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PREFACE

In this book authors study the new notion of the algebraic
structure of the subset semirings using the subsets of rings or
semirings. This study is innovative and interesting for the
authors feel giving algebraic structure to collection of sets is not
a new study, for when set theory was introduced such study was
in vogue. But a systematic development of constructing
algebraic structures using subsets of a set is absent, except for
the set topology and in the construction of Boolean algebras.

The authors have explored the study of constructing subset
algebraic structures like semigroups, groupoids, semirings, non
commutative topological spaces, non associative topological
spaces, semivector spaces and semilinear algebras.

We have constructed semirings using rings of both finite
and infinite order. Thus using finite rings we are in a position to
construct infinite number of finite semirings both commutative
as well as non commutative.

It is important to keep on record we have mainly
distributive lattices of finite order which contribute for finite
semirings. However this new algebraic structure helps to give
several finite semirings. This is the advantage of using this new
algebraic structure.



We call those subset semirings constructed using rings as
subset semirings of type | and when we use semirings in the
place of rings we call those subset semirings as subset semirings
of type Il.

Several interesting properties about substructures and
special elements are studied and discussed in this book. We
have subset zero divisors, subset idempotents and subset
nilpotents.

We further state these structures find their applications in
those places where semirings and lattices find their applications.

We thank Dr. K.Kandasamy for proof reading and being
extremely supportive.

W.B.VASANTHA KANDASAMY
FLORENTIN SMARANDACHE



Chapter One

INTRODUCTION

In this chapter we introduce only the basic concepts used in this
book. In most cases we only give references of them.

We use only distributive lattices for finite semirings. For
more about distributive lattices please refer [1].

The notion of semirings and Smarandache semirings can be
had from [14]. We use the concept of subset semiring. These
concepts are very recently introduced in [25-6].

Study of subsets of any algebraic structure and inducing the
same operation on these subsets can maximum give a semiring
in case of algebraic structures with two binary operations and
semigroup in case of algebraic structures with one binary
operation. We take in this book, only algebraic structures with
operations which are associative.

Here we study only subset semirings, which are the subsets
either from a ring or a semiring. Define these subset semirings
as type | (when a ring is used) and subset semirings as type Il
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when a semiring is used. We give many examples to describe
various properties enjoyed by these new algebraic structures.

Further we also introduce the notion of subset zero divisors,
subset units, subset idempotents and subset nilpotents.

We also describe the Smarandache analogue. In this book
we study the substructure of the subset semirings and the
Smarandache analogue.

Finally we study the subset set semiring ideals of these
subset semirings. On every subset semiring we can define four
topologieson S, T,, Ts, T and T,. The cardinality of Tsand T,
are the same as that of S and that of T, and T, have one element
more in S.

That is o(Ts) = 0o(T_) = 0(S) and o(T~) = o(T,) = 0o(S) + 1.

We also see in case S is finite the notion of tree can be
defined for Ts, T,, T, and T,. These trees can find applications
in computer science.

We introduce the notion of special set ideal semiring
topological subset semiring spaces over a subsemiring P;; we

have T)*, T?, T" and T to be the four new types of
topological spaces.

We see using Wy = {Collection of all subsets from the
subsemiring P,;} < S, the subset subsemiring of S. T, T",
T™ and T are the special strong new set semiring ideal

topological subset semiring spaces defined over the subset
subsemiring W, of S.

In case S is finite we have with these four types of trees
associated with the topological spaces of finite order. Interested
reader can find applications of these trees.



Chapter Two

SUBSET SEMIRINGS OF TYPE |

In this chapter we for the first time introduce the notion of
subset semirings of type | using rings. This study is both
innovative and interesting. We see we cannot get using subsets
of a ring, a subset ring, the maximum structure we can get is
only a subset semiring which we call as type | subset semiring.
We study subset zero divisors, subset idempotents, subset ideals
and subset subsemirings of these subset semirings.

We recall the definition of this concept in the following:

DEFINITION 2.1: LetR be aring.

S = {Collection of all subsets of a ring}. S under the operations
of R is a semiring known as the subset semiring of type I of the
ring R.

We will give a few examples.
Example 2.1: Let S = {Collection of all subsets of the ring Z,}

be the subset semiring of the ring Z,. The operations on S are
performed as follows:
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ForA={2,3,0}andB={1,0,2}inS.
We see
A+B ={2,3,0}+{1,0,2}

={2+1,2+0,2+2,3+1,3+0,3+2,
0+1,0,0+2}

={3,2,0,1} €S.
AxB ={2,3, 0} x{1,0,2}

={2x1,2x0,2x2,3x0,3x1,3x2,
0x1,0x0,0x2}

={2,0,3}€S.

Thus (S, +, x) is only subset semiring and not a ring for
every A we do not have —A such that A + (-A) = {0}.

Fortake A={0,2,1}and —-A={0,2,3} € S;
but

A+(-A) ={0,2,1}+{0,2, 3}

={0+0,2+0,1+0,0+2,2+2,1+2,
0+3,2+3,1+3}

= {0, 2, 1, 3} # {0}

Hence S can only be a subset semiring. By this method we
get infinite collection of finite semirings.

Clearly S is not a subst semifield for we have A e S with
A+ A= {0}
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For take A = {2} € S we see

A+A ={2}+{2}
={2+2}={0} S.

AxA ={2}x{2}={2x2}={0} € S.
Thus S has zero divisors.

Hence this S cannot be a subset strict semiring, however S
is a commutative subset semiring.

Example 2.2: Let
S = {Collection of all subsets from the field Z;} be the subset
semiring of Z;. S has no subset zero divisors. S has subset units
but S is only a subset semiring and not a subset semifield.

For take A = {6} € S.

A x A ={6} x {6} = {1} is a subset unit of S.

We see for A, B € S\ {0}; A x B = {0}.

However for every A € S we do not have a B such that
A + B = {0} so S is not a subset ring only a subset semiring.

Let A={3,4,0,2}and B={4,3,5} € S
A+B ={3,4,0,2} +{4, 3,5}

={3+4,3+3,3+54+4,4+3 4+50+4,
0+3,0+52+4,2+3,2+5}

= {O’ 6! 1! 21 41 31 5} S S
Now

AxB ={3,4,0 2} x{4, 3,5}
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={3x4,3x3,3x5,4x%x4,4x3,4x5,0x4,
0x3,0x5,2x4,2%x3,2x5}

={5,2,1,6,0,3} €S.
AxA ={3,402}x{3,4,0,2}

={3x3,4x3,0x3,2x3,3x4,4x4,0x4,
2x4,3x0,4x0,0x0,2x0,3x2,4x2,
0x2,2x2}

={2,5,0,6,4,1} € S.

This is the way operations are performed.
Take {5} =A e S.

We see A x A = {5} x {5} = {4}.

A x A x A={5} x {4} = {6}.
AxAxAxA={6} x{5}={2}.
AxAxAxAxA={2}x{5}={3}and
AxAxAxAxAxA={3}x{5}={1} €S.

Thus A® = {1} is a element of order 6.

Example 2.3: Let S = {Collection of all subsets from the
neutrosophic ring R = (Z;, U 1)} be the subset semiring. Sis a
subset neutrosophic semiring of type I.

Example 2.4: Let S = {Collection of all subsets from the
complex modulo integer ring R = C(Zy)} be the subset
semiring.

S is a subset complex modulo integer semiring of the ring R
of type I.

Example 2.5: Let S = {Collection of all subsets from the finite
complex number neutrosophic ring R = C({(Zys v 1))} be the
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subset semiring of the ring R. S is a finite complex number
neutrosophic subset semiring.

All the five examples are examples of finite subset
semirings of type I.

Now we give examples of subset semirings of infinite order.
Example 2.6: Let
S = {Collection of all subsets from the ring R = Z} be the subset

semiring. S is an infinite subset semiring which has no subset
zero divisors or subset units.

Let A={3,5,8, -5 1}and B = {8,-1,9,-10}  S.
A+B ={3,58,-5 1} +{8, -1, 9, -10}
={3+8,5+88+8,-5+8,1+8 3-1,5-1,
8-1,-5-1,1-1,3+9,5+9,8+9,-5+09,
1+9,3-10,5-10,8-10, -5- 10, 1 - 10}

= {11, 13,16, 3,9, 2,4, 7, -6, 0, 12, 14, 17, 10, -7,
5, -2,-15,-9} € S.

We see if A ={5}and B = {-5} in S then A + B = {0}.

However for every A € S we do not have a B (= —A) such
that A + B = {0}.

Wesee AxB ={3,5,8, -5 1} x{8,-1, 9, -10}

={3x8,3x%x-1,3x%9,3x-10, 5x8,5x-1,
5%x9,5x-10,8x8,8x-1,8x%x9,8x-10,
-5x%x8,-5x-1,-5x9,-5x-10,1 x 8,
1x-1,1x9,1x-10}

= {24, -3, 27,-30, 40, -5, 45, -1, -50, 64, -8, 72,
-80, —40, 5, -45, 50, 8,9, -10} € S.
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We see A x B = {0} is not possible for A, B € S\ {0}.

Example 2.7: Let

S = {Collection of all subsets from the ring (Q w 1)} be the
subset semiring of infinite order of the ring (Q u | ). This subset
semiring has infinite number of subset zero divisors.

Fortake A={5-5l}and B ={3I} € S.
Wesee AxB ={5-5I} x {31}
= {6-51 x 31}
= {151 - 151}
= {0}, is a subset zero divisor of S.

Clearly S has infinite number of subset zero divisors given
by A={3-3I,8-8I,91-9}yand B={21} € S.

We see

AxB ={3-3l1,8-8I,91-9}x {21}
={3-3Ix2l,8-81x2l,91-9x 21 }
= {61 - 61, 161 — 161, 181 — 181}
= {0}.

Take A={5-5I,7-71,18-181}and B={2I, 1} € S.
We see
AxB ={5-51,7-71,18-18I} x {2, I}
={5-51x2l,7-71x2l,18-18I x 2I,
5-5Ix1,7-7Ix1,18-18I x I}

= {101 - 10I, 14l - 141, 361 - 361, 51 - 5I,
71-71,181 - 181}

= {0}.

Thus we can have infinite number of subset zero divisors.
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If in the above subset semiring if we take

A= {tl -tl, b=l ..., —tnl} and B = {Sll, Sol, ..., Sml}
(mand n are integers) in S we get A x B = {0}.

Hence our claim as m and n are arbitrary and m, n € Z".
If we replace Q in example 2.7 by R or Z the result is true.

Thus we have infinite subset semiring which has infinite
number of subset zero divisors.

Example 2.8: Let

S = {Collection of all subsets from the complex field C} be the
subset semiring. We see S is of infinite order S and has no
subset zero divisors.

However S has infinite number of subset units of the form if
A = {a}, a € C\ {0} we have a unique b € C\ {0} such that if
B = {b} then A x B = {1}.

S is a subset semiring has no subset zero divisors but has
infinite number of subset units.

Example 2.9: Let S = {Collection of all subsets from the ring

(R U Iy(g) where g° = 0} be the subset semiring. S has subset
zero divisors.

Let A ={8g, 59, \/§g , 10g} and
B = {0, 29, -10g, \/gg, \/%g} e S.

We see

AxB ={8g,5g, 37, 10g} x {0, 29, -10g, /59 ,~/269 }
={0}asg®=0.

Thus S has infinite number of subset zero divisors.
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Alsoif A={n-nl|neZ"u{0}}andB={ml|me Z'}
then A x B = {0}. So S has infinite number of subset zero
divisors.

We also see S has infinite number of subset units. S is an
infinite subset semiring which is commutative but has infinite
number of subset units and subset zero divisors.

Example 2.10: Let

S = {Collection of all subsets from the ring Z;i(g) with
g? = {0}} be the subset semiring. S has both subset zero divisors
and subset units. S is of finite order.

Let A ={10} € S.
AxA={1} LetA={4}andB={3} € S.
A x B ={4} x {3} ={12} = {1} is a subset unit of S.

Let A={6}andB={2} € S.
AxB={6}x{2}={6x2}={1} €S.

Thus S has subset units.

Let A ={3g, 59} and B = {2g, g, 10g} € S.
We see

A x B = {39, 59} x {29, g, 109} = {0}

Thus S has subset zero divisors.

It is to be observed Z;; is a field, only Z;1(g) is the finite
dual number. Infact S is also known as the subset semiring of

finite dual numbers.

Example 2.11: Let S = {Collection of all subsets from the
mixed dual ring Zyo(g:, g2) where g7 = 0 and g5 = g, with
0102 = ¢20: = 0} be the subset semiring of finite order.
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S has subset idempotents; for take A = {5¢,} € S.

We see

AxA ={50,} x{50,} = {2593}
= {50,} (as 95 = g2}-

Also A ={g.} € Sissuch that

AxA ={g} x{9}={097}
={g,} = A is a subset idempotent of S.

Take A = {60,, 59} € S.
We find
Ax A ={60, 59,} € {60, 50.}

={(6x6) g5, (5x5) 9;, (6 x5) g5,
(5x6) g3}

={60,, 59.}= A € S.
Thus S has several subset idempotents.

Wetake M = {5g;, 291, 891, 99, 69:} and
N = {29, 692, 40>} € S.

We find
M x N ={501, 291, 801, 991, 601} x {20, 692, 49.}
= {501 x 202, 201 x 202, 891 % 205, 9091 x 20>,
601x 202, 501 x 602, 201 x 60>, 891 x 60,
901 x 602, 601 x 602, 501 x 402, 201 x 47>,
8g1 X 492, 991 X 492, 691)( 492}

={0}as g1 xg,=0.
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Thus S has several subset zero divisors.

We have subset units also given by A = {3} and
B={7} e S;suchthat AxB={3} x{7}={21} ={1}is a
subset unit.

A, = {9} € Sis such that A? = {9} x {9} = {1} is again a
subset unit of S.

