International Journal of Mathematics and Computer Applications Research (IJMCAR) ISSN 2249-6955 Vol. 3, Issue 4, Oct 2013, 95-102 © TJPRC Pvt. Ltd.

NEW CONCEPTS OF NEUTROSOPHIC SETS

S. A. ALBOLWI¹, A. A. SALAMA² & MOHMED EISA³

¹Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia ²Department of Mathematics and Computer Science, Faculty of Sciences, Port Said University, Egypt ³Department of Computer Science, Port Said University, Port Said, Egypt

ABSTRACT

In this paper we will introduce and study some types of neutrosophic sets. Finally, we extend the concept of intuitionistic fuzzy ideal [8] to the case of neutrosophic sets. We can use the new of neutrosophic notions in the following applications: compiler, networks robots, codes and database.

KEYWORDS: Fuzzy Set, Intuitionistic Fuzzy Set, Neutrosophic Set, Intuitionistic Fuzzy Ideal, Neutrosophic Ideal

1-INTRODUCTION

The neutrosophic set concept was introduced by Smarandache [11, 12]. In 2012 neutrosophic sets have been investigated by Hanafy and Salama at el [4, 5, 6, 7, 8, 9]. The fuzzy set was introduced by Zadeh [13] in 1965, where each element had a degree of membership. In 1983 the intuitionstic fuzzy set was introduced by K. Atanassov [1, 2, 3] as a generalization of fuzzy set, where besides the degree of membership and the degree of non- membership of each element. Salama at el [8] defined intuitionistic fuzzy ideal for a set and generalized the concept of fuzzy ideal concepts, first initiated by Sarker [10]. Neutrosophy has laid the foundation for a whole family of new mathematical theories generalizing both their classical and fuzzy counterparts. In this paper we will introduce the definitions of normal neutrosophic set, convex set, the concept of α -cut and neutrosophic ideals, which can be discussed as generalization of fuzzy and fuzzy intuitionistic studies.

2-TERMINOLOGIES

We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in [11, 12], and Salama at el [6, 7].

3-SOME TYPES OF NEUTROSOPHIC SETS

Definition.3.1

A neutrosophic set A with $\mu_A(x) = 1$, $\sigma_A(x) = 1$, $\gamma(x) = 1$ is called normal neutrosophic set.

In other words A is called normal if and only if $\max_{x \in X} \mu_A(x) = \max_{x \in X} \sigma_A(x) = \max_{x \in X} \gamma_A(x) = 1$.

Definition.3.2

When the support set is a real number set and the following applies for all $x \in [a,b]$ over any interval [a,b]:

$$\mu_A(x) \ge \mu_A(a) \wedge \mu_A(b)$$
 ; $\sigma_A(x) \ge \sigma_A(a) \wedge \sigma_A(b)$ and $\gamma_A(x) \ge \gamma_A(a) \wedge \gamma_A(b)$

A is said to be convex.

Definition 3.3

When $A \subset X$ and $B \subset Y$, the neutrosophic subset $A \times B$ of $X \times Y$ that can be arrived at the following way is the direct product of A and B.

$$A \times B \longleftrightarrow \mu_{A \times B}(x, y) = \mu_{A}(x) \land \mu_{B}(x)$$
$$\sigma_{A \times B}(x, y) = \sigma_{A}(x) \land \sigma_{B}(x)$$
$$\gamma_{A \times B}(x, y) = \gamma_{A}(x) \land \gamma_{B}(x)$$

We must first introduce the concept of α -cut

Definition 3.4

For a neutrosophic set A

$$A_{\alpha} = \left\{ x : \mu_{A}(x), \sigma_{A}(x), \gamma_{A}(x) > \alpha \right\}; \qquad \alpha \in \left[0, 1 \right]^{-+}$$

$$A_{\overline{\alpha}} = \left\{ x : \mu_{A}(x), \sigma_{A}(x), \gamma_{A}(x) \geq \alpha \right\}; \qquad \alpha \in \left[0, 1 \right]^{-+}$$

are called the weak and strong α -cut respectively.

