AN ELEMENTARY PROOF OF OPPERMANN'S CONJECTURE

PROF. DR. RAJA RAMA GANDHI AND EDIGLES GUEDES

Abstract

We prove the Oppermann's conjecture: given an integer, $n>1$, there is, at least, one prime between $n^{2}-n$ and n^{2}, and, at least, another prime between n^{2} and $n^{2}+n$, using the prime-counting function and the Bertrand's Postulate.

1. INTRODUCTION

The Oppermann's conjecture, named after Ludvig Oppermann, in 1882, relates to distribution of the prime numbers. It states that, for any integer, $n>1$, there is, at least, one prime between $n^{2}-n$ and n^{2}, and, at least, another prime between n^{2} and $n^{2}+n$. We use the alternative statement:

Let $\pi(n)$ be the prime-counting function, that is, the number of prime numbers less than or equal to n. Then,
(1) $\pi\left(n^{2}-n\right)<\pi\left(n^{2}\right)<\pi\left(n^{2}+n\right)$,
for $n>1$. This means that between the square of a number n and the square of the same number plus (or minus) that number, there is a prime number. Or, equivalently,

$$
\begin{equation*}
\pi\left(n^{2}\right)-\pi\left(n^{2}-n\right)>0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi\left(n^{2}+n\right)-\pi\left(n^{2}\right)>0 \tag{3}
\end{equation*}
$$

2. LEMMAS AND THEOREMS

LEMMA 1. (Bertrand's Postulate, actually a Theorem) For any integer $n>3$, there always exists, at least, one prime number, p, with $n<p<2 n-2$.

A weaker, but more elegant formulation is:

LEMMA 2. (Weak Bertrand's Postulate) For every $n>1$ there is always, at least, one prime number, p, such that $n<p<2 n$.

THEOREM 1.For $n \geq 5$ and $n \in \mathbb{Z}_{+}$, then

[^0]Keywords: Bertrand's Postulate, prime-counting function
(4) $\pi(n)=2+\sum_{k=5}^{n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$,
(5) $\pi(n)=2+\sum_{k=5}^{n} \frac{1-\cos \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]+\cos \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]}{2-2 \cos \left(\frac{2 \pi}{z}\right)}$,
(6) $\pi(n)=2-\sum_{k=5}^{n} \csc \left(\frac{\pi}{k}\right) \sin \left[\frac{\pi \Gamma(k)}{k}\right] \cos \left\{\frac{\pi[\Gamma(k)+1]}{k}\right\}$,
(7) $\pi(n)=2+\sum_{k=5}^{n} \frac{\left(1-e^{-\frac{2 \pi i \Gamma(z)}{z}}\right)\left(1-e^{-\frac{2 \pi i}{z}}\right)}{2-2 \cos \left(\frac{2 \pi}{z}\right)}$.

Proof. Part 1. In [Dickson, pp. 427], H. Laurent noted that

$$
f(z)=\frac{e^{\frac{2 \pi i \Gamma(z)}{z}}-1}{e^{-\frac{2 \pi i}{z}}-1}=\left\{\begin{array}{c}
0, \text { if } z \text { is composite } \tag{8}\\
1, \text { if } z \text { is prime }
\end{array}\right.
$$

for $z \geq 5$ and $z \in \mathbb{Z}_{+}$.
Observe that

$$
\left.\begin{array}{c}
f(z)=e^{\frac{2 \pi i}{z}} \frac{\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]+i \sin \left[\frac{2 \pi \Gamma(z)}{z}\right]-1}{1-e^{\frac{2 \pi i}{z}}} \\
=e^{\frac{2 \pi i}{z}} \frac{\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]+i \sin \left[\frac{2 \pi \Gamma(z)}{z}\right]-1}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)} \\
=-\left[\cos \left(\frac{2 \pi}{z}\right)+i \sin \left(\frac{2 \pi}{z}\right)\right] \frac{1-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]-i \sin \left[\frac{2 \pi \Gamma(z)}{z}\right]}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)} \\
=-\frac{\cos \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right] \cos \left(\frac{2 \pi}{z}\right)-i \sin \left[\frac{2 \pi \Gamma(z)}{z}\right] \cos \left(\frac{2 \pi}{z}\right)}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)} \\
-\left\{\frac{i \sin \left(\frac{2 \pi}{z}\right)-i \cos \left[\frac{2 \pi \Gamma(z)}{z}\right] \sin \left(\frac{2 \pi}{z}\right)+\sin \left[\frac{2 \pi \Gamma(z)}{z}\right] \sin \left(\frac{2 \pi}{z}\right)}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)}\right.
\end{array}\right\}
$$

