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Abstract 
 
Conventionally Maxwell’s equations describe transverse elements 
described as ‘EM’ waves; but by utilizing the Einstein/de Broglie 
relations one can derive additional degrees of freedom so that 
Maxwell’s equations are not ‘cut off’ at the vacuum. Therefore one 
must employ the   fields in addition to the standard EM 
suggesting also that the photon is piloted. The two sets of 
coordinates for the EM or   fields are mutually exclusive and 
generally considered to be independent of each other. In this work 
a method is developed for integrating them in terms of a Dirac 
covariant polarized vacuum and extended theoretical perspectives. 
 
1. Introduction to Fixing the G/EM Framework  
  
The integration of Gravity and electromagnetism (EM) has been one of 
the holy grails of physics for the last century. In this chapter Gravity and 
EM are unified in terms of the covariant density distribution of a real 
average covariant Dirac vacuum built with extended random elements 
filling flat space-time. Although the Newton and Coulomb potentials 
have similar forms the two theories have developed separately leaving 
their unification an unsolved problem throughout the history of Modern 
Science. In the past most attempts at unification have been within a 
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frame associating electromagnetism with new geometrical properties of 
spacetime [1-3]. The approach of this integration is different. Following 
Puthoff and others [4-7], both fields are represented by four-vector field 
densities, A ; where one considers both types of phenomena as different 

types of motions within the same real physical zero-point field in a flat 
spacetime, i.e. as two different vacuum  types of collective perturbations 
carried by a single vacuum field moving in such a space. Our hope is that 
since this approach suggests new types of experimentation and new 
interpretations of unexplained effects it could, if confirmed, help to 
disentangle the present theoretical discussion. 
 The basis of this model is as follows: 
 
A) The first basis is observational. The universe apparently does not 
change with distance [8-10] (as it would for Big-Bang type theories). 
This leads to the possibility of a non-Doppler redshift [11] (which 
suggests a non-zero photon mass, 0m ) with the velocity of light 

isotropic in an absolute inertial frame, 0I  , in time. 

 
B) The second basis is that our essential instrument for distance 
observation (i.e. electromagnetic waves) is more complex than initially 
thought. De Broglie and Einstein demonstrated that hE   = mc2 , with 

m = m0.   2122 /1


 cv  so that individual massive photon’s could be 
considered as piloted by real non zero-mass Maxwellian waves allowing 
the electromagnetic field to be represented by a vector density, A . As 

shown by the Aharonov-Bohm effect, this implies that the EM field is 
not completely represented by the  fields [12]. 
 
 Maxwell’s equations [3] conventionally describe Transverse 
elements denoted as ‘EM' waves; by utilizing the Einstein / de Broglie 
relation one may derive additional degrees of freedom such that 
Maxwell's equations are not ‘cut off’ at the vacuum, but lead to 
Longitudinal wave components and non-zero electric conductivity of the 
vacuum. Thus our distinct need for the utility of the   fields instead of 

just the standard ‘EM’. This also suggests that the photon is ‘piloted’. 
One must ‘fix’ the coordinates of either the EM field or the   field we 
have chosen the latter. It should be noted that while c is constant in the 
rest frame and the velocity of massive photons would be frequency 
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dependent; there is no contradiction because as Dirac himself stated 
according to coordinate law the pilot wave and the photon decouples 
[13]. The two sets of coordinates, EM or   are mutually exclusive and 
would generally be independent. In this work a method is developed for 
integrating them. 
 It is well known that the usual form of Maxwell's equations in 
vacuum (describing zero mass photons) possess infinite families of 
boundary free exact solutions with Longitudinal electric or magnetic 

fields; this is the usual   theory where 0)3( B  and photon mass, 

0m  . This is also true for the vector potential in the Lorentz gauge 

according to the equation, 0A . But of interest to the task here, for 

massive photons there is only one family and one set of boundary 
conditions! 
 