Making use α -cut, the following relational equation is called the resolution principle.

Theorem 3.1

$$\mu_{A}(x) = \sigma_{A}(x) = \gamma_{A}(x) = \sup_{x \in \left[0, 1\right]} \left[\alpha \wedge \chi_{A_{\alpha}}(x)\right]$$

$$\mu_A(x) = \sigma_A(x) = \gamma_A(x) = Sup\left[\alpha \wedge \chi_{A_{\overline{\alpha}}}(x)\right]$$

Proof

$$Sup\left[\alpha \wedge \chi_{A_{\overline{\alpha}}}(x)\right] = Sup \left[\alpha \wedge \chi_{A_{\overline{\alpha}}}(x)\right] = Sup\left[\alpha \wedge \chi_{A_{\overline{\alpha}}}(x)\right]$$

$$\alpha \in \begin{bmatrix} 0, \mu_{A_{\overline{\alpha}}}(x) \\ 0, \sigma_{A_{\overline{\alpha}}}(x) \end{bmatrix}$$

$$\alpha \in \begin{bmatrix} 0, \sigma_{A_{\overline{\alpha}}}(x) \\ 0, \sigma_{A_{\overline{\alpha}}}(x) \end{bmatrix}$$

$$\alpha \in \begin{bmatrix} 0, \sigma_{A_{\overline{\alpha}}}(x) \\ 0, \sigma_{A_{\overline{\alpha}}}(x) \end{bmatrix}$$

$$\alpha \in \begin{bmatrix} 0, \sigma_{A_{\overline{\alpha}}}(x) \\ 0, \sigma_{A_{\overline{\alpha}}}(x) \end{bmatrix}$$

$$\alpha \in \begin{bmatrix} 0, \sigma_{A_{\overline{\alpha}}}(x) \\ 0, \sigma_{A_{\overline{\alpha}}}(x) \end{bmatrix}$$

$$\alpha \in \begin{bmatrix} 0, \sigma_{A_{\overline{\alpha}}}(x) \\ 0, \sigma_{A_{\overline{\alpha}}}(x) \end{bmatrix}$$

$$= Sup \left[\alpha \wedge 1 \right] \vee Sup \left[\alpha \wedge 0\right]$$

$$\alpha \in (0, \mu_A(x))$$

$$= \sup_{\alpha \in \begin{bmatrix} -1 & \alpha \\ 0 & \alpha \\$$

If we defined the neutrosophic set αA_{α} here as

$$\alpha A_{\alpha} \leftrightarrow \mu_{\alpha A_{\alpha}} = \alpha \land \chi_{A_{\overline{\alpha}}}(x) = \sigma_{\alpha A_{\overline{\alpha}}}(x) = \gamma_{\alpha A_{\overline{\alpha}}}(x)$$

The resolution principle is expressed in the form

$$A = \bigcup_{\alpha \in \begin{bmatrix} -+ \\ 0, 1 \end{bmatrix}} \alpha A_{\alpha}$$

In other words, a neutrosophic set can be expressed in terms of the concept of α -cuts without resorting to grade functions μ , δ and γ . This is what wakes up the representation theorem, and we will leave it at that α -cuts are very convenient for the calculation of the operations and relations equations of neutrosophic sets.

Next let us discuss what is called the extension principle; we will use the functions from X to Y.

Definition 3.5

Extending the function $f: X \to Y$, the neutrosophic subset A of X is made to correspond to neutrosophic subset $f(A) = (\mu_{f(A)}, \sigma_{f(A)}, \gamma_{f(A)})$ of Y may be the following ways (type1, 2)

•
$$\mu_{f(A)}(y) = \begin{cases} \sqrt{\{\mu_A(x) : x \in f^{-1}(y)\}}, & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

$$\sigma_{f(A)}(y) = \begin{cases} \wedge \{\sigma_A(x) : x \in f^{-1}(y)\}, & \text{if } f^{-1}(y) \neq \emptyset \\ 1 & \text{otherwise} \end{cases}$$

$$\gamma_{f(A)}(y) = \begin{cases} \wedge \{ \gamma_A(x) : x \in f^{-1}(y) \}, & \text{if } f^{-1}(y) \neq \phi \\ 1 & \text{otherwise} \end{cases}$$

