  

h

mprec
 =  0.9378550 (926)

Since there are only quotients of quantities in (925), which vary temporally according to the
same function, the value  is reference-frame-independent. Interestingly enough, the expres-
sion  (926) is already introduced in the QED. It describes the conditions in the hydrogen-
atom. Looking at solution (890), which has been confirmed by astronomic observations and
with the help of the temperature of the CMBR, just by the observation of time-like photons, so
it shows, that only quantities of the electron and the free space are contained there. For this rea-
son we can assume, that expression (890) is not only the solution for time-like photons but also
for the electron, which belongs to the group of the leptons, because the electrons should expand
too.

Considering figure 96 more exactly, so it shows that the time-like vector c  at the space-like
photons is inverted to that of the time-like photons. That means, it has another value, because
the metric vector remains unchanged and the zero vector is equal to c constantly. That even
leads to a different expansion-rate then. Therefore we suppose, that solution (884) and/or (892)
are describing the HUBBLE-parameter and with it the expansion-rate for space-like photons.

In contrast to solution (890), in (884) and (892) the proton mass is contained. Therefore we
can assume, that one of both solutions applies to free, the other one to protons bound in the
atomic nucleus, since both interact by means of space-like photons with the metrics.

As further difference, expression (884) contains PLANCK's quantity of action, expression
(892) not. Thus, solution (884) would be significant for space-like photons and the free proton.
Because of the absence of h (no quantum-effects), because of (926) and since it's about a
geometric mean, I would assign solution (892) to the whole atoms, i.e. for atoms and for all
macroscopic bodies there is an own expansion-rate.

In section 7.5.1. we had learned furthermore, that all wavelengths, also that of the
DEBROGLIE-matter-waves, follow the expansion-rate of the universe as a whole (888). It
applies ~Q3/2. Now however, the reference point of the time-like photons is at Q=1/2, the one
of the space-like photons at Q= 2/3 in contrast, at which point both points reside at the
periphery of the universe, the observer, on the other hand, in the centre (applies to a whatever
observer everywhere).

Now, the expansion of the universe as a whole is determined by the expansion-rate
(expansion-velocity plus propagation-velocity of the metric wave-field) at its periphery, since
the largest values are achieved there. Interestingly enough however, it is negligibly greater at
Q=2/3, than at Q=1/2, as we can see in figure 22 with somewhat good will, which leads to the
higher expansion-rate for space-like photons. On that basis the value 3, the offset between
(884) and (890), can be calculated relatively simply:
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=  1.1006424  = –4 10–4 (927)

The difference to 3 (926) amounts to –4·10–4 only, for what we may already use the equality-
sign in the QED. Even the value  can be derived similar to (927), whereupon the difference is
with +5·10–3 something greater indeed:
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=  0.942809  = +5 10–3 (928)

But then a low difference between particles and antiparticles should exist, expressing itself
e.g. in the average diameter or the mass. In contrast to the different expansion-rate, for which
the difference between 1/2 and 2/3 at the edge of the universe is bearing responsibility, with
them it's about local values, which depend on the essentially higher value ( 1060) of the phase-
angle/Q-factor Q0 at the place of the observer. That means, the smaller diameter and the higher
mass at the reference point are being observed reduced about a value 1030. And then the low
difference between 1/2 and 2/3 suddenly becomes unverifiable.

Because of the expansion-rates however the values of particles and antiparticles approach
more and more, so that they coincide to the point of time T= . The central idea thereat is, that
the bearer of the effect is the proton. In the proton, there is an unknown ”information“, an
energy-difference, which leads to the different results1. Therefore it's possible to assume, that
the expressions containing the proton mass, do not submit the correct result (890) by no means.
As usual in the QED, they must be multiplied with a correction-factor.

Leaving out this, we definitely get a result valid for protons only. There are yet a good deal
more subatomic particles however. If solution (890) applies for time-like photons and
electrons, how does it look like with the other leptons then? To the leptons, all kinds of
neutrino, the myon and the tauon belong besides the electron as well, just as all corresponding
anti-particles.

In section 5.3.1. we had determined that also the neutrinos are having their reference point at
Q = 1/2, but not the antineutrinos with Q= 2/3. Since also the space-like photons as anti-
particles (not antiparticles!) of the time-like photons should have their reference point at
Q=2/3 but already have been assigned to solution (884), we could assume, that solution (890)
applies to time-like photons and all leptons, solution (884) to space-like photons, the proton
and all anti-leptons.

Which applies to the proton, even applies to the neutron and all baryons and mesons, just for
all hadrons, then. Solution (884) applies with it for space-like photons, all hadrons and all anti-
leptons. How does it look like with the anti-hadrons then again? From reasons of symmetry,
solution (890) should apply to them, which leads to the conclusion, that these interact, else than
”normal“ hadrons, by means of time-like photons with the metrics and by means of space-like
photons  among each other. But since they move as true antiparticles contrary to the normal
time-direction, this is no contradiction.

Because of the inverse relations, for anti-atoms and macroscopic bodies consisting of
antimatter however a different geometric mean would arise, for which instead of (892) the 4th
potential solution would offer itself, which we still had excluded further above. This should not
extra be presented at this point. It can be determined very simply with the help of x after all.
For the expansion-rate itself applies, such as in the macroscopic scale the HUBBLE-parameter
H1 (890) multiplied with the average diameter of the particle. In table 9 are presented the
corresponding values and it's validity:

                                                  
1 In contrast to the electron the proton and all other hadrons consist of several quarks, so that they have a higher mass, than the quarks alone
  (if this would be possible), because of the binding energy..
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Solution ˙ r r Applies to
[s–1] Kind of particle

H1 (890)· 3 3.853·10–18 Space-like photons, hadrons, anti-leptons

H1 (890)· 2 3.731·10–18 Macroscopic bodies of matter, atoms

H1 (890)· 1 3.613·10–18 Macroscopic bodies of antimatter, anti-atoms

 H1 (890)· 0 3.499·10–18 Time-like photons, anti-hadrons, leptons

Table 9
Expansion rates of particles

Now however attracts attention, that the expansion rates of the particles/antiparticles with the
leptons are swapped with that of the hadrons. The reason is, that these interact directly with the
metrics and not by means of space-like respectively time-like photons, like the hadrons. For the
myons and tauons, I would not like to put the hand into the fire however. Also table 9 figures
only one option of interpretation and should even only be regarded as suggestion.