$$
\begin{aligned}
= & -\frac{\cos \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right] \cos \left(\frac{2 \pi}{z}\right)+\sin \left[\frac{2 \pi \Gamma(z)}{z}\right] \sin \left(\frac{2 \pi}{z}\right)}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)} \\
& -\frac{i\left\{\sin \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right] \sin \left(\frac{2 \pi}{z}\right)-\sin \left[\frac{2 \pi \Gamma(z)}{z}\right] \cos \left(\frac{2 \pi}{z}\right)\right\}}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)} \\
& =-\frac{\cos \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]+i\left\{\sin \left(\frac{2 \pi}{z}\right)-\sin \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]\right\}}{1-\cos \left(\frac{2 \pi}{z}\right)-i \sin \left(\frac{2 \pi}{z}\right)} .
\end{aligned}
$$

Using the identity

$$
\frac{a+b i}{c-d i}=\frac{a c-b d}{c^{2}+d^{2}}+i \frac{b c+a d}{c^{2}+d^{2}}
$$

we find the following real part

$$
\begin{gather*}
\mathfrak{R}[f(z)]=\frac{1-\cos \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]+\cos \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]}{2-2 \cos \left(\frac{2 \pi}{z}\right)} \tag{9}\\
=-\csc \left(\frac{\pi}{z}\right) \sin \left[\frac{\pi \Gamma(z)}{z}\right] \cos \left\{\frac{\pi[\Gamma(z)+1]}{z}\right\} \tag{10}\\
=\left\{\begin{array}{c}
0, \text { if } z \text { is composite } \\
1, \text { if } z \text { is prime }
\end{array}\right.
\end{gather*}
$$

for $z \geq 5$ and $z \in \mathbb{Z}_{+}$.
The imaginary part is the following

$$
\begin{gather*}
\Im[f(z)]=-\frac{\sin \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]-\sin \left[\frac{2 \pi \Gamma(z)}{z}\right]-\sin \left(\frac{2 \pi}{z}\right)}{2-2 \cos \left(\frac{2 \pi}{z}\right)} \tag{11}\\
\quad=\frac{\sin \left(\frac{2 \pi}{z}\right)+\sin \left[\frac{2 \pi \Gamma(z)}{z}\right]-\sin \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]}{2-2 \cos \left(\frac{2 \pi}{z}\right)}
\end{gather*}
$$

It follows from (9) and (11) that
(12) $f(z)=\frac{1-\cos \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]+\cos \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]}{2-2 \cos \left(\frac{2 \pi}{z}\right)}$

$$
+i \frac{\sin \left(\frac{2 \pi}{z}\right)+\sin \left[\frac{2 \pi \Gamma(z)}{z}\right]-\sin \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]}{2-2 \cos \left(\frac{2 \pi}{z}\right)}
$$

$$
=\frac{1-\cos \left(\frac{2 \pi}{z}\right)+i \sin \left(\frac{2 \pi}{z}\right)-\cos \left[\frac{2 \pi \Gamma(z)}{z}\right]+i \sin \left[\frac{2 \pi \Gamma(z)}{z}\right]+\cos \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]-i \sin \left[\frac{2 \pi \Gamma(z)}{z}+\frac{2 \pi}{z}\right]}{2-2 \cos \left(\frac{2 \pi}{z}\right)}
$$