Example 2.12: Let S = {Collection of all subsets from the ring

Z15 (91, 92, 0s); 97 =0and g3 =g, 95 =—Us, gig; = g;gi = 0 for
i #j,1<1i,]j <3} be the subset semiring of special mixed dual
numbers of finite order.

S has subset units, subset idempotents and subset zero
divisors.

Example 2.13: Let
S = {Collection of all subsets from the ring Z[x]} be the subset
semiring.

S has no subset units or subset idempotents or subset zero
divisors.

Infact S is of infinite order and S is also known as the
subset semiring of polynomials.

Let
A={5x+3,8x+1,2x-1}and
B={x*+3,x*-1,2xX+4} € S.

We find

A+B = {6x+3,8xX+1, 2’ -1} +{x*+3,x° -1,
2x° + 4}
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= {Bx+3+x°+3, 8% +1+x2+3, 231+
X°+3,5x+3+x°—-1,8%+1+x*-1,2x°-1
+X2—1,5Xx+3+2X° + 4,8+ 1+ 2X° + 4,
23— 1+2X° + 4}

= E+5x+6,9¢+4, 23+ X +2, X +5x +2,
Ox%, 23 + X5 =2, 22X+ 5x + 7, 2x° +8X° + 5,
2x°+2x*+3} e S.
This is the way addition “+’ is performed on S.

We find

AxB

{5x+3,8x°+1, 23 -1} x {x*+3,x* -1,
2x° + 4}

= {5x+3xx*+3,5x+3xx*-1,5x+3x
C+4, 82 +1x X +3, 8% +1xx—1,
82+ 1x2X°+4, 2 -1 xx2+3,
2C-1xx*-1,2 -1 x2x° + 4}

= {5x3+3x% + 9 = 15x, 5x> + 3x* -5x — 3, 10x",
6x° + 20x + 12, 8x* + 25x% + 3, 9x* — 1,
—7x%, 16X+ 2X° + 32x% + 4, 2X° — x* = 3 + 6X°,
2C+1-x-2x34x% -4+ 8x3-2x"} € S.

This is the way operation x on S is performed.

Thus (S, +, x) is only an infinite polynomial subset semiring
which has no subset zero divisors or subset idempotents or
subset units.

We see S is not a strict semiring for we see if

A= {5x®-2x*+8x -7} and
B = {-5x*+2x*-8x + 7} are in S, we have
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A+B ={6x3-2x%+8x—T7}+ {-5x° + 2x* - 8x +7}
=5 —2X*+8x -7+ (-5 + 2x* = 8x + 7)
={0} eS.

Thus S is not a strict subset semiring for we have
A + B = {0} without A and B being zero in S.

Example 2.14: Let S = {Collection of all subsets from the
neutrosophic polynomial ring (R U 1)[x]} be the subset
polynomial neutrosophic semiring.

We see S has subset zero divisors only of the form
AxB={0}where A={n-nl|neR}and B={ml|m e R}
in S are such that A x B = {0}.

Thus this subset polynomial neutrosophic semiring has
subset zero divisors.

Now we give examples of infinite subset polynomial
semirings using the polynomial ring F[x] where |F| < c.

Example 2.15: Let
S = {Collection of all subsets from the polynomial ring Zs[x]}
be the subset polynomial semiring of Zs[x] of infinite order.

S has subset zero divisors but has atleast six subset
idempotents of the form

A={3},B={4},D={1,3}, E={1,4}and F = {1, 3, 4},
C ={3, 4} € S; such that

AxA ={3}x{3}

={3}
=A.

BxB ={4)x{4}={4x4}
= {16} = {4} =B.
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CxC 3,4} x {3, 4}
3x3,3x4,4x4,4x3}

3,4}=C.

m
X
m

{

{

{

{1, 4} x {1, 4}
{1x4,4x4,4%x1, 1x1}
{

{

{

{

{

4,1} =E.

1,3} x{1, 3}
1x1,1%x3,3x1,3x%x3}
1,3}=Dand

FxF 1, 3,4} x{1, 3,4}
{1x1,3x1,4x1,1x3,3%x3,4x3,
1x4,3x4,4x%x4}

={1, 4, 3} = F, are subset idempotents of S.

Now consider A = {2x* + 4x + 2, 4x® + 2x + 4} and
B={3x*+3x®*+3x+3}eS.
We see
AxB {2 +4x + 2,4 + 2x + 4} x {33 + 3,
3x% +3x + 2}
= {2 +4x+2) x3x3+3,4x3 + 2x + 4 x
3 +3, 2% +4x +2x 3x® + 3x + 3,
A3+ 2x + 4 x 3x® + 3x + 3}
= {0}

Thus S has subset zero divisors.

So we will have problems while defining subset degree of
these subset polynomials; we have infinite number of subset
zero divisors in S.

Example 2.16: Let S = {Collection of all subsets from the
polynomial ring R = [Z12(9)][X]; g° = 0} be the dual number
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coefficient polynomial subset semiring of infinite order of the
ring R. S has subset zero divisors and subset idempotents.

Example 2.17: Let S = {Collection of all subsets from the
polynomial ring (C({Z2s w 1) (91, 92, 93))[X]} be the subset
polynomial complex finite neutrosophic modulo integer
semiring neutrosophic special mixed dual numbers.

We see S has subset zero divisors, subset idempotents and
subset units.

Example 2.18: Let S = {Collection of all subsets from the ring
R = Z35(9) x Z1s5 (91) where g = 0 and g = gy} be the subset

semiring of the ring R. S has subset units, subset zero divisors
and subset idempotents.

Now having seen several examples of subset semirings; we
proceed onto study and describe their substructures and other
properties by examples.

Example 2.19: Let

S = {Collection of all subsets from the ring Z;,} be the subset
semiring of Z;,. Clearly S has subset subsemirings and subset
semiring ideals.

M; = {Collection of all subsets from the subring
P.={0, 2, 4,6, 8,10} < Z;»} < S is a subset subsemiring which
is also a subset semiring ideal of S.

Forif A={2,0,6} € M;and B = {3, 1, 5} € Sthen

AxB ={2,0,6} x{3,1,5}
={0x3,2x3,6x3,0x1,2x1,6x1,0x5,
2x5,6x5}
={0,6, 2,4} € M,.

It is easily verified M; is a subset semiring ideal of the
subset semiring.



Subset Semirings of Type | | 23

Consider M, = {Collection of all subsets from the subring
P, = {0, 3, 6, 9} < Z1,} = S be the subset subsemiring of S as
well as subset semiring ideal of the subset semiring S.

M3 = {Collection of all subsets from the subring P; = {0, 6}
c Z1p} < S be the subset subsemiring of S and M; is also a
subset semiring ideal of S.

Now N; = {{1}, {0}, {2}, {3}, {4}, ..., {10}, {11}} < S.
N is a subset subsemiring of S but is not a subset semiring ideal
of S.

For {1} e N, s0if A={2,4,6,3} € Swe see

Ax{1}={2,4,6, 3} x {1}
={2x1,4x1,6x1,3x1}
={2,4,6,3} ¢ N,.

Infact if N, = {{0}, {2}, {4}, {6}, {8}, {10}} = S; N is
only a subset subsemiring of S but is not a subset semiring ideal
of S.

For if we take A = {1, 2, 3, 4, 7, 10} € S we consider
A x B where B={2} € N.

AxB ={1,2,34,7,10} x {2}
{1x2,2x2,3x2,4x2,7x2,10x2}
={2, 4, 6, 8} ¢ Ny, hence the claim.

Thus we have shown by this example that S has subset
subsemirings which are not subset semiring ideals of S.

Example 2.20: Let
S = {Collection of all subsets from the field Z;} be the subset
semiring.
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Consider P = {{1, 2, 3, 4, 5, 6, 0}, {0}} < S; P is a subset
subsemiring as well as subset semiring ideal of S.

For take A = {0, 2,4} € S.

AxB = {2,0,4}x{0,1,2,3,4,5,6}
(where B={0,1, 2, 3,4,5,6})

= {2x0,2x1,2%x2,2x3,2x4,2x5,2x86,
0x1,0x2,0x3,0x4,0x5,0x6,4x1,
4x2,4x34x%x4,4x%x5 4x6}

= {0,2,4,6,1,3,5}eP;
and {0} x A={0} forall A € S.

Thus P = {{0}, {1, 2, 3, 4, 5, 6, 0}} is a subset semiring
ideal of S.

We have seen subset subsemirings which are subset
semiring ideals and those which are just only subset
subsemirings.

In view of this we have the following theorem.

THEOREM 2.1: Let S be a subset semiring of a ring. Every
subset ideal of a subset semiring is a subset subsemiring of S.
However all subset subsemirings of S need not in general be a
subset semiring ideal of S.

The proof is direct and hence left as an exercise to the
reader.

It is just important to recall every ring is trivially a semiring
but a semiring in general is not a ring. So we can define a
subset semiring to be a super Smarandache subset semiring if it
contains a subset ring.
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We will give examples of them before we proceed to define
more properties.

Example 2.21: Let
S = {Collection of all subsets from the ring Zs} be the subset
semiring. S is a super Smarandache subset semiring as

A = {{0}, {1}, {2}, {3}, {4}, {5}} < S is a subset ring of S,
hence the claim.

Example 2.22: Let

S = {Collection of all subsets from the ring C(Zs)} be the super
Smarandache subset semiring of the ring. Infact S has two
subset rings My = {{0}, {1}, {2}, {3}, {4}} = Sand M, = {{a} |
a € C(Zs)} < S are subset rings. Hence the claim.

Thus we see subset semiring constructed using subsets of a
ring are defined as super Smarandache subset semiring.

Now we give some more examples of substructures in
subset semirings of type 1.

Example 2.23: Let

S ={Collection of all subsets from the ring Z} be the subset
semiring of the ring Z. P, = {Collection of all subsets from the
subring2Z={0+ 2, ..., +2n ...}} < S is a subset subsemiring
and also a subset semiring ideal of the semiring S.

Infact S has infinite number of subset subsemirings which
are subset semiring ideals.

For P, = {Collection of all subsets from the subring
nZ={0,£n,+2n, ..} cZ}cSisasubset subsemiring which
is a subset semiring ideal of S for every n; n e Z*\ {1}.

Example 2.24: Let

S = {Collection of all subsets from the ring R the field of reals}
be the subset semiring of R. R has infinite number of subset
subsemirings.
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Take P, = {Collection of all subsets from the subring
nZcR,nZcR,neZ}cS be the subset subsemiring of S.
P, is not a subset semiring ideal of S.

Po = {Collection of all subsets from the subring Q c R} = S
is the subset subsemiring of S. Pgq is a not a subset semiring
ideal only a subset subsemiring of S.

Thus S has infinite number of subset subsemirings which
are not subset semiring ideals.

Take M = {{a} | a € R} {0}}; the collection of subset
singleton sets from R, denote by M;.

M = {M,, {0}} < S is a subset subsemiring which is also a
subset semiring ideal of S.

Example 2.25: Let
S = {Collection of all subsets from the ring (R v 1)} be the
subset neutrosophic semiring.

S has subset subsemirings which are not subset semiring

ideals of S for take P = {All subsets from the ring (Z U )} c S,
a subset subsemiring which is not a subset semiring ideal of S.

L = {All subsets from the ring Z} < P < S is a subset
subsemiring of S which is not a subset semiring ideal of S.

Let
T = {Collection of all subsets from the ring (Q U I)} < S be the
subset subsemiring which is not a subset semiring ideal of S.

Take
V = {Collection of all subsets from the ring Q c(RuU H} < S
be the subset subsemiring of S which is not a subset semiring
ideal of S.
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Example 2.26: Let

S = {Collection of all subsets from the ring (C w 1)} be the
subset semiring. S has many subset subsemirings which are not
subset semiring ideals.

Take
L = {Collection of all subsets from the subring Z = (C U 1)} be
the subset subsemiring of S which is not a subset semiring ideal
of S.

T = {Collection of all subsets of the subring (Z U I) c(C U )}
< S is again a subset subsemiring of S which is not a subset
semiring ideal of S.

W = {Collection of all subsets from the subring C c(C U I)} ¢
S be the subset subsemiring of S which is not a subset semiring
ideal of S.

We can have infinite number of subset subsemirings which
are not subset semiring ideals of S.

Example 2.27: Let

S = {Collection of all subsets from the ring Z;s} be the subset
semiring of the ring Z;s. Take P; = {Collection of all subsets
from the subring M = {0, 5, 10} < Zis} < S be the subset
subsemiring which is also a subset semiring ideal of S.

P, = {Collection of all subsets from the subring
N =40, 3, 6,9, 12} ¢ Z;5s} < S be the subset subsemiring of S.
P, is also subset semiring ideal of S.

Let T, = {{0}, {1}, {2}, {3}, {4}, {8}, {6}, ... {14}} =S

is a subset subsemiring of S which is not a subset semiring ideal
of S.

T, = {{0}, {5}, {10}} < S is a subset subsemiring which is
not a subset semiring ideal of S.
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Tz = {{0}, {3}, {6}, {9}, {12}} < S is subset subsemiring
of S which is not a subset semiring ideal of S.

Infact S has both subset subsemirings which are not subset
semiring ideals as well as S has subset semiring ideals.

Example 2.28: Let

S = {Collection of all subsets of the ring Z,} be the subset
semiring. P; = {Collection of all subsets from the subring
M;={0,2,4,6,8, ..., 22} = Z,,} < S is the subset subsemiring
which is a subset semiring ideal of S.

P, = {Collection of all subsets of the subring M, = {0, 4, 8,
12, 16, 20} < Z,4} < S is again a subset subsemiring which is
also a subset semiring ideal of S.

Ps; = {Collection of all subsets of the subring M3z = {0, 8,
16} < Zy,} < S is again a subset subsemiring which a subset
semiring ideal of S.