The value  appears in the form of = –2 also as correction-factor in the QED, namely
always then, when there is at least one proton in the proximity of an interaction. If we e.g. look
at the interaction of a photon with an electron in the electron shell of an atom, the fine-
structure-constant is applied. Let’s have a look, what happens, when we multiply the fine-
structure-constant with :

=
1

4

e2

q0
2       without correction factor k =

2

4

e2

q0
2  with correction factor (929)

Inserting (925) in (929) shows, that the charges cancel out. Only the ratio between electron-
and proton-mass remains, multiplied with a geometrical factor 4 :

k =  4  

me

mp

 =  6.84386 10–3   
1

146
 with correction factor (930)

This ratio of two masses is evident for energetic contemplations, with which the impulse p=mv
is used. Expression (930) is also the starting point for contemplations about the
electromagnetic interaction between a photon and the electron in a hydrogen-atom. With it, the
term –1 is applied to the hydrogen-atom 1H only and represents, taken for itself, the correction
between a raw, thought system of a proton and an electron and the real conditions in the
hydrogen-atom. In all other cases, with heavier nucleuses and higher energy-conditions, even
more correction-terms come into addition (the exact relativistic corrections, the correction of
the kinetic energy and the spin-track-interaction).

7.6. Conclusion

I would like to finish this work at this point, because I have filled the task put by myself at
the start, to determine the exact value of the HUBBLE-parameter On the side, a new model of
the universe arose never being in contradiction to already saved knowledge, which dispenses
with such fuss as e.g. dark matter and new, yet unknown and not saved effects. The model
exactly could be verified on the basis of 8 of 10 tests, at which point 5 of them are filled
automatically indeed, because of the large similarity with EINSTEIN's model. The current value
of the HUBBLE-parameter amounts to exactly:

H0    =    
2

3
 

32 2
0Ghme

3

μ0
2e6       =    2.33283 10 18s 1 or (931)
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H0 =  71.9845 kms–1Mpc–1

When analyzing the temperature of the cosmic background-radiation there was found a small
downward difference of 0.2431K to the observed value in comparison with the calculated one.
With high probability, this is to be attributed to other interactions, so that we can regard even
this point as filled with a small discrepancy. This problem will be examined more detailed in
[46].

The technical determination of the value of the specific conductivity of subspace is still open
(superconductivity) which probably will remain unfeasable even in the remote future because
of it's extremely high value. At least, this value can be determined exactly on the basis of other
relations:

0 =  
3

8
 

e6c

4 0
2G2h2me

2  =  1.30605 1093
 Sm 1    (932)

This is the only one essentially new quality of the subspace. In table 10 the most important
fundamental values are abstracted once again, being referred to the newly determined value of
the HUBBLE-parameter, because this affects the most other values. In order to guarantee an
accurate verification, a »Mathematica«-program, in which these quantities and their relations to
one another are specified, finds in the appendix as well. Then, if we modify just one single
value, which occurs several times, it can easily happen, that one of them will be forgotten.
Then, we get strange, anomalous results and the search will start.

I hope, that some new thoughts were contained in the work on hand. Thus I ask for an active
discussion. Furthermore, I ask for understanding that I didn't extend the contemplation to all
domains, e.g. black holes, formation of the stars/planets etc. as usual. In the case of doubt, I the
the classic doctrine. This work also contains sections, with which you will disagree.
Nevertheless, I ask the reader to don't discard everything because of that.

THE END
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Definitions of Fundamental Constants depending on Q0

For usage with Mathematica

(*Units*)

km=1000;

Mpc=3.08572*10^19 km;
minute=60;

hour=60 minute;
day=24*hour;

year=365.24219879*day;

(*Basic expressions*)

ep0=8.854187817*10^-12;                   (*Permittivity of vacuum*)
my0=4 Pi 10^-7;            (*Permeability of vacuum*)

k=1.380658*10^-23; (*Boltzmann constant*)
G=6.6732*10^-11;                              (*Gravity constant Bruker*)

hg=1.05457266*10^-34; (*Planck constant slashed*)
qe=1.60217733*10^-19;  (*Elementary charge*)

me=9.1093897*10^-31; (*Electron rest mass*)
mp=1.6726231*10^-27; (*Proton rest mass*)
mn=1.6749286*10^-27; (*Neutron rest mass*)

ma=1.66057*10^-27; (*Atomic mass unit*)

(*Composed expressions*)

c=1/Sqrt[my0 ep0];                            (*Speed of light*)
Z0=Sqrt[my0/ep0];    (*Field wave impedance of vacuum*)

qn=Sqrt[hg/Z0];                               (*Planck charge*)
Q884=3/2*(qe^2/ep0/G/me/mp)^(3/2);            (*Phase angle/Q-factor Solution 884*)

Q892=3/8/Pi*qe^4/(ep0^2*me^2*mp*Sqrt[G^3*hg*c]);   (*Phase angle/Q-factor Solution 892*)
Q890=3/2*(1/4/Pi*qe^2*Z0/me*Sqrt[c/G/hg])^3;  (*Phase angle/Q-factor Solution 890*)

Q0=Q890; (*Phase angle/Q-factor MAIN SWITCH*)
Om1=ka0/ep0; (*Cutoff frequency of subspace*)

Om0=Sqrt[c^5/G/hg];                           (*Planck's frequency*)
H0=Om0/Q0;                                   (*Hubble parameter local*)

H1=3/2*H0;                                    (*Hubble parameter whole universe*)
r1=1/(ka0 Z0);                                (*Planck's length subspace*)
r0=Q0 r1;                                     (*Planck's length vacuum*)

R=Q0^2 r1; (*World radius*)
t1=1/(2 Om1);                                 (*Planck time subspace*)

t0=1/(2 Om0); (*Planck time vacuum*)
T=1/(2 H0);                                   (*World time constant*)

TT=2T/year; (*The Age*)
ka0=c^3/(my0 G hg H0); (*Conductivity of vacuum*)

