On Andrica's Conjecture, Cramér's Conjecture, gaps Between Primes and Jacobi Theta Functions II: A Simple Proof of Asymptotic for Andrica's Conjecture

Prof. Dr. Raja Rama Gandhi¹ and Edigles Guedes²

¹Resource person in Math for Oxford University Press, Professor in Math, BITS-Vizag. ²World order Number Theorist, Pernambuco, Brazil.

1. PRELIMINARES

In [1, p. 185] states that the prime number theorem yields: (1) $p_n \sim n \log n$,

that is,

 $(2)\lim_{n\to\infty}\frac{p_n}{n\log n}=1.$

LEMMA1. The Andrica's conjecture is equivalent to

(3) $p_{n+1} < 1 + 2\sqrt{p_n} + p_n$. *Proof.* Step 1. In [2, p.__], we conclude that Andrica's conjecture is equivalent to

$$(4)\sqrt{p_n} < \frac{\theta_2}{\theta_3 - \theta_2} \Leftrightarrow \frac{1}{\frac{\theta_2}{\theta_3}} < 1 + \frac{1}{\sqrt{p_n}},$$

where $k := \frac{p_n}{p_{n+s}}$ is a k modulus. In [3, p. 83], we encounter

$$(5)\frac{\theta_2}{\theta_3} = k^{1/2}.$$

Substituting (5) in (4) and considering $k = \frac{p_n}{p_{n+s}}$, we have

$$(6)\sqrt{p_n} < \frac{\theta_2}{\theta_3 - \theta_2} \Leftrightarrow \frac{\sqrt{p_{n+1}}}{\sqrt{p_n}} < 1 + \frac{1}{\sqrt{p_n}},$$

ergo, squaring both sides of the equation (6),
$$\frac{p_{n+1}}{p_n} < 1 + \frac{2}{\sqrt{p_n}} + \frac{1}{p_n} \Leftrightarrow p_{n+1} < 1 + 2\sqrt{p_n} + p_n.\mathbb{Z}$$

2. THEOREM

THEOREM 1 (Asymptotic for Andrica's Conjecture).Let $n \in \mathbb{N}$ and n sufficiently large, then $\sqrt{p_{n+1}} - \sqrt{p_n} < 1$. Proof.Henceforth, we will use the reductio ad absurdum to prove the Lemma 1. We assume that (7) $p_{n+1} \ge 1 + 2\sqrt{p_n} + p_n$. For n sufficiently large, we set (1) in (7), as follows (8) $(n+1) \log(n+1) \ge 1 + 2\sqrt{n\log n} + n\log n$. Dividing (8) by $\log(n+1)$, we encounter (9) $n + 1 \ge \frac{1}{\log(n+1)} + 2\frac{\sqrt{n\log n}}{\log(n+1)} + n\frac{\log n}{\log(n+1)}$. On the other hand, it is easy to see that, as n is sufficiently large, then

$(10) \frac{\log n}{\log(n+1)} \to 1,$	$\frac{1}{\log(n+1)} \to 0,$	$\frac{\sqrt{n\log n}}{\log(n+1)} \to \infty.$
namely,		
$\lim_{n \to \infty} \frac{\log n}{\log(n+1)} = 1,$ Substituting ($\lim_{n \to \infty} \frac{1}{\log(n+1)} = 0.$ 10) in (9), we find	$\lim_{n\to\infty}\frac{\sqrt{n\log n}}{\log(n+1)}=\infty,$
$(9)n + 1 \ge 0 + 2(\infty) +$	$n \cdot 1 \Leftrightarrow 1 \ge 2(\infty),$	
	0 0 00 1	

which is false. Therefore, for *n* sufficiently large, $p_{n+1} < 1 + 2\sqrt{p_n} + p_n$. In face of Lemma 1, the asymptotic for Andrica's conjecture is proved.

ACKNOWLEDGMENTS

I thank Prof. Dr. K. Raja Rama Gandhi and your society for their encouragement and support during the development of this paper.

REFERENCES

[1] Ribenboim, Paulo, The Little Book of Bigger, Springer, 2000.

[2] Prof. Dr. Raja Rama Gandhi and Guedes, Edigles, On Andrica's Conjecture, gaps Between Primes and Jacobi Theta Functions,

[3] Armitage, J. V. and Eberlein, W. F., *Elliptic Functions*, London Mathematical Society, 2006.