P, = {Collection of all subsets of the subring M, = {0, 1, 2}
< Zx} < S is again subset subsemiring which is also a subset
semiring ideal of S.

Ps = {Collection of all subsets of the subring Ms = {0, 6, 12,
18} < Z,} = S is again a subset subsemiring which is also a
subset semiring ideal of S.

Ps = {Collection of all subsets of the subring Mg = {0, 3, 6,
9, 12, 15, 18, 21} < Zx} < S is again a subset subsemiring
which is also a subset semiring ideal of S.

We have 6 subset subsemirings of S which are subset
semiring ideals of S.

Related with these six subset subsemirings Py, Py, ..., Ps, we
construct Vi, Vo, ..., Vs Where V; = {{0}, {2}, {4}, {6}, ...,
{22}} < S is a subset subsemiring of S. This is not a subset
semiring ideal of S.
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Take A={3,5,7,1,6} €S. Ax{4}={12, 20, 28, 4, 24}
¢ V150 Vy is not a subset semiring ideal of S.

If we take V, = {{0}, {4}, {8}, {12}, {16}, {20}} < S, we
see V, is only a subset subsemiring and is not a subset semiring
ideal of S.

Vs = {{0}, {8}, {16}} < S where V3 is only a subset
subsemiring and is not a subset semiring ideal of S.

Thus S has subset semiring ideal and subset subsemirings
which are not subset semiring ideals of S.

We will give one more examples before we enunciate a
result.

Example 2.29: Let
S = {Collection of all subsets from the ring Z} be the subset
semiring of Zy.

Consider P; = {Collection of all subsets from the subring
M; =40, 2, 4,6, ..., 18} < Zx} < S; P, is a subset subsemiring
as well as subset semiring ideal of S.

P, = {Collection of all subsets of the subring M, = {0, 4, 8,
12, 16}} < S, P, is a subset subsemiring which is a subset
semiring ideal of S.

P; = {Collection of all subsets from the subring M; = {0, 5,
10, 15} < Zx} < S is again a subset subsemiring which is a
subset semiring ideal of S.

P, = {Collection of all subsets form the subring
M, = {0, 10} < Zx} < S is again a subset subsemiring of S
which is also a subset semiring ideal of S.

Also N; = {{0}, {10}} < S is only subset subsemiring
which is not a subset semiring ideal of S.
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N, = {{0}, {5}, {10}, {15}} < S is again a subset
subsemiring which is not a subset semiring ideal of S.

W; = {{0}, {4}, {8}, {12}, {16}} < S is also a subset
subsemiring which is not a subset semiring ideal of S.

Thus in view of all these we have the following theorem.

THEOREM 4.2: Let
S = {Collection of all subsets from the ring R} be the subset
semiring of type I.

(i) S has atleast as many subset subsemirings (ideals) as
subrings (ideals) of R.

(i) S has atleast same number of subset subsemirings
which are not subset semiring ideals as mentioned

in (i).

Proof: If R the ring over which the subset semiring S is built
and if R has n ideals then we see S has n number of subset
semiring ideals for if I is an ideal of R take

P = {Collection of all subsets from 1} < S is again a subset
subsemiring of S which is also a subset semiring ideal of S.

If we take | = {0, a;, ..., an} < R is the elements of | then
take V = {{0}, {a:}, ..., {am}} = S. It is easily verified V is a
subset subsemiring of S but is not a subset semiring ideal of S
for if we take A = {s, ..., St | Si € R} then A x {a;} = {a} in
general for any i as A x {a;} has more elements in general. So
V can only be a subset subsemiring of S.

Hence the claim.
Example 2.30: Let

S = {Collection of all subsets from the ring Zs} be the subset
semiring of type I. P; = {Collection of all subsets from the
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subring / ideal M; = {0, 3} < Z¢} < S is again a subset
subsemiring which is also a subset semiring ideal of S.

P, = {Collection of all subsets from the subring / ideal M, =
{0, 2, 4} < Zg} < S is again a subset subsemiring as well as
subset semiring ideal of S.

Take N; = {{0}, {3}} = S, N; is only a subset subsemiring
and is not a subset semiring ideal of Sforif A={1,2} € S

Ax{3}={1, 2} x {3}
={8, 6}
= {0, 3} ¢ N

Hence the claim.

Take N, = {{0}, {2}, {4}} < S; N, is only a subset
subsemiring and not a subset semiring ideal of S.

Forif A={1,5} € S.

Ax{4}={1,5} x4
={4, 20}
={4,2} ¢ N».

So N, is only a subset subsemiring and not a subset
semiring ideal of S.

N; = {{0}, {1}, {2}, {3}, {4}, {53} = S. Ns s only a

subset subsemiring of S and not a semiring ideal of S.

Inview of all these we have the following theorem.

THEOREM 2.3: Let
S ={Collection of all subsets of a ring R} be the subset semiring
of the ring R. S has subset subsemirings which are not subset
semiring ideals of S.
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Proof: Follows from the simple fact if M = {{a} | a € R}
(Collection of all singleton sets of R) then M < S is only a
subset subsemiring which is not a subset semiring ideal of S.
Now we proceed onto study more about non commutative
rings and their related subset semirings which are non
commutative.
Example 2.31: Let
S = {Caollection of all subsets from the group ring Z,Ss} be the
subset semiring.
S is a subset semiring which is non commutative.
However S has subset subsemirings which are commutative.

P, = {Collection of all subsets from the groupring Z,T,

where
1 2 3)(1 2 3\)(1 2 3
Ti= , ) cS
1 2 3){2 3 1){3 1 2

is a subset subsemiring of S which is commutative subset
subsemiring.

P, = {Collection of all subsets from the group ring Z,T,

where
1 2 3)(1 2 3
T, = : cS
{[1 2 3} [1 3 ZJH

IS again a subset subsemiring of S which is a commutative
subset subsemiring of S.

1 2 3)(1 2 3
Take A = , and
2 3 1)1 3 2
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12 3 1 2 3 1 2 3
B={1+ + + € S.
13 2 312 2 31
We find

{[1 2 3} (1 2 3}} (1 2 3)
AxB= , x {1+ +
2 3 1)1 3 2 13 2

|
/_/h\
TN
N =
w N
= w
~—
+
w
NN
= W
~—
+

[EEN
NN
w w
N—
+
7~ N\
w -
=N
N W
N—

12 3) (123
+ +
(132)123}
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1 2 3 . 1 2 3 |
3 21 2 1 3
We now find

b2 202
GE6ss)
GGG D)
L2
B2 YY)
L)
B RN
LEYLIL Y
ERN R A R

B x A
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Clearly I and 1l are distinct so A x B = B x A; hence S is a
non commutative subset semiring of finite order.

Example 2.32: Let

S = {Collection of all subsets from the group ring ZSs;} be
subset semiring of ZS;, S is a non commutative subset semiring
of infinite order.

S has several infinite order subset subsemirings both
commutative and non commutative.

However S has subset zero divisors for take A = {1 - g:}
andB={1+g,} eS.

Wesee AxB={1-g:}x{1+0g:}

123
h =
(where g, (1 3 2)]

={(1-91) (1+01)}
={l-g1+0-9;}
={1-1}={0}.

Take A={l+g;+Q+ s+ 0s+gstandB={1-g;} €S,

whore o = [T 23 (12 3 (123
9013297 3218 (21 3)

—123and—123areins
=12 3 1 %713 1 2 &

AxB

={1+01+ 0+ 0s+0s+0s}x{1-01}
={l1+0g1+0g+0gs+0a+gsx(1-01)}
=g}+gl+gz+gs+g4+gs—gl—1—g4—gs—gz—gs}
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hence again a subset zero divisor of S.

Thus non commutative subset semiring S of ZS; has subset
zero divisors.

However S has no subset idempotents.

Example 2.33: Let

S = {Collection of all subsets from the groupring QSs} be the
subset semiring of the group ring QS; which is non
commutative and of infinite order.

This has both subset zero divisors as well as subset
idempotents.

FortakeA-{1(1+ )| 01= 12 3} S
BRI PR EPY e

AxA :{% (1+gl)}x{% (1+g)}
1 1
_{E (1+91)><E (1+0)}
:{% (1 +g)%
={E (1+ g7 +29)}
4 e
=2 @+ 1420
4 1

={§ (l+g)}=Acs.

Thus A is a subset idempotent of S.
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AIsoBz{% (1+g4+0s)} eSissuchthatBxB =BsoB

is also a subset idempotent of S.

NowC:{% (1+9g1+g2+0s+0s+0s)} e Sissuch that

C x C=Cso Cis also a subset idempotent of S.
Infact S has also subset zero divisors.

Example 2.34: Let

S = {Collection of all subsets from the groupring RS;} be the
subset semiring of RS;. S is non commutative and has both
subset zero divisors and subset units.

S has subset subsemirings and which are not subset
semiring ideals.

For consider
P = {Collection of all subsets from the subring QS3} — S; P is a
subset subsemiring which is not a subset semiring ideal of S.

Infact S has infinite number of subset subsemirings which
are not subset semiring ideals of S.

Example 2.35: Let S = {Collection of all subsets from M =
{3 x 3 matrices with entries from Z;,}} be the subset semiring
of the ring M.

Clearly S is a non commutative matrix subset semiring of
finite order. S has both subset zero divisors, subset idempotents
and subset subsemirings.

Example 2.36: Let S = {Collection of all subsets from the
matrix ring M = {(a;, ay, a3, a4) | & € Zy5, 1 < i < 4}} be the
subset semiring of Z;5 of finite order which is commutative.
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S has subset zero divisors and subset idempotents.

Take A = {(0, 2, 4, 5), (0, 0, 7, 2), (0, 1, 2, 0), (0, 5, 0, 1)}
and B = {(7, 0, 0,0), (8,0,0,0), (5,0,0,0) (,0,0,0)} beinS.

We see
AxB ={(0,24)5),(0,072),(0,1,2,0),(0,5,0, )} x
{(7,0,0,0),(8,0,0,0),(5,0,0,0),(1,0,0,0)}
={(0, 2,4,5) % (7,0,0,0), (0, 2,

>
1
~
X
~
=,
o
o
(=]
—

0,1,2,0)x (7,0,0,0), (0,2, 4,5) x (5,0, 0, 0),
0,2, 4,5) % (1,0,0,0), (0, 1,2,0) x (80,0, 0),
0,1,2,0)x (5,0,0,0), (0, 1,2 0)x (1,0, 0, 0),
0,0,7,2) % (7,0,0,0), (0,0, 7 2) x (80,0, 0),
0,0,7,2) % (5,0,0,0), (0,0,72) x (1,0, 0, 0),
(0,5,0,1) % (8,0,0,0), (0,5, 0, 1) x (7,0, 0, 0),
(0,5,0,1) % (1,0,0,0), (7,0, 0, 0) x (5,0, 0, 0)}

={(0,0,0,0)} € S.
Thus S has several subset zero divisors.
S has subset idempotents. For take A; ={(0101)} € S.
ArxA={(0101)}= A,
A, = {(10, 1, 10, 0)} € Siis such that A, x A, = A, and so

on.

Example 2.37: Let

P=4la; || ae€Zpli<5}
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be the ring of column matrices under natural product x,. P is a
commutative finite ring.

Let S = {Collection of all subsets of P} be the subset
semiring of the ring P. S has subset idempotents and subset zero
divisors.

[3][5] 2] 4]
0|1 0|5
LetA=<|1]|,|2|;andB=<|1]|,/2|} €S.
2|5 3|13
4] 7] 17]10]
[3]]5] 2] [4]
0|1 0|5
WefindA+B= <|1|,|2]|t +4{1],]2
2|15 3|13
14]17] 1 7]10]
3] [2][3] [4][5] [2][5] [4]
0 00 5|11 01 5
=91+ 12|+ 2]|2|+|1,|2]|+]|2
2 3|2 3|5 3|5 3
4] | 7]14] [O0]|7) [7]|7] |O]
(51[7][7][9]
0]|5](21(1|6
=<1 21,|3,]3],|4
5//5//8||8
111 14]|2]|7]




40 | Subset Semirings

This is the way the operation of + is performed on S.

Now we find
3] [5] (2] 4]
01 0|5
AxB=<11],12]r xn 3111, 2
2|5 313
1417 17/10]
(3] [2][3] [4][5] [2][5] [4]
0 0|0 5111 01 5
=i (L2 x, 2] 2%, [1],|2]x,|2
2 32 3|15 3|15 3
14 | 7]4] |0)[7] [7][7] (O]
[6][0][10][8]
0[|0]]0||5
=<111],2|,|2]]|4]|; €S.
6([6]]3||3
14/[0f[1]]0]

This is the way natural product is defined on S.

We see S is a finite commutative subset semiring. S has
subset zero divisors and subset idempotents.
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0
6
Fortake A=<|0|; € S.
6
_6_
o1
0
Wesee Ax,A=<|0
0
_0_
So A is a subset zero divisor.
o 6
4 6
LetA=<|2| andB=<|6]|} beinS.
0 3
_O_ _3_
We see A x, B = is again a subset zero divisor in S.

o O O O O
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Take M = eS. Wesee M x, M = eS;

© O b~ O b
© O b~ O b

M is a subset idempotent of S. S has subset nilpotent,
subset zero divisors and subset idempotents.

Infact S has subset subsemirings and subset semiring ideals.

QD
iy

For take P, = a; € Z1,} be the matrix subring.

o O O O

Let T, = {Collection of all subsets from the matrix subring
P, of P} < S, T, is a subset subsemiring of S which is also a
subset semiring ideal of S.

LetP, = a; € Z1,} be the matrix subring of P.

o o o.® o

T, = {Collection of all subsets of the matrix subring P,} = S
is also a subset subsemiring as well as subset semiring ideal of
S.

Let M = {Collection of all subsets of the matrix ring
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Ps= {|a, || ae{20 46810} cZp 1<i<5}cS

is again a subset subsemiring which is also a subset semiring
ideal of S.