G1=G/Q0^3; (*Gravity constant initial*)
h=hg*2*Pi; (*Planck constant unslashed*)
h1=hg*Q0;                                     (*Planck constant initial slashed*)

alpha=1/(4 Pi)*qe^2/qn^2; (*Fine structure constant*)
m0=Sqrt[hg c/G]; (*Planck mass*)

W0=Sqrt[hg c^5/G]; (*Planck energy*)
S1=h1 Om1^2/r1^2; (*Poynting vector metric initial*)

S0=S1/Q0^5; (*Poynting vector metric actual*)
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10.              Abbreviations

*
. Labeling of the first temporal derivative
.. Labeling of the second temporal derivative
^ Labeling of a peak value
* Labeling of a conjugate complex value
~ Labeling of a reference-frame-dependent quantity (constant)

without labeling it's about a variable

A
a Acceleration
a0 Bohr's hydrogen-radius
ai Factor i
A Factor, amplitude
A( ) Amplitude response

Angle, attenuation rate
,  , ,  Angle in the metric triangle

B
B Induction
B0 Induction in the MLE
B Factor
B( ) Phase response

Angle, phase rate, relativistic dilatation-factor (1–v2 /c2 )–1/2

0 Phase rate of the metric wave-field

C
c Speed of light (constant in reference to the subspace)
c, c Complex wave-propagation-velocity
cM Propagation-velocity of the metric wave-field
C Capacity
C0 Capacity of the ball-capacitor in the MLE
CMBR Cosmic background-radiation

D
D Electric charge-density (influence)

Phase-angle of the MLE, angle
k
i Kronecker-symbol

Partial differential-operator
b Partial differential-operator / b

E
E, E Electric field-strength
E0 Electric field-strength in the MLE
e Electron charge, Euler constant (2.71828...)
er Unit-vector on r

Angle
0 Dielectric constant of the subspace (vacuum)

Factor
ab Minkowskian metrics (math.)
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F
f Function
F Function
F, F Force
Fg, Fg Gravitational-force
Fm, Fm Lorentz-force
Fz, Fz Centrifugal force
0F1 Hypergeometric function

2 0t– r, electric potential
Angle of intersection of the metr. speed-vector with the x-axis

0 Magnetic flux in the MLE (momentary value)
i Initial value of 0

Newton's gravitational-potential
( ) Phase-shift during wave-propagation

G
g Acceleration of gravity
gik, gik Metrics (mathematical object)
G Gravitational-constant (not fixed)
G0 Specific conductance per meter
G1 Gravitational-constant with Q0 =1

,  , n,  angle in the metric triangle
Complex propagation rate
Gamma-function

bc
a Metric connection

H
hik, hik Fourfold-vectors
H, H0, H1 Hubble-parameter
H

 n
(1) (x) Hankel function of n'th order Jn(x)+jYn(x)

H
 n
(2) (x) Konj. complex Hankel function of n'th order Jn(x)–jYn(x)

H, H Magnetic field-strength
H0 Magnetic field-strength in the MLE
h Planck's quantity of action (not fixed)
h1 Planck's quantity of action with Q0 =1
hi Planck's quantity of action initial-value

I
i Electric current (momentary value)
i0 Electric current in the MLE (momentary value)
i1, i2, i3 Partial currents in the MLE-model
I Electric current
Im(x) Imaginary-part

J
j Imaginary unit 1
J0 Mass-moment of inertia of the MLE
J0(x) Bessel function of zeroth order
Jn(x) Bessel function of n'th order

K
k Boltzmann-constant
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Coupling-constant of the URT
0 Specific conductivity of the subspace
0R Specific conductivity of the metrics (vacuum)

L
l Length
L Inductivity
L Moment of momentum
L0 Inductivity of the MLE
L(x) Lagrange's function
L (x) Laplace transform
lg log10

ln loge

lx Lambert's W-funktion lx(xex ) =1 (ProductLog)
Wavelength

, Wave count vector

M
m Factor, mass
m* SR-rest-mass
m0 Mass of the MLE, UR-rest-mass
me Electron mass
mp Proton mass
M Mass
MLE Minkowskian line-element (physical object)
μ Induction-constant generally (μ0μr)
μ0 Induction-constant of the subspace (vacuum)

N
n Quantity, factor

Neutrino, frequency

O
00 (x) Series, tending against zero
02 (x) Series, tending against zero

Relative frequency /(2 1) resp. /(2 0)

P
p Laplace-operator
P Power, point
P0 Power dissipation of the MLE
Pv Power dissipation generally

Ratio of circumference and diameter at the circle (3.1415....)
Magnetic potential
Product MG

( ) Share of the attenuation-factor , caused by the amplitude response

Q
q Charge (momentary value)
q0 Charge of the ball-capacitor in the MLE
Q0 Q-factor and phase-angle (2 0t) in the MLE
QED Quantum-electrodynamics
QM Quadratic median
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R
r Radius absolute
r´ Radius after substitution

r Radius relative 
2r
˜ R 

 

 
 

 

 
 

2

3

r0 Planck's fundamental length (radius)
r1 Planck's fundamental length for Q0 =1 (subspace-constant)
rC Radius of the ball-capacitor in the MLE
re Electron radius according to the classic opinion
R World-radius 2cT
R Scalary curvature
R0 Shunt-resistor in the MLE-model
R0R Series-resistor in the MLE-model
Rs Schwarzschild-radius
Rik, Rik Ricci-tensor
Raa

bcd, Rabcd Riemann's curvature tensor
Re(x) Real part

Density
0(x) Function (209)

S
s Way
S Entropy, electr. current-density
S, Sb Entropy
S, Sk Power-density (Poynting-vector)

(t) Dirac-impulse
i Eigenvalues

T
t Time absolute (in the frame of reference)

t Time relative 1 +
t
˜ T 

 

 
 

 

 
 

1

2

t1 Period of the oscillation of the MLE with Q0 =1
T Local age, total-age = 2T
TPh Phase delay
TGr Group delay
T Period of the function sin
T, Tb Temperature
, 0, 1 Time-constants

Trigonometric function (209)
Angle in the coordinate-system

U
u Voltage (momentary value)
u0 Voltage in the MLE-model (momentary value)
U Voltage
U Gravitational-potential (new definition)

V
v Velocity
vM Velocity in reference to the metrics
vPh Phase velocity
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vGr Group velocity
V Detuning (oscillatory circuit), magnetomotive force

