Quaternionic physics

How to use
Quaternionic Distributions
and

Quaternionic Probability Amplitude Distributions

The HBM is a quaternionic model

- The HBM concerns quaternionic physics rather than complex physics.
- The peculiarities of the quaternionic Hilbert model are supposed to bubble down to the complex Hilbert space model and to the real Hilbert space model
- The complex Hilbert space model is considered as an abstraction of the quaternionic Hilbert space model
- This can only be done properly in the right circumstances

Continuous

Quaternionic Distributions

- Quaternions

$$
\begin{aligned}
& a=a_{0}+\boldsymbol{a} \\
& \mathrm{c}=a b=a_{0} b_{0}-\langle\boldsymbol{a}, \boldsymbol{b}\rangle+ \\
& \quad a_{0} \boldsymbol{b}+b_{0} \boldsymbol{a}+\boldsymbol{a} \times \boldsymbol{b}
\end{aligned}
$$

Two

- Quaternionic distributions

Three

- Differential equation

$$
\begin{aligned}
& \mathbf{g}=\nabla f=\nabla_{0} f_{0}-\langle\boldsymbol{\nabla}, \boldsymbol{f}\rangle+ \\
& \nabla_{0} \boldsymbol{f}+\boldsymbol{\nabla} b_{0}+\boldsymbol{\nabla} \times \boldsymbol{b}
\end{aligned}\left\{\begin{array}{l}
g_{0}=\nabla_{0} f_{0}-\langle\nabla, \boldsymbol{f}\rangle \\
\mathbf{g}=\nabla_{0} \boldsymbol{f}+\nabla b_{0}+\nabla \times \boldsymbol{b}
\end{array}\right.
$$

$$
\phi=\nabla \psi=m \varphi
$$

Differential
 Coupling
 equation
 Continuity

Field equations

- $\phi=\nabla \psi$
- $\phi_{0}=\nabla_{0} \psi_{0}-\langle\nabla, \psi\rangle$
- $\boldsymbol{\phi}=\nabla_{0} \psi+\nabla \psi_{0}+\nabla \times \psi$

Spin of a field:

$$
\Sigma_{\text {field }}=\int_{V} \mathbb{E} \times \boldsymbol{\psi} d V
$$

- $\mathfrak{E} \equiv \nabla_{0} \boldsymbol{\psi}+\nabla \psi_{0}$
- $\boldsymbol{B} \equiv \boldsymbol{\nabla} \times \boldsymbol{\psi}$
- $\phi=\mathfrak{E}+\boldsymbol{B}$
- $E \equiv|\phi|=\sqrt{\phi_{0} \phi_{0}+\langle\phi, \phi\rangle}$

$$
=\sqrt{\phi_{0} \phi_{0}+\langle\mathfrak{C}, \mathfrak{C}\rangle+\langle\mathfrak{B}, \mathfrak{B}\rangle+2\langle\mathfrak{C}, \mathfrak{B}\rangle}
$$

QPAD's

- Quaternionic distribution
- $f=f_{0}+\boldsymbol{f}$
Scalar
field

Vector field

- Quaternionic Probability Amplitude Distribution
- $\psi=\psi_{0}+\boldsymbol{\psi}=\rho_{0}+\rho_{0} \boldsymbol{v}$

Density distribution

Current density distribution

Coupling equation

- Differential
$\phi=\nabla \psi=m \varphi$
$|\psi|=|\varphi|$
- Integral
$\int_{V}|\psi|^{2} d V=\int_{V}|\varphi|^{2} d V=1$
$\int_{V}|\phi|^{2} d V=m^{2}$
ψ and φ
are normalized
$m=$ total energy
$=$ rest mass + kinetic energy