C) The third basis has its theoretical origin in the introduction by Dirac et 
al. of a real covariant chaotic physical aether which fills space-time, 
carries real physical observable wave-like and particle like (soliton-like) 
perturbations or local extended elements, whose four momenta and 
angular momenta are statistically and evenly distributed on specific 
hyperbolic surfaces, at each given point, in all given inertial frames. This 
vacuum distribution thus appears, as invariant isotropic chaotic and 
undetectable (except in specific physical cases) for all inertial observers. 
The form taken by an aether within Relativity Theory carrying both 
particles and waves is now described in terms of collective motions on 
the top of a real essentially stochastic covariant background. Such an 
aether theoretically justifies the statistical productions of Quantum 
Mechanics (in its causal stochastic interpretation) and SED theory, and 
has a direct experimental justification in the Casimir effect. This implies 
a background friction (associated with absolute local conservation of 
total momentum and angular momentum) and collective motions which 
provide a new interpretation of the observed cosmological red-shift 
[11,14] and yields new possibilities to interpret (also in terms of local 
frictions) the anomalous red-shifts observed by Arp, Tifft and other 
astronomers [15]. 
 
 From these bases, section 3, describes the gravitational results of 
General Relativity in Maxwellian terms. Section 4 develops a possible 
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unification model of both theories. Section 5 briefly discusses possible 
consequences of the preceding attempt. This aether is locally defined by 
a particular real Poincairé frame, IO, in which (measured with real 
physical instruments) the velocity of light is identical in all directions at 
all observable frequencies. All observers tied to other frames passing 
through local inertial motions will see (measure) different space-time 
properties (associated with their velocity and orientations) defined by the 
corresponding Poincairé transformations.1 Local variations of physical 
properties of the aether correspond to local transitions relating 
differential inertial frames at neighboring points. 
 

 
2. Flat Spacetime and a Real Physical Aether 
 
This model depends on the existence of a real physical vacuum (or zero 
point field) built with extended wave-like individual elements [16,17] 
centered on points in an external flat space-time, where such elements 
can overlap and interact (i.e. carry) collective motions corresponding to 
excess (electromagnetic ‘bumps’) or defects (gravitational ‘holes’) in the 
average density of the local aether elements. The model could be 
described as a gas of extended elements within flat space-time. These 
elements can interact locally (i.e. carry collective motions) and the gas’ 
local scalar density thus carries waves (and solitons) associated with 
excess (electromagnetic) or defects (gravitational) in density, with 
respect to the average local vacuum density. One thus defines field 
variables associated with these two possible (excess or defect) local 
density variations. The vector fields, for example, in this paper, represent 
localized excess or density defects with respect to the local vacuum 
density. This model thus implies: 
 
 A description of real physical vacuum properties in terms of real 

extended vacuum elements average  behavior. 
 A description of the behavior of its collective excess (above average) 

associated with recently observed  electromagnetic effects. 

                                                 
1 To quote Kholmetsky “In order to pass from one arbitrary inertial frame 
I1 to another one I2 it is necessary to carry out the transformation from I1 
to the absolute frames IO and then from  I0 to I2” [18]. 



5 
 

 A description of the behavior of its collective defects (below 
average) associated with observed gravitational  effects. 

 
 Introducing these new concepts into Maxwell’s equations and the 
description of gravitational fields along the same lines (in terms of vector 
fields, A ) suggests a new type of unification of both theories. Instead of 

looking for a common geometrization of gravity and light (i.e. their 
unification within a unique form of extended space-time geometry) one 
could assume the following from Newton and Lorentz : 
 
A) The evolution of extended (fields) and of localized (sources) in terms 
of 1) vacuum (aether) 2) gravitational fields, 3) the electromagnetic field, 
reflects the time evolution (motions) and interactions of perturbations of 
a real material substance moving in a 3-dimensional flat space. This 
means that all three field and particle sub-elements are localized at given 
points, at each instant, in this 3-space and move continuously (i.e. locally 
transform) according to causal laws2 
This assumption (distinction of space and fields) is now supported by the 
existence of a special particular experimental inertial cosmological frame

