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Mechanical stresses produced by a light beam
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A circularly polarized electromagnetic beam is considered, which is absorbed by a plane,
and the mechanical stress produced in the plane by the beam is calculated. It is shown
that the central part of the beam produces a torque at the central region of the plane due
to the spin of the beam, and the wall of the beam produces an additional torque due to
orbital angular momentum of the beam. The total torque acting on the plane equals
twice the power of the beam divided by the frequency. This fact contradicts the standard
electrodynamics, which predicts the torque equals power of the beam divided by
frequency, and means the electrodynamics, as well as the whole classical field theory, is
incomplete. Introducing the spin tensor corrects the electrodynamics.
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1. Does the electrodynamics’ spin tensor exist?

As is well known, photons carry spin, energy, momentum and angular momentum that is a
moment of the momentum relative to a given point or to a given axis. Energy and
momentum of electromagnetic waves are described by the Maxwell energy-momentum
tensor (density)

T l� ¼ �gl�F��F
�� þ gl�F��F

��=4, ð1Þ

where F�� ¼ �F ��, F�� ¼ F��g��g�� (�, �, . . . ¼ 0, 1, 2, 3) is the field strength tensor. For
example, Pi ¼

Ð
V T i 0 dV is the momentum of a wave inside a volume V, and

dW ¼
Ð
a T

0idai dt is the energy that has flowed through the area a in the time dt.
The angular momentum, that is a moment of the momentum, can be defined as [1]

Lij ¼

ð
V

2x½iT j �0 dV ¼

ð
V

r� ðE� BÞ dV ð2Þ

and this construction must be named an orbital angular momentum. However, modern
electrodynamics has no description of spin.
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The electrodynamics starts from the canonical Lagrangian [2, (4-111)],Lc ¼�F��F
��=4.

Then, by the Lagrange formalism, the canonical energy-momentum tensor [2, (4-113)]

T l�
c ¼ @

lA�
@Lc

@ð@�A�Þ
� gl�Lc ¼ �@

lA�F
�� þ gl�F��F

��=4 ð3Þ

and the canonical total angular momentum tensor [2, (4-147)]

J l��
c ¼ 2x½lT���c þ U l��

c ð4Þ

are obtained. Here

U l��
c ¼ �2A½l����

@Lc

@ð@�A�Þ
¼ �2A½lF��� ð5Þ

is the canonical spin tensor [2, (4-150)]. Its space component is E� A:

U ij0
c ¼ E� A: ð6Þ

The sense of a spin tensor U l�� is as follows. The component U ij0 is a volume density of
spin. This means that dSij ¼ U ij0 dV is the spin of the electromagnetic field inside the
spatial element dV. The component U ijk is a flux density of spin flowing in the direction of
the xk axis. For example, dSz=dt ¼ dSxy=dt ¼ d�xy ¼ U xyz daz is the z-component of the
spin flux passing through the surface element daz per unit time, i.e. the torque acting on
the element.

The sense of a total angular momentum tensor means that the total angular
momentum of an element dV� is dJl� ¼ J l�� dV� ¼ 2x½lT��� dV� þ U l�� dV�. The corre-
sponding integral is

Jl� ¼ Ll� þ Sl� ¼

ð
V

2x½lT��� dV� þ

ð
V

U l�� dV�: ð7Þ

It consists of two terms: the first term involves a moment of momentum and represents an
orbital angular momentum; the second term is spin. It must be emphasized that a moment
of momentum cannot represent spin. This idea is discussed in the paper [3], which was
written in response to [4].

However, the canonical tensors (3), (4), (5) are not electrodynamics tensors. They
obviously contradict experiments. For example, consider a circularly polarized plane wave,

Ex ¼ cos ðz� tÞ, Ey ¼ � sin ðz� tÞ, Bx ¼ sin ðz� tÞ, By ¼ cos ðz� tÞ,

Ax ¼ sin ðz� tÞ, Ay ¼ cos ðz� tÞ

(for short we set k ¼ ! ¼ 1). A calculation of components of the canonical spin tensor (5)
yields

U xy0
c ¼ 1, U xyz

c ¼ 1,

U zxy
c ¼ AxBx ¼ sin2 ðz� tÞ,

U yzx
c ¼ AyBy ¼ cos2 ðz� tÞ:
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This result is absurd, because, though U xy0
c and U xyz

c are adequate, the result means that
there are spin fluxes in the directions which are transverse to the direction of the wave
propagation.