W
w Energy-density
W Energy
W0 Energy of the MLE

Angular frequency universal
0 Angular frequency of the MLE
1 Angular frequency of the MLE with Q0 =1
D De-Broglie-angular frequency of matter
e Angular frequency of emission of CMBR
s Angular frequency of immission of CMBR
k Angular frequency CMBR nowadays
T Thermal maximum CMBR

X
x Way

Rotatory-angle with the Lorentz-transformation
Magnetic charge-density (permanent magnet)

(r,t) Red-shift with wave-propagation

Y
y Way
Y0 Bessel function of zeroth order (von Neumann's function)
Yn Bessel function of n'th order (von Neumann's function)

Z
z Way, factor, red-shift
Z Wave impedance
Z0 Wave impedance of the vacuum ( 2 ·60 )
ZF Field-wave impedance complex
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1.                Fundamentals

In [1] a model, was published which defines the expansion of the universe as a
consequence of the existence of a metric wave-field. The time-function is based on the
Hankel function, which consists of the sum of two Bessel functions (J0 and Y0) in turn. The
particular qualities of the Bessel function lead to an increase of the wavelength, which is
defined by the spacing between two zero-transits. Thus, the model leads to a quantization of
the universe into discrete line-elements with particular physical characteristics. An individual
line-element can be described by the model of a loss-affected oscillatory circuit with shunt-
resistor. A special quality of the model consists in the fact, that the Q-factor of this oscillatory
circuit is equal to the phase-angle 2 0t of the above-mentioned Bessel function. It applies
Q0=2 0t. The value 0 corresponds to the PLANCK's frequency on this occasion.

A special solution of the MAXWELL equations was found for the Hankel function with
overlaid interference function, which describes the wave-propagation in the vacuum and co-
includes the expansion. This special solution owns an inherent propagation-velocity in
reference to the empty space (subspace) which is almost zero to the current point of time.
Main-idea of the model is, that this propagation-velocity adds up geometrically to the
propagation-velocity of an overlaid wave, at which point the total-velocity always amounts to
exactly c in reference to the subspace. Thus, the cosmologic red-shift exactly can be
described.

One conclusion from the model is the existence of an upper cut-off frequency of the
vacuum, which could not be detected until now, because its value is about magnitudes greater
than the technically feasible. Another conclusion from the model is the supposition that each
photon is connected really or/and virtually with an origin at Q0=1/2 That is the frequency, at
which the excessive energy after the shape of the metric wave-function has been coupled into
the very same one, as an overlaid wave, where it can be observed until now as cosmic
background-radiation. Furthermore could be determined, that the bandwidth in the lower
frequency range exactly matches the one of an oscillatory circuit with the Q-factor 1/2, which
equals the conditions to the point of time of the input coupling.

Since the cosmic background-radiation exactly follows the PLANCK's radiation-rule, this
must, because of the indistinguishability of individual photons, apply to a whatever black
emitter. Therefrom arises the guess, that the existence of an upper cut-off frequency of the
vacuum could be the cause for the decrease in the upper frequency range. In [1] already a
simple attempt of an approximation has been taken up, at which point several values of the
time-dependent frequency response A( )·cos  have been multiplied with the source-function,
which led to a quite good match, measured by the simple procedure. Aim of this article is, to
improve the proceeding any farther in order to make more precise statements. Attention
should be paid to with the model that with some many exceptions (c μ0, 0, 0, k) most of the
fundamental physical constants are time- and reference-frame-dependent (~). And there is a
conductivity of the subspace 0 different from zero.

2.                The WIEN displacement law and the source-function

During the examination of the WIEN displacement law meets the eye, that the displacement
happens exactly at the lower wing pass of the PLANCK's radiation-function, which coincides
with the wing pass of an oscillatory circuit with the Q-factor 1/2 in this section. Considering
the WIEN displacement law (902)1 more exactly, particularly the factor 2.821439372 strikes in
this place. With an oscillatory circuit of the Q-factor 1/2 rather the factor 2 2  would be
applicable for this, at which point the 2 stems from the source-frequency 2 1. The expression
2  arises from the rotation of the coordinate-system about /4.

                                                  
1 Three-digit numerations always refer to [1]



4

Now the validity of the WIEN displacement law in strong gravitational-fields does not have
been proven yet and neither PLANCK's radiation-rule nor the WIEN displacement law contain
any information about the way, the temperature varies, when it varies. According to [1]
applies:

  

Tk  =  
1

2.821439372
 

h1 1

6k
 Q0

– 5
2  =  0.0590715038  

h 0

k
 Q0

– 1
2           1 = 0

0

(902)

The calculation submits a value about 0.2431K greater than the really measured temperature
of the cosmic background-radiation (2.7250K). Section 5.3.1. of [1] shows, that non-
linearities appear in the displacement, when the Q-factor is close to 1. These could be a cause
for this discrepancy.

During an investigation in the Internet, I found a detailed deduction of the WIEN displace-
ment law [2]. The value of the proportionality-factor can be obtained by the determination of
the maximum in the PLANCK's radiation-rule as follows. We start from (382):

  

dSk  =   
1

4 2  

h
3

c2  

1

e
h

kT 1

 es  d   PLANCK’s radiation rule (382)

  

dSk  =   
1

4 2

k3T 3

h
2c2  

h

kT

 

 
 

 

 
 

3
1

e
h

kT 1

 es  d   
  

x =
h

kT
  

  

d =
kT

h
dx (1)

  

dSk  =   
1

4 2

k4T 4

h
3c2

x3

ex 1
 es  dx   

d

dx
 

x3

ex 1
 =  0 (2)

3 

x2

ex 1

x3ex

(ex 1)2  =  
3x2(ex 1) x3ex

(ex 1)2  =  0 (3)

3x2(ex 1) x3ex  =  0   x3ex
 =  3x2(ex 1) (4)

ex (x 3)  =  3   y = x 3 x = 3+ y (5)

yey +3
=  yeye3

=  3   yey
=  3e 3 (6)

x  =  3+ lx( 3e 3)  =  2.821439372   lx(xex ) =1 (7)

lx is LAMBERT's W-function (ProductLog []). After substitution into the middle expression of
(1) finally the WIEN displacement law turns out:

h max  =  2.821439372 kT WIEN’s displacement law  (8)

