ON ANDRICA'S CONJECTURE, CRAMÉR'S CONJECTURE, GAPS BETWEEN PRIMES AND JACOBI THETA FUNCTIONS VI:

Lower bound for Differences between Consecutive Primes
EDIGLES GUEDES AND PROF. DR. RAJA RAMA GANDHI

Abstract

In this paper we developed an interesting result by constructing lower bound for differences between consecutive primes.

Key words: Rieman Zeta-Function, Erdös
MSC: 11Y40, 62N10

1. INTRODUCTION

In book The Riemann Zeta-Function: Theory and Applications [1, p. 350], AleksandarIvic refers to a paper by P. Erdös [2], 1935, in which he proved, by ingenious method, which gives that:
(1.1) $p_{n+1}-p_{n}>C \frac{\log p_{n} \log \log p_{n}}{\log \log \log p_{n}}$,
holds for infinitely many n and some absolute constant $C>0$.In turn, R. A. Rankin [3], 1962/1963, refined the Erdös method, and he obtained:
(1.2) $p_{n+1}-p_{n}>C \frac{\log p_{n} \log \log p_{n} \log \log \log \log p_{n}}{\log \log \log p_{n}}$.

On the other hand, Harald Cramér [4, p. 41] established:
(1.3) $p_{n+1}-p_{n}>\sqrt{p_{n}} \log p_{n}$.

In this paper, we prove that

$$
(1.4) p_{n+1}-p_{n}>C\left[\sqrt{p_{n+1}}\left(\log p_{n+2}-\log p_{n}\right)+1\right]
$$

Where with we conjecture that

$$
\begin{equation*}
p_{n+1}-p_{n} \geq C\left\lfloor\sqrt{p_{n+1}}\left(\log p_{n+2}-\log p_{n}\right)+1\right\rfloor \tag{1.5}
\end{equation*}
$$

Where $\lfloor x\rfloor$ is the floor function. Finally, we proved that

$$
\begin{equation*}
\frac{p_{n+1}}{p_{n}} \ll 1+\frac{1}{p_{n}^{3258 / 20000}} . \tag{1.6}
\end{equation*}
$$

2010 Mathematics Subject Classification. 11Y40, 62N10
Keywords: Rieman Zeta-Function, Erdös

2. THEOREM AND CONJECTURE

THEOREM 1.Letn $\in \mathbb{N}_{\geq 6}$ and C any number, then

$$
\begin{equation*}
p_{n+1}-p_{n}>C\left[\sqrt{p_{n+1}}\left(\log p_{n+2}-\log p_{n}\right)+1\right] . \tag{2.1}
\end{equation*}
$$

Proof. Step 1. In [5, p. 43], we have the inequality

$$
\begin{equation*}
2 \sqrt{p_{n+1} p_{n}}<2 p_{n}+2 \sqrt{2}(\sqrt{n+1}-\sqrt{n}) \sqrt{n} \sqrt{p_{n}} \Rightarrow \tag{2.2}
\end{equation*}
$$

$$
\sqrt{p_{n+1} p_{n}}-\sqrt{2}(\sqrt{n+1}-\sqrt{n}) \sqrt{n} \sqrt{p_{n}}<p_{n} \Leftrightarrow
$$

$$
p_{n}>\sqrt{p_{n+1} p_{n}}-\sqrt{2}(\sqrt{n+1}-\sqrt{n}) \sqrt{n} \sqrt{p_{n}}
$$

pursuant to

$$
\text { (2.3) } p_{n+1}>\sqrt{p_{n+2} p_{n+1}}-\sqrt{2}(\sqrt{n+2}-\sqrt{n+1}) \sqrt{n+1} \sqrt{p_{n+1}} \text {. }
$$