•
$$\mu_{f(A)}(y) = \begin{cases} \sqrt{\{\mu_A(x) : x \in f^{-1}(y)\}}, & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

$$\sigma_{f(A)}(y) = \begin{cases} \sqrt{\{\sigma_A(x) : x \in f^{-1}(y)\}}, & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

$$\gamma_{f(A)}(y) = \begin{cases} \wedge \{\gamma_A(x) : x \in f^{-1}(y)\}, & \text{if } f^{-1}(y) \neq \phi \\ 1 & \text{otherwise} \end{cases}$$

Let B neutrosophic set in Y. Then the preimage of B, under f , denoted by $f^{-1}(B) = \left(\mu_{f^{-1}(B)}, \sigma_{f^{-1}(B)}, \gamma_{f^{-1}(B)}\right)$ defined by $\mu_{f^{-1}(B)} = \mu(f(B)), \sigma_{f^{-1}(B)} = \sigma(f(B)), \gamma_{f^{-1}(B)} = \gamma(f(B))$.

Theorem.3.2

Let A, A_i in X, B and B_j , $i \in I$, $j \in J$ in Y are neutrosophic subsets and $f: X \to Y$ be a function. Then

•
$$A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$$
.

- $B_1 \subset B_2 \Rightarrow f^{-1}(B_1) \subset f^{-1}(B_2),$
- $A \subset f(f^{-1}(A))$, the equality holds if f is injective,
- $f(f^{-1}(B)) \subset B$, the equality holds if f is surjective,
- $f^{-1}(\cup_i B_i) = \cup_i f^{-1}(B_i),$
- $f^{-1}(\cap_i B_i) = \cap_i f^{-1}(B_i),$
- $f(\bigcup_i A_i) = \bigcup_i f(A_i),$

Proof

Clear.

4- NEUTROSOPHIC IDEALS

Definition.4.1

Let X is non-empty set and L a non-empty family of NSs. We will call L is a neutrosophic ideal (NL for short) on X if

- $A \in L$ and $B \subseteq A \Rightarrow B \in L$ [heredity],
- $A \in L$ and $B \in L \Rightarrow A \lor B \in L$ [Finite additivity].

A neutrosophic ideal L is called a σ -neutrosophic ideal if $\left\{A_j\right\}_{j\in N}\leq L$, implies $\bigvee_{j\in J}A_j\in L$ (countable additivity).

The smallest and largest neutrosophic ideals on a non-empty set X are $\{0_N\}$ and NSs on X. Also, $N.L_f$, $N.L_c$ are denoting the neutrosophic ideals (NL for short) of neutrosophic subsets having finite and countable support of X respectively. Moreover, if A is a nonempty NS in X, then $\{B \in NS : B \subseteq A\}$ is an NL on X. This is called the principal NL of all NSs of denoted by $NL \langle A \rangle$.

Remark 4.1

- If $1_N \notin L$, then L is called neutrosophic proper ideal.
- If $1_N \in L$, then L is called neutrosophic improper ideal.
- $O_N \in L$

Example.4.1

Any Initiutionistic fuzzy ideal ℓ on X in the sense of Salama is obviously and NL in the form $L = \{A: A = \langle x, \mu_A, \sigma_A, \nu_A \rangle \in \ell \}$.

Example.4.2

Let
$$X = \{a, b, c\}$$
 $A = \langle x, 0.2, 0.5, 0.6 \rangle$, $B = \langle x, 0.5, 0.7, 0.8 \rangle$, and $D = \langle x, 0.5, 0.6, 0.8 \rangle$, then the family

$$L = \{O_N, A, B, D\}$$
 of NSs is an NL on X.