0I  in which 

 the 2.7°K microwave radiation frame is isotropic and non rotating 
 The average distribution of different types of galaxies (spiral, 

elliptical, QSO’s) is isotropic not changing with distance [15]. 
 The observable anisotropy of the velocity of light propagation in 

different directions and around massive objects reflects the real 
motions of real fields described with respect to the 0I  frame in any 
real inertial Poincairé frame by covariant (local) four-vector scalar 
chaotic average density )(  x around each absolute space-time point 

x in 0I  i.e. by average four-vectors )(0
 xA where the 0  denotes 

average measures taken in 0I .3 

                                                 
2 As a consequence of the failure of the geometrical unification program 
Einstein was still obliged in 1954 to consider the electromagnetic field as filling 
curved space-time, but never reached a final satisfying model. 
3 This implies 1) the existence of a basic high density of sub-elements in 
vacuum, 2) the existence of small density variations above (for light) and below 
(for gravity) the average density with the possibility of propagating density 
variation on the top of such a vacuum model as initially suggested by Dirac. 
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B) That all real physical observations rest on: 
 
 The utilization of real physical apparatus based on electromagnetic 

fields and gravitational material with charged (or uncharged) 
particles. 

 On observers also built with the same material i.e. influenced by the 
said fields and particles. 

 
 In other terms all observers (and their observations, inertial or not) are 
an integral part of fields and particles since they are part of the same 
overall real field and particle distribution. This fact determines their 
relation with all real phenomena. A physical theory should explicitly 
provide (within its context) a definition of the means whereby the 
quantities with which the theory is built and can be measured. The 
properties of light rays and massive particles are thus sufficient to 
provide the means of making basic measurements. Since real clocks and 
rods are the real instruments utilized in physics, we shall thus first define, 
for an individual inertial observer, the behavior of such instruments with 
respect to each other: since this determines, for every inertial observer 
possessing them, the behavior, with respect to 0I , of the material fields 
around him. 
 As a consequence of the covariant distribution character observed in 

0I , the very small resistance to motion and assumed non-zero photon 
rest mass, real spin of possible extended vacuum sub-elements and their 
internal possible motions (and associated local interactions) one can 
describe the four-momenta and angular momenta of all extended sub-
elements passing through a small four-volume with a constant average 
density on a hyperboloid, 0 . The four-momenta and angular momenta 
of extended elements are distributed at each point )( xP with constant 

density )(  x on space-like hyperboloids. 

 
C) Following an idea of Noether the local analysis of moving fields and 
extended particles at each point by real observers tied to this point, is 
defined by local clocks and rods which move with the corresponding 
element. It is thus locally performed at each point of coordinates )(x

which follows world-line L. To this point (in 0I ) are attached 
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local,  internal  variables )(b , which describe its neighborhoods physical 
properties and thus depend on  . The evolution is given by )(  xx  , 

),(  bb  where .  denotes the proper time derivative with respect to   
when x describes a world-line L. A scalar Lagrangian thus represents 

the evolution of the real physical medium in 0I , which depends on a local 
Lagrangian, L and is thus given by Poisson brackets. This description on

0I  is assumed to correspond to local space-time translations and four 

dimensional rotations which are determined by a Lagrangian L invariant 
under the local group of Poincairé transformations (i.e. the 
inhomogeneous Lorentz group). They contain [8,9]: 
 
1) the operators P of infinitesimal translations of X  only and can be 

described by  gXP  .   