$$
=\frac{1-e^{-\frac{2 \pi i}{z}}-e^{-\frac{2 \pi i \Gamma(z)}{z}}+e^{-\left[\frac{2 \pi i \Gamma(z)}{z}+\frac{2 \pi i}{z}\right]}}{2-2 \cos \left(\frac{2 \pi}{z}\right)}
$$

$$
=\frac{-1\left(e^{-\frac{2 \pi i}{z}}-1\right)+e^{-\frac{2 \pi i \Gamma(z)}{z}}\left(e^{-\frac{2 \pi i}{z}}-1\right)}{2-2 \cos \left(\frac{2 \pi}{z}\right)}
$$

$$
=\frac{\left(1-e^{-\frac{2 \pi i \Gamma(z)}{z}}\right)\left(1-e^{-\frac{2 \pi i}{z}}\right)}{2-2 \cos \left(\frac{2 \pi}{z}\right)}=\left\{\begin{array}{c}
0, \text { if } z \text { is composite } \\
1, \text { if } z \text { is prime }
\end{array}\right.
$$

for $z \geq 5$ and $z \in \mathbb{Z}_{+}$.
Part 2. The prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by $\pi(x)$.From above definition, we have

$$
\pi(x)=\sum_{p \leq x} 1
$$

With the restriction for the positive integers and greater than or equal to five, it follows that
$\pi(n)=2+\sum_{k=5}^{n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$
by (8),
$\pi(n)=2+\sum_{k=5}^{n} \frac{1-\cos \left(\frac{2 \pi}{k}\right)-\cos \left[\frac{2 \pi \Gamma(k)}{k}\right]+\cos \left[\frac{2 \pi \Gamma(k)}{k}+\frac{2 \pi}{k}\right]}{2-2 \cos \left(\frac{2 \pi}{k}\right)}$
by (9),
$\pi(n)=2-\sum_{k=5}^{n} \csc \left(\frac{\pi}{k}\right) \sin \left[\frac{\pi \Gamma(k)}{k}\right] \cos \left\{\frac{\pi[\Gamma(k)+1]}{k}\right\}$
by (10),
$\pi(n)=2+\sum_{k=5}^{n} \frac{\left(1-e^{-\frac{2 \pi i \Gamma(k)}{k}}\right)\left(1-e^{-\frac{2 \pi i}{k}}\right)}{2-2 \cos \left(\frac{2 \pi}{k}\right)}$
by (12).
COROLLARY 1. For $x \in \mathbb{R}_{\geq 5}$, then
(13) $\pi(x)=2+\sum_{k=5}^{\lfloor x\rfloor} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$,
(14) $\pi(x)=2+\sum_{k=5}^{\lfloor x\rfloor} \frac{1-\cos \left(\frac{2 \pi}{k}\right)-\cos \left[\frac{2 \pi \Gamma(k)}{k}\right]+\cos \left[\frac{2 \pi \Gamma(k)}{k}+\frac{2 \pi}{k}\right]}{2-2 \cos \left(\frac{2 \pi}{k}\right)}$,
(15) $\pi(x)=2-\sum_{k=5}^{\lfloor x\rfloor} \csc \left(\frac{\pi}{k}\right) \sin \left[\frac{\pi \Gamma(k)}{k}\right] \cos \left\{\frac{\pi[\Gamma(k)+1]}{k}\right\}$,
(16) $\pi(x)=2+\sum_{k=5}^{\lfloor x\rfloor} \frac{\left(1-e^{-\frac{2 \pi i \Gamma(k)}{k}}\right)\left(1-e^{-\frac{2 \pi i}{k}}\right)}{2-2 \cos \left(\frac{2 \pi}{k}\right)}$.

Proof. Is obvious by the definition of floor function: $\lfloor x\rfloor:=\max \{m \in \mathbb{Z} \mid m \leq x\}$ and previous Theorem.

THEOREM 2. (Oppermann's Theorem) For any integer, $n>1$, there is, at least, one prime number between $n^{2}-n$ and n^{2}, and, at least, another prime number between n^{2} and $n^{2}+n$.