Example.3.3

Let
$$X = \{a, b, c, d, e\}$$
 and $A = \langle x, \mu_A, \sigma_A, \nu_A \rangle$ given by:

X	$\mu_A(x)$	$\sigma_A(x)$	$v_A(x)$
а	0.6	0.4	0.3
b	0.5	0.3	0.3
С	0.4	0.6	0.4
d	0.3	0.8	0.5
e	0.3	0.7	0.6

Then the family $L = \{O_N, A\}$ is an NL on X.

Definition.4.3

Let L_1 and L_2 be two NL on X. Then L_2 is said to be finer than L_1 or L_1 is coarser than L_2 if $L_1 \le L_2$. If also $L_1 \ne L_2$. Then L_2 is said to be strictly finer than L_1 or L_1 is strictly coarser than L_2 .

Two NL said to be comparable, if one is finer than the other. The set of all NL on X is ordered by the relation L_1 is coarser than L_2 this relation is induced the inclusion in NSs.

The next Proposition is considered as one of the useful result in this sequel, whose proof is clear.

Proposition.4.1

Let $\{L_j: j \in J\}$ be any non - empty family of neutrosophic ideals on a set X. Then $\bigcap_{j \in J} L_j$ and $\bigcup_{j \in J} L_j$ are neutrosophic ideal on X,

In fact L is the smallest upper bound of the set of the L_i in the ordered set of all neutrosophic ideals on X.

Remark.4.2

The neutrosophic ideal by the single neutrosophic set O_N is the smallest element of the ordered set of all neutrosophic ideals on X.

Proposition.4.3

A neutrosophic set A in neutrosophic ideal L on X is a base of L iff every member of L contained in A.

Proof

(Necessity)Suppose A is a base of L. Then clearly every member of L contained in A.

(Sufficiency) Suppose the necessary condition holds. Then the set of neutrosophic subset in X contained in A coincides with L by the Definition 4.3.

Proposition.4.4

For a neutrosophic ideal L_1 with base A, is finer than a fuzzy ideal L_2 with base B iff every member of B contained in A.

Proof

Immediate consequence of Definitions

Corollary.4.1

Two neutrosophic ideals bases A, B, on X are equivalent iff every member of A, contained in B and via versa.

Theorem.4.1

Let $\eta = \left\langle \left(\mu_j, \sigma_j, \gamma_j \right) : j \in J \right\rangle$ be a non empty collection of neutrosophic subsets of X. Then there exists a neutrosophic ideal L $(\eta) = \{A \in NSs: A \subseteq \bigvee A_j\}$ on X for some finite collection $\{A_j: j = 1, 2,, n \subseteq \eta\}$.

Proof

Clear.

Remark.4.3

ii) The neutrosophic ideal L (η) defined above is said to be generated by η and η is called sub base of L (η) .

Corollary.4.2

Let L_1 be an neutrosophic ideal on X and $A \in NSs$, then there is a neutrosophic ideal L_2 which is finer than L_1 and such that $A \in L_2$ iff

 $A \vee B \in L_2$ for each $B \in L_1$.

Corollary.4.3

Let $A = \langle x, \mu_A, \sigma_A, \nu_A \rangle \in L_1$ and $B = \langle x, \mu_B, \sigma_B, \nu_B \rangle \in L_2$, where L_1 and L_2 are neutrosophic ideals on the set X. then the neutrosophic set $A*B = \langle \mu_{A*B}(x), \sigma_{A*B}(x), \nu_{A*B}(x) \rangle \in L_1 \vee L_2$ on X where $\mu_{A*B}(x) = \vee \{\mu_A(x) \wedge \mu_B(x) : x \in X\}, \sigma_{A*B}(x)$ may be $A*B = \langle \mu_{A*B}(x), \sigma_{A*B}(x), \sigma_{A*B}(x) \rangle = \langle \nu_A(x), \nu_B(x), \sigma_B(x) \rangle$ or $A*B = \langle \nu_A(x), \sigma_B(x), \sigma_B(x) \rangle = \langle \nu_A(x), \nu_B(x), \sigma_B(x), \sigma_B(x), \sigma_B(x), \sigma_B(x) \rangle$ and $A*B = \langle \nu_A(x), \sigma_B(x), \sigma_B(x),$

Theorem.4.2

If L is a neutrosophic ideal on X, then so is $\Box L$ is a neutrosophic ideal on X.