To modify the invalid canonical tensors, specific terms, �@� ~U l��
c =2 and �@�ðx

½l ~U ����
c Þ,

are added to the tensors (3) and (4) [5,6] (here ~U l��
c

def
¼ U l��

c � U ��l
c þU �l�

c ¼ �2AlF��).
This procedure gives the standard energy-momentum tensor Tl�

st and the standard total
angular momentum tensor J l��

st ,

T l�
st ¼ Tl�

c � @�
~Uc

l��
=2 ¼ �@lA�F

�� þ gl�F��F
��=4þ @�ðA

lF��Þ, ð8Þ

J l��
st ¼ J l��

c � @� x ½l ~U ����
c

� �
: ð9Þ

Unfortunately, the energy-momentum tensor T l�
st (8) is obviously invalid, as well as the

canonical energy-momentum tensor (3). So, the (Belinfante–Rosenfeld) procedure [5,6] is
unsuccessful, and the tensors (8), (9) are never used. But to make matters worse the
procedure gives the standard spin tensor which equals zero! That is, the procedure
eliminates classical spin at all:

Ul��
st ¼ J l��

st � 2x½lT ���
st ¼ Ul��

c þ 2A½lF��� ¼ 0: ð10Þ

That is why a spin term is absent in Equation (11). Nevertheless, physicists understand
they cannot shut their eyes to the existence of classical electrodynamics spin. And they
proclaim spin is in the moment of the momentum (2). That is, the moment of momentum
represents the total angular momentum, orbital angular momentum plus spin. In other
words, Equation (2) encompasses both the spin and orbital angular momentum density of
a light beam [2,7–10]:

J ij ¼ Lij þ Sij ¼

ð
V

2x½iT j �0 dV ¼

ð
V

r� ðE� BÞ dV: ð11Þ

Contrary to this paradigm, we introduce a spin tensor U l�� into the modern electro-
dynamics [11–16], i.e. we complete the electrodynamics by introducing the spin tensor, i.e.
we claim the total angular momentum consists of the moment of momentum (2) and a
spin term, i.e. we claim Equation (11) is wrong, i.e. we state the moment of momentum
does not contain spin at all:

J ij ¼ Lij þ Sij ¼

ð
V

ð2x½iT j �0 þ U ij0Þ dV ¼

ð
V

r� ðE� BÞ dVþ

ð
V

U ij0 dV: ð12Þ

In contrast to the procedure [5,6], we offered other addends to the canonical energy-
momentum and spin tensors, viz. @�A

lF�� and 2A½l@��A�, which satisfy the equations
@�A

½lF��� ¼ @�ðA
½l@��A�Þ, @�A

� ¼ 0. As a result, we arrive at the Maxwell tensor (1) Tl�

instead of (8) and, at long last, at our spin tensor U l�� (15) instead the zero:

T l�
c þ @�A

lF�� ¼ T l�, ð13Þ

U l��
c þ 2A½l@��A� ¼ 2A½l@j�jA��, ð14Þ

U l�� ¼ ðA½l@ �j jA�� þ�½l@ �j j���Þ; ð15Þ
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here Al and �l are magnetic and electric vector potentials which satisfy 2@½�A�� ¼ F��,
2@½���� ¼ �e����F

��. A relation between � and F can be readily obtained in the vector
form as follows. If divE ¼ 0, then E ¼ curl�. And if @E=@t ¼ curlH, then @�=@t ¼ H.
This reasoning is analogous to the common: if divB ¼ 0, then B ¼ curlA. And if
@B=@t ¼ �curlE, then @A=@t ¼ �E.