If we now would succeed in doing the same even for the source-function with Q= 1/2
obtaining the same result, we would have proven the validity of the WIEN displacement law in
strong gravitational-fields. First of all however, we must bring the output-function into a
form, suitable for the further processing. We start with (380) with the substitution:

Pv =  

Ps

1+ v2Q2 v  =  

 

s

s

 s =  2 1  =  

 

s

 =  

1

2

 

1

(9)

The expression comes from the electrotechnics and describes the power dissipation Pv of an
oscillatory circuit of the Q-factor Q with the frequency  (see [3]), v is the detuning. The Q-
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factor is known and amounts to Q=1/2 at s=2 1. The right-hand expression results directly
from the sampling-theorem. The cut-off frequency of the subspace 1 is the value 0 at Q=1.
After substitution, we get the following expressions:

v  =  
1 v2

=  2
+

2 2           v2Q2
=  

1

4
2

+
1

4
2 1

2
(10)

Pv =  

Ps
1
4

2
+ 1

4
2

+ 1
2

4 2

4 2   =   4Ps

2

4
+ 2 2

+1
  =   4Ps 1+

2

 

 
 

 

 
 

2

(11)

This expression has appeared many times in [1], among other things also with the group delay
TGr which we had determined for a frequency 1 however. For a frequency 2 1 applies for TGr

and the energy Wv:

TGr  =
dB( )

d
 =  

1

1

 

1+
2

 

 
 

 

 
 

2

  Wv =  
1

6
PsTGr  =  

2

3

Ps

1

 

1+
2

 

 
 

 

 
 

2

(12)

The factor 1/6 comes from the splitting of the energy onto 6 line-elements (MLE) during the
input coupling. It often occurs in thermodynamic relations, which doesn't astonish. Thus, the
total-energy of the CMBR during the input coupling is equal to the product of power
dissipation and group delay, that is the average time, the wave stays within the MLE. But this
only on the side. With the help of (11) we obtain:

Pv =  4b  Ps 1+
2

 

 
 

 

 
 

2

  

Pv =  512b  h1 1
2

 

1+
2

 

 
 

 

 
 

2

(13)

b is a factor, we want to determine later on. Let's equate it to one at first. We determined the
value Ps with the help of (394) using the values of the point of time Q=1/2. Interestingly
enough, the HUBBLE-parameter H0 at the time t0.5 is greater than 1 and 0. For an individual
line-element applies:

0.5 =  1

Q0.5

 =  1
1
2

 =  2 1             H0.5 =  1

Q0.5
2  =  1

1
4

 =  4 1 (14)

  

Ps =  
ˆ h i

4 t 0.5
2 Q0.5

4  =  
ˆ h i

2

25

4t 0.5
2  =  32h1H0.5

2  =  128h1 1
2          

  

ˆ h i

2
= h1 =

h 0.5

2
   (15)

Expression (13) is very well-suited for the description of the conditions at the signal-source.
Here, the power makes more sense than the POYNTING-vector Sk. But for a comparison with
(382) we just need an expression for Sk, quasi a sort of PLANCK's radiation-rule for technical
signals with the bandwidth 2 1/Q0.5 =4 1. This would look approximately like this then:

dSk =   4bA  

1+
2

 

 
 

 

 
 

2

 es  d (16)

We determine the factor A by a comparison of coefficients (3). We assume, the WIEN
displacement law (8) would apply and substitute as follows:

  

A =  
1

4 2

k4T4

h
3c2 c = 1Q

1r1Q (17)

We insert the frequency 2 2 1 as initial-frequency into the expression k4T4 That is
advantageous, as we will already see. This frequency is not a metric indeed ( x~Q–1), but an
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overlaid frequency ( ~Q–3/2). During the red-shift of the source-signal, likewise not the factor
2.821439372 but the factor 2 2  becomes effective. Thus applies:

  

k4T4  =  
(2 2)4

(2 2)4
h1

4Q 4
1
4Q 6  =  h1

4
1
4Q 10 Q 10

=
Q 8

Q2  (18)

  

A   =  
1

4 2

h1
4

1
4Q 8

h1
3Q 3

1
2Q 2r1

2Q4  =  
1

4 2

h
4

0
4

h
3

0
2r1

2Q4  =  
1 h 0

2

4 R2     (19)

  

4A =  
4 h 0

2

4 r0
2Q2  =  

4 h 0
2

4 R2 R  für Q»1 (20)

  

dSk  
=   

4b h 0
2

4 R2  

1+
2

 

 
 

 

 
 

2

 es  d R  für Q»1 (21)

That submits indeed only the expression without consideration of the red-shift. We determine
the actual values to the point of time of the input coupling, in that we apply the values for
Q=1/2 in turn. It applies:

  

A   =  
1

4 2

h1
4

1
4Q 8

h1
3Q 3

1
2Q 2r1

2Q4  =  
28 3 2+4

4 2

h1
4

1
4

h1
3

1
2r1

2  =  
128 h 1

2

4 r1
2  (22)     

  

4A =  
512 h1 1

2

4 r1
2        

  

dSk =  
512b h1 1

2

4 r1
2 Q 7

 

1+
2

 

 
 

 

 
 

2

 es  d (23)

b will be determined later on. It shows, the POYNTING-vector is equal to the quotient of a
power Pk resp. Ps and the surface of a sphere with the radius R (world-radius), exactly as per
definition. Omitting the surface, we would get the transmitting-power Pv directly. A
comparison with (13) shows, that both values have the same magnitude in fact, but they differ
about a factor 1/ . This is even no miracle, since expression (13) describes the relations in a
single line-element (MLE), expression (24) the ones for the entire volume of a sphere with
the radius r1/2= r0.5. But within a sphere with the diameter r0 reside exactly  line-elements
and the lattice constant is equal to r0, which would explain the factor 1/ . In the above-
mentioned expressions the parametric attenuation of 1Np/R, which occurs during propagation
in space, is is unaccounted for. This must be considered separately if necessary.