Proof. Step 1. By use from (4), we find
(17) $\pi\left(n^{2}+n\right)=2+\sum_{k=5}^{n^{2}+n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$,
(18) $\pi\left(n^{2}\right)=2+\sum_{k=5}^{n^{2}} \frac{e^{\frac{2 \pi \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$
and
(19) $\pi\left(n^{2}-n\right)=2+\sum_{k=5}^{n^{2}-n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}$.

Step 2.Subtracting (18) from (17),we have

$$
\begin{aligned}
& \text { (20) } \pi\left(n^{2}+n\right)-\pi\left(n^{2}\right)=2+\sum_{k=5}^{n^{2}+n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\left[2+\sum_{k=5}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right] \\
& =2+\sum_{k=5}^{2 n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}+\sum_{k=2 n+1}^{n^{2}+n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \\
& -\left[2+\sum_{k=5}^{n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}+\sum_{k=n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right] \\
& =\pi(2 n)+\sum_{k=2 n+1}^{n^{2}+n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\pi(n)-\sum_{k=n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \\
& =\pi(2 n)-\pi(n)+\sum_{k=2 n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}+\sum_{k=n^{2}+1}^{n^{2}+n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\sum_{k=n+1}^{2 n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \\
& -\sum_{k=2 n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \\
& =\pi(2 n)-\pi(n)+\sum_{k=n^{2}+1}^{n^{2}+n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\sum_{k=n+1}^{2 n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} .
\end{aligned}
$$

By (8) we have the inequality

$$
\begin{equation*}
0=\min _{k \in \mathbb{Z}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right) \leq \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \leq \max _{k \in \mathbb{Z}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right)=1 . \tag{21}
\end{equation*}
$$

From (20) and (21), it follows that

$$
\begin{aligned}
& \pi(2 n)- \pi(n)+\sum_{k=n^{2}+1}^{n^{2}+n} \min _{k \in \mathbb{Z}_{\geq 5}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right)-\sum_{k=n+1}^{2 n} \min _{k \in \mathbb{Z} \geq 5}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right) \\
& \leq \pi\left(n^{2}+n\right)-\pi\left(n^{2}\right) \\
& \leq \pi(2 n)-\pi(n)+\sum_{k=n^{2}+1}^{n^{2}+n} \max _{k \in \mathbb{Z}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right) \\
&-\sum_{k=n+1}^{2 n} \max _{k \in \mathbb{Z}_{\geq 5}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right), \\
& \pi(2 n)-\pi(n)+\sum_{k=n^{2}+1}^{n^{2}+n} 0-\sum_{k=n+1}^{2 n} 0 \leq \pi\left(n^{2}+n\right)-\pi\left(n^{2}\right) \\
& \leq \pi(2 n)-\pi(n)+\sum_{k=n^{2}+1}^{n^{2}+n} 1-\sum_{k=n+1}^{2 n} 1, \\
& \pi(2 n)-\pi(n) \leq \pi\left(n^{2}+n\right)-\pi\left(n^{2}\right) \leq \pi(2 n)-\pi(n)+n-n, \\
& \pi(2 n)-\pi(n) \leq \pi\left(n^{2}+n\right)-\pi\left(n^{2}\right) \leq \pi(2 n)-\pi(n),
\end{aligned}
$$

forn $\in \mathbb{Z}_{\geq 5}$.
Step 3. For $n=2, \pi\left(2^{2}+2\right)-\pi\left(2^{2}\right)=\pi(6)-\pi(4)=3-2=1>0$; for $=$ $3, \pi\left(3^{2}+3\right)-\pi\left(3^{2}\right)=\pi(12)-\pi(9)=5-4=1>0 \quad$, for $\quad n=4, \pi\left(4^{2}+4\right)-$ $\pi\left(4^{2}\right)=\pi(20)-\pi(16)=8-6=2>0$.

