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ABSTRACT. The main objective of this paper is to develop upper and lower bound for the Andrica 
conjecture, gaps between primes, using Jacobi elliptic functions.

1. INTRODUCTION

In [1, p. 34] Richard K. Guy posted that DorinAndrica conjectures that, for all natural we 
have

we have

We will use the following notation for gaps between primes:

that is related to Cramér’s conjecture, which states

and the Rosser’s theorem [2], which states that is larger than This can be improved by the 
following pair of bounds:

for
2. THEOREMS

THEOREM 1. Let , then 

where and are Jacobi theta functions.
Proof. Firstly, we consider the sequence of prime numbers

Second, we note that

Then, we define that
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where is the modulus.
Substituting (6) in the left-hand side of (1), we find

In [3, p. 83], we knew that

where is the parameter and and are Jacobi theta functions.
We set (8) in (7)

From (3) and(9), weconcludethat

COROLLARY 1. Let to be a k modulus, then Andrica’s conjecture is equivalent to

Proof. we have

Comparing (2) with (10) and after some algebraic manipulation, we find

therefrom,

THEOREM 2. Let to be a k modulus, then 

where and are Jacobi theta functions.
Proof. We define that 

where is the modulus.
We consider that
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In [2, p. 83], we knew that

where is the parameter and and are Jacobi theta functions.
We set (14) in (13)

From (3) and (15), we conclude that

THEOREM 3. Let to be a k modulus, then 

where and are Jacobi theta functions.
Proof. We define that 

where is the modulus.
We consider that

In [2, p. 83], we knew that

where is the parameter and and are Jacobi theta functions.
We set (18) in (17)

to see [3, p. 84] which states the Jacobi identity. 
From (3) and (19), we conclude that
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