Now we have framed the essential requirements and can dare the next step, the proof of the
validity of the WIEN displacement law in strong gravitational-fields. The basic-idea was just,
that the Planck's radiation-rule (382) should emerge as the result of the application of the
metrics' cut-off frequency (302) to the function of power dissipation Pv of an oscillatory
circuit with the Q-factor Q=1/2 (13) We proceed by analogy with (2), by equating the first
derivative of the bracketed expression (23) to zero. A substitution as in (1) is not necessary,
since the expression is already correct. It applies:

d

d 1+
2

 

 
 

 

 
 

2

=  
2

(1+
2)2

4 3

(1+
2)3  =  

2  (1 2)
(1+

2)3  =  0 (24)

2  (1 2) =  0      1 = 0    Minimum            2,3 = ±1   Maximum (25)

The first solution is trivial, the second and third is identical, if we tolerate negative
frequencies (incoming and outgoing vector). Now, we must only find a substitution for ,
with which (382) and (23) come to congruence in the lower range. This would be the
displacement law for the source-signal then (22). Since the ascend of both functions has the
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same size in the lower range, there is theoretically an infinite number of superpositions,
whereat only one of them is useful. Therefore, as another criterion, we introduce, that both
maxima should be settled at the same frequency. The displacement law for the source-signal
would be then as follows:

h max  =  a kT Displacement law source-signal (26)

at which point we still need to determine the factor a. As turns out, we still have to multiply
even the output-function itself, with a certain factor b, in order to achieve a congruence. The
4 we had already pulled out. We apply the value 2 2 and 2.821439372 for a one after the
other and determine b numerically with the help of the relation and the function FindRoot[]
using the substitution 2x=ay:

a y
2( )

3

ea y
2 1

4b  

y
2

1+ (y
2)2

 

 
 

 

 
 

2

 =  0   y =10–5 b 2                       for  a = 2 2              

b 2.009918917    for  a = 2.821439372
(27)

The maxima overlap accurately in both cases. The lower value a is equal to the factor in
(903). Thus it seems, that with references, except for those to the origin of each wave with
2 1, multiplied with 2 , which is caused by the rotation of the coordinate-system about /4,
rather the approximative solutions with the factor 2 2  apply. With lower frequencies, the
factor 2.821439372 of the WIEN displacement law applies then again.

But to the exact proof of the validity of the WIEN displacement law in the presence of strong
gravitational-fields this ansatz is not enough. We must also show that the maximum of the
PLANCK's radiation-function behaves exactly according to the WIEN displacement law, that
means the approximation and the target-function must come accurately to the congruence.
Since the difference between a factor 2 2  and 2.821439372 amounts to 0.5% after all, we
will execute the examination with both values. Only the relations for b=2 2 are depicted.
Now, we can set about to write down the individual relations:

h max  =  2 2 kT Displacement law source-signal  (28)

  

=
1

2

 

1

 =  
1

2 2

h

kTk
 =  

x

a
 =  

y

2
  y  =  

 

1

      b = 2 (29)

Thus, we have found our source-function. In y it reads as follows:

  

dSk  
=   

16 h 0
2

4 R2  

y
2

1+ (y
2)2

 

 
 

 

 
 

2

 es  dy    R  for Q»1  (30)

But we aren't interested in the absolute value but in the relative level only:

dS1 
=  8  

y
2

1+ (y
2)2

 

 
 

 

 
 

2

dy (31)

We want to mark the approximation with dS2. For the target-function dS3 we obtain:

dS3  
=  

(2.821439
y
2)3

e2.821439 y
2 1

 dy (32)

In figure 1 are presented the course of the source-function and the PLANCK's graph.
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Figure 1
Planck's radiation-rule and source-function

in the superposition (logarithmic, relative level)

3.                Solution and evaluation

Of course, there is no shift-information y(Q) contained in these relations. Since the
considered system is a minimum phase system, we now have to multiply the source-function
dS1 with the product A( )·cos  (frequency response). A( )is the amplitude response, the
expression cos  is for the active-share (real-part), because only this is being transferred. The
result is our approximation dS2. The frequency response is merely applied to a single line-
element, which is traversed by the signal in the time r0/c Thereat r0 is equal to the PLANCK's
length and identical to the wavelength of the above-mentioned metric wave-function. That
means, we have to execute the multiplication with the frequency response as often as we like,
unless the result (almost) no longer changes.

But thereat as well the frequency of the source-function as the cut-off frequency (frequency
response) decrease continuously. Therefore it's opportune, to take up the displacement
(frequency and amplitude) later on with the result dS2 (approximation), instead of shifting on
and on the location of the source-function. For the proof of our hypothesis indeed this last
shift is not of interest, so that we won't take up it in this place.

There is another problem with the amplitude response A( ) and with the phase-angle . Since
the cut-off frequency 0 =ƒ(Q, 1) and the frequency  are varying according to different
functions, it causes difficulties to formulate a practicable algorithm. Thus we use the fact that
there is no difference, whether we reduce the frequency of the input-function with constant
cut-off frequency or if we shift upward the cut-off frequency with constant input-frequency.
We choose this second way incl. the displacement of the approximation at the end of
calculation. This all the more, since we would be concerned with two time-dependent
quantities (input-frequency and cut-off frequency) otherwise. To the approximation applies:

(33)
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The value Q0 =7.9518·1060 is the current value of the Q-factor and the phase-angle of the
metric wave-function. Thus, it determines the upper limit of the multiplication resp.
summation. Expression (33) possibly appears somewhat strange to the reader. It's about a
product-integral, i.e. instead of adding up we must multiply. Fortunately the frequency
response can be depicted as e-function, so that the product changes into a sum. We simply
have to integrate the exponent quite normally then. We obtain the frequency response
inclusive phase-correction with the help of the complex transfer-function (150) to:

A( ) cos  =  e ( )
Frequency response of a line-element (34)

( ) =  

1

2
ln  1+ 2( )

2

1+ 2 + lncos arctan
1+ 2

 

 
 

 

 
 (302)

As next, we substitute  by y with the help of (29):

( ) =  

1

2
ln  1+

y

2

1 

 
 

 

 
 

2 

 

 
 

 

 

 
 

(y
2

1 )2

1+ (y
2

1 )2 + lncos arctan
y

2

1
y
2

1

1+ (y
2

1 )2

 

 
  

 

 
  

(35)

The value  in the numerator of y figures the respective frequency of the cosmic background-
radiation, for which we just want to determine the amplitude. It is identical to the  in
PLANCK's radiation-rule. Thereat it's about an overlaid frequency, which is proportional to
Q–3/2 in the approximation. Instead of the value 1 in the denominator actually the PLANCK's
frequency 0 should be written with the frequency response. That is also the cut-off fre-
quency for the transfer from one line-element to another. But with Q=1 the value 0  is right
equal to 1,  at which point 0  varies with the time; 1  on the other hand is strictly defined
by quantities of subspace having an invariable value therefore. It applies 0 = 1/Q. The fre-
quency 0 is exactly proportional to Q–1, which means that even y depends on time, being
proportional to Q–1/2.