Subtracting (2.2) of (2.3), we encounter

We observe that, since $p_{n}<p_{n+1}$, then $\sqrt{\frac{p_{n}}{p_{n+1}}} \cong 1$, see Table 1 . Therefore,

$$
\begin{aligned}
& \text { (2.4) } p_{n+1}-p_{n}>\sqrt{p_{n+2} p_{n+1}}-\sqrt{p_{n+1} p_{n}}-\sqrt{2}(\sqrt{n+2}-\sqrt{n+1}) \sqrt{n+1} \sqrt{p_{n+1}} \\
& +\sqrt{2}(\sqrt{n+1}-\sqrt{n}) \sqrt{n} \sqrt{p_{n}}= \\
& =\sqrt{p_{n+1}}\left[\sqrt{p_{n+2}}-\sqrt{p_{n}}-\sqrt{2}(\sqrt{n+2}-\sqrt{n+1}) \sqrt{n+1}\right. \\
& \left.+\sqrt{2}(\sqrt{n+1}-\sqrt{n}) \sqrt{n} \sqrt{\frac{p_{n}}{p_{n+1}}}\right] \\
& =\sqrt{p_{n+1}}\left[\sqrt{p_{n+2}}-\sqrt{p_{n}}+\sqrt{2}(\sqrt{n+1}-\sqrt{n}) \sqrt{n} \sqrt{\frac{p_{n}}{p_{n+1}}}\right. \\
& -\sqrt{2}(\sqrt{n+2}-\sqrt{n+1}) \sqrt{n+1}] \\
& =\sqrt{p_{n+1}}\left\{\sqrt{p_{n+2}}-\sqrt{p_{n}}\right. \\
& \left.+\sqrt{2}\left[(\sqrt{n+1}-\sqrt{n}) \sqrt{n} \sqrt{\frac{p_{n}}{p_{n+1}}}-(\sqrt{n+2}-\sqrt{n+1}) \sqrt{n+1}\right]\right\} .
\end{aligned}
$$

$(2.5) p_{n+1}-p_{n}$

$$
\begin{aligned}
& >c_{1} \sqrt{p_{n+1}}\left\{\sqrt{p_{n+2}}-\sqrt{p_{n}}\right. \\
& +\sqrt{2}[(\sqrt{n+1}-\sqrt{n}) \sqrt{n}-(\sqrt{n+2}-\sqrt{n+1}) \sqrt{n+1}]\}
\end{aligned}
$$

We note that $\sqrt{2}[(\sqrt{n+1}-\sqrt{n}) \sqrt{n}-(\sqrt{n+2}-\sqrt{n+1}) \sqrt{n+1}]$ tends rapidly to zero, see Table 2 . Accordingly,
(2.6) $p_{n+1}-p_{n}>c_{2} \sqrt{p_{n+1}}\left(\sqrt{p_{n+2}}-\sqrt{p_{n}}\right)$.

Step 2. Henceforth, we will use the reduction ad absurdum to prove that
(2.7) $\sqrt{p_{n+1}}\left(\sqrt{p_{n+2}}-\sqrt{p_{n}}\right)>\sqrt{p_{n+1}}\left(\log p_{n+2}-\log p_{n}\right)+1$.

Firstly, we assume, by hypothesis, that
(2.8) $\sqrt{p_{n+1}}\left(\sqrt{p_{n+2}}-\sqrt{p_{n}}\right) \leq \sqrt{p_{n+1}}\left(\log p_{n+2}-\log p_{n}\right)+1$.

Dividing by both members of inequality (2.8) by $\sqrt{p_{n+1}}$, we encounter
(2.9) $\sqrt{p_{n+2}}-\sqrt{p_{n}} \leq \log p_{n+2}-\log p_{n}+\frac{1}{\sqrt{p_{n+1}}} \Rightarrow \sqrt{p_{n+2}}+\log p_{n}$

$$
\leq \log p_{n+2}+\sqrt{p_{n}}+\frac{1}{\sqrt{p_{n+1}}}
$$

The exponentiation of (2.9) gives us

$$
\begin{align*}
& p_{n} e^{\sqrt{p_{n+2}}} \leq p_{n+2} e^{\sqrt{p_{n}}+\frac{1}{\sqrt{p_{n+1}}}} \Rightarrow \frac{p_{n}}{p_{n+2}} \leq e^{\sqrt{p_{n}}+\frac{1}{\sqrt{p_{n+1}}}-\sqrt{p_{n+2}}}=\frac{1}{e^{\sqrt{p_{n+2}}-\sqrt{p_{n}}-\frac{1}{\sqrt{p_{n+1}}}}} \\
& \quad \Leftrightarrow e^{\sqrt{p_{n+2}}-\sqrt{p_{n}}-\frac{1}{\sqrt{p_{n+1}}}} \leq \frac{p_{n+2}}{p_{n}} .
\end{align*}
$$

 false. See Table 3.Hence, it follows that $\sqrt{p_{n+1}}\left(\sqrt{p_{n+2}}-\sqrt{p_{n}}\right)>\sqrt{p_{n+1}}\left(\log p_{n+2}-\right.$ $\left.\log p_{n}\right)+1$, as we wanted to demonstrate.

