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AN ELEMENTARY PROOF OF LEGENDRE’S CONJECTURE 

PROF. DR. RAJA RAMA GANDHI AND EDIGLES GUEDES 

 

ABSTRACT. We prove the Legendre’s conjecture: g iven an integer,   , there is always 

one prime,    such that      (   )   using the prime-counting function and the 

Bertrand’s Postulate. 

 

1. INTRODUCTION 

 The Legendre’s conjecture, named after Adrien-Marie Legendre (1752-1833), 

asserts that: There is always one prime number between a square number and the next. 

Algebraically speaking, given an integer,   , there is always one prime,   such that 

     (   )   Put yet another way,  ((   ) )   (  )     where  ( ) is the 

prime-counting function. 

 This conjecture was considered unproved when it was listed in Landau’s 

problems, in 1912. 

 Chen Jingrun (1933-1996) proved a slightly weaker version of the conjecture: 

there is either a prime      (   )  or a semiprime       (   )   where   

is one prime unequal to    

 

2. LEMMAS AND THEOREMS 

 

LEMMA 1. (Bertrand’s Postulate, actually a Theorem) For any integer      there 

always exists, at least, one prime number,  , with         .  

 

A weaker, but more elegant formulation is:  

 

LEMMA 2. (Weak Bertrand’s Postulate) For every     there is always, at least, one 

prime number, , such that       . 

 

THEOREM 1.For     and       then 
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Proof. Part 1. In [1, pp. 427], H. Laurent noted that 
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Observe that 
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 Using the identity 

    

    
 
     

     
  

     

     
  

we find the following real part 
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for    and       

 The imaginary part is the following 
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From (6) and (8), it follows that 
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Part 2. The prime counting function is the function counting the number of prime 

numbers less than or equal to some real number    It is denoted by  ( ) From above 

definition, we have 

 ( )  ∑ 

   

  

With the restriction for the positive integers and greater than or equal to five, it 

follows that 
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COROLLARY 1. For        then 
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Proof. Is obvious by the definition of floor function: ⌊ ⌋      *         + and 

previous Theorem. ⧠ 

THEOREM 2. (Legendre’s Theorem) There is a prime number,  , between    and 

(   )  for every positive integer  . 

Proof. Part 1. Observe that, by use of (1), we encounter 
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Subtracting (15) to (14), it follows that 
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By (5) we have the inequality 
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From (16) and (17), it follows that 
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completesthe proof. ⧠ 
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