Proof

Clear

Theorem.4.3

An NS $L = \{O_N, \langle \mu_A, \sigma_A, \nu_A \rangle\}$ is a neutrosophic ideal on X iff the fuzzy sets μ_A, σ_A and $\stackrel{c}{\nu}_A$ are intuitionistic fuzzy ideals on X.

Proof

X. Then
$$\stackrel{c}{\underset{A}{v}}(x) = 1 - v_A(x) = \max \left\{ \left(\stackrel{c}{\underset{A}{v}}(x), 0 \right) \right\} = \min \left\{ 1, v_A \stackrel{c}{\underset{A}{v}}(x) \right\}$$
 if $\stackrel{c}{\underset{A}{v}}(x) = O_N$ then is the smallest intuitionistic fuzzy ideal on X.

Corollary.4.3

L is a neutrosophic ideal on X iff \Box L and \Diamond L are neutrosophic ideals on X.

Proof

Clear from the definition 1.3.

Example.4.4

Let L a non empty set and NL on X given by: $L = \{O_N, \langle 0.3, 0.6, 0.2 \rangle, \langle 0.3, 0.5, 0.6 \rangle \langle 0.2, 0.5, 0.5 \rangle \}$. Then $\Box L = \{O_N, \langle 0.3, 0.7, 0.7 \rangle, \langle 0.2, 0.8, 0.8 \rangle \}$ and $\Diamond L = \{O_N, \langle 0.4, 0.6, 0.6 \rangle, \langle 0.5, 0.5, 0.5 \rangle \}$ and $\Box L \subseteq \Diamond L$.

ACKNOWLEDGEMENTS

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. The authors, therefore, acknowledge with thanks DSR technical and financial support

REFERENCES

- 1. K. Atanassov, intuitionistic fuzzy sets, in V.Sgurev, ed., Vii ITKRS Session, Sofia (June 1983 central Sci. and Techn. Library, Bulg. Academy of Sciences (1984).
- 2. K. Atanassov, intuitionistic fuzzy sets, Fuzzy Sets and Systems 20, 87-96,(1986).
- 3. K. Atanassov, Review and new result on intuitionistic fuzzy sets, preprint IM-MFAIS-1-88, Sofia, (1988).
- 4. I. Hanafy, A.A. Salama and K. Mahfouz, Correlation of neutrosophic Data, International Refereed Journal of Engineering and Science (IRJES), Vol.(1), Issue 2 PP.39-43.(2012)
- I.M. Hanafy, A.A. Salama and K.M. Mahfouz,," Neutrosophic Classical Events and Its Probability" International Journal of Mathematics and Computer Applications Research(IJMCAR) Vol.(3), Issue 1, Mar 2013, pp171-178.(2013)
- 6. A.A. Salama and S.A. Alblowi, "Generalized Neutrosophic Set and Generalized Neutrousophic Topological Spaces", Journal computer Sci. Engineering, Vol. (2) No. (7) (2012).
- 7. A.A.Salama and S.A.Albolwi, Neutrosophic set and neutrosophic topological space, ISOR J. mathematics, Vol.(3), Issue(4),(2012). pp-31-35.
- 8. A.A. Salama and S.A. Albalwi, Intuitionistic Fuzzy Ideals Topological Spaces, Advances in Fuzzy Mathematics, Vol.(7), Number 1, pp. 51- 60, (2012).
- 9. A.A.Salama, and H.Elagamy, "Neutrosophic Filters" International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR), Vol.3, Issue(1),Mar 2013, pp 307-312.(2013)

- 10. Debasis Sarker, Fuzzy ideal theory, Fuzzy local function and generated fuzzy topology, Fuzzy Sets and Systems 87, 117 123. (1997)
- 11. Florentin Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA(2002).
- 12. F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, (1999).
- 13. L.A. Zadeh, Fuzzy Sets, Inform and Control 8, 338-353,(1965).