Step 3. From (2.6) and (2.7), we obtain
$p_{n+1}-p_{n}>c_{3} \sqrt{p_{n+1}}\left(\sqrt{p_{n+2}}-\sqrt{p_{n}}\right)>c_{4}\left[\sqrt{p_{n+1}}\left(\log p_{n+2}-\log p_{n}\right)+1\right]$.
CONJECTURE1: Let $n \in \mathbb{N}_{\geq 6}$ and C any number, then

$$
p_{n+1}-p_{n} \geq C\left\lfloor\sqrt{p_{n+1}}\left(\log p_{n+2}-\log p_{n}\right)+1\right\rfloor,
$$

where $\lfloor x$ 〕 is the floor function.
THEOREM 2.For $n \in \mathbb{N}_{>9}$, then

$$
\begin{equation*}
\frac{p_{n+1}}{p_{n}} \ll 1+\frac{1}{p_{n}^{3258 / 20000}} . \tag{2.11}
\end{equation*}
$$

Proof. Step 1. In [6], we have the inequality

$$
p_{n+1}-p_{n} \ll p_{n}^{8371 / 10000}
$$

forn >9; wherefore,

$$
\begin{aligned}
(2.12)\left(p_{n+1}-\right. & \left.p_{n}\right)^{2} \ll p_{n}^{16742 / 10000}=p_{n} \cdot p_{n}^{6742 / 10000} \Rightarrow \frac{\left(p_{n+1}-p_{n}\right)^{2}}{p_{n}} \\
& \ll p_{n}^{6742 / 10000} .
\end{aligned}
$$

Multiplying (2.13) by $1 / p_{n}$, we have

$$
\begin{aligned}
\frac{\left(p_{n+1}-p_{n}\right)^{2}}{p_{n}^{2}} & \ll \frac{p_{n}^{6742 / 10000}}{p_{n}}=\frac{1}{p_{n}^{3258 / 10000}} \Rightarrow \frac{p_{n+1}-p_{n}}{p_{n}} \ll \frac{1}{p_{n}^{3258 / 20000}} \Leftrightarrow \frac{p_{n+1}}{p_{n}} \\
& \ll 1+\frac{1}{p_{n}^{3258 / 20000}} . \square
\end{aligned}
$$

ACKNOWLEDGMENTS

The first author, EdiglesGuedes, thank Prof. Dr. K. Raja Rama Gandhi for his encouragement and support during the development of this paper.

REFERENCES

[1] Ivic, Aleksandar, The Riemann Zeta-Function: Theory and Applications, New York:Dover, 2003.
[2] Erdös, P., On the difference of consecutive primes, Quart. J. Math.(Oxford), 6, 124-128 (1935).
[3] Rankin, R. A., The difference between consecutive prime numbers V, Proc. Edinburgh Math. Soc. 13 (2), 331-332 (1962/1963).
[4] Cramér, H., On the order of magnitude of the difference between consecutive prime numbers, ActaArith.,2, 23-46, (1937).
[5] Gandhi, Prof. Dr. Raja Rama, and Guedes, Edigles, On Andrica's Conjecture, Cramér's Conjecture, gaps Between Primes and Jacobi Theta Functions IV: A Simple Proof for Cramér's Conjecture, Bu llet in of Mathematical Sciences \& Applications, ISSN: 2278-9634, Vol. 2, N. ${ }^{\circ} 2$ (2013), pp. 43-46.
[6] Edigles Guedes and Prof. Dr. Raja Rama Gandhi, On Andrica's Conjecture, Cramér's Conjecture, Gaps between Primes and Jacobi Theta Functions V, Asian Journal of Mathematics and Physics, Volume 2013, Article ID Amp0048, 10 Pages

EDIGLES GUEDES, WORLD ORDER NUMBER THEORIST, PERNAMBUCO, BRAZIL
PROF. DR. RAJA RAMA GANDHI, RESOURCE PERSON IN MATH FOR OXFORD UNIVERSITY PRESS, INDIA

Table 1
In this table, we have: first column: n; second column: p_{n}; third column: p_{n+1}; fourth column: $\sqrt{\frac{p_{n}}{p_{n+1}}}$.