2) The operators M of infinitesimal four rotations in 0I  which act 

simultaneously on X  and on the internal variables. We have at X : 

       . gxgxxM          (1) 

 
Their action on internal local variables depends on their choice. 
3) A choice of L leads to the momenta  

       
)(

)(





 

b

L
and

x

L
G  







           (2) 

 
yielding a constant impulsion vector 
         GgGxPG  :       (3) 

and the total angular momentum: 
       )()( 




  bMxMGM  , 

 
so that      , SGxGxM             (4) 

 
with        .)()( 




  MS   

 
 These quantities satisfy the Inhomogeneous Lorentz group 
commutation relations P[ , P ] = 0 
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        PgPgPM ],[        (5) 

   
i.e. Poisson Group Relations : 
 
     0],[  GG  ,  GgGgGM ],[      (6) 

   .],[  MgMgMgMgMM   

 
With these quantities one can also define local conservation laws for 
free elements i.e. 

         

.

0

0







xGxGS

M

G













          (7) 

and introduce a constant local mass term M0 with .22
0 cMGG   

 
4) An associated center of gravity y is defined by the introduction of the 

four-vector                      

         GS
cM

R 











)(

1
22

0

           (8) 

associated with x i.e.          

         ; Rxy           (9)  

 
which implies that locally extended real media in I0 are described by 
pairs of points as first suggested by Yukawa. 
 
5) An inertial mass (usually not constant) 0  defined by 

           xGcM  2
0          (10)  

can also be attributed to x : M0 being located at y since one has: 

 


G
M

GxGxG
cM

xRxy v 
2
0

0
22

0

)(
1      (11) 
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so that the motion of y is locally rectilinear and y  has a proper time 

, (with 
0 0/ /d d M   ) and we have :          

     


 0/ MG
d

d
yy 

 constant.      

and      
       , SGRGR            (12) 

 
with respect to the center of gravity. Local instantaneous four rotations 
are described by : 
 
 A specific beigrössen 4-frame 

b  ( =1,2,3,0) with 

tsrrst bbb
ic

bx   
6

4 , 

  Sxib )2/(  and 

.



 bbIS    

 A specific four-frame 
a  centered on y with 



 aaKM    for 

4
a  along y  and .)2/( 0

3
  GcMia   

 This set of relations must be completed by relations which will define 
the interactions between the extended elements i.e. the propagation in the 
aether of collective motions corresponding to observed gravitational and 
electromagnetic phenomena. Before the introduction of such interactions 
one must recall that such proposals have already been made in the past. 
 We only mention here: 
 Weyssenhof’s proposal [16] 0 xS   extensively discussed in the 

literature. 
 Nakano’s proposal [19] S x I x    .      

 Roscoe’s proposal with photon mass [20]. 
 

 
3. General Relativity Represented as a Polarizable Vacuum 
 
Since all observed effects of gravity in distant space rest on light 
observation (including  and radio EM waves coming through space 
from distant sources) a simple model endows the polarizable vacuum 
with properties that might account for all the phenomena in terms of 
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distortions. This initial proposal of Wilson and Dicke has been recently 
revived with astonishing success by Puthoff [4] and Krogh [21]. We first 
summarize their model and will complete it with a supplementary mass 
term in electro-magnetism. 
 One starts from the idea that in flat space the electric field moves in a 
real  vacuum medium  with a point varying dielectric constant K: so that 
this D field satisfies the vacuum equation: 
           .0 EKD                (13) 
This corresponds to a variable fine structure constant 

        :
/)(

4

2/1
0

0

2











K

K

c

e 





       (14) 

so that the vacuum has permittivity and permeability constants given by 

      ,0000   KandK        (15) 
 

and an impedance 2/1
00

2/1 )/()/(   to satisfy Eötvos-type 
experiments. The local velocity of light for a given frequency varies 

like KcV /  i.e like 2/1)/(1  . The corresponding principle of 
equivalence implies that the self energy of a system changes when K 
changes; so that a flat-space energy E0 in flat space changes into  
        ;)( 2/1

0
 KEE                (16) 

and one has       .2/3
0 Kmm                  (17) 