The difference between our statement (12) and the common Equation (11) is verifiable.
The cardinal question is, what angular momentum flux, i.e. torque �, does a circularly
polarized light beam of power P without an azimuth phase structure carry? The common
answer, according to (11), is

� ¼ dJ=dt ¼ P=!; ð16Þ

our answer, according to (12), is

� ¼ dJ=dt ¼ 2P=!: ð17Þ

Statements (12) and (17) are also valid in the case of plane waves or a beam which is much
larger than the particle under action if P is the power absorbed by the particle.

Some theoretical calculations, in particular, the calculation of absorption of
a circularly polarized light beam in a dielectric [9,14], the calculation of a radiation
of spin by a rotating electric dipole [16], as well as numerous experimental works
[10,17–20], confirm our result (17) as is shown in [15]. At the same time results of
[21,22] confirm the common formula (16).

Another manifestation of the spin tensor concerns the mechanical stress that arises in a
target absorbing a circularly polarized electromagnetic beam. A stress tensor density T ij

^

describes this stress. The quantity Tij
^ is calculated in Sections 2 and 3 of the present paper

for the cases (11) and (12), respectively. The stress in the case (11) is proven to be in
contradiction with the evidence. The two terms of (12) describe two different torques
which equal each other but are exerted in different places. This fact, in our opinion,
excludes double-counting of a torque.

In Section 4, it is shown that the so-called decomposition (11) of the moment of the
Poynting vector in an orbital and spin angular momentums [7,23–26] is false.

2. Absorbing of the moment of the Poynting vector flux

According to (11), a plane wave traveling in the z-direction and with infinite extension in
the xy-directions can have no angular momentum about the z-axis because E� B is in the
z-direction and ½r� ðE� BÞ�z ¼ 0. However, this is no longer the case for a wave with
finite extension in the xy-plane. Consider a circularly polarized beam with its axis in the
z-direction and traveling in this direction [7]

E ¼ expðiz� itÞ½xþ iyþ zði@x � @yÞ�E0ðx, yÞ, B ¼ �iE: ð18Þ

Here E0ðx, yÞ ¼ E0ðrÞ is the electric field of the beam. For short we set ! ¼ k ¼ c ¼ 1. Let
E0ðrÞ be explicitly made constant over a large central region of the beam and confine the
variation of the function from this constant value to zero in order to lie within a wall of
small thickness �, which lies a distance r ¼ R0 from the axis. It can be shown that the wall
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of such a beam gives a finite contribution to Jz because the E and B fields have components
parallel to the wave vector (the field lines are closed loops) and the energy flow has a
component perpendicular to the wave vector. Please see our Figure 1, or Figure 1 from
[23], or Figure 9.3 from [24]. The circulating energy flow in the beam implies the existence
of angular momentum, whose direction is along the direction of propagation. Since the
fields are identically zero outside the wall and constant inside the wall region, the wall
region is the only one in which the z-component of angular momentum does not vanish.

The profile E0ðrÞ of the beam may be Gaussian [27],

E0 ¼
ð2=pÞ1=2

w
exp �

r2

w2
1� i

z

zR

� �
þ i arctan

z

zR

� �
,

r2 ¼ x2 þ y2, w2 ¼
2ðz2 þ z2RÞ

zR
, ð19Þ

but it doesn’t matter. We set

ðþ1
�1

E2
0 dx dy ¼

ð1
0

E2
02pr dr ¼ 1, ð20Þ

so, the power of the beam is

P ¼

ð
ðE� BÞz dx dy

� �
¼

ð
< ðEx

�By � Ey
�BxÞ dx dy=2 ¼

ð
E2
0 dxdy ¼ 1 ð21Þ

(the over lines mark complex conjugate complex numbers).
We need also the px, py components of momentum density:

px ¼ hðE� BÞxi ¼ < ðEy
�Bz � Ez

�ByÞ=2 ¼ @yE
2
0=2, py ¼ �@xE

2
0=2: ð22Þ

Figure 1. The profile of the electric field of the beam and the angular momentum density.
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Let a plane z¼ 0 absorb the beam. Then the plane, according to (16), must experience the
torque

� ¼ P ¼ 1 ð23Þ

(we ignore the light pressure). We will get the stress tensor density Tik
^ of the plane.

