AN ELEMENTARY PROOF OF LEGENDRE'S CONJECTURE

PROF. DR. RAJA RAMA GANDHI AND EDIGLES GUEDES

Abstract

We prove the Legendre's conjecture: given an integer, $n>0$, there is always one prime, p, such that $n^{2}<p<(n+1)^{2}$, using the prime-counting function and the Bertrand's Postulate.

1. INTRODUCTION

The Legendre's conjecture, named after Adrien-Marie Legendre (1752-1833), asserts that: There is always one prime number between a square number and the next. Algebraically speaking, given an integer, $n>0$, there is always one prime, p, such that $n^{2}<p<(n+1)^{2}$. Put yet another way, $\pi\left((n+1)^{2}\right)-\pi\left(n^{2}\right)>0$, where $\pi(x)$ is the prime-counting function.

This conjecture was considered unproved when it was listed in Landau's problems, in 1912.

Chen Jingrun (1933-1996) proved a slightly weaker version of the conjecture: there is either a prime $n^{2}<p<(n+1)^{2}$ or a semiprime $n^{2}<p q<(n+1)^{2}$, where q is one prime unequal to p.

2. LEMMAS AND THEOREMS

LEMMA 1. (Bertrand's Postulate, actually a Theorem) For any integer $n>3$, there always exists, at least, one prime number, p, with $n<p<2 n-2$.

A weaker, but more elegant formulation is:

LEMMA 2. (Weak Bertrand's Postulate) For every $n>1$ there is always, at least, one prime number, p, such that $n<p<2 n$.

THEOREM 1.For $n \geq 5$ and $n \in \mathbb{Z}_{+}$, then
(1) $\pi(n)=2+\sum_{k=5}^{n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$,

Keywords: Legendre's conjecture, Bertrand's Postulate
(2) $\pi(n)=2+\sum_{k=5}^{n} \frac{1-\cos \left(\frac{2 \pi}{k}\right)-\cos \left[\frac{2 \pi \Gamma(k)}{k}\right]+\cos \left[\frac{2 \pi \Gamma(k)}{k}+\frac{2 \pi}{k}\right]}{2-2 \cos \left(\frac{2 \pi}{k}\right)}$,
(3) $\pi(n)=2-\sum_{k=5}^{n} \csc \left(\frac{\pi}{k}\right) \sin \left[\frac{\pi \Gamma(k)}{k}\right] \cos \left\{\frac{\pi[\Gamma(k)+1]}{k}\right\}$,
(4) $\pi(n)=2+\sum_{k=5}^{n} \frac{\left(1-e^{-\frac{2 \pi i \Gamma(k)}{k}}\right)\left(1-e^{-\frac{2 \pi i}{k}}\right)}{2-2 \cos \left(\frac{2 \pi}{k}\right)}$.

Proof. Part 1. In [1, pp. 427], H. Laurent noted that

$$
f(z)=\frac{e^{\frac{2 \pi i \Gamma(z)}{z}}-1}{e^{-\frac{2 \pi i}{z}}-1}=\left\{\begin{array}{c}
0, \text { if } z \text { is composite } \tag{5}\\
1, \text { if } z \text { is prime }
\end{array}\right.
$$