 
As a consequence the condition E =   becomes 
         2/1

0 )(  K             (18) 

along with the time and length variations randt  given by the 

relations:   .)()( 2/1
0

2/1
0

 KrrandKtt        (19) 
 
These relations are evidently equivalent to a local curvature of space. 
Indeed a dx0 length rod shrinks to 2/1)(

0

 Kdd xx and would measure 

dx0, where the rod remains rigid, is now expressed in terms of dx-length 
rod as dxKdx 2/1

0 )( . 
 Using the same argument for dt and dt0 we find that one can write: 
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       )( 2
0

2
0

2
0

2
0

22 dzdydxdtcdS          (20) 
which transforms into 

     :)(
1 222222 dzdydxKdtc
K

dS                (a) 

i.e.                       (21) 
        ,...2 ji

ij dxdxgdS                     (b) 

with  .0,/1 33221100 jiforgandKgggKg ij   

In the case of a spherically symmetric mass distribution one writes 

       
K e

K
G M

rc

GM

rc

G M rc

 


 
















2

2 2

2

2

1 2
1

2

2

/

....
           (22) 

where G is the gravitational constant, M the mass and r the distance from 
its origin located at the center of mass. Puthoff [4] has recently shown 
that this model accounts (sometimes with better precision) for all known 
experimental tests of General Relativity in a simple way i.e. one can 
describe 
 The gravitational redshift given by 2/1

0 )/(K  (so that 

 hcRGM )/(/ 22   has a 1/100 precision). 
 The bending of light rays by the sun and stars. 
 The advance of the Perihelion of Mercury. 
 
He has also shown that one can derive the form of (22) from a general 
Lagrangian with a variable K i leaving aside vacuum interaction in 0 :I  

   
   

  
































































2

2
2

2
2

00
2

3

2/12

2/1

2
0

)/(

1
)()(/

2

1

/
1

t

K

Kc
K

K
EKKB

rrVAqq
KcK

cm
L



 

  (23) 

 This association of gravitational theory with electromagnetic theory 
based on the introduction of a variable dielectric  vacuum  constant K has 
recently been made more explicit by Krogh [21]. Noting that: 
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a) Electromagnetic theory implies the effects of electromagnetic vector 
four-potential vectors A on the phases S of quantum mechanical waves 

so that one has 

        SdA
hc

q
dt

h

q
S


           (24) 

for charged particles moving under the influence of the four vector, A . 

 
b) If 0m  ( m is the mass term introduced into Maxwell’s equation) 

the force on charged particles takes the form 

        Vq
c

BV
EqF 






 

         (25)  

where the first term is the usual transverse Poynting force on currents 
and the second a longitudinal force along currents (resulting from non 
zero photon mass) recently observed by Graneau [22] and Saumont [23]. 
c) One can describe gravity with a four-vector density gA  so that the 

gravitational (Newton) and electromagnetic (Coulomb) potentials have 
the same form, but different coupling constants. This suggests that both 
wave fields and singularities are just different aspects of the same 
fundamental field. 
 
 
4.  Maxwell’s Equations Extended 
 
This discussion opens the possibility to test new types of extensions of 
Maxwell’s equations in the laboratory. Since this has already been 
attempted some results (derived within the frame of the model) are given 
here: 
 
a) From a non-zero vacuum conductivity coefficient 0 [24,25] we 
have in vacuum div E =0 with curl H =  E+ tE  /00  and div H = 0 

with curl E  ./0 tHm   
 
b) From an associated non-zero photon mass term ( 0m ) (with 

0 AA  where A  denotes the total four-potential density in Dirac’s 

aether model. This introduces a non-zero fourth component of the current 
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0, jEJ    (where )00 j into the vacuum corresponding to a real 

detectable space. With present technology this implies that the present 
vacuum really carries space-charge currents [25] (so that the divergence 
of the electric field is different from zero in Vacuo) and the 
corresponding existence of a displacement current (i.e. a curl of the 
magnetic field) and its associated current density4. 
 