We use the cylindrical coordinates r,�, z

x ¼ r cos �, y ¼ r sin �, ð24Þ

with the metric

dl 2 ¼ dr2 þ r2d�2 þ dz2, grr ¼ 1, g�� ¼ r2,

gzz ¼ 1, ðg^Þ
1=2
¼ r, g�� ¼ 1=r2: ð25Þ

The square root of the determinant of the metric tensor is a scalar density of weight þ1.
Gothic symbols are usually applied to denote tensor densities [28]. We shall, instead, mark
the density with the symbol ‘wedge’ at the level of bottom indices for a density of weight
þ1 and at the level of top indices for a density of weight �1. A volume element and a
surface element are densities of weight �1, dV^ ¼ dr d� dz, da^ ¼ dr d� as well as the
absolute antisymmetric density e^ijk, which equals �1, or 0.

�-component p � is obtained by the formulae pi ¼ pa@ia, @a ¼ @
i
a@i, i.e.

p� ¼ px@�x þ p y@�y , @x ¼ @
r
x@r, @y ¼ @

r
y@r, ð26Þ

where the matrix elements @ i
a are

@�x ¼ �y=r
2, @�y ¼ x=r2, @rx ¼ x=r, @ry ¼ y=r: ð27Þ

The physical component of momentum density p�̂ is equal to the coordinate component of
the tensor density p �^ :

p�^ ¼ p �ðg^Þ
1=2
¼ p�̂ðg��Þ1=2ðg^Þ

1=2
¼ p�̂ ¼ �@rE

2
0=2: ð28Þ

So, because c¼ 1, the tensor density p�^ equals the momentum flux density, i.e. the force
tensor density f �^ :

f�^ ¼ �@rE
2
0=2: ð29Þ

This force density f i^ acts on the absorbing plane z¼ 0, thus

rkT
ik
^ ¼ f i^, ð30Þ

where rkT
ik
^ is the covariant divergence of the stress tensor density of the plane.

As is known [28], rkT
ik
^ ¼ @kT

ik
^ þ � i

jkT
jk
^ , where �i

jk are the Christoffel symbols.
The nonzero symbols are

�r
�� ¼ �r, ��

�r ¼ � �
r� ¼ 1=r, �k

kr ¼ �k
rk ¼ 1=r: ð31Þ
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Because T �r
^ ¼ T r�

^ , Equation (30) gives,

@rT
�r
^ þ ��

jkT
jk
^ � @rT

�r
^ þ � �

�rT
�r
^ þ ��

r�T
r�
^ � @rT

�r
^ þ 2T �r

^ =r ¼ f �^ : ð32Þ

This equation has a solution

T �r
^ ¼ T �̂r ¼ CðrÞ=r2, @rC=r

2 ¼ �@rE
2
0=2: ð33Þ

It is easy to verify that T rr
^ ¼ T ��

^ ¼ 0.
Integrating the equation for C(r) yields

CðrÞ ¼ �

ðr
0

r2 dE2
0=2 ¼ �r

2E2
0=2þ

ðr
0

rE2
0 dr: ð34Þ

According to (34), C¼ 0 and T�r
^ ¼ 0 in the central region, where E0ðrÞ ¼ E0ð0Þ. Thus,

there is no mechanical stress in the central region of the target, according to the standard
paradigm (4). This is depicted in Figure 2.

C(r) increases up to Cmax ¼
Ð1
0 rE2

0 dr ¼ 1=2p in the wall region, in accordance with
(20). Correspondingly,

T�r
^ ¼ T �̂r ¼ 1=2pr2, r > R0 ð35Þ

outside the wall region. It is easy to verify that tensor density (35) satisfies rkT
ik
^ ¼ 0. A

plot of T �̂rðrÞ is given in Figure 2.
By the use of Equation (35), one can get the forces inside the target plane. An element

dl of a circumference of radius r experiences the force dF �̂ ¼ T �̂r dl ¼ CðrÞ dl=r2 and the
torque d� ¼ CðrÞ dl=r. Thus, the outside part of the plane experiences the torque

�orbit ¼

ðl¼2pr
l¼0

CðrÞ

r
dl ¼ 2pCðrÞ, ð36Þ

Figure 2. The component of the stress tensor arisen from the orbital angular momentum.