for $z \geq 5$ and $z \in \mathbb{Z}_{+}$.
Observe that

$$
\begin{gathered}
f(z)=e^{\frac{2 \pi i}{z}} \frac{\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]+i \sin \left[\frac{2 \pi \Gamma(z)}{z}\right]-1}{1-e^{\frac{2 \pi i}{z}}} \\
=e^{\frac{2 \pi i}{z}} \frac{\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]+i \sin \left[\frac{2 \pi \Gamma(z)}{z}\right]-1}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)} \\
=-\left[\cos \left(\frac{2 \pi}{z}\right)+i \sin \left(\frac{2 \pi}{z}\right)\right] \frac{1-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]-i \sin \left[\frac{2 \pi \Gamma(z)}{z}\right]}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)} \\
-\frac{\cos \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right] \cos \left(\frac{2 \pi}{z}\right)-i \sin \left[\frac{2 \pi \Gamma(z)}{z}\right] \cos \left(\frac{2 \pi}{z}\right)}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)} \\
-\frac{i \sin \left(\frac{2 \pi}{z}\right)-i \cos \left[\frac{2 \pi \Gamma(z)}{z}\right] \sin \left(\frac{2 \pi}{z}\right)+\sin \left[\frac{2 \pi \Gamma(z)}{z}\right] \sin \left(\frac{2 \pi}{z}\right)}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)} \\
=-\frac{\cos \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right] \cos \left(\frac{2 \pi}{z}\right)+\sin \left[\frac{2 \pi \Gamma(z)}{z}\right] \sin \left(\frac{2 \pi}{z}\right)}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)} \\
-\frac{i\left\{\sin \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right] \sin \left(\frac{2 \pi}{z}\right)-\sin \left[\frac{2 \pi \Gamma(z)}{z}\right] \cos \left(\frac{2 \pi}{z}\right)\right\}}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)}
\end{gathered}
$$

$$
=-\frac{\cos \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]+i\left\{\sin \left(\frac{2 \pi}{z}\right)-\sin \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]\right\}}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)}
$$

Using the identity

$$
\frac{a+b i}{c-d i}=\frac{a c-b d}{c^{2}+d^{2}}+i \frac{b c+a d}{c^{2}+d^{2}}
$$

we find the following real part

$$
\begin{gather*}
\mathfrak{R}[f(z)]=\frac{1-\cos \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]+\cos \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]}{2-2 \cos \left(\frac{2 \pi}{z}\right)} \tag{6}\\
=-\csc \left(\frac{\pi}{z}\right) \sin \left[\frac{\pi \Gamma(z)}{z}\right] \cos \left\{\frac{\pi[\Gamma(z)+1]}{z}\right\} \tag{7}\\
=\left\{\begin{array}{c}
0, \text { if } z \text { is composite } \\
1, \text { if } z \text { is prime }
\end{array},\right.
\end{gather*}
$$

for $z \geq 5$ and $z \in \mathbb{Z}_{+}$.
The imaginary part is the following
(8)

$$
\begin{gathered}
\mathfrak{J}[f(z)]=-\frac{\sin \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]-\sin \left[\frac{2 \pi \Gamma(z)}{z}\right]-\sin \left(\frac{2 \pi}{z}\right)}{2-2 \cos \left(\frac{2 \pi}{z}\right)} \\
=\frac{\sin \left(\frac{2 \pi}{z}\right)+\sin \left[\frac{2 \pi \Gamma(z)}{z}\right]-\sin \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]}{2-2 \cos \left(\frac{2 \pi}{z}\right)}
\end{gathered}
$$

From (6) and (8), it follows that

$$
\begin{aligned}
& \text { (9) } f(z)=\frac{1-\cos \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]+\cos \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]}{2-2 \cos \left(\frac{2 \pi}{z}\right)} \\
& +i \frac{\sin \left(\frac{2 \pi}{z}\right)+\sin \left[\frac{2 \pi \Gamma(z)}{z}\right]-\sin \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]}{2-2 \cos \left(\frac{2 \pi}{z}\right)} \\
& =\frac{1-\cos \left(\frac{2 \pi}{z}\right)+i \sin \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]+i \sin \left[\frac{2 \pi \Gamma(z)}{z}\right]+\cos \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]-i \sin \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]}{2-2 \cos \left(\frac{2 \pi}{z}\right)}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{1-e^{-\frac{2 \pi i}{z}}-e^{-\frac{2 \pi i \Gamma(z)}{z}}+e^{-\left[\frac{2 \pi i \Gamma(z)}{z}+\frac{2 \pi i}{z}\right]}}{2-2 \cos \left(\frac{2 \pi}{z}\right)} \\
=\frac{-1\left(e^{-\frac{2 \pi i}{z}}-1\right)+e^{-\frac{2 \pi i \Gamma(z)}{z}}\left(e^{-\frac{2 \pi i}{z}}-1\right)}{2-2 \cos \left(\frac{2 \pi}{z}\right)} \\
=\frac{\left(1-e^{-\frac{2 \pi i \Gamma(z)}{z}}\right)\left(1-e^{-\frac{2 \pi i}{z}}\right)}{2-2 \cos \left(\frac{2 \pi}{z}\right)}=\left\{\begin{array}{c}
0, \text { if } z \text { is composite } \\
1, \text { if } z \text { is prime }
\end{array},\right.
\end{gathered}
$$