 
4.1 The Infinitesimal Mass of Photons 
 
Unifying massive spin 1 photons piloted by electromagnetic waves built 
with massive extended sub-elements has been developed in a series of 
books by Evans, Vigier et al. [24] The model implies the introduction of 
spin and mass with an associated energyless magnetic field component 

)3(B in the direction of propagation and a small electrical conductivity in 
the Dirac vacuum also implying a new ‘tired light’ mechanism 
[11,14,24]. Corresponding equations will be given below. 
In the absolute inertial frame I0 all massive particles are governed by a 
gravitational potential four-vector cAgg /,


 , associated with a small 

mass gm which can be decomposed into transverse, longitudinal and 

gradient potentials. 
 We can thus associate the relations 

    �
0

 


   �and � AcdA


  00 /      (26) 

which represent the electromagnetic field in vacuum in any inertial 
frame, 0 the relations: 

  � andGm ggg    4 ggmg AjGA


  4 ,    (27) 

 
which represent the gravitational field in the same vacuum; where 

refers to mass density, mj  to mass current and  and g  to EM and 

gravitational mass (both very small 6510 grams) and 0c  in the � 

                                                 
4 Such attempts have been recently published in a book by Lehnert & 
Roy [25] so we shall only present a summary of some results and 
assumptions. 
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terms (�� = 2 2 2
0(1/ ) / )c t    represents the corresponding wave 

velocities (which except in 0I depend on the directions in flat space-time) 
so that one has:  

           ;
2/2

0
cgecc

          (28) 

where c is the value in the absence of a gravitational potential gA . In this 

model, one assumes, with Sakharov [5-7], that the gravitational field 
corresponds to local depressions in the immensely positive energy of the 
zero-point field; and gravitational fields represent regions of diminished 
energy (i.e. that their momentum gravity corresponds to  holes  in 
vacuum energy or local defects of vacuum elements). Their effective 
momentum is thus opposite and corresponding gravitational forces are 
attractive. 
 Such an association also suggests that although measuring devices 
(observations) in local inertial Poincairé frames are altered by 
gravitational potentials (they are part of the same real physical 
background in this model). There is no effect on the geometry of flat 
space and time. For any given real inertial local Poincairé frame, 0  real 

space is Euclidean and one uses Poincairé transformations between 0
and I0 to describe real motions which include consequences of 
gravitational potentials. For example a reduction of the velocity of 
quantum mechanical waves, including light, is taken as a fundamental 
effect of gravitational potentials. Clocks are slowed and measuring rods 

shrink in such potentials by a factor 
2/ cge


. 

 
 
4.2 Divergence of the Electromagnetic Field 
 
A non-vanishing divergence of the electric field given below, can be 
added to Maxwell’s equations which results in space-charge distribution. 
A current density arises in vacuo and longitudinal electric non-transverse 
electromagnetic terms (i.e. magnetic field components) appears (like 

)3(B  ) in the direction of propagation. 
Both sets of assumptions were anticipated by de Broglie and Dirac. They 
imply that the real zero-point (vacuum) electromagnetic distribution 
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 is not completely defined by F  but by a four-vector field 

distribution given by a four-vector density, A  associated with a de 

Broglie-Proca equation i.e.  

              �
2 2

2
( ) ( )

m c
A x A x
    


        (29) 

and its complex conjugated equation. 
 the A  field potential equation also contains a gradient term so one 

has in vacuum: 
         SAAA LT

            (30) 

 
with 0AA  and a small electrical conductivity in vacuo. 