Journal of Modern Optics 1493



which increases up to the whole torque

�orbit ¼ 1, for r > R0 ð37Þ

in accordance with (16) and (23).
However, a circularly polarized beam, as well as a circularly polarized plane wave,

beyond doubt, acts on a central region of an absorbing plane by a torque. This torque
arises from the fact that the dielectric constant " is a tensor. Consequently the electric
intensity E is, in general, not parallel to the electric polarization P in the medium of the
plane. The torque per unit volume produced by the action of the electric field on the
polarization of the medium is [21]

�=V ¼ P� E: ð38Þ

But this torque is not connected with the moment of the Poynting vector (2) and (11).
Feynman repeated this explanation [29]. We quote [29] with some abridgements.

If we have a beam of light containing a large number of photons all circularly
polarized the same way, it will carry angular momentum. Now remember what right
circularly polarized light is, classically. It’s described by an electric field so that the
electric vector E goes in a circle – as drawn in Figure 17-5(a). Suppose that such
a light shines on a plane which is going to absorb it – or at least some of it – and
consider an atom in the plane according to the classical physics. We’ll suppose that
the atom is isotropic, so the result is that the electron moves in a circle, as shown in
Figure 17-5(b). The electron is displaced at some displacement r from its equilibrium
position at the origin and goes around with some phase lag with respect to the
vector E. The relation between E and r might be as shown in Figure 17-5(b). As time
goes on, the electric field rotates and the displacement rotates with the
same frequency, so their relative orientation stays the same. But look, there is
angular momentum being poured into this electron, because there is always a torque
about the origin. The torque is eEtr which must be equal to the rate of change of
angular momentum dJz=dt:

dJz=dt ¼ eEtr: ð39Þ

This torque is not connected with the moment of the Poynting vector (2) and (11). The
tangential component of the Poynting vector density is zero at the central region of the
plane. Thus, the standard paradigm cannot explain this central region torque.

However, Allen and Padgett [30] try to explain the action of a circularly polarized
plane wave by a torque on a central region of an absorbing plane in the frame of the
standard paradigm. They cut the wave into coaxial pieces in their mind and then claim
that every piece produces a torque because the large intensity gradient near the boundary
of the piece results in azimuthal components to the momentum density.

I think this is not correct. An intensity gradient near a wall of a beam results in the
azimuthal components only in the case of a real beam satisfying the Maxwell equations.
There are no azimuthal components in a piece of a wave that is simply cut off from a whole
wave. Such a piece cannot be considered at all because it does not satisfy the Maxwell
equations.
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3. Absorbing of the spin flux density

Now we consider an addition to the tensor density Tik
^ of Section 2. The tensor density Tik

^

of this section is due to absorbing of the spin angular momentum flux density (15) by the
central region of the target. The field of the central region of the beam is (18)

E ¼ exp ðiz� itÞðxþ iyÞE0ð0Þ, B ¼ �iE, x2 þ y2 < R2
0: ð40Þ

The point R0 (see Figure 1) satisfies the equation

ðR0

0

E2
0ð0Þ2pr dr ¼1, E2

0ð0Þ ¼ 1=ðpR2
0Þ: ð41Þ

The electromagnetic field (40), according to (15), gives the component of the spin tensor

U xyzð0Þ ¼ �< ð �Ax@zAy � �Ay@ zAx þ ��x@ z�y � ��y@ z�xÞ=4 ¼ E2
0ð0Þ: ð42Þ

Here Ax ¼ �
Ð
Ex dt, Ay ¼ �

Ð
Ey dt, �x ¼

Ð
Bx dt, �y ¼

Ð
By dt, the over lines mark

complex conjugate complex numbers, and @ z ¼ �@z. Now we obtain the cylindrical
components of the spin tensor density by the formula U ijk