Flat space

Coupling in Fourier space

$$
\begin{aligned}
& \nabla \psi=\phi=m \varphi \\
& \mathcal{M} \tilde{\psi}=\tilde{\phi}=m \tilde{\varphi} \\
& \langle\tilde{\psi} \mid \mathcal{M} \tilde{\psi}\rangle=m\langle\tilde{\psi} \mid \tilde{\varphi}\rangle \\
& \mathcal{M}=\mathcal{M}_{0}+\boldsymbol{M} \\
& \mathcal{M}_{0} \tilde{\psi}_{0}-\langle\boldsymbol{M}, \widetilde{\psi}\rangle=m \tilde{\varphi}_{0} \\
& \mathcal{M}_{0} \boldsymbol{\psi}+\boldsymbol{M} \tilde{\psi}_{0}+\boldsymbol{M} \times \widetilde{\boldsymbol{\psi}}=m \widetilde{\boldsymbol{\varphi}} \\
& \int_{\widetilde{V}} \widetilde{\phi}^{2} d \widetilde{V}=\int_{\widetilde{V}}(\overline{\mathcal{N} \psi})^{2} d \widetilde{V}=m^{2}
\end{aligned}
$$

eigenfunction of operator \mathcal{M}.
That is only true when $|\widetilde{\psi}\rangle$ and $|\widetilde{\varphi}\rangle$ are equal.
For elementary particles they are equal
apart from their difference in discrete symmetry.

Dirac equation

$$
\nabla_{0}[\psi]+\nabla \boldsymbol{\alpha}[\psi]=m \beta[\psi]
$$

- Spinor $[\psi]$
- Dirac matrices $\boldsymbol{\alpha}, \beta$
- $\nabla_{0} \psi_{R}+\nabla \psi_{R}=m \psi_{L}$
- $\nabla_{0} \psi_{L}-\nabla \psi_{L}=m \psi_{R}$
- In quaternion format
$-\nabla \psi=m \psi^{*}$
$-\nabla^{*} \psi^{*}=m \psi$

Qpattern

Elementary particles

- Coupling equation
- $\nabla \psi^{x}=m \psi^{y}$
- $\left(\nabla \psi^{x}\right)^{*}=m\left(\psi^{y}\right)^{*}$
- Coupling occurs between pairs
- $\left\{\psi^{x}, \psi^{y}\right\}$
- Colors
- N, R, G, B, $\overline{\mathrm{R}}, \overline{\mathrm{G}}, \overline{\mathrm{B}}, \mathrm{W}$
- Right and left handedness
- R,L

Sign flavors
$\# \boldsymbol{\psi}^{(0)} N \mathbf{R}$ H $\boldsymbol{\psi}^{(1)} R \mathbf{L}$ $\square \boldsymbol{\psi}^{(2)} G \mathbf{L}$
$\because \boldsymbol{\psi}^{(3)} B \mathbf{L}$
$\because \boldsymbol{\psi}^{(4)} \bar{B} \mathbf{R}$
$\square \boldsymbol{\psi}^{(5)} \bar{G} \mathbf{R}$ $\square \boldsymbol{\psi}^{(6)} \bar{R} \mathbf{R}$ $\# \boldsymbol{\psi}^{(7)} \bar{N} \mathrm{~L}$

Discrete symmetries

Spin

- HYPOTHESIS : Spin relates to the fact whether the coupled Qpattern is the reference Qpattern $\boldsymbol{\psi}(0$.
- Each generation has its own reference Qpattern.
- Fermions couple to the reference Qpattern.
- Fermions have half integer spin.
- Bosons have integer spin.
- The spin of a composite equals the sum of the spins of its components.

Electric charge

- HYPOTHESIS : Electric charge depends on the difference and direction of the base vectors for the Qpattern pair.
- Each sign difference stands for one third of a full electric charge.
- Further it depends on the fact whether the handedness differs.
- If the handedness differs then the sign of the count is changed as well.

Color charge

- HYPOTHESIS : Color charge is related to the direction of the anisotropy of the considered Qpattern with respect to the reference Qpattern.
- The anisotropy lays in the discrete symmetry of the imaginary part.
- The color charge of the reference Qpattern is white.
- The corresponding anti-color is black.
- The color charge of the coupled pair is determined by the colors of its members.
- All composite particles are black or white.
- The neutral colors black and white correspond to isotropic Qpatterns.
- Currently, color charge cannot be measured.
- In the Standard Model the existence of color charge is derived via the Pauli principle.