Now we however want to freeze the value , at least up to the end of the calculation, which
has the consequence, that we must divide y by a supplementary function , which is
proportional to Q1/2. It applies =cQ1/2 and

( ) =  

1

2
ln  1+

y

2

1 

 
 

 

 
 

2 

 

 
 

 

 

 
 

y
2

1( )
2

1+
y
2

1( )
2 + lncos arctan

y

2

1
y
2

1

1+
y
2

1( )
2

 

 

 
 

 

 

 
 

(36)

The factor c arises from the initial conditions at Q=1/2 (resonance-frequency 2 1, cut-off fre-
quency 1) to c=4:

y  =  
 

0

~
2– 3

2

2
1
2

 =  
1

4
     = 4 Q    Approximation (37)

Thus, together with the 2 of y/2, we acquire exactly the same factor 8 as in the source-
function (31). Then, the approximation dS2 calculates as follows:

dS2(y)  =  8  

y
2

1+ (y
2)2
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2

1+ y
2
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2

 +  ln cos arctan
y
2

1
y
2

1

1+ y
2

1( )
2

 

 

 
 
 

 

 

 
 
 

1 2

Q0

 dQ

dy (38)

For the determination of the integral, a value of 103 as upper limit suffices indeed. Over and
above this, it changes very little. Therefore, I worked with an upper limit of 3·103 in the
following representations. The integral only can be determined numerically, namely with the
help of the function NIntegrate[ƒ(Q), Q, 1/2, 3 103]. The quotient of y/2 and  expression
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(37) however describes the dependency y(Q) in the approximation only. There is an exact
solution as well. According to [1] (209), (299) and (509) applies:

=
a

b

1

Q

R(Q)

R( ˜ Q )

 
4 1

 
˜  4 1

      with  ˜ Q =
1

2
           and (39)

R(Q) =  3r1 
Q

1
2

dQ

00

Q

     with  0 =   (1 A2
+ B2)2

+ (2AB)24 (40)

A =
J0(Q)J2(Q) + Y0(Q)Y2(Q)

J0
2(Q) + Y0

2(Q)
       B =

J2(Q)Y0(Q) J0(Q)Y2(Q)

J0
2(Q) + Y0

2(Q)
(41)

The factor b arises from the demand, that the exact function  and its approximation should
be of the same size with larger values of Q. The factor a we will determine later on in turn.
The functions in (41) are Bessel functions. Problematic in (40) and (45) is the integral, which
can be determined even only by numerical methods. In order to avoid the numerical
calculation of an integral within the numerical calculation of another integral, it's opportune,
to replace the integrand by an interpolation-function (BRQ1), and that inclusive the factor B.
Der value r1 cancels itself because of (39). We choose sampling points with logarithmic
spacing:

brq = {{0, 0}};  For[x = (-8); i = 0, x < 5, (++i), x += .01;

  AppendTo[brq, {10^x, N[BRQP[10^x]/BGN/(2.5*10^x)]}]] (42)
BRQ1 = Interpolation[brq];

The function BRQP is equal to the product of Q, root-expression and integral in the
denominator of (45). The value BGN is equal to the initial value of the same product at
Q=1/2. You'll find the complete program in the appendix. The factor b arises to 2.5(0703).
According to (211), (482) and (623) applies further:

 =  
sin  

sin
=  argc + arccos 

cM

c  
sin

 

 
 

 

 
 +

4
(43)

=  
4

argc  =  
3

4
+

1

2
arg ((1 A2

+ B2) + j2AB) cM =  c  (44)

=  
3

0.56408

a

b
 Q– 1

2
 

4 1  

dQ

00

Q

 =  a
3

2
2  Q– 1

2
 

4 1  

dQ

00

Q

 (45)

c is the complex propagation-velocity of the metric wave-field. As next, we want to take up a
comparison of the two functions Q1/2 and BRQ1 (figure 2):

Figure 2
Function BRQ1 exactly and approximation
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On the basis of the demand, that the result of both functions must be identic with Q»1 we
choose the factor a to . In this connection is to be remarked that the exact value is 3, 5 in
fact. But since we finally will not find, in any case, an exact fit in the course of both
functions, this small ”cheating” in the initial conditions should be allowed. The value
namely leads to the result with the smallest difference, so that we obtain the following final
relation for :

=  
3

2
2  Q– 1

2
 

4 1  

dQ

00

Q 

 

 
 

 

 

 
 
 c =

3

2
2 = 3.756 (46)

For 3, 5 a value of c=4 would arise. The bracketed expression corresponds to the factor Q1/2

in the approximation. Thus, all requirements are filled and we are been able to demonstrate
the course of the approximation (38) in comparison with the target-function (32) and that as
well for the approximation as for the exact function . We use a logarithmic scale and the unit
decibel [dB].

Figure 3
PLANCK’s radiation-rule and approximation
with approximation for the function  (relative level)

In figure 3 is presented the course of the approximation under application of the
approximation (37) for the function  (c=4). It shows, that both graphs don't overlap exactly.
The maximum difference in the amplitude in the region of both maxima is about –1.2dB
(–25%), which is relatively speaking not that much. The maximum is displaced downward
about 12.4% in the frequency. All things considered, the function is similar to that, shown in
section 4.6.4.2.3. of [1], which has been determined by the multiplication of the source-
function with only 4 selected values of the frequency response. But there are differences in
the decreasing branch at the upper frequencies.