Example 2.38: Let S = {Collection of all subsets from the
matrix ring

M= aiezlg,lﬁi316}}

be the subset semiring of the ring M.

S has subset zero divisors, subset units and subset
idempotents.

S is of finite order, commutative under natural product x,
and non commutative under usual product x.

We see in both cases it has subset subsemirings and subset
semiring ideals.

Take V; = {Collection of all subsets from the matrix ring

a, 0 00
0 0 0O
T, = ae’Z
1 0000 i € 18}}
0 00O
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be the subset subsemiring of the subring Tj.
V1 is also a subset semiring ideal of S.

Likewise V; = {Collection of all subsets from

0 0 0O
0O 0 0O

Ti: 0 a 0 0 aiezlg}gM}gS
0 0 0O

is again both a subset subsemiring as well as subset semiring
ideal of S.

We can have several such subset subsemirings and subset
semiring ideals.

Example 2.39: Let S = {Collection of all subsets from the

matrix ring
a'l aZ a3
s 385 & .
M= : : . aje Z,1<i<30}}
a28 a29 a30

be the subset semiring under natural product x, of matrices.

S is of infinite order S has subset zero divisors and subset
idempotents.

Infact S has infinite number of subset subsemirings and
subset semiring ideals.

Example 2.40: Let S = {Collection of all subsets from the
matrix ring



Subset Semirings of Type | | 45

a, .. Ay
M=4la, .. & ||a € Zspo, 1<i<48}}
Qg .. Ay

be the subset semiring.

S is of finite order, has subset zero divisors, subset
idempotents, subset units, subset subsemirings and subset
semiring ideals.

Example 2.41: Let
S = {Collection of all subsets from the semigroup ring Z1,S(3)}
be the subset semiring.

S has subset subsemirings. S has subset semiring ideals and
subset subsemirings.

Infact S is of finite order with subset zero divisors, subset
units and subset idempotents. S is non commutative.

Example 2.42: Let S = {Collection of all subsets from the
semigroup ring ZS(7), S(7) the symmetric semigroup} be the
subset semiring.

S is an infinite non commutative subset semiring. S has

subset subsemirings, subset semiring ideals, subset zero divisors
has subset idempotents also.

. 1 2 3 456 7
Forif A= e S.
1111111

We see
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1234567
AxA= X
1111111

12 3 456 7
1111111

_ /(1 23 456 7 _ A
JR L O A A 1 I
Thus S has subset idempotents.

We can say if the semigroup over which the ring, the
semigroup ring is taken is such that the semigroup has non
trivial idempotents then the subset semiring has idempotents.

In view of this we have the following theorem.

THEOREM 2.4: Let S = {Collection of all subsets of the
semigroup ring ZP of the semigroup P over the ring of integers
Z where P is a semigroup with idempotents} be the subset
semiring. Then S has non trivial subset idempotents.

Note if P is a group then S has no subset idempotents only
subset units.

Also if P has no idempotents then S has no subset
idempotents.

Finally if P is a semigroup such that for alla ¢ P. @’ =a
and a.b =0 if a= b for every a, b € P then we see S has several
subset idempotents which are not singletons.

The proof is direct and hence left as an exercise to the
reader.
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Example 2.43: Let S = {Collection of all subsets from the
semigroup ring ZP where P is a semigroup P = {Z,, x}} be the
subset semiring.

S has subset idempotents and subset zero divisors.

For take A; = {4}, A, = {9} € S we see
Al x A ={4}y x {4}y ={4 x4} = {16} = {4} = A..
Ay x Ay ={9} x {9} ={9 x 9} = {81} = {9} = A..

Also Az = {1, 9} € Siis such that
Asx Az ={1, 9} x{1,9} ={1, 9} = As.

A, ={0, 1, 9} € Sissuch that
A xA;=40,1,9} x{0,1,9} = A,

Thus we A;, Ay, A; and A, in S are such that Af = A for

1<i<4. Hence Ai, Ay, Az and A4 in S are subset idempotents
of S.

Take As = {0, 1,9, 4} € S.

Asx As={0,1,9, 4} x {0, 1,9, 4}
={0,1,9, 4} = As

is again a subset idempotent of S.

LetA={6}andB={4,2,8 e Swesee AxB={0}isa
subset zero divisor of S.

Example 2.44: Let

S = {Collection of all subsets from the semigroupring RS(10)}
be the subset semiring of infinite order which is non
commutative S has subset idempotents.

S has subset zero divisors. S has subset semiring ideals as
well as subset subsemirings.
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Example 2.45: Let

S = {Collection of all subsets of the ring ZsS(3) x Z,D»;} be the
subset semiring of finite order. S is non commutative and has
subset zero divisors and subset units.

For take
A={(a0)|aec ZS@B)}andB={(0,b)| b € Z,Dy} € S.

We see
AxB={(a 0)x(0,b)|aeZs(S(3))and b € Z,Dx;} ={(0,0)}.

Hence S has subset zero divisors.

wr((3 1 )

We see A x A = {(1, 1)} is a subset unit of S. So A is a
subset unit of S.

Example 2.46: Let

S = {Collection of all subsets from the ring Zs x Ziy x Z7} be
the subset semiring. S has subset zero divisors, subset
idempotents and so on.

Let
A={@ 0,0)|acZ}andB={(0,b,c)|b e Zy CceZ}eS.
We see A x B ={(0, 0, 0)} is a subset zero divisor of S.

Let A={(0,5 03} eS; AxA={0,5 0} =A s asubset
idempotent of S.

Also B = {(1, 5, 1)} € S is also a subset idempotent of S.
D ={(0, 5, 1)} € Sisalso a subset idempotent of S.

Example 2.47: Let
S = {Collection of all subsets from the ring R = Z x Zj5 x Z35}
be the subset semiring. S has subset zero divisors, subset
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idempotents and subset units. S has also subset subsemirings
which are subset semiring ideals.

Take P; ={(a, 0,0) |a € Z} < S we see P, is only a subset
subsemiring but P, is not a subset semiring ideal of S.

For if we take
A={(5,8,9),(11,2,0),(4,7,0),(-11,8,0)} in Sand
B={(4,0,0)} €P,.

We find

AxB ={(5,8,9), (11,2, 0), (4, 7,0), (-11, 8, 0)} x
{(4,0,00}

={(20, 0, 0), (4, 4,0, 0), (16, 0, 0), (-44, 0, 0)} € S but
{(20, 0, 0), (44, 0, 0), (16, 0, 0), (44, 0, 0)} ¢ P, hence P, is
only a subset subsemiring and not a subset semiring ideal of S.

Let P, = {(0, a, 0) | a € Zis} < S be the collection of all
subset subsemiring of S. P, is only subset subsemiring but is
not a subset semiring ideal of S.

P;={(0,0,a) |a € Zi5} = S be the subset subsemiring of S.
Clearly P is not a subset semiring ideal of S. Thus S has subset
subsemirings which are not subset semiring ideals of S.

We now give examples of subsemirings ideals of S.

Take V; = {Collection of all subsets from the subring
T, ={Z x {0} x {0}} < S; V is a subset semiring ideal of S.

We see V, = {Collection of all subsets from the subring
T, ={nZ x {0} x {0}}} (2 < n < ) be subset semiring ideals of
S.

We have an infinite collection of such subset semiring
ideals.



50 | Subset Semirings

V; = {Collection of all subsets from the subring;
T3 = {0} x Z15 x {0}}} be the subset semiring ideal of S.

V, = {Collection of all subsets from the subring
T, = ({Z} X {0} X 215) c {Z x Z1g X Zl5}} < S; be the subset
semiring ideal of S.

S has subset idempotents for A = {(1, 1, 10)} S is such
that

AxA ={(1, 1,10} x{(1, 1, 10)}
={(1,1,10) x (1,1, 10)}
={(1,1,10)} = Aso Ais a subset idempotent of S.

B ={(0,1,10)} e Sis also a subset idempotent of S.

Example 2.48: Let

S = {Collection of all subsets from the ring P = R x Z;5 x Z} be
the subset semiring. S has several subset subsemirings which
are not subset semiring ideals of S.

M; = {Collection of all subsets from the subring
T, = {3Z x Zyo x Z} < P} be the subset subsemiring of S.
Clearly My is not a subset semiring ideal.

Take M, = {Collection of all subsets from the subring
T, ={5Z x Z39 x Z} < P} be the subset subsemiring of S.

Clearly M, is not a subset semiring ideal of S.
Let M3 = {Collection of all subsets from the subring
T3 =(16Z x Z1p x Z) = P} = Sis only a subset subsemiring of S

which is not a subset semiring ideal of S.

We have infinite number of subset subsemirings in S which
are not subset semiring ideals of S.

Infact S has also subset semiring ideals for take
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W; = {Collection of all subsets from the subring
L; = R x {0} x {0} < P} < S is the subset subsemiring which
are also subset semiring ideals of S.

Let W, = {Collection of all subsets from the subring
L, = R x Z35 x {0} = P} < S be the subset subsemiring which is
also a subset semiring ideal of S.

Let W; = {Collection of all subsets from the subring
Ls; = {R x {0} x 3Z} < S} be the subset subsemiring which is
also a subset semiring ideal of S.

Infact S has infinite number of subset subsemirings which
are subset semiring ideals of S.

Infact S has infinite number of subset zero divisors but only
a finite number of subset idempotents.

Example 2.49: Let
S = {Caollection of all subsets from the ring R = Z11 x Zy9 x Z53}
be the subset semiring of finite order.

S has subset subsemirings which are subset ideals however
S has no subset subsemiring which is not a subset semiring
ideal.

However S has subset zero divisors and also subset
idempotents.

Example 2.50: Let

S = {Collection of all subsets from the ring Z x Z, x Z;} be the
subset semiring. This has only the following subset zero
divisors.

A ={(a 0, 0)} and B = {(0, a, b)} in S are such that
A x B ={(0, 0, 0)}. However number of subset zero divisors is
infinite in number.
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The subset idempotents are A; = {(1, 0, 0)}, A, = {(O, 1,
0} As = {0, 0, 1)}, As = {(1, 1, 0)}, As = {(1, 0, 1)} and
As = {(0, 1, 1)} are the non trivial subset idempotents of S.

We see {(0, 0, 0)} and {(1, 1, 1)} are trivial subset
idempotents of S.

Thus S has only finite number of subset idempotents. Also
S has only finite number of subset units given by
B, = {(1, 1, 2)} and B, = {(1, 1, 4} e S is such that
B: xB,={(1, 1,2} x{(1,1,4)}={(, 1, 1)} is a subset unit of
S.

B; = {(1, 1, 3)} and B, = {(1, 1, 5} in S is such that
Bs x Bs={(1, 1, 3} x{(1, 1, 5} ={(1, 1, 1)} is subset unit of
S.

Bs = {(1, 1, 6)} € S is such that Bs x Bs = {(1, 1, 6)} x
{(1, 1, 6)} = {(1, 1, 1)} is a subset unit of S. We have only 3
subset units in S though S is of infinite order.

Example 2.51: Let

S = {Collection of all subsets of the ring R = Q x Z, x Z7} be
the subset semiring. S has infinite number of subset units and
finite number of subset idempotents and subset zero divisors.

However S has only finite number of subset semiring ideals
but S has infinite number of subset subsemirings.

Example 2.52: Let

S = {Collection of all subsets from the ring R = ZS; x Z,S, x
Z;Ss} be the subset semiring. S is non commutative has subset
zero divisors and has infinite number of subset subsemiring
which are not subset semiring ideals.

Now we give examples of infinite polynomial subset
semirings of rings.
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Example 2.53: Let

S = {Collection of all subsets from the polynomial ring Z[x]} be
the subset semiring. S has no subset zero divisors and subset
idempotents.  However S has infinite number of subset
subsemirings and subset semiring ideals.

Example 2.54: Let

S = {Collection of all subsets of the ring Z3;[x]} be the subset
semiring. S has subset zero divisors, subset units and subset
idempotents all of which are finite in number. S has also subset
semiring ideals as well as subset subsemirings.

Example 2.55: Let

S = {Caollection of all subsets from the polynomial ring Z:9[X]}
be the subset semiring. S has no subset idempotents, no subset
zero divisors. But S has infinite number of subset subsemiring
which are not subset semiring ideals.

Example 2.56: Let
S = {Collection of all subset of the ring (Z, x Zs x Z35)[X]} be
the subset semiring.

S has subset zero divisors. S has subset idempotents and
subset units. S has infinite number of subset subsemiring and
subset semiring ideals of finite number.

Now having seen examples of subsets of rings of all types
we now proceed onto define subset interval semirings of type |
and study them.

DEFINITION 2.2: Let S = {Collection of all subsets from the
interval ring; M = {[a, b] | a, b € R; R aring}}. S under the
operations of R is a subset interval semiring defined as the
subset semiring of type I.

We will first illustrate this situation by some examples.
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Example 2.57: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € Z3}} be the subset interval
semiring of type I. S is of finite order and is commutative.

Example 2.58: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € Z;,}} be the subset semiring. S
is of finite order but S has subset zero divisors and subset
idempotents.

Let A={[6,0]} € S. A>= {[6, 0]} x {[6, 0]} = {[0, O]} so
A is a subset zero divisor of S.

Let B = {[0, 4]} € S we see
B2 = {[0, 4]} x {[0, 4]} = {[0, 4]} = B is a subset idempotent of
S.

Take D = {[4, 0]} € S; we see
D x D = {[4, 0]} x {[4, O]} = {[4, 0]} = D is a subset
idempotent of S.

Take E = {[4, 4]} € S; we see E x E = E so E is a subset
idempotent of S.

Also N; = {[0, 91}, N, = {[9, 0]}, N3 = {[9, 9]} in S are all
subset idempotents of S. Further N; = {[4, 9]}, N, = {[9, 4]},
N3 = {[0, 4], [4, 4], [4, 0], [0, O}, N4 = {[0, 0], [9, 9], [9, O],
[0, 91}, Ns = {[0, 01, [4, 91, [9, 4], [0, 91, [0, 4], [4, O], [9, 0],
[9, 9], [4, 4]} e S are all subset idempotents of S.