^ ¼ @
i
a@

j
b@

k
cU

abcðg^Þ
1=2 where @ia

are the matrix elements (27). For example,

U r�z
^ ð0Þ ¼ @

r
x@

�
y U

xyzð0Þðg^Þ
1=2
þ @ r

y@
�
x U

yxzð0Þðg^Þ
1=2
¼ E2

0ð0Þ: ð43Þ

As is well known, the local conservation law rkT
ik
^ ¼ 0 is accompanied by the angular

momentum conservation law (see, e.g. [31], p. 64)

rkU ijk
^ � 2T ½ij�^ ¼ 0: ð44Þ

In our case

2T3
½r��
^ ¼ @zU

r�z
^ if r < R0, ð45Þ

where T3
½r��
^ is the antisymmetric part of the 3-dimensional stress tensor density in the

material of the absorbing plane. Using Equation (45), we arrive at an antisymmetric stress
tensor, which characterizes a medium absorbing angular momentum flux. Integrating
Equation (45) over z yields for r < R0ð1

0

2T3
½r��
^ dz ¼

ð1
0

@zU r�z
^ dz, i:e: 2T ½r��^ ¼ �U

r�z
^ ð0Þ, ð46Þ

where T r�
^ ¼

Ð1
0 T3

r�
^ dz stands for 2-tensor density as well as in Section 2. Thus, for

r < R0

T�r
^ ¼ �T

r�
^ ¼ T �̂r ¼ �Tr�̂ ¼ U r�z

^ ð0Þ=2 ¼ U r�̂zð0Þ=2 ¼ E2
0ð0Þ=2 ¼ 1=ð2pR2

0Þ ,

T rr
^ ¼ T ��

^ ¼ 0: ð47Þ

This means that the edge of a disk of radius r, which is cut off from the plane, i.e. a circle of
radius r, acts on the remainder of the plane with a torque. The force acting on an element
dl of the edge is dF �̂ ¼ T �̂r dl, and the torque corresponding to the element is
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d� ¼ rT �̂r dl. Integrating yields

�spin ¼

ð2pr
0

rT �̂r dl ¼ r2=R2
0, r < R0: ð48Þ

Thus, material of the central region transmits the received torque to the periphery by inner
tangential stress of (45), and the torque increases with r.

The result (48) can be obtained in another way. By definition of U r�z
^ , d�r� ¼ U r�z

^ da^z ,
i.e. d� ¼ U r�̂zð0Þ2pr dr. So a disk of radius r, which is cut off from the plane, experiences
the torque

�spin ¼

ðr
0

E2
0ð0Þ2pr dr ¼ E2

0ð0Þpr
2 ¼ r2=R2

0, r < R0: ð49Þ

At the edge of the beam, r ¼ R0, Equation (44) is changed to

T ½ ij � ¼ 0, r > R0: ð50Þ

So, for r > R0, T�r ¼ Tr�, i.e. the stress tensor is symmetric. But T�rðrÞ must be
continuous. Thus, Tr� changes its sign at r ¼ R0: T

r� !�Tr�.

T �r
^ ¼ T r�

^ ¼ 1=2pr2, r > R0, ð51Þ

as well as in (35). A plot of T �̂rðrÞ and T r�̂ðrÞ is given in Figure 3. So,

�spin ¼

ðl¼2pr
l¼0

rT �̂r dl ¼ 1 for r > R0: ð52Þ

We denote the torque (36), (37) �orbit because the torque arises from the first term of (12),
which is an orbital angular momentum, and we denote the torque (49), (52) �spin because
the torque arises from the second term of (12), which is the spin angular momentum. The
total torque is

� ¼ 2pCðrÞ þ r2=R2
0 for r < R0,

� ¼ 2 for r > R0, ð53Þ

according to (17).

4. Vain attempts to find a spin inside the orbital angular momentum

According to the paradigm (11), physicists try to decompose the moment of momentum
(2), (11) into spin and orbital parts [32]. In particular, it has been proven [33, 34] that the
moment of the Poynting vector of a circularly polarized beam with a plane phase front
(18), i.e. the orbital angular momentum of the circulating flow of the beam (see Figure 1),
i.e. integral over the wall region of the beam, equals spin, i.e. integral of the canonical
component U xy0

c (6) (which coincides with our component U xy0 (15)) over the body of the
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beam (the Humblet transformaton):

ð
r� ðE� BÞ dV ¼

ð
E� A dV: ð54Þ

However, in our opinion, Equation (54) does not prove that orbital angular momentum is
spin.