The course of the offset (logarithm of the quotient of approximation and the PLANCK's
radiation-rule) as a function of y is presented in figure 5. It shows, from about 10 1 on the
relative offset between both functions is strongly increasing. But since the absolute level is
already microscopic in this region, nobody will take notice of it.
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Figure 4
PLANCK’s radiation-rule and approximation under
application of the exact function  (relative level)

Figure 4 shows the same approximation under application of the exact function  (46) and
that for c= 3.756. With it, the best congruence arises (for c=4 the result only marginally
differs from figure 3). But both functions don't overlap exactly neither in this place, the
maximum difference in the amplitude is 1.3dB and the maximum is shifted downward about
13.6% (0.8639) in the frequency. This is something more, than the difference from the
measured to the calculated CMBR-temperature amounting to –8.232% (0.9177), determined
in section 7.5.3. of [1].

The downward-shift of the maximum of the approximation could be a reason for the last-na-
med discrepancy. Although, the form of the approximation-graph doesn't correspond to that
of a black emitter and the value is too high. But during the COBE-experiment, it just has been
ascertained, that the spectrum of the CMBR is exactly black. Therefore, more forces are re-
quired in order to change the form in such a manner, that it equals the one of a black emitter.
Which influences could come into consideration for that purpose, we will see in the next sec-
tion.

Figure 5
Relative offset between
approximation and radiation-rule in
dependency of the used function 

Figure 5 shows the course of the offset in comparison with that of the approximation . We
can see, the usage of the exact function  already brings an improvement, nevertheless a
certain left-over difference remains.
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4.                Potential reasons for the offset, perspectives

As next, we want to discuss potential reasons, which can lead to this offset. The simplest
and most unpleasant would be, that the original supposition doesn't apply. But the result
agrees at least as well with the forecast, that we cannot approve this with sufficient certainty.
Otherwise, there must be another cause then again. The most probable should be presented as
next because of that.

Since the line-element is a minimum phase system, we computed the approximation
function, in that we multiplied the source-function iteratively with the just significant
amplitude characteristic A( ), as long as the result changes. Then, when the frequency of the
signal-function has dropped far below the cut-off frequency, there is no more change to be
observed. The factor cos  emerges from the fact, that only the real-part is being transferred
( =B( )).

This is the procedure with minimum phase systems in general. But according to [3] p. 340
this applies for stable minimum phase systems only! Because only with these, an explicite
correlation exists between amplitude- and phase response curve, so that we can calculate with
the the amplitude response exclusively. With the line-element just after the input coupling
(Q 1), that is shortly after the big bang, it is however not about a stable system at all. Rather
this shows its largest dynamics to that point of time, so that our approach could lead to an
inexact result, as we can see.

If we want to obtain an exact result, we must also introduce a reference between amplitude
and phase, quasi a phase-correction, because a phase-lag appears with unstable systems,
which has been unaccounted for by the used approach. Even with the propagation-function
(306) such a phase-lag has happened, characterized by the term ( ). Unfortunately this
cannot just be copied to the above-mentioned approach. On the other hand, a consideration of
the phase-lag cannot eliminate the downward-shift of the radiation-maximum by no means,
since only the ascend of the graph, but not the location of the maximum, is changed by a
phase-correction (0·n=0). In fact, the phase-lag is an expression for a phase velocity, different
from c, in reference to the metrics. Since, contrary to the statement in [3], the transfer-
function (143) cannot be split into a minimum-phase- and a non-minimum-phase-component
because of its particular form, it seems, that our approach is valid in this special case despite
of the high dynamics in the considered time period, thus the transfer always takes place
phase-true.

The phase-lag expresses itself at the observer in the form, that the spectral-shares with lower
frequency are more red-shifted, than those with higher frequency. The low-frequency shares
are of course not older than the high-frequency ones (we always observe the same point of
time of the input coupling at Q0=1/2), but they have covered a longer distance. And that leads
automatically to a higher red-shift. How does this longer way explain however? The low-
frequency shares quite simply have taken another way, than the high-frequency ones
(different angle of emission). Because the low-frequency shares having taken the same way,
like the high-frequency ones, already have passed us. This leads to a sort of achromatism at
the observer, which is hard to be detected, since the radiation arrives from all directions at
once. One option would be, to superimpose the marginal temperature-differences with lower
and higher frequencies. Maybe, we could recognize something then. Although, the currently
available resolution is too low for that purpose.

The action of this effect is a non-linear dilatation of the approximation-graph towards the
lower frequencies, at which point the dilatation comes off the greater, the lower the
frequency. But that means an additional downward-shift of the maximum, although it already
has been smaller than the measured value. Contemporaneously, the amplitude of the lower
frequencies becomes greater than that of the target-function then. The other way round it's
with the higher frequencies. The course even more deviates from that of a black emitter.
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Now, we have disregarded another effect then again, the parametric attenuation (see [1]
section 4.6.4.2.7.). Whereas a frequency-independent value of the parametric attenuation can
be applied to technical and most naturally occuring frequencies, in the vicinity of Q0=1/2 it's
not the case. Here not only the attenuation very strongly depends on the frequency, no, with
very high frequencies the parametric attenuation even turns into a parametric amplification
(see [1] figure 81). That produces a shift back of the maximum upward then. The low- and
high-frequency shares re-move towards the target-function. This thoroughly may cause, that
the ”slanted” approximation-function becomes a black radiation-function.   

But the mathematical proof would be even essentially more complicated, than the one on
hand, however it's not impossible. Therefore, I would like to correct it using a form-factor f,
which always then applies, when references to the point Q0=1/2 are calculated. Based on [1]
(905), under the premise, that the measured value should be equal to the calculated one, it
arises to:
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(49)

h max  =  2.821439372·f·kT              The WIEN displacement law for 0.5 (50)

For the WIEN displacement law itself applies the following then:

I. The WIEN displacement law in its known form applies even in the presence
of strong gravitational-fields, however with restricted precision, whereat the
maximum error is about 9%.

Conclusion: The results of the work on hand don't exclude the possibility, that the course of
the PLANCK's radiation-rule could be the result of the existence of an upper cut-off frequency
of the vacuum. The answer only can be: It is possible, but not proven. If it should be true
however, the classic deduction [2] would not be overruled. Rather, this would explain, why
the BOLTZMANN-constant has the actual value and not another.

THE END
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