1	2	3	0.816496580927726
2	3	5	0.7745966692414834
3	5	7	0.8451542547285166
4	7	11	0.7977240352174656
5	11	13	0.9198662110077999
6	13	17	0.8744746321952062
7	17	19	0.9459053029269173
8	19	23	0.9088932591463857
9	23	29	0.8905635565617213
10	29	31	0.9672041516493516
11	31	37	0.9153348228041135
12	37	41	0.9499679070317291
13	41	43	0.9764672918705589
14	43	47	0.9565007145952775
15	47	53	0.9416965821485117
16	53	59	0.947789578306157
17	59	61	0.9834699358669274
18	61	67	0.9541738631895289
19	67	71	0.971422653550444
20	71	73	0.9862062358989764
21	73	79	0.9612755239323388
22	79	83	0.9756060828611426
23	83	89	0.9657040279831711
24	89	97	0.957875656437659
25	97	101	0.9799979793876926
26	101	103	0.9902436691399974
27	103	107	0.9811303799342402
28	107	109	0.9907832134966705
29	109	113	0.9821414205253256
30	113	127	0.9432729082972536
31	127	131	0.9846144671164251
32	131	137	0.9778570343163892
33	137	139	0.992779688949853
34	139	149	0.9658601896963496
35	149	151	0.9933554081432372
36	151	157	0.9807055824713378
37	157	163	0.9814225308444268
38	163	167	0.9879513673210928
39	167	173	0.9825059384426867
40	173	179	0.9830973740822291
41	179	181	0.994459791164577
42	181	191	0.9734700709613991
43	191	193	0.9948051596666967
44	193	197	0.9897956513705651
45	197	199	0.994962184579755
46	199	211	0.9711477550225341
47	211	223	0.9727221292883055
48	223	227	0.9911502684384192
49	227	229	0.9956236113842678
50	229	233	0.9913791494810404

Table 2
In this table, we have: first column: n; second column: p_{n}; third column: p_{n+1}; fourth column: $\sqrt{2}[(\sqrt{n+1}-\sqrt{n}) \sqrt{n}-(\sqrt{n+2}-\sqrt{n+1}) \sqrt{n+1}]$.

1	2	3	1	-0.04988805276465902
2	3	5	2	-0.020664308055507133
3	5	7	2	-0.011362272397307539
4	7	11	4	-0.007197809704978728
5	11	13	2	-0.0049711351237533685
6	13	17	4	-0.0036402919735864622
7	17	19	2	-0.002781193368541527
8	19	23	4	-0.0021943026256446892
9	23	29	6	-0.0017755468194908478
10	29	31	2	-0.0014662727075000364
11	31	37	6	-0.0012313610106788257
12	37	41	4	-0.001048733310124667
13	41	43	2	-0.0009039412071891466
14	43	47	4	-0.0007872059143510131
15	47	53	6	-0.0006917168014632202
16	53	59	6	-0.0006126119516689652
17	59	61	2	-0.0005463451649797271
18	61	67	6	-0.0004902805633063993
19	67	71	4	-0.00044242582533728027
20	71	73	2	-0.00040125238935980053
21	73	79	6	-0.00036557165930420994
22	79	83	4	-0.0003344481254755247
23	83	89	6	-0.00030713733215446514
24	89	97	8	-0.00028304088924664087
25	97	101	4	-0.00026167337740707524
26	101	103	2	-0.000242637683674523
27	103	107	4	-0.00022560639950753761
28	107	109	2	-0.0002103076355631624
29	109	113	4	-0.0001965140941277134
30	113	127	14	-0.00018403457144070722
31	127	131	4	-0.0001727072909492946
32	131	137	6	-0.00016239463072652827
33	137	139	2	-0.00015297892072786562
34	139	149	10	-0.00014435906956669137
35	149	151	2	-0.00013644783813048636
36	151	157	6	-0.00012916962255469456
37	157	163	6	-0.00012245864029992982
38	163	167	4	-0.0001162574378696884
39	167	173	6	-0.00011051565654567263
40	173	179	6	-0.00010518900633912058
41	179	181	2	-0.00010023840893613297
42	181	191	10	-0.00009562927882777912
43	191	193	2	-0.00009133091720549959
44	193	197	4	-0.00008731599945513705
45	197	199	2	-0.00008356013964217786
46	199	211	12	-0.00008004151917993991
47	211	223	12	-0.00007674056923660832
48	223	227	4	-0.00007363969791691185
49	227	229	2	-0.00007072305540400329
50	229	233	4	-0.00006797633089312138