for $z \geq 5$ and $z \in \mathbb{Z}_{+}$.
Part 2. The prime counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by $\pi(x)$. From above definition, we have

$$
\pi(x)=\sum_{p \leq x} 1
$$

With the restriction for the positive integers and greater than or equal to five, it follows that
$\pi(n)=2+\sum_{k=5}^{n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$
by (5),
$\pi(n)=2+\sum_{k=5}^{n} \frac{1-\cos \left(\frac{2 \pi}{k}\right)-\cos \left[\frac{2 \pi \Gamma(k)}{k}\right]+\cos \left[\frac{2 \pi \Gamma(k)}{k}+\frac{2 \pi}{k}\right]}{2-2 \cos \left(\frac{2 \pi}{k}\right)}$
by (6),
$\pi(n)=2-\sum_{k=5}^{n} \csc \left(\frac{\pi}{k}\right) \sin \left[\frac{\pi \Gamma(k)}{k}\right] \cos \left\{\frac{\pi[\Gamma(k)+1]}{k}\right\}$
by (7),
$\pi(n)=2+\sum_{k=5}^{n} \frac{\left(1-e^{-\frac{2 \pi i \Gamma(k)}{k}}\right)\left(1-e^{-\frac{2 \pi i}{k}}\right)}{2-2 \cos \left(\frac{2 \pi}{k}\right)}$
by (9).

COROLLARY 1. For $x \in \mathbb{R}_{\geq 5}$, then
(10) $\pi(x)=2+\sum_{k=5}^{\lfloor x\rfloor} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$,
(11) $\pi(x)=2+\sum_{k=5}^{\lfloor x\rfloor} \frac{1-\cos \left(\frac{2 \pi}{k}\right)-\cos \left[\frac{2 \pi \Gamma(k)}{k}\right]+\cos \left[\frac{2 \pi \Gamma(k)}{k}+\frac{2 \pi}{k}\right]}{2-2 \cos \left(\frac{2 \pi}{k}\right)}$,
(12) $\pi(x)=2-\sum_{k=5}^{\lfloor x\rfloor} \csc \left(\frac{\pi}{k}\right) \sin \left[\frac{\pi \Gamma(k)}{k}\right] \cos \left\{\frac{\pi[\Gamma(k)+1]}{k}\right\}$,
(13) $\pi(x)=2+\sum_{k=5}^{\lfloor x\rfloor} \frac{\left(1-e^{-\frac{2 \pi i \Gamma(k)}{k}}\right)\left(1-e^{-\frac{2 \pi i}{k}}\right)}{2-2 \cos \left(\frac{2 \pi}{k}\right)}$.

Proof. Is obvious by the definition of floor function: $\lfloor x\rfloor:=\max \{m \in \mathbb{Z} \mid m \leq x\}$ and previous Theorem.

THEOREM 2. (Legendre's Theorem) There is a prime number, p, between n^{2} and $(n+1)^{2}$ for every positive integer n.

Proof. Part 1. Observe that, by use of (1), we encounter
(14) $\pi\left((n+1)^{2}\right)=2+\sum_{k=5}^{(n+1)^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$

$$
=\left[2+\sum_{k=5}^{2 n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right]+\sum_{k=2 n+1}^{n^{2}+2 n+1} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}
$$