Total energy

- Mass is related to the number of involved Qpatches.
- It is directly related to the square root of the volume integral of the square of the local field energy E.
- Any internal kinetic energy is included in E.
- The same mass rule holds for composite particles.
- The fields of the composite particles are dynamic superpositions of the fields of their components.

Leptons

Pair	s-type	e-charge	c-charge	Handed ness	SM Name
$\left\{\psi^{(7)}, \psi^{0}\right\}$	fermion	-1	N	LR	electron
$\left\{\psi^{(0)}, \psi^{7}\right\}$	Anti- fermion	+1	W	RL	positron

Quarks

Pair	s-type	e-charge	c-charge	Handedness	SM Name
$\left\{\psi^{1}, \psi^{(0)}\right\}$	fermion	-1/3	R	LR	down-quark
$\left\{\psi^{(6)}, \psi^{(7)}\right\}$	Anti-fermion	+1/3	$\overline{\mathrm{R}}$	RL	Anti-down-quark
$\left\{\psi^{(2)}, \psi^{(0)}\right\}$	fermion	-1/3	G	LR	down-quark
$\left\{\psi^{(5)}, \psi^{(7)}\right\}$	Anti-fermion	+1/3	$\overline{\mathrm{G}}$	RL	Anti-down-quark
$\left\{\psi^{3}, \psi^{(0)}\right\}$	fermion	-1/3	B	LR	down-quark
$\left\{\psi^{(4)}, \psi^{(7)}\right\}$	Anti-fermion	+1/3	$\overline{\mathrm{B}}$	RL	Anti-down-quark
$\left\{\psi^{4}, \psi^{(0)}\right\}$	fermion	+2/3	$\overline{\mathrm{B}}$	RR	up-quark
$\left\{\psi^{3}, \psi^{(7)}\right\}$	Anti-fermion	-2/3	B	LL	Anti-up-quark
$\left\{\psi^{5}, \psi^{(0)}\right\}$	fermion	+2/3	$\overline{\mathrm{G}}$	RR	up-quark
$\left\{\psi^{(2)}, \psi^{(7)}\right\}$	Anti-fermion	-2/3	G	LL	Anti-up-quark
$\left\{\psi^{(6)}, \psi^{(0)}\right\}$	fermion	+2/3	$\overline{\mathrm{R}}$	RR	up-quark
$\left\{\psi^{(1)}, \psi^{(7)}\right\}$	Anti-fermion	-2/3	R	LL	Anti-up-quark

Reverse quarks

Pair	s-type	e-charge	c-charge	Handedness	SM Name
$\left\{\psi^{(0)}, \psi^{(1)}\right\}$	fermion	+1/3	R	RL	down-r-quark
$\left\{\psi^{(7)}, \psi^{(6)}\right\}$	Anti-fermion	$-1 / 3$	$\overline{\mathrm{R}}$	LR	Anti-down-r-quark
$\left\{\psi^{(0)}, \psi^{(2)}\right\}$	fermion	+1/3	G	RL	down-r-quark
$\left\{\psi^{(7)}, \psi^{5}\right\}$	Anti-fermion	-1/3	$\overline{\mathrm{G}}$	LR	Anti-down-r-quark
$\left\{\psi^{(0)}, \psi^{(3)}\right\}$	fermion	+1/3	B	RL	down-r-quark
$\left\{\psi^{(7)}, \psi^{(4)}\right\}$	Anti-fermion	-1/3	$\overline{\mathrm{B}}$	LR	Anti-down-r_quark
$\left\{\psi^{(0)}, \psi^{(4)}\right\}$	fermion	-2/3	$\overline{\mathrm{B}}$	RR	up-r-quark
$\left\{\psi^{(7)}, \psi^{(3)}\right\}$	Anti-fermion	+2/3	B	LL	Anti-up-r-quark
$\left\{\psi^{(0)}, \psi^{(5)}\right\}$	fermion	-2/3	$\overline{\mathrm{G}}$	RR	up-r-quark
$\left\{\psi^{(7)}, \psi^{(2)}\right\}$	Anti-fermion	+2/3	G	LL	Anti-up-r-quark
$\left\{\psi^{(0)}, \psi^{(6)}\right\}$	fermion	-2/3	$\overline{\mathrm{R}}$	RR	up-r-quark
$\left\{\psi^{(7)}, \psi^{(1)}\right\}$	Anti-fermion	+2/3	R	LL	Anti-up-r-quark ${ }_{16}$