Table 3
In this table, we have: first column: n; second column: p_{n}; third column: p_{n+1}; fourth column: p_{n+2}; fifth column: $e^{\sqrt{p_{n+2}}-\sqrt{p_{n}}-\frac{1}{\sqrt{p_{n+1}}}}$; sixth column: $\frac{p_{n+2}}{p_{n}}$

	2	3	5	8	2.5
2	3	5	7	1.5943831282749161	5
3	5	7	11	2.018979811142102	2.2
4	7	11	13	1.93148400086736	1.85714285
5	11	13	17	1.6974561315632921	1.5454545454545454
6	13	17	19	1.6666440322776312	15
7	17	19	23	1.557855449819763	1.3529411764705883
8	19	23	29	2.2654002395712247	1.5263157894736843
9	23	29	31	1.7972136643906813	17
10	29	31	37	1.678	. 2758620689655173
11	31	37	41	1.9561160249205707	1.3225806451612903
	37	41	43	1.3750666904876445	1.162162162162162
13	41	43	47	1.349901723827378	1.146341463414634
14	43	47	53	1.7803435894912953	1.2325581395348837
15	47	53	59	1.989991930133486	1.2553191489361701
	53	59	61	1.491751414515699	1.150943396226415
	59	61	67	1.4566949606980872	1.1355932203389831
18	61	67	71	1.6384171984575573	1.1639344262295082
19	67	71	73	1.2712145825086658	1.0895522388059702
	71	73	79	857324697	1.1126760563380282
21	73	79	83	1.5744736780049133	1.1369863013698631
22	79	83	89	. 5465435216096741	1.1265822784810127
	83	89	97	1.8821682460643192	1.1686746987951808
24	89	97	101	1.6725675026772382	1.1348314606741574
25	97	101	103	1.222050327304741	1.0618556701030928
	101	103	107	1.2161278086899345	1.0594059405940595
	103	107	109	1.21499662002202	1.058252427184466
	107	109	113	209591563046201	1.0560747663551402
29	109	113	12	2.085584337616967	1.165137614678899
	113	127	13	2.068123508654084	1.1592920353982301
	127	13	13	1.	1.078740157480315
32	131	137	13	1.2954617748935786	1.0610687022900764
	137	139	149	1.5174583726544613	1.0875912408759123
	139	149	151	1.5165778965597723	1.0863309352517985
35	149	151	157	1.2738319289305096	1.0536912751677852
	151	157	16	44236453	1.0794701986754967
	157	163	167	1.369653587708779	1.0636942675159236
	163	167	173	1.3612709425074072	1.0613496932515338
	167	173	179	1.4625940193792257	1.0718562874251496
	173	179	18	1.253493057153	1.046242774566474
	179	181	19	1.4431920853320148	1.0670391061452513
42	181	191	193	1.4426222750115065	. 0662983425414365
43	191	193	197	1.1542055957637005	. 031413612565445
	193	197	199	1.1537816517116122	1.0310880829015545
	197	199	211	1.5208692983863397	1.0710659898477157
46	199	211	223	2.133162679087425	1.120603015075377
47	211	223	227	1.605949505652633	1.0758293838862558
48	223	227	229	1.1424660138807983	1.0269058295964126
49	227	229	233	1.1408076644118084	1.026431718061674
50	229	233	239	1.2987038194521876	1.04366812227074