 
 
5. Possible New Consequences of the Model 
  
Since such models evidently imply new testable properties of 
electromagnetic and gravitational phenomena we shall conclude this 
work with a brief discussion of the points where it differs from the usual 
interpretations and implies new possible experimental tests. 
 If one considers gravitational and electromagnetic phenomena as 
reflecting different behaviors of the same real physical field i.e. as 
different collective behavior, propagating within a real medium 
(the  aether) one must start with a description of some of its properties. 
 We thus assume that this aether  is built (i.e. describable) by a chaotic 
distribution )(  x of small extended structures represented by four-

vectors )(  xA round each absolute point in I0. This implies 

 
 the existence of a basic local high density of extended sub-elements 

in vacuum 
 the existence of small density variations )()(   xAx  above 0

for light and below )0(   for gravity density at x . 

 the possibility to propagate such  field variations within the 
vacuum as first suggested by Dirac [13]. 

 



16 
 

 One can have internal variations: i.e. motions within these sub-
elements characterized by internal motions associated with the internal 
behavior of average points (i.e. internal center of mass, centers of charge, 
internal rotations : and external motions associated with the stochastic 
behavior, within the aether, of individual sub-elements. As well known 
the latter can be analyzed at each point in terms of average drift and 
osmotic motions and A  distribution. It implies the introduction of non-

linear terms. 

 
Figure 1. Diagram conceptualizing two oppositely charged sub-elements 
rotating at v c around a central point 0 behaving like a 
dipole  bump  and  hole  on the topological surface of the covariant polarized 
Dirac vacuum.    
 
 To describe individual non-dispersive sub-elements within 0I , where 
the scalar density is locally constant and the average A equal to zero, one 

introduces at its central point )(Y a space-like radial four-vector

)/exp( iSrA   (with 
 rr  = a2 = constant) which rotates around Y  

with a frequency hcm /2
  . At both extremities of a diameter we shall 

locate two opposite electric charges e and e (so that the sub-element 
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behaves like a dipole). The opposite charges attract and rotate around Y

with a velocity  c. The +e and –e electromagnetic pointlike charges 
correspond to opposite rotations (i.e ±  /2) and A rotates around an axis 

perpendicular to A located at Y , and parallel to the individual sub-

element’s four momentum S . 

 Assuming electric charge distributions correspond to m >0 and 
gravitation to m < 0 one can describe such sub-elements as holes ( m < 
0) around a point 0 around which rotate two point-like charges rotating in 
opposite directions as shown in Figure 6.1 below. 
 These charges themselves rotate with a velocity c at a distance 

 Ar  (with  rr  = Const.). From 0 one can describe this by the 

equation 

      � 







 A
AA

A
cm

A 














2/1

2/1

2

22

)(

)A[](A


        (31) 

 
with  /)(exp  xiSrA   along with the orbit equations for e+ and e

we get the force equation                
       222 4/ rerm              (32) 
 
and the angular momentum equation: 
          2/2   rm           (33) 

 
 Eliminating the mass term between (31) and (33) this yields 
          re 2/2                (34) 
 
where e2/2r is the electrostatic energy of the rotating pair. We then 
introduce a soliton-type solution 

         )(cotexp
sin

0
0 xKi

rK

rK
A 




          (35) 

where                     

      //,/ 0
2 mvKandmcmcK         (36) 

 
satisfies the relation (31) with 2/1221222 ))/1()(( zycvvtxr    i.e. 
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         � 00 A :   �             (37) 

so that one can add to 0
A  a linear wave, A  (satisfying � A = 

))/( 222
 Acm   which describes the new average paths of the extended 

wave elements and piloted solitons. Within this model the question of the 
interactions of a moving body (considered as excess or defect of field 
density, above or below the aether’s neighboring average density) with a 
real aether appears immediately5.  
 As well known, as time went by, observations established the 
existence of unexplained behavior of light and some new astronomical 
phenomena which led to discovery of the Theory of Relativity. 
 In this work we shall follow a different line of interpretation and 
assume that if one considers particles, and fields, as perturbations within 
a real medium filling flat space time, then the observed deviations of 
Newton’s law reflect the interactions of the associated perturbations (i.e. 
observed particles and fields) with the perturbed average background 
medium in flat space-time. In other terms we shall present the argument 
(already presented by Ghosh et al. [26]) that the small deviations of 
Newton’s laws reflect all known consequences of General Relativity 
 The result from real causal interactions between the perturbed local 
background aether  and its apparently independent moving collective 
perturbations imply absolute total local momentum and angular 
momentum conservation resulting from the preceding description of 
vacuum elements as extended rigid structures. 
 