Thus interval subset semiring has subset idempotents and
subset zero divisors. Let Vi = {Collection of all subsets from
the interval ring

W, ={[a, b] |a, b e {0, 2, 4,6,8, 10} < Z;,}} < S be the
interval subset semiring. V; is a subset interval subsemiring of
S. V. also has subset interval subsemiring, subset interval
idempotents and subset interval zero divisors. V; is also a
subset interval semiring ideal of S.
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Example 2.59: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € C(Z2s)}} be the subset interval
semiring.

S has subset subsemiring. T = {Collection of all subsets
from the interval subring N = {[a, b] | a, b € {0, 2, 4, 6, ..., 24,
26} < C(Zg)} = M} < S, is the subset interval subsemiring and
T is also a subset semiring ideal of S.

Take W; = {Collection of all subsets from the interval
subring L; = {[a, 0] | a € C(Z)} < M} < S is again a subset
interval subsemiring as well as subset semiring ideal of S.

W, = {Collection of all subsets from the interval subring
L, = {[0, a] | a € C(Zx)} = M} < S be the subset interval
subsemiring as well as subset interval semiring ideal of S.

We see W; and W, are isomorphic as subset interval
subsemirings.

Example 2.60: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € Z(g1, g2) where g’ = 0,
05 = g2, 0102 = 020: = 0}} be the subset interval semiring of
infinite order.

Clearly S has interval subset zero divisors, interval subset
idempotents, interval subset subsemirings and interval subset
semiring ideals.

Example 2.61: Let S = {collection of all subsets from the
interval ring M = {[a, b] | a, b € Zs(g), where g = 0}} be the
subset interval semiring.

Take A = {[2, 4], [6, 01, [4, 4], [6, 2]} and
B ={[4, 2], [4, 01, [6, 2], [4, 4]} € S.

AxB = {[2,4],[6,0] [4, 4], 6, 2]} x {[4, 2], [4, 0],
[6, 2], [4, 41}
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= {[2,4] <[4, 2], [2, 4] x[4, 0], [2, 4] < [6, 2],
[2, 4] x [4, 4], [6, 0] x [4, 2], [6, O] x [4, 0],
[6, 0] x [6, 2], [6, O] x [4, 4], [4, 4] x [4, 2],
[4,4] x [4,0], [4, 4] x [6, 2], [4, 4] x [4, 4],
[6,2] x [4, 2], [6, 2] x [4, O], [6, 2] x [6, 2],
[6, 2] x [4, 4]}

= {[0,0],[4,0],[0, 4], [4, 4]} € S.
Now

A+B = {[2 4] [6,0] [4 4], [6, 2]} + {[4, 2], [4, O],
[6, 2], [4, 41}

= {[2,4]+[4, 2],[2,4]+[4,0][2 4] +[6, 2],
[2, 4] + [4, 4], [6, O] + [4, 2], [6, O] + [4, O],
[6,0] + [6, 2], [6, 0] + [4, 4], [4,4] + [4, 2],
[4, 4] + [4, 0], [4, 4] + [6, 2], [4, 4] + [4, 4],
[6,2] + [4,2],[6,2]+]4,0],[6,2]+]6, 2],
[6,2] + [4, 4]}

= {6, 6],[6, 4], [0, 6], [6, 0], [2, 2], [2, 0], [4, 2],
[2, 4], [0, 41, [2, 6], [0, O, [4, 4]} € S.

This is the way operations on S are performed. However S
is of finite order.

Example 2.62: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € Q}} be the interval subset
semiring of M. S is of infinite order. S has subset interval units
but no subset interval idempotents.

S has trivial subset interval idempotents like A; = {[0,0]},
Az = {[1.1]} As = {[0,0], [1.1]}, As = {[0,1]}, As = {[1,0]},
As ={[0,0], [1,01}, A7 ={[0,0], [0,1]}, As = {[0,0], [1,0], [0,1]}
and A = {[0,0], [1,1], [0,1], [1,0]}.
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S has subset interval zero divisors. S has also subset
interval subsemirings which are subset interval semiring ideals
as well as subset interval subsemirings which are not subset
interval semiring ideals.

Take P = {Collection of all subsets from the subset interval
subring N = {[a, b] | a, b € Z} c M} < S be the subset interval
subsemiring of S. Clearly P is not a subset interval semiring
ideal of S.

Further T = {Collection of all subsets from the interval
subring L = {[a, 0] | a € Q} < M} < S is again a subset interval
subsemiring which is also a subset interval semiring ideal of S.

Take B = {[5, 0], [7/3, 0], [8, O], [-7, 0]} and A = {[O, 5],
[0, 11] [0, 17/5], [0, 5/3], [0, =101} in S, we see A x B = {[0, 0]}
infact S has infinite number of interval subset zero divisors.
Likewise let A = {[7, 2]} and B = {[1/7, 1/2]} € S, we see
A x B ={[1, 1]} is the subset interval unit in S.

S has infinite number of subset unit intervals, however the
cardinality of all the sets which contribute to subset interval
units are only singleton sets.

A = {[3/2, 9/17]} and B = {[2/3, 17/9]} € S is such that
A x B ={[3/2, 9/171} x {[2/3, 17/9]} = {[1, 1]}.

Example 2.63: Let S = {Collection of all subsets from the
interval subring M = {[a, b] | a, b € Zs x Z;,} = {[(a1, a2), (by,
b)] | a1, by € Zs and a,, b, € Z;p}} be the subset interval
semiring of M. S has subset interval zero divisors and subset
interval units. S is of finite order.

The operations of S are performed in this way.

If A ={[G, 0), (2, 0)], [(2, 0), (4, 0)], [(0, 0), (L, 0)]} and
B ={[(0, 7), (0, 2)], [0, 9), (0, 0)], [(0, 6), (0, 5)]} € S.
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We find

A+B {[(3.0), (2,0, [(2,0), (4, 0], [0, 0), (1, O)I} +

{[(0, 7), (0, 2)], [(0, 9), (0, 0], [(O, 6), (0, 5)I}

= {I(3,0), (2, 0] +[(0, 7). (0, 2)], [(3, 0), (2, 0)]
+[(0,9), (0,0)], [(3,0), (2, 0)] + [(0, 6), (0, 5)],
[(2,0), (4, 0)] + [(0, 7), (0, 2)], [(2, 0), (4, 0)] +
[0,9), (0, 0)], [(2, 0), (4, 0)] +1(0, 6), (0, 5)],
[0, 0), (1, 0)] +[(0, 7), (0, 2)], [0, 0), (1, 0)]
+[0,9), (0, 0)], [0, 0), (1, 0)] + [(0, 6),(0, 5)I}

= AlB. 7)., (2 2)] (3, 9). (2,0), [ 6), (2 5],
[(2,7), (4, 2)], [(2,9), (4 0)], [(2, 6), (4, 5],
[0, 6), (1,9)], [(0, 9), (1, 0)], [0, 7). (1, 3)]}
isin S.
This is the way operation + on S is performed.

In case of product in this case we see
A x B ={[(0, 0), (0, 0)]} that is a subset interval zero divisor.

Let A ={[(3, 4), (2,5)], [(3, 0), (3, )]} € S.

Ax A

{[B.4), (2,9)] % [(3,4), (2,5)]. [(3,4), (2,9)]
x [(3,0), B, 7)1 [(3.0), B, ] x[(3,0), (3, 7],
[(3,0), B, NI x[3,4). (2,91}

{[(4,4), (4, 1)], [(4,0),(1,11)], [(40), (4 DI}
e S.

This is the way product is performed on S. S has subset
interval subsemirings subset interval semiring ideals.

Example 2.64: Let S = {Collection of all subsets from the

interval ring M = {[a, b] | a, b € Z;, S4}} be the subset interval
semiring of M.
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Let
A ={[59: + 39; + 1, 693 + 8], [9923 + 10, 119 + 691, + 1]} € S
where S4;={e=1,01,02 ..., 02s}. AxA e S.

A+A = {[591 + 392 +1, 693 + 8], [9g23 + 10, 11g20 +
601, + 1} + {[59: + 39> + 1, 65 + 8],
[9923 + 10, 119y + 6g12 + 1]}

={[59: + 39> + 1, 695 + 8] + [59; + 392 + 1,

6gs + 8], [501 + 392 + 1, 693 + 8] + [902s + 10,
11920 + 6g12 + 1], [9g23 + 10, 11g20 + 6912 + 1] +
[9g23 + 10, 11920 + 6912 + 1], [9923 + 10, 11g20 +
6912 + 1] + [501 + 39> + 1, 693 + 8]}

= {[10g; + 60, + 2, 4], [992; + 501 + 30, + 5,
11920 + 693 + 6012 + 9], [6023 + 8, 10020 + 2]} € S.

This is the way operations are performed on S.
Example 2.65: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € Z(S(3)), the semigroup ring of
the symmetric group S(3) over the ring Z}} be the subset
interval semiring.

We see for any

F 23) {12 ?
A={[3+5 +10 ,—4+
2 1 3 321
6(1 2 3}}} and
2 31

[12 ﬂ F 23H}
B = {[9-2 ,5+3 €S

321 312
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Find
1 2 3 1 2 3

A+B = {[3+5 +10 4+
2 1 3 2

1 2 3 1 2 3
= {[12+5 +8 J1+
2 1 3 3 21
1 2 3 1 2 3 .
6 + 3 iIsinS.
2 31 31 2

This is the way ‘+’ operation is performed on S.

Now
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1 2 3 1 2 3
{[3+5 +10 =4+
2 1 3 321
1 2 3 1 2 3
6 x [9-2 5+
2 31 321
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123 12 3
= {[7+84 -10 +
321 2 31

1 2 3 1 2 3
45 ,—2+30 -
2 1 3 2 31

This is the way the product operation x is performed on S.

S can have subset interval zero divisors, subset interval
units, subset interval subsemirings and subset interval semiring
ideals.
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{ezae 23

which is the interval subset unit of S.

We have only finite number of interval subset units.

We call {[1, 1]} = {G ; i’}ﬁ ; 2}} as the

interval subset identity in S with respect to product. Likewise
{[0, 0]} € S is defined as the additive subset interval identity of
S.

We see for every A € S.

{[0,0]}+ A=A+{[0,0]}=Aand
Ax{[1, 1} ={[1,1]} xA=Aforall A e S.

Now having seen examples of subset interval semirings of
interval rings commutative or otherwise proceed on to describe
more properties in case by using the basic interval ring as a non
commutative ring.

Example 2.66: Let S = {Collection of all subsets from the
interval group ring M = {[a, b] | a, b € Z,; D,y where
D,o = {a, b | a®> = b® = 1, bab = a}}} be the subset interval
semiring of M. Clearly S is a non commutative subset interval
semiring.

We can have subset interval right ideals in S which are not
subset interval left ideals of S. Also S have subset interval
semiring ideals.

If A ={[a, b]} and B = {[b, a]} € S.
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AxB ={[a b]} x {[b, a]}
={{[a, b] x [b, a]}
= {[ab, ba]} e

Consider

BxA ={[b, aJ}x{[a bl}
={[b, a] x [a, b]}
= {[ba, ab]} I

Clearly I and Il are distinctas Ax B # B x A.
Thus S is non commutative subset interval semiring.
If A ={[a, b]} and B = {[a, b°’]} € S we have

AxB ={[a b]}x{[a b’}
={[a, b] x [a, b°I}
={[a% b*]} ={[1, 1]} asa® =1 and b = 1.

Let A ={[1, b°]} and B = {[1, b*]} € S; now
A x B ={[1, b} x {[1, b1} = {[1, b} = {[1, 1]}
(asb’=1)

Thus we have subset interval units in S.

Further if A = {[0, 1 + b® + ab]} and
B={[4+ab+ab’ 0]} S.

WegetAxB ={[0,1+b’+ab]}x{[4+ab+ab?, 0]}
={[0 x4 +ab+ab?% 1+b?+abx0]}
={I[0, 01}

is a subset interval zero divisor of S.
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Example 2.67: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € Z, S3}} be the subset interval
semiring. S has subset interval units, subset interval idempotents
and subset interval zero divisors. Further S has subset interval
subsemirings and subset interval semiring ideals.

Now having seen examples of all these we now proceed on
to describe interval matrix rings by some examples.

Example 2.68: Let S = {Collection of all subsets from the
interval ring M = {[a, b] | a, b € (Zs U 1)}} be the subset
interval semiring. S has subset interval zero divisors.

S has subset interval units and S has subset interval
subsemirings and S has subset interval idempotents. S has
subset interval subsemirings that are subset interval semiring
ideals.

Now having seen examples of interval subset semirings of
interval rings; we now proceed onto describe subset interval
semirings of interval matrix rings.

Example 2.69: Let S = {Collection of all subsets from the
interval matrix ring M = {([a1, b1l [a2, b2], [as, b3], [as, b4]) | &,
bi € Z1p; 1 <i < 4}} be the subset interval matrix semiring of
the interval matrix ring M.

S has subset interval zero divisors, subset interval
idempotents, subset interval units, subset interval subsemirings
and subset interval semiring ideals.

Example 2.70: Let S = {Collection of all subsets from the
interval matrix ring M = {([a;, bi], [a2, b2]) | &, bi € Zs;
1 <i < 2}} be the subset interval matrix semiring.