$=\pi(2 n)+\sum_{k=2 n+1}^{n^{2}+2 n+1} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$.
and
(15) $\pi\left(n^{2}\right)=2+\sum_{k=5}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}=\left[2+\sum_{k=5}^{n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right]+\sum_{k=n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$
$=\pi(n)+\sum_{k=n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$.
Subtracting (15) to (14), it follows that
(16) $\pi\left((n+1)^{2}\right)-\pi\left(n^{2}\right)$

$$
\begin{aligned}
&= \pi(2 n)+\sum_{k=2 n+1}^{n^{2}+2 n+1} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\pi(n)-\sum_{k=n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \\
&= \pi(2 n)-\pi(n)+\sum_{k=2 n+1}^{n^{2}+2 n+1} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\sum_{k=n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \\
&=\pi(2 n)-\pi(n)+\sum_{k=2 n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}+\sum_{k=n^{2}+1}^{n^{2}+2 n+1} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\sum_{k=n+1}^{2 n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \\
& \quad \sum_{k=2 n+1}^{n^{2}} \frac{e^{\frac{2 \pi \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \\
&= \pi(2 n)-\pi(n)+\sum_{k=n^{2}+1}^{n^{2}+2 n+1} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\sum_{k=n+1}^{2 n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} .
\end{aligned}
$$

By (5) we have the inequality

$$
\begin{equation*}
0=\min _{k \in \mathbb{Z}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right) \leq \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \leq \max _{k \in \mathbb{Z}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right)=1 . \tag{17}
\end{equation*}
$$

From (16) and (17), it follows that

$$
\begin{aligned}
& \pi(2 n)- \pi(n)+\sum_{k=n^{2}+1}^{n^{2}+2 n+1} \min _{k \in \mathbb{Z}_{\geq 5}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right)-\sum_{k=n+1}^{2 n} \min _{k \in \mathbb{Z}_{\geq 5}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right) \\
& \leq \pi\left((n+1)^{2}\right)-\pi\left(n^{2}\right) \\
& \leq \pi(2 n)-\pi(n)+\sum_{k=n^{2}+1}^{n^{2}+2 n+1} \max _{k \in \mathbb{Z}_{\geq 5}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right) \\
&-\sum_{k=n+1}^{2 n} \max _{k \in \mathbb{Z}_{\geq 5}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right), \\
& \pi(2 n)-\pi(n)+\sum_{k=n^{2}+1}^{n^{2}+2 n+1} 0-\sum_{k=n+1}^{2 n} 0 \leq \pi\left((n+1)^{2}\right)-\pi\left(n^{2}\right) \\
& \leq \pi(2 n)-\pi(n)+\sum_{k=n^{2}+1}^{2 n} 1-\sum_{k=n+1}^{2 n+1} 1,
\end{aligned}
$$

$$
\begin{gathered}
\pi(2 n)-\pi(n) \leq \pi\left((n+1)^{2}\right)-\pi\left(n^{2}\right) \leq \pi(2 n)-\pi(n)+2 n+1-n \\
\pi(2 n)-\pi(n) \leq \pi\left((n+1)^{2}\right)-\pi\left(n^{2}\right) \leq \pi(2 n)-\pi(n)+n+1
\end{gathered}
$$

forn $\in \mathbb{Z}_{\geq 5}$.
Part 2. For $n=1, \pi\left(2^{2}\right)-\pi\left(1^{2}\right)=\pi(4)-\pi(1)=2-0=2>0$; for $n=2, \pi\left(3^{2}\right)-$ $\pi\left(2^{2}\right)=\pi(9)-\pi(4)=4-2=2>0$; for $=3, \pi\left(4^{2}\right)-\pi\left(3^{2}\right)=\pi(16)-\pi(9)=$ $6-4=2>0$, for $n=4, \pi\left(5^{2}\right)-\pi\left(4^{2}\right)=\pi(25)-\pi(16)=9-6=3>0$. This completesthe proof.

REFERENCES

[1] Dickson, Leonard Eugene, History of the Theory of Numbers, Volume I: Divisibility and Primality, Dover, 2005.

PROF. DR. RAJA RAMA GANDHI, RESOURCE PERSON IN MATH FOR OXFORD UNIVERSITY PRESS, INDIA

EDIGLES GUEDES, WORLD ORDER NUMBER THEORIST, PERNAMBUCO, BRAZIL