Step 4.Subtracting (19) from (18), we have
(22) $\pi\left(n^{2}\right)-\pi\left(n^{2}-n\right)=2+\sum_{k=5}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\left[2+\sum_{k=5}^{n^{2}-n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right]$

$$
\begin{aligned}
& =2+\sum_{k=5}^{2 n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}+\sum_{k=2 n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \\
& \quad-\left[2+\sum_{k=5}^{n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}+\sum_{k=n+1}^{n^{2}-n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right]
\end{aligned}
$$

$$
=\pi(2 n)+\sum_{k=2 n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\pi(n)-\sum_{k=n+1}^{n^{2}-n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}
$$

$$
\begin{aligned}
&= \pi(2 n)-\pi(n)+\sum_{k=2 n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\sum_{k=n+1}^{n^{2}-n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \\
&=\pi(2 n)-\pi(n)+\sum_{k=2 n+1}^{n^{2}-n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}+\sum_{k=n^{2}-n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\sum_{k=n+1}^{2 n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \\
&-\sum_{k=2 n+1}^{n^{2}-n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} \\
&= \pi(2 n)-\pi(n)+\sum_{k=n^{2}-n+1}^{n^{2}} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}-\sum_{k=n+1}^{2 n} \frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1} .
\end{aligned}
$$

From (21) and (22), it follows that

$$
\begin{aligned}
& \pi(2 n)- \pi(n)+\sum_{k=n^{2}-n+1}^{n^{2}} \min _{k \in \mathbb{Z} \geq 5}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right)-\sum_{k=n+1}^{2 n} \min _{k \in \mathbb{Z} \geq 5}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right) \\
& \leq \pi\left(n^{2}\right)-\pi\left(n^{2}-n\right) \\
& \leq \pi(2 n)-\pi(n)+\sum_{k=n^{2}-n+1}^{n^{2}} \max _{k \in \mathbb{Z}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right) \\
&-\sum_{k=n+1}^{2 n} \max _{k \in \mathbb{Z}_{\geq 5}}\left(\frac{e^{\frac{2 \pi i \Gamma(k)}{k}}-1}{e^{-\frac{2 \pi i}{k}}-1}\right), \\
& \pi(2 n)-\pi(n)+\sum_{k=n^{2}-n+1}^{n^{2}} 0-\sum_{k=n+1}^{2 n} 0 \leq \pi\left(n^{2}\right)-\pi\left(n^{2}-n\right) \\
& \leq \pi(2 n)-\pi(n)+\sum_{k=n^{2}-n+1}^{n^{2}} 1-\sum_{k=n+1}^{2 n} 1, \\
& \pi(2 n)-\pi(n) \leq \pi\left(n^{2}+n\right)-\pi\left(n^{2}\right) \leq \pi(2 n)-\pi(n)+n-n, \\
& \pi(2 n)-\pi(n) \leq \pi\left(n^{2}+n\right)-\pi\left(n^{2}\right) \leq \pi(2 n)-\pi(n),
\end{aligned}
$$

forn $\in \mathbb{Z}_{\geq 5}$.
Step 5. For $n=2, \pi\left(2^{2}\right)-\pi\left(2^{2}-2\right)=\pi(4)-\pi(2)=2-1=1>0 ;$ for $=$ $3, \pi\left(3^{2}\right)-\pi\left(3^{2}-3\right)=\pi(9)-\pi(6)=4-3=1>0 \quad, \quad$ for $\quad n=4, \pi\left(4^{2}\right)-$ $\pi\left(4^{2}-4\right)=\pi(16)-\pi(12)=6-5=1>0$. This is completes the proof.

REFERENCES

[Dickson] Dickson, Leonard Eugene, History of the Theory of Numbers, Volume I: Divisibility and Primality, Dover, 2005

PROF. DR. RAJA RAMA GANDHI, RESOURCE PERSON IN MATH FOR OXFORD UNIVERSITY PRESS, INDIA

EDIGLES GUEDES, WORLD ORDER NUMBER THEORIST, PERNAMBUCO, BRAZIL

[^0]: 2010 Mathematics Subject Classification. 11A41, 11M26