Let A ={([2, 0], [0, 4]), ([4, 0], [1, 2])} and
B={([4 3], [L,5)} S
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Now

A+B ={([2,0] [0, 4]), (4, 01, [1, 2D)} + {([4, 3], [1, 5]}
={([2, 0], [0, 4]) + ([4, 3], [1, 5]), ([4, 0], [1, 2]) +
(4, 3], [1, 5]}
={([0, 3], [1, 3]), ([2, 3] [2, 1)} € S.
We find
AxB ={([2,0], [0, 4]), (4, O], [1, 2D)} ={([4, 3], [1, 3])}

={([2, 0], [0, 4]) x ([4, 3], [1, 5]). ([4, O], [1, 2]) x
(14, 3], [1, 5D)}

={([2, 0] x [4, 3], [0, 4] x [1, 5]), ([4, O] x [4, 3],
[1,2] x [1,5])}

={([2,0], [0, 2]), ([4, 0], [1,4])}isin S.
This is the way operations on S is performed.
We see S has subset interval zero divisors.
Take A ={([3, 0], [0, 4])} and B ={[0, 5], [2, 0])} € S.
We see A x B = {([0, 0], [0, O]} so A and B are subset
interval zero divisors. ([0, 0], [0, 0]) is defined as the subset

interval zero or subset interval additive identity.

Similarly ([1, 1], [1, 1]) in S is the multiplicative subset
interval identity of S.

For take A = {(([5, 1], [1, 5])} € S.

Further A x A ={([1, 1], [1, 1])}; thus A is a subset interval
unit of S.
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B ={([5, 5], [1, 1])} € S, we find B x B = {([1, 1], [1, 1])}
is the subset interval unit of S.

Example 2.71: Let S = {Collection of all subsets from the
interval matrix ring

[a;,b,]
M= {|[a,.b,]|| a bieZ, 1<i<3}}

[as,b;]

be the subset interval semiring of the interval matrix ring M.

We see S has subset interval zero divisors and subset
interval idempotents and so on.

[3,1] [5,1]
Take X =<|[L,2]|; and Y = <|[L4] |} € S.
[6,1] [6,1]
[3.1] [51]
Now X xY=1<[L2]|} x {|[1,4]
[6,1] [6,1]
341 [[54
=3 [L2] [x|[L4]
[61]] [[6.1]
1]
=4[] | €S.
[L1]

Further X and Y are inverses of each other that is they are
subset interval units of S.
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[1,1]
[1,1] |+ is the subset interval unit of S.

[L1]

We now give some subset interval zero divisors of S.
[3,0] [0,5]]
Let A=1|[6,0] | and B=1<|[0,1] |; € S.
[0,2] [6,0] |
[3,0] [10,5]
[6,0] [+ x {|[0,1]
[0,2] 1[6,0]

[3,0]x[0,5]
= [amxmﬂ]

[0,2][6,0]

[0,0]
= JI[0,07|%.
1[0,0]

[0,0]
Thus S has subset interval zero divisors and {[0,0] is the
[0,0]

AxB

subset interval zero of S.
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[3,4] [4,3]
Consider A= ¢|[0,5] |} andB=4|[0,2] | € S.
[6,1] [1,6]
[3,4] [4,3] [0,0]
A+B=1/[05]|t +1/[0,2]|+ = <|[0,0]
[6,1] [1,6] [0,0]

Example 2.72: Let S = {Collection of all subsets from the
interval matrix ring

[a,,b] [a,,b,]
[a;,bs] [a,.b,]
[as,bs]  [as,b;]
[a;,b;] [a5,b,]

a,bieZ 1<i<8}}

be the subset interval matrix semiring.

Clearly S is a subset interval matrix zero divisors but S has
no non trivial subset interval matrix units in S.

We give some subset interval zero divisors of S.

[0,1] [6,0]
Take A= (0.0 {7.0] and
[-11] [-1,0]

[8,0] [-7,0]



70 | Subset Semirings

[L0]  [0,8]
[8,-19] [0,25]
[0,0] [0,-28]

[0,-15] [0,25]

[0,0] [0,0]
AxB = [0.0] [0.0] e Sis such that
[0,0] [0,0]

[0,0] [0,0]

A x B is a subset interval zero divisor of S.

Example 2.73: Let S = {Collection of all subsets from the
interval matrix ring

V= {[[apbl] [2;.5,]

_ [3;,0,] [a4’b4]} ‘ & bi € Zas, 1 <i<4}}

be the subset interval matrix semiring of M.

S has subset interval zero divisors, S has subset interval
idempotents, S has subset interval units, S has subset interval
subsemiring and subset interval semiring ideals.

Take

{[al,bll [az,bzl} ‘
p= ai, bi € 2Z35={0,2,4,86,8, ...,
[a;,b,] [a,,b,]

34}, 1<i<4}c M.
T = {(Collection of all subsets from the interval matrix

subring P} < S is a subset interval subsemiring and T is also a
subset interval semiring ideal of S.
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ne [[08 0] gy 24 021,
[4,5] [3,0] [1,2] [8,6]

We find both A + B and A x B.

Consider

A+B :{mﬂ Uzq}+{mq maﬂ
[4.5] [3.0] [1.2] [8,6]

_ [[10,61+[2.4] [7,2]+[9.2]
L [4.51+[L2] mm+mm}

_[[[2,20] [16,4] S
"l el ©
10,6] [7.2] [2.4] [9,2]
[4,5] BpJ 8 &Lﬂ BﬁJ

_ [[10,61x[2.4] [7,2]x[9,2]
jéﬂxﬂj][&mxmﬁﬂ

AxB =

—

1
—

o024 [27.41]] _
[4,10] pam} ©

This is the way operations are performed on S.

Clearly S is a commutative subset interval semiring of finite
order.

Take A = {[6’12] 13.0] }}
[4,9] [12,3]
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mdB:{Paﬂ nzmﬂ)es
[9.4] [312]

Axp |[l001 PO
[0,0] [0,0]
thus A is a subset interval zero divisor of S.

Now consider A = {[35'1] [35’35]}} €S

[L1] [135]

Ax A= {[1’1] [1'1]}} : thus A is the subset interval unit
L1 [L71]

of S.

A= {[0’1] [1’1]}} e Sissuch that A x A = A is a subset
[0,1] [L0]

interval idempotent of S.
Thus S has subset interval idempotents.
Example 2.74: Let S = {Collection of all subsets from the

interval matrix ring

i, bi € 2151

M_ [al’bl] [aZ’bZ] [a3’b3] [a4’b4]
|[as,bs] [a,b6] [a,,b,]1 [ag,bg]

1<i<8}}
be the subset interval matrix semiring.
It is easily verified S has subset interval units, subset

interval idempotents, subset interval zero divisors, subset
interval subsemirings and subset interval semiring ideals.
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We can have subset interval matrix semirings both of finite
and infinite order.

We can have subset interval matrix semirings both
commutative and non commutative. We will provide a few
examples of non commutative subset matrix interval semirings.

Example 2.75: Let S = {Collection of all subsets from the
interval matrix ring

Ta,,b,1]
[a;,b,]
M = <|[a,,b,] || &, bi € Z4S3; 1 <i1<5}}
[a,.b,]
| [a5,bs] |

be the subset interval matrix semiring.

Clearly S is non commutative subset interval matrix
semiring of finite order.

S has subset interval zero divisors.

S in general is non commutative.

[10,9,] | 10,9,] |
[9.9.] [9,,9:]
Take A= 1| [9,,0] |} and B =4[ [g,,0] |} € S.
[9;.1] [0,9,]
119,951 1[9,,9.]]
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We find A x B

[ [0,9,] ] 10,91 |
[9.9,] [9,,9]
=31 19,.0] | x 1| [95,0]
[9,.1] [0,0,]
119,91 ] 119,,9.1]

[ [0,9,]1x[0,9,] |
[g’gz]x[gz’g3]
= 4| [9,,0]x[g5,0]
[g3,1]><[0,93]
[9,,9,1x[9,.9,]1]

(Here (123 (123 (123
9711 3 2)%7 3 2 1)%%2 1 3)

(123 (123
975 3 1% 3 1 2

10,91 |
[95.9s]
=1/ [95,0]
[0,9,]
1[95.9,1]
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Now we find B x A

' [0,9,] ] 1 [0,9,] |
[9,.9;] [9,9,]
=31 [95,0] | x 4] [9,,0]
[0,9,] [9,.1]
1[9,,9.] ] 1[9,,95])

[ [0,9,1x[0,0,] |
[9,.9:1<[9.9,]

= [95,0]x[g,,0]
[0,9;]1x[g5,1]

1[9,,9,1x[9,,9:] ]

[10,9,]]
[9..9.]
= [9,,0] L
[0,9,]
1[9,,9:]

I and Il are distinct.
Thus AxB =B x A.

So S is not a commutative subset matrix semiring.
Now we find

A+B
[[0,9,] | [ [0,9,] |
[9.9,] [9,,9:]
=31 19,,0] | + 4| [95,0]
[9,.1] [0,9,]
119,91 ] 1[9,,9.1]
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[0,9, +9.]
[gl +92’g2 +g3]
= [9, +95,0]
[93,1+9;]
1[0, +9,.9: +9,]]

This is the way ‘+’ operation is performed on S.

Example 2.76: Let S = {Collection of all subsets from the
matrix interval ring

[al'bl] [aZ’bZ]

[a5,0;]  [a,,b,]

M = ai, b e QS;; 1<i<24}}

[a‘23' b23] [a24 ' b24]

be the subset interval matrix semiring of infinite order which is
non commutative.

This has interval subset units, interval subset zero divisors,
interval subset idempotents, interval subset subsemirings and
interval subset semiring ideals.

Example 2.77: Let S = {Collection of all subsets from the
interval matrix ring

M = [a,,b,] [a,,b,] ... [ag bs]
Ly 0,1 [ag bl .. [ay.by,]

} ‘ a, by € (Q U 1)D2 13,
1<i<12}}

be the subset interval matrix semiring of M.
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S has interval subset units, interval subset idempotents,
interval subset zero divisors, interval subset subsemirings and
interval subset semiring ideals.

Clearly S is non commutative of infinite order.

Example 2.78: Let S = {Collection of all subsets from the
interval matrix ring

[a,,0b,] [a;,b,] [as,b,]
M=4la;.b,] [as,bs] [ag.be] || & bi e (Zsx Z7 x Z11)
[a;,b;] [ag.bs] [ag,b,]
(SE): 1<i <9}

be the subset interval semiring.

S has subset interval matrix subsemiring, subset interval
zero divisors, subset interval units and subset interval
idempotents.

Example 2.79: Let S = {Collection of all subsets from the
interval matrix ring

[a;,b,]

[a,.b,]

M = ai, bi € Z(Ss x Ag); 1<i < 10}}

[a‘10 ’ blO]

be the subset interval semiring which is of infinite order but non
commutative has infinite number of subset interval zero
divisors.

Now having seen examples of finite and infinite
commutative and non commutative subset interval matrix
semirings we now proceed onto study subset interval
polynomial semirings built over interval polynomial rings.
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Example 2.80: Let S = {Collection of all subsets from the
interval polynomial ring

di, bi S Z5[X]}}

M = {Zw:[ai,bi]xi

be the subset interval polynomial semiring.
Clearly S is commutative and is of infinite order.

Let A = {[3, O] + [2, 1]x* + [3, 0]x} and
B ={[2, 4]1x*+[1,0]} € S.

We find
A+B
={[3, 0]x° + [2, 1]x* + [3, 0]x} + {[2, 41x* + [1, O]}

={[3, 0]x* + [2, 1] + [2, 4]x* + [1, 0], [4, 1]x* +
[3, 0]x +[2, 4] x* +[1, 0]}

={[3, 01* + [2, 4]x% + [3, 1], [1, O]x® +
[3, 0]x +[1, O]} isinS.

This is the way the operation of “+” is performed on S.

We find
A xB
={[3, 0]x® + [2, 1]x* + [3, 0]x} x {[2, 4]x* + [1, O]}

={([3, 01X’ + [2, 1]) x ([2, 4" + [1, O]) ([4,1]x" +
[3, 01) ([2, 41x" + [1, O])}
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= {([3, 0] x [2, 4] X° + [2, 1] x [2, 4]x* + [3, O]
[1, 01 + [2, 1] x [1, 0]), [4, 1] x [2, 4] x* + [3, 0]
x [2, 41%* + [4, 1] x [1, 0] X* + [3, 0] [1, 0]x}

= {[1, 0] x° + [4, 4]x* + [3, O] + [2, 0], [3, 4]x* +
[1, 0]x® + [4, 0]x* + [3, 0]x} € S.

This is the way operation of product is performed on S.
We find subset interval polynomial subsemirings of S.

Take P; = {Collection of all subsets from the interval

polynomial subring

a € Zs[X]}} < S

M = {i[ai,O]xi

be the subset interval polynomial subsemiring of S which is also
a subset interval polynomial semiring ideal of S.

Now P, = {Collection of all subsets from the interval

polynomial subring

ai € Zs[X]}cM}c S

M; = {i[o, a, I’

i=0

be the subset interval polynomial subsemiring of S. P, is a
subset interval polynomial semiring ideal of S.

We see P; x P, = {[0, 0]}. Thus they annihilate each other.

In view of this we see we have an infinite collection of

subset interval polynomial zero divisors.

For every A € Py, and B € P, we have A x B = {[0, 0]}.
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Example 2.81: Let S = {Collection of all subsets from the
interval polynomial ring

a;, b € Zyo[X]}}

i=0

M = {i[ai,bi]x‘

be the subset interval polynomial semiring. S has infinite
number of subset interval polynomial zero divisors.

Infact S has two interval subset polynomial semiring ideals

P; and P, with P; x P, = {[0, 0]} both of them are of infinite
order.

Example 2.82: Let S = {Collection of all subsets from the
interval polynomial ring

a;, by € Z[x]}}

M= {i[ai,bi]x‘

be the subset interval polynomial semiring of infinite order.
This S also has infinite number of subset interval polynomial
zero divisors.

This S also has two subset interval polynomial semiring
ideals P, and P, with PixPy= {[0, O]} and Pin P, = {[0, O]}
This sort of ideals are also prevalent in subset interval matrix
semirings.