The proof of the Humblet transformation (54) uses B ¼ r � A. The integrand of (11) is
written as

r� ðE� BÞ ¼ r� ½E� ðr � AÞ� ¼ r� ðE irAiÞ � r� ½ðE � r ÞA�: ð55Þ

The first term in the right-hand side is zero for the beam (18), (19). Really, the Lorentz
gauge vector potential corresponding to (18) is (see e.g. [35])

A ¼ exp ðiz� itÞð�ixþ yÞE0: ð56Þ

Figure 3. The components of the stress tensor arisen from the spin angular momentum.
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So,

<fx �Ex@yAxþ x �Ey@yAy� y �Ex@xAx� y �Ey@xAyÞ=2¼ <fi �E0ð�x@yþ y@xÞE0� ¼ 0: ð57Þ

The second term in the right-hand side of (55), according to the standard procedure, is
augmented by the zero, 0 ¼ �E� Aþ E� A. Then the second term is written as

�r� ½ðE � rÞA� ¼ �r� ½ðE � rÞA � � E� Aþ E� A ¼ �r ½Eðr� AÞ� þ E� A: ð58Þ

I duplicate here the equality r½Eðr� AÞ� ¼ r� ½ðE � rÞA� þ E� A in the index form

@iðE
ir½ jAk�Þ ¼ Eir½ j@iA

k� þ Ei�½ ji A
k�: ð59Þ

So, the integrand of (11) takes the form

r� ðE� BÞ ¼ �r ½Eðr� AÞ� þ E� A: ð60Þ

Equation (60) is depicted in Figure 4 (compare with Figure 1). When integrating, the first
term on the right gives zero and we arrive at the famous Equation (54). However, the
equation only expresses a change from integrating over the wall region of the beam to
integrating over the bulk. This change does not prove that the torque acts on the central
region of the target, and that the moment of the Poynting vector is spin. This change of the
integrating region proves nothing. For example, consider an analogous integralÐ
r� j dV ¼

Ð
r� ðr �HÞdV over the surface of a long solenoid where j is an electric

current density of the solenoid. We have

ð
r� ðr �HÞ dV ¼

ð
ðri@kHi � ri@iHkÞ dV

¼

ð
½@kðr

iHiÞ �Hk � @iðr
iHkÞ þ @ir

iHk� dV

¼

ð
2H dV: ð61Þ

This equality between the moment of an electric current and the integral of H over the
solenoid volume proves nothing.

Figure 4. The term E� A is subtracted from r� E� B and then is added to r� E� B.
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Another transformation of the angular momentum (11) is offered by Stewart [25,26].
He uses the electric vector potential � (see Section 1) instead of the magnetic vector
potential A, and he obtains

ð
r� ðE� BÞ dV ¼

ð
�� BdV ð62Þ

instead of (54) for the beam (18). But this result can be easily obtained if one rewrites
Equation (55) as

r� ðE� BÞ ¼ �r� ðB� E Þ ¼ �r� ½B� ðr ��Þ�

¼ �r� ðBir�iÞ þ r� ½ðB � rÞ��, ð63Þ

i.e. changes E! B,A! �.
It must be noted that �� B is a magnetic alternative to the component U xy0

c of the
invalid canonical spin tensor (5) and was presented in [36]. For the beam (18),
E� A ¼ �� B.

5. Conclusions

This paper conveys new physics. We review existing works concerning electrodynamics
spin and indicate that existing theory is insufficient to solve spin problems because the spin
tensor of modern electrodynamics is zero. Then we show how to resolve the difficulty by
introducing a true electrodynamics spin tensor. Our spin tensor doubles a predicted
angular momentum of a circularly polarized light beam without an azimuth phase
structure. The tensor is needed, in particular, for understanding of essential characteristic
features of a rotating dipole radiation [16].
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