W-particles

$\left\{\psi^{6}, \psi^{(1)}\right\}$	boson	-1	$\overline{\mathrm{R} R}$	RL	W_{-}
$\left\{\psi^{(1)}, \psi^{(6)}\right\}$	Anti-boson	+1	RR	LR	W_{+}
$\left\{\psi^{(6)}, \psi^{(2)}\right\}$	boson	${ }^{-1}$	$\overline{\mathrm{R}} \mathrm{G}$	RL	W_{-}
$\left\{\psi^{(2)}, \psi^{(6)}\right\}$	Anti-boson	+1	G \bar{R}	LR	W_{+}
$\left\{\psi^{(6)}, \psi^{(3)}\right\}$	boson	-1	$\overline{\mathrm{R} B}$	RL	W_{-}
$\left\{\psi^{(3)}, \psi^{(6)}\right\}$	Anti-boson	+1	B $\overline{\mathrm{R}}$	LR	W_{+}
$\left\{\psi^{(5)}, \psi^{(1)}\right\}$	boson	-1	$\overline{\mathrm{G} G}$	RL	W_{-}
$\left\{\psi^{(1)}, \psi^{(5)}\right\}$	Anti-boson	+1	G $\overline{\mathrm{G}}$	LR	W_{+}
$\left\{\psi^{(5)}, \psi^{(2)}\right\}$	boson	-1	$\overline{\mathrm{G} G}$	RL	W_{-}
$\left\{\psi^{(2)}, \psi^{(5)}\right\}$	Anti-boson	+1	G $\overline{\mathrm{G}}$	LR	W_{+}
$\left\{\psi^{(5)}, \psi^{(3)}\right\}$	boson	-1	$\overline{\mathrm{G}} \mathrm{B}$	RL	W_{-}
$\left\{\psi^{(3)}, \psi^{(5)}\right\}$	Anti-boson	+1	B $\overline{\mathrm{G}}$	LR	W_{+}
$\left\{\psi^{(4)}, \psi^{(1)}\right\}$	boson	-1	$\overline{\mathrm{B}} \mathrm{R}$	RL	W_{-}
$\left\{\psi^{(1)}, \psi^{(4)}\right\}$	Anti-boson	+1	$\mathrm{R} \overline{\mathrm{B}}$	LR	W_{+}
$\left\{\psi^{(4)}, \psi^{(2)}\right\}$	boson	-1	$\overline{\mathrm{B}} \mathrm{G}$	RL	W_{-}
$\left\{\psi^{(2)}, \psi^{4}\right\}$	Anti-boson	+1	G \bar{B}	LR	W_{+}
$\left\{\psi^{(4)}, \psi^{(3)}\right\}$	boson	-1	$\overline{\mathrm{B}} \mathrm{B}$	RL	W_{-}
$\left\{\psi^{3}, \psi^{4}\right\}$	Anti-boson	+1	B $\overline{\mathrm{B}}$	LR	W_{+}