Example 2.83: Let S = {Collection of all subsets from the
matrix ring

[a,,b,]

[a,,b,]

M= ai,biezls;1£i£9}}

[a, ;bg]
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be the subset interval matrix semiring.

Take P, = {Collection of all subsets from the interval matrix
subring

[a,,0]

[a,,0]

M, = a.ele,lslsﬁ}gM}gS

[ag', 0]

Clearly P, is a subset interval matrix subsemiring which is
also a subset interval matrix semiring ideal of S.

Consider P, = {Collection of all subsets from the interval
matrix subring

[0,b,]

[0,b, ]

M, = ai, b€ Zi5; 1<i<6}cM}cS

[0, 59]

be the subset interval matrix subsemiring.

P, is also a subset interval matrix semiring ideal of S. Thus
P, x P, = {[0, 0]} and P, n P, = {[0, O]}.

Example 2.84: Let S = {Collection of all subsets from the
interval matrix ring M = {([a;, by], ..., [a1s, b1g]) | &, bi € Zya,
1 <i < 18} be the subset interval matrix semiring of the interval
matrix ring M.

P; = {Collection of all subsets from the interval matrix
subring My ={([a1, 0], ..., [a18, O]) | @€ Z43, 1 <1< 18} c M}
S be the subset interval matrix subsemiring which is also a
subset interval matrix semiring ideal of S.
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P1x P, ={[0, 0]} and P, n P, = {[O, 0]}.

Example 2.85: Let S = {Collection of all susbets from the
interval matrix ring

[al’ bl] e [3101 blO]
M= 4| [ay.b,] - [ay.0,]|| & bi € Zuw; 1<i<30}}

[a21'b21] [a30’b30]

be the subset interval matrix semiring.

Let P, = {Collection of all subsets from the interval matrix
subring

[a,,0] ... [ay,.0]
M, = [all,O] [aZO,O] aiezl44;1Si£30}gM}gS

[aZl’O] [aBO’O]

be the subset interval matrix subsemiring of S which is also a
subset interval matrix semiring ideal of S.

Consider P, = {Collection of all subsets from the interval
matrix subring

Da] . [0
M, = [O,all] [O,azo] aie Zus 1< i< 30} C M} cC S

[0,a,] .. [0,a4]
be the subset interval matrix subsemiring of S.
P, is also a subset interval matrix semiring ideal of S.

P, x P, = {[0,0]} leading to infinite number of subset
interval matrix zero divisors. Further Py n P, = {[0,0]}.
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In view of all these we have the following interesting
results.

THEOREM 2.5: Let S = {Collection of all susbets of the interval
matrix ring M = {A = ([ay;, bij]) | a;j, bj € R; Raring or a field
and Aisan xm interval matrix 1 <i <nand 1 <j <m}} be the
subset interval matrix semiring of M.

S has atleast two subset interval matrix semiring ideals say
P1 and P, such that P, x P, = {([0, 0])n. ; zero matrix} = Py M
P,.

Proof is direct and hence left as an exercise to the reader.

THEOREM 2.6: Let S = {Collection of all subsets from the
interval polynomial ring

a;, b e Raring}}

i=0

M = {i[ai,bi]xi

be the subset interval polynomial semiring. S has atleast two
subset interval polynomial semiring ideals. P; and P, such that
P, xP, ={[0,0]} and P, » P, = {[0,0]}.

The proof is direct and hence left as an exercise to the
reader.

We have given examples to this effect.

We now give examples of subset polynomial interval
semiring of finite order.

Let us define in a polynomial ring in the variable x in which
we take X" = 1; n a finite an integer.

Example 2.86: Let S = {Collection of all subsets from the
interval polynomial ring
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M = {Z[ai,bi]xi a,bieZy0<i<nandx™=1:n<wo}}

i=0

be the subset interval polynomial semiring of M. Clearly S is of
finite order.

Even in this S we have two distinct subset interval
polynomial semiring ideals using

a,0 € ZuycM

i=0

M, = {Zn:[ai,O]x‘

where P; = {Collection of all subsets from the interval
polynomial subsemiring of M;} < S and P, = {Collection of all
subsets from the interval polynomial subsemiring

bi € Z} =M} S;

M, = {i[o,bi]xi

both P; and P, are subset interval polynomial semiring ideals of
S.

0(P1) = 0 (P) <o with Py x P, = {[0, 0]} and
P, NP, ={[0, 0]}

This is the way we can construct finite subset interval
polynomial semirings.

Example 2.87: Let S = {Collection of all subsets from the
interval polynomial ring

ai, by € 215, 0<i <5 x°=1}}

i=0

M= {i[ai,bi]x‘

be the subset interval polynomial semiring of finite order. S has
subset interval zero divisors, subset interval idempotents and
subset interval units.
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S has subset interval polynomial subsemirings as well as
subset interval polynomial semiring ideals.

Example 2.88: Let S = {Collection of all subsets from the
interval polynomial

ai, b€ Z¢S;, 0<i<7,x=1}}

i=0

M = {i[ai,bi]x‘

be the subset interval polynomial semiring of finite order. Sisa
non commutative interval polynomial semiring.

This S also has subset interval units, subset interval
idempotents, subset interval zero divisors, subset interval
polynomial subsemiring and subset interval polynomial
semiring ideals.

(1 2 3] (1 2 3j (1 2 3H
LetA = {[2 .3 + X+
321 1 3 2 2 3 1
(1 2 3}} (1 2 3}
[0, 4 . [4, 3 +4+
2 31 321
1 2 3
2(2 3 1ﬂx+[5,0]}
3}(123 (123]}2
+ y4+2 X
3 321 2 1 3

JGa i)

and

= N

+
1
7\
w -
N
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First we find

A+B =

S(1 2 3) (123,
{[(312]’(132

22 e 3 3)

1 2 3 1 2 3
[4,3 +4+2 X +
31 2 2 31

2 1 3

[5. 0]} + {[3 (1 2 3]+5(1 2 3

oy 332 0)
129
ey 2 Y13

(1 : 3” (l
X+[3
2 31 2

1 2 3 1
5 ],4+2(

[EEN O ol )
w w
N—
| —|

+

3 21 2

3 21

123y (123 (123
+ 4 +
(312} [231}[321

)
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This is the way addition is performed in S.

We find
1 2 3 1 2 3 1 2 3
AxB = {2 , 3 + X +
31 2 1 3 2 2 31
1 2 3 1 2 3
[0,4 [4,3 +4+
2 31 31 2

1 2 3 1 2 3
2[ 3 1ﬂx+[5,0]}><{[3 ) 1 3j+

[123J (123}2
5 4 +2 X2 +
321 2 1 3)
12 3)(1 2 3
(312)’(321}
(123) [123} [123}}
= {[2 , 3 + X X
31 2 13 2 2 31
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N
[EEN
w

N
VR /T\ TN
w N N
w
|
> +
N
+
-~
™
N
TN
H
N
w

N B
= W
|
x
X
——
w
=N
N W
N
TN ~—
w
NN

1 2 3 1 2 3
[3 ) J +[5,O]><[3[2 1 3J+
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12 3 12 3],
5 4+ 2 X
3 21 2 1 3
1 3 1 2 3
+[4,3 +4+2 X
3 2 2 31
1 2 3 1 2 3
: X}
31 2) (32 1)
1 2 3 1 2 3
{[4 4 +2 x°+
1 3 2 1 3 2
12 3) (12 3)], 12 3
[0, 4 +2 X +[2 ,
2 31 1 3 2 2 31
1 2 3 3 1 2 3
3 + x+[0,4 :
31 2 3 2 1 3
1 2 3 1 2 3 1 2 3
y4+2 +2 +
[2 3 1] [2 1 3)

[2[3 2 1
3 12 3
2]’0“[3(2 1 3]

1 2 3
2 31

1 2
2 1

3 1
X“+[5
3
3 , 1 2 3 12 3
0] x™ +[4 3 +
1 31 2 13 2

1 2 3
4 +
521

|

1 23
x} € S.
23

This is the way product is performed on S.
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It is left as an exercise for the reader to prove that in S.
AxB=BxA,ingeneral for A,B € S.

Example 2.89: Let S = {Collection of all subsets from the
interval polynomial ring

ai, b € Z1 Dy, x°=1,0<i<9}}

i=0

M = {i[ai,bi]x‘

be the subset interval polynomial semiring of finite order, S is
clearly non commutative.

Example 2.90: Let S = {Collection of all subsets from the
interval polynomial ring

aj, bj € C((Zo v 1)) S7}

M= {i[ai,bi]x‘

be the infinite non commutative subset interval polynomial
semiring.

Example 2.91: Let S = {Collection of all subsets from the
interval polynomial ring

ai, b€ 28, 0<i<12, x®¥ =1}

M = {lzzl[ai,bi]xi

be an infinite subset interval polynomial non commutative
semiring.

Clearly S has subset interval zero divisors which are infinite
in number.

S has no nontrivial subset interval idempotents other than
A={[0, 1]} and B={[1, 0]} in S.
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Example 2.92: Let S = {Collection of all subsets from the
interval polynomial ring

ai, bi € (Z U 1)) S(3)}}

i=0

M= {Z[aibi]xi
be the subset interval polynomial semiring. S has infinite

number of zero divisors.

It has infinite number of subset interval polynomial
subsemirings and subset interval polynomial semiring ideals.

Example 2.93: Let S = {Collection of all subsets from the
interval polynomial ring

ai, bi € (ZV 1)(Ss x D27)}}

M= {i[aibi]xi

be the subset interval polynomial semiring.

S has subset interval zero divisor, subset interval units,
subset interval idempotents and subset interval polynomial
subsemirings. Further S is a non commutative subset interval
polynomial semiring.

Example 2.94: Let S = {Collection of all subsets from the
interval polynomial ring

x*=1,a,be C(Zs) (91, 92) 912: 0, gg: 02,

M = {Za“[aibi]xi

0102 = 020: =0, <i<3}}

be the subset interval polynomial semiring.

S is of finite order commutative has subset interval zero
divisors and subset interval units.
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However A; = {[0, 9.1} , Az = {[92, 9.1} and Az = {[92, O}
are some of the interval subset idempotents of S.

B = {[92, 11}, B> = {[1, @21}, Bs = {[0, 1]} and B4 = {[1,
0]} are also interval subset idempotents of S.

Example 2.95: Let S = {Collection of all subsets from the
interval polynomial ring

a, by € (Zis U 1) S4}}

M = {23:[ai,bi]xi

be the subset interval polynomial semiring of infinite order
which is non commutative.

Now having seen examples of subset interval polynomial

semirings of finite and infinite order and subset interval matrix
semirings we now propose some problems for the reader.

Problems :

1.  Let S = {Collection of all subsets from the ring Z} be
the subset semiring of the ring Zy,.

(i) Find o(S).

(if)  Find subset zero divisors of S.
(iii)  Find subset idempotents of S.
(iv) Find subset units of S.

2. LetS; ={Collection of all subsets from the ring
R = Z3, x Z} be the subset semiring of the ring R.

Study questions (i) to (iv) of problem 1 for this S;.

3. LetS, ={Collection of all subsets from the ring R = Z;(q)
with g? = 0 } be the subset semiring.

Study questions (i) to (iv) of problem 1 for this S,.



Subset Semirings of Type | | 93

Let S; = {Collection of all subsets from the neutrosophic
ring (Zs w 1)} be the subset neutrosophic semiring of the
neutrosophic ring (Zs U 1).

Study questions (i) to (iv) of problem 1 for this Ss.

Let S4 = {Collection of all subsets from the neutrosophic
finite complex modulo integer ring R = C ((Z4 L 1))} be
the subset finite neutrosophic complex modulo integer
ring.

Study questions (i) to (iv) of problem 1 for this S,.

Let Ss = {Collection of all subsets from the ring

R = C(Zis) (91, 92) where g; =0, 95= 0z, 9102 = go0: = 0}
be the subset finite mixed dual complex semiring of R.

Study questions (i) to (iv) of problem 1 for this Ss.

Let S = {Collection of all subsets from the ring
R = C(Z2 U 1) (9), g° = 0} be the subset semiring.

Study questions (i) to (iv) of problem 1 for this S.

Let S = {Collection of all subsets from the ring Z,s} be
the subset semiring of Zgs.

(i) Find o(S).

(ii) Find all subset subsemirings of S.

(iii) Find all subset semiring ideals of S.

(iv) Find all subset subsemirings which are not subset
semiring ideals of S.

Let S; = {Collection of all subsets from the ring Zy; x Z7}
be the subset semiring.

Study questions (i) to (iv) of problem (8) for this S;.
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10.

11.

12.

13.

14.

15.

Let S, = {Collection of all subsets from the ring Z,S, } be
the subset semiring of S.

Study questions (i) to (iv) of problem (8) for this S,.

Let S = {Collection of all subsets from the ring Z¢Ss} be
the subset semiring.

Study questions (i) to (iv) of problem (8) for this S.

Let S = {Collection of all subsets from the ring
C({Z12 v 1))} be the subset semiring.

Study questions (i) to (iv) of problem (8) for this S.

Let S = {Collection of all subsets from the ring C(Z11) (91,
02); 9°=0, g5= g 0102 = 020: = 0} be the subset
semiring.

Study questions (i) to (iv) of problem (8) for this S.

Let S = {Collection of all subsets from the ring Z4 (91, 92,
93); 0:=0, 95= g2, 95= Qs With gig; = gigi = 0 if i = ],
1 <1, j < 3} be the subset semiring.

Study question (i) to (iv) of problem (8) for this S.

(i) Can S have subset units?

(if) Can S have Smarandache subset units?
(iii) Can S have subset idempotents?

(iv) Can S have subset S-idempotents?

Find all subsets semiring ideals of and Smarandache
subset semiring ideals of

S = {Collection of all subsets from the ring Zs}, the
subset semiring of the ring Z4g of type I.
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17.