Z-particles

Pair	s-type	e-charge	c-charge	Handedness	SM Name
$\left\{\psi^{(2)}, \psi^{(1)}\right\}$	boson	0	GR	LL	Z
$\left\{\psi^{5}, \psi^{(6)}\right\}$	Anti-boson	0	$\overline{\mathrm{GR}}$	RR	Z
$\left\{\psi^{(3)}, \psi^{(1)}\right\}$	boson	0	BR	LL	Z
$\left\{\psi^{(4)}, \psi^{6}\right\}$	Anti-boson	0	$\overline{\mathrm{R}} \overline{\mathrm{B}}$	RR	Z
$\left\{\psi^{(3)}, \psi^{(2)}\right\}$	boson	0	BR	LL	Z
$\left\{\psi^{4}, \psi^{5}\right\}$	Anti-boson	o	$\overline{\mathrm{R} \bar{B}}$	RR	Z
$\left\{\psi^{(1)}, \psi^{(2)}\right\}$	boson	0	RG	LL	Z
$\left\{\psi^{(6)}, \psi^{5}\right\}$	Anti-boson	0	$\overline{\mathrm{R} G}$	RR	Z
$\left\{\psi^{(1)}, \psi^{(3)}\right\}$	boson	0	RB	LL	Z
$\left\{\psi^{(6)}, \psi^{(4)}\right\}$	Anti-boson	0	$\overline{\mathrm{R} \bar{B}}$	RR	Z
$\left\{\psi^{(2)}, \psi^{(3)}\right\}$	boson	0	RB	LL	Z
$\left\{\psi^{(5)}, \psi^{(4)}\right\}$	Anti-boson	0	$\overline{\mathrm{R} \bar{B}}$	RR	Z

Neutrinos

type	s-type	e-charge	c-charge	Handedness	SM Name
$\left\{\psi^{(7)}, \psi^{(7)}\right\}$	fermion	0	NN	RR	neutrino
$\left\{\psi^{(0)}, \psi^{(0)}\right\}$	Anti-fermion	o	ww	LL	neutrino
$\left\{\psi^{(6)}, \psi^{(6)}\right\}$	boson?	o	$\overline{\mathrm{R}}$	RR	neutrino
$\left\{\psi^{(1)}, \psi^{(1)}\right\}$	Anti- boson?	o	RR	LL	neutrino
$\left\{\psi^{(5)}, \psi^{(5)}\right\}$	boson?	o	$\overline{\mathrm{GG}}$	RR	neutrino
$\left\{\psi^{(2)}, \psi^{(2)}\right\}$	Anti- boson?	o	GG	LL	neutrino
$\left\{\psi^{(4)}, \psi^{(4)}\right\}$	boson?	o	$\overline{\bar{B} \bar{B}}$	RR	neutrino
$\left\{\psi^{(3)}, \psi^{(3)}\right\}$	Anti- boson?	o	BB	LL	neutrino

Color confinement

The color confinement rule forbids the generation of individual particles that have non-neutral color charge

Color confinement

- Color confinement forbids the generation of individual quarks
- Quarks can appear in hadrons
- Color confinement blocks observation of gluons

Photons \& gluons

type	s-type	e-charge	c-charge	Handedness	SM Name
$\left\{\psi^{(7)}\right\}$	boson	O	N	R	photon
$\left\{\psi^{(0)}\right\}$	boson	o	W	L	photon
$\left\{\psi^{6}\right\}$	boson	0	$\overline{\mathrm{R}}$	R	gluon
$\left\{\psi^{(1)}\right\}$	boson	o	R	L	gluon
$\left\{\psi^{5}\right\}$	boson	0	$\overline{\mathrm{G}}$	R	gluon
$\left\{\psi^{(2)}\right\}$	boson	O	G	L	gluon
$\left\{\psi^{4}\right\}$	boson	0	$\overline{\mathrm{B}}$	R	gluon
$\left\{\psi^{(3)}\right\}$	boson	O	B	L	gluon 22

Photons \& gluons

- Photons and gluons are NOT particles
- Ultra-high frequency waves are constituted by wave fronts that at every progression step are emitted by elementary particles
- Photons and gluons are modulations of ultra-high frequency carrier waves.

Quanta

The noise of low dose imaging

Low dose X-ray imaging

Film of cold cathode emission

Shot noise

Low dose X-ray image of the moon

Shot noise

Navigate

To Logic Systems slides:
http://vixra.org/abs/1302.0122
To Hilbert Book slide, part 2:
http://vixra.org/abs/1302.0121
To Hilbert Book slides, part 4: http://vixra.org/abs/1309.0017

To "Physics of the Hilbert Book Model"
http://vixra.org/abs/1307.0106