18.

19.

20.
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Find all subset subsemirings of

S = {Collection of all subsets from the ring Zzs} the
subset semiring of Zzs which are not subset semiring
ideals of S.

Find all the subset subsemirings of

S = {Collection of subsets of the ring Z4 x Zy}; the
subset subsemiring which are not subset semiring ideals
of S.

Let S = {Collection of all subsets from the ring
Zs x Z1p x Zg} be the subset semiring.

(i)  Find o(S).

(i)  Find all subset zero divisors of S.

(iii)  Find all subset units of S.

(iv) Find all subset idempotents of S.

(v)  Find all subset semiring ideals of S.

(vi) Find all subset subsemirings of S.

(vii) Find all subset subsemirings which are not subset
semiring ideals.

Let
S = {Collection of all subsets from the group ring Z,S,}
be the subset semiring.

(i)  Study questions (i) to (vii) of problem (18)
for this S.

(i)  Prove S is non commutative.

(iii) Can S have subset semiring right ideals which are
not subset semiring left ideals?

Let
S = {Collection of all subsets from the group ring ZsAs}
be the subset semiring of ZsA,.

(i) Prove S isanon commutative subset semiring.
(i) Study questions (i) to (vii) of problem (18) for this S.
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21.

22.

23.

24.

25.

26.

217.

28.

Let
S = {Collection of all subsets from the group ring ZD, 7}
be the subset semiring of the group ring ZD, .

(i) Study questions (i) to (vii) of problem (18) for this S.
(ii) Can S have subset idempotents?

(iii) Prove S has subset units.

(iv) If Z is replaced by Q show S has subset idempotents.
(v) Any other interesting feature enjoyed S.

Give an example of a subset semiring of a ring which has
no subset zero divisors.

Does there exist a subset semiring of a ring which has no
subset units?

Give an example of a subset semiring which has no subset
idempotents.

Is it possible to have a finite order subset semiring which
has no subset units.

Does there exist a finite subset semiring which has no
subset zero divisors?

Let S = {Collection of all subsets from the ring Z;,D} be
the subset semiring.

(i) Study questions (i) to (vii) of problem (18) for this S.
(i) Enlist all subset semiring left ideals which are not
subset semiring right ideals.

Let S = {Collection of all subsets from the ring QD,+} be
the subset semiring of the ring QD,-.

(i) Can S have right subset semiring ideals which are not
left subset semiring ideals?
(ii) Find all subset semiring ideals of S.
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30.

31.

32.

33.

34.

35.

36.
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(iii) Can S have subset zero divisors?

(iv) Can S have subset units?

(v) Can S have subset idempotents?

(vi) Can S have subset subsemirings which are not subset
semiring ideals?

Let
S = {Collection of subsets from the ring (ZoxZ1,xZ¢)Ss}
be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Is it ever possible to have a finite subset semiring of a ring
to be free from subset zero divisors?

Let S = {Collection of subsets from the ring RS(3)} be the
subset semiring of the ring RS(3).

Mention or derive all properties associated with is S.

If R is replaced by Q in problem 31 study that S.

If R is replaced by Z in problem 31 study that S.

Let S = {Collection of subsets from the ring Z;(Sz x As)}
be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let

S = {Collection of subsets from the ring Z,(Sz x A4 x Ss)}
be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring Z;,S(8)} be
the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.
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37.

38.

39.

40.

41.

42.

43.

Let S = {Collection of subsets from the ring
(Z7 x Zy x S1z x Z3) (S3 x Ag)} be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring C((Zg U 1))}
be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring C(Z1s)(Q)
where g = g} be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring
C(Ze) x C({Z19 w 1))} be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring Z1, (91, 9>,
gs) where g7 =0, 95= g, and g; = —gs with gig; = gigi =
0ifi=j,1<i,]j<3} be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring C(Z) Ss} be
the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Let S = {Collection of subsets from the ring
((Z1o W D)(g1.82) Ss with g7 =0, 95 =0z, 0102 = go01 = 0}
be the subset semiring of the ring ((Zio U 1)) (91, 92) Ss.

Study questions (i) to (vii) of problem (18) for this S.
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45,

46.

47.

48.

49,
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Let
S = {Collection of subsets from the ring C({Zisw1) (S(4))}
be the subset semiring.

Study questions (i) to (vii) of problem (18) for this S.

Prove if instead of using rings interval rings are used to
from subset semiring show they always contain subset
zero divisors.

Let S = {Collection of subsets from the ring M ={][a, b]
| a, b €Z}} be the subset semiring of the ring of M.

(i) Show S has subset interval zero divisors.
(ii) 1s S a Smarandache subset semiring?
(iii) Can S have subset idempotents?

(iv) Find subset semiring ideals of S.

Let S = {Collection of subsets from the ring M = {[a, b]
la, b €Z;,}} be the subset interval semiring.

(i) Find o(S).

(ii) Find all subset interval zero divisors.

(iii) Find all subsets interval idempotents.

(iv) Find all subset interval units.

(v) Find all subset interval subsemirings which are not
subset semiring interval ideals.

(vi) Find all subset interval semiring ideals of S.

Let S = {Collection of subsets from the ring M = {[a, b] |
a, b e(Zy w 1)} be the subset interval semiring.

Study questions (i) to (vi) of problem (47) for this S.
Let S = {Collection of subsets from the interval ring M =
{[a, b] | a, b €C(Z4) (g) with g*> = 0}} be the subset

interval semiring.

Study questions (i) to (vi) of problem (47) for this S.



100 | Subset Semirings

50.

51.

52.

53.

o4.

95.

Let S = {Collection of subsets from the interval ring M =
{[a, b] |a, b €C((Zss W | )} Dbe the subset semiring.

Study questions (i) to (vi) of problem (47) for this S.

Let S = {Collection of subsets from the interval ring M =
{[a, b] | a, b € C({(Z7 U I)(g;) with gZ = 0} be the subset
semiring.

Study questions (i) to (vi) of problem (47) for this S.

Let S = {Collection of subsets from the interval ring M =
{[a,b] |a, b e ((Zssw 1)) Ss} be the subset semiring.

Study questions (i) to (vi) of problem (47) for this S.

Let S; = {Collection of subsets from the interval ring M
={[a, b] | a, b € Zx4S:}} be the subset interval semiring.

Study questions (i) to (vi) of problem (47) for this S;.

Find some special features enjoyed by subset interval
semirings.

Let S = {Collection of subsets from the interval matrix
ring

[a,,b,]  [a,,b,]

[a;.0;]  [a,.b,]

M= ai,biGZG;lSiSZO}}

[alQ ! b19] [a20’ bZO]

be the subset semiring of the interval matrix ring M.

(i) Find o(S).
(ii) Find subset interval idempotents of S.
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of.

58.
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(iii) Find subset interval units of S.

(iv) Find all S-subset interval idempotents of S.

(v) Find all subset interval matrix semiring ideals of S.

(vi) Find all subsets interval matrix semirings of S which
matrix semirings ideals of S.

Let S = {Collection of all susbets form interval matrix
ring

[a,,b,] [a,,b,] ... [a;,by,]
M = [a131b13] [a14’b14] [az4abz4] ai, by € Zy3;

[a25’b25] [a26’b26] [a36’b36]
1<i<36}}

be the subset interval matrix semiring.
Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of all susbets form interval matrix
ring

[a,b]  [a,b,] .. [a5b]
M - [a7’b7] [a8’:b8] [a12':b12] ai, bi c 224 ,
[a3l’ b3l] [a32 1 b32] [a36 ' b36]
1<i<36}}

be the subset interval matrix semiring.

Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of all subsets form interval matrix
ring M = {([as, ba], [a2, b2], ..., [a17, b17]) | &, bi € C(Z2);

1 <i < 17}} be the subset interval matrix semiring.

Study questions (i) to (vi) of problem (55) for this S.
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59.

60.

61.

Let S = {Collection of subsets from the ring

[al’bl] [a2’b2]

[a;.0,]  [a,.b,]

M= ai,biEC(<Zz3U|>); 1<i< 24}}

[a12 ' blZ] [a24’ b24]

be the subset interval matrix semiring.
Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of all susbets form interval matrix
ring

" {[al,bll [2;,b] .. [alg,blg]”ahbie
[a7’b7] [aS’bS] [a38’b38]

Z15(91, 2. 93), 9; =0, g5=0zand g; =—gs, 1 <i<38}}
be the subset interval matrix semiring.
Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of all subsets form interval matrix
ring

[a;,b,] [a,,b,] [asb,]
M= <|[a,,b,] [as,b;] [as.be]|| &, bie C((ZepL 1)

[a7’b7] [a'S’b8] [ag’bQ]

(01, 92); 97=0, 95= 02, 0102 =001 =0,1<i <9}
be the subset interval matrix semiring of M.

Study questions (i) to (vi) of problem (55) for this S.
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Is S a Smarandache subset matrix interval semiring?

Find some special features enjoyed by subset interval
matrix semiring of infinite order.

Let S = {Collection of all susbets form interval matrix
ring

[a;,b,]  [a;,b,]  [ag,b]

[a,,b, ] [as,bs]  [ag,b]

M= ai, bi € Z10A4;

[a28’b28] [a‘29’b29] [a30'b30]

1<i<30}
be the subset interval matrix semiring.

(i) Study questions (i) to (vi) of problem (55) for this S .
(ii) Prove S is non commutative.
(iii) Is S a Smarandache subset interval matrix semiring.

[al'bl] [aZ’bZ]

[a‘4’b4] [a5’b5]

LetS= dj, bi S 21287; 1<i< 20}

[al9 ' blg] [aZO’ bZO]

be the subset interval matrix semiring.

(i) Find o(S).

(ii) Find all subset interval zero divisors.

(iii) Find all subset interval idempotents.

(iv) Find all subset interval units.

(v) Find all subset interval matrix semiring ideals.

(vi) Find all subset interval matrix subsemirings which are
not ideals.
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64. Let S = {Collection of all susbhets form interval matrix
ring

Vo {[[al,bll [a;,b,] .. [am,bm]Hahbie
[a7!b7] [aS’b8] [aZO'bZO]

C((Z1zw 1) (S(3)), 1 <i<20}}
be the subset interval matrix semiring.
Study questions (i) to (vi) of problem (55) for this S.

65. Let S = {Collection of all subsets form interval matrix
ring

[al’bl] [aZ’bZ] [aS'bS]
M= <|[a, b,] [as,bs] [asby]||a,bieC(Z,ul)

[a7 ’ b7] [aS’ b8] [ag ' b9]
(S4), 1<i<8}

be the subset interval matrix semiring of finite order.

Study questions (i) to (vi) of problem (55) for this S.

66. Let S ={Collection of subsets from the interval ring

[a;,b,]

v || Bt

ai, b € [Z40 x C(Z24)] S7; 1 <1< 10}}
[alO ' blO]

be the subset interval matrix semiring.
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Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of subsets from the ring

[al’bl] [a9'b9]
M= [alo,blo] [alg, b18] di, bi € [Z40 X ZlO X

[alg’ blg] [a27’ b27]
C(Z3)] As}}

be the subset interval matrix semiring of M.
Study questions (i) to (vi) of problem (55) for this S.
Let S = {Collection of subsets from the interval

polynomial ring

a, bi € (Zp U D}

M = {i[ai,bi]x‘

be the subset interval matrix semiring of M.
Study questions (i) to (vi) of problem (55) for this S .
Let S = {Collection of subsets from the interval

polynomial ring

a, b e (Zgul),0<i<10,x"* =1}

M = {lzo“[ai,bi]xi

be the subset interval matrix semiring.
Study questions (i) to (vi) of problem (55) for this S.

Let S = {Collection of subsets from the interval
polynomial ring
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71.

a, bie C(Z7);0<i<6,x" =1}

M = {ZGl[ai,bi]x‘

be the subset interval matrix semiring.
Study questions (i) to (vi) of problem (55) for this S .
Let S = {Collection of subsets from the interval

polynomial ring

ai, b e Zsp, x*=1,0<i<7}}

M = {i[ai,bi]xi

i=0

be the subset interval matrix semiring.

Study questions (i) to (vi) of problem (55) for this S.



Chapter Three

SUBSET SEMIRINGS OF TYPE Il

In this chapter for the first time authors introduce the notion
of subset semirings of type two where we use subsets from the
semiring. Here we describe and develop these concepts. We
give both commutative and non commutative, finite and infinite
subset semirings of type Il.

These semirings also contain subset units, subset zero
divisors and subset idempotents.

DEFINITION 3.1: Let
S = {Collection of all subsets from a semiring R}. S under the
operations of the semiring R is a semiring defined as the subset
semiring of type Il.
Here we describe this situation by some examples.

Example 3.1: Let
S = {Collection of all subsets from the semiring Z* u {0}} be
the subset semiring of type Il.

Fortake A={3,4,8,12}and B={0,1,5,7} € S.

A+B ={3,4,8 12} +{0,1,5, 7}
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={3,4,8,12,5,9, 15, 21, 13,17, 10, 11} € S.
AxB
={3,4,8,12} x{0,1,5, 7}

={3x0,4%x0,8x0,12x0,3x1,4x1,8x1,
12x1,3x5,4x5,8x%x5,12x5,12x7,4x7,
3x7,8x7}

={0, 3, 4, 8, 12, 15, 20, 40, 60, 84, 28, 21, 56}.

This is the way operations on S are performed. S is of
infinite order. S is a commutative subset semiring of type I1.

Example 3.2: Let
S = {Collection of all subsets from the semiring (Z* U {0} U 1)}
be the subset semiring of type II.

Take A= {41,31+2,4+5], 71+ 1} and
B ={l, 2+51, 7+61} € S.

A+B
= {41, 31+2, 4451, 71+1} + {I, 2+51, 7+61}
= {51, 41+2, 61+4m 8I+1, 2+9I, 4+8I, 6+10l,
3+ 121, 7+101, 914