 
6  Extending Newton’s Model with Inertia and Vacuum Drag 
 
Starting from an  aether  built with moving small extended structures 
with an average real distribution isotropic in an inertial frame I0 (i.e. 
examining the effects in a given inertial frame I centered on a point Y of 

the real vacuum distribution on a test particle moving with absolute 

                                                 
5 According to Newton massive bodies move in the vacuum, with constant 
directional velocities, i.e. no directional acceleration, without any apparent 
relative  friction » or  drag » term. This is not true for accelerated forces (the 
equality of inertial and gravitational masses are a mystery) and apparent 
absolute motions proposed by Newton were later contested by Mach. 
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velocity 0V and angular momentum 0
 ) one can evaluate more 

precisely, the collective interactions carried by this aether between two 
extended neighboring regions centered on points A and B with two 
centers of mass situated at XA and XB. 
 Starting with 0 , i.e. for gravitational effects, it appears 

immediately 
a) if one assumes the gravitational potential is spherical in the rest 
 frame BI of its source B, 

b) that the motion of A undergoes a velocity dependent inertial induction 
 with respect to A i.e. a friction depending on the velocity v of A with 
respect to B 
c) that this motion is also submitted to an acceleration dependent inertial 
 with respect to BI  i.e. also an acceleration depending on its 

acceleration a  measured in BI .  

d) possible terms depending on higher order time derivations which we 
 will neglect in the present analysis we can write (6.19) the force on A 
 due to B in IB in the form F = FS+Fv+Fa where 

    r
BA

r
BABA Uaf

rc

mm
GUfv

rc

mm
G

r

mm
GF ˆ)(ˆ)(

2
2

222
 








  (38) 

 The terms G, G’, G’’ are scalars possibly dependent on v. The terms 
mA and mB are the gravitational masses in IB , Û , is the unit vector along 
r. )(f and )(f must have the same form i.e. 1/2 cos  or cos  cos . If 

we also accept the preceding velocity dependent analysis for contracting 
rods and retarded clocks then we should write G = G’ in (38) and take f (
 ) =  cos  cos as done by Ghosh [26]. Moreover, if we compare the 

form given by Weber to the repulsion of two electric charges of the same 
sign:                       
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       (39) 

 
corresponding to electromagnetism, with the recent form given by Assis 
[27,28] to attracting interacting masses mA and mB i.e. 
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we see they have exactly the same form; the difference of their 
coefficients being compatible (within our interpretation) since they 
correspond to opposite variations of the average vacuum density. Their 
interpretation in terms of 0 (for electromagnetism) and (for 

gravitation) also explains (at last qualitatively) why extended depressions 
repel or attract when they rotate through parallel or antiparallel directions 
and only attract when . This also explains why a reduction of 

attraction between two masses has been observed when one puts another 
mass between them (the LAGEOS satellite). In this model this similarity 
is indeed comparable to similar behaviors of vortices for gravitation and 
Tsunamis for electromagnetism on an ocean surface. 
 If one assumes the absolute local conservation of four-momentum and 
angular momentum in regions containing the preceding aether  carrying 
its associated collective electromagnetic and gravitational motions one 
can evaluate the effects of their interactions. With a real 
physical  aether  there is no such thing as free electromagnetic or 
gravitational phenomena. Drag theories (described as inertial induction) 
are always present and responsible for Casimir type effects in the 
microscopic domain. Real consequence of the aether  appear, at various 
levels, in the macroscopic and cosmological domains… as has already 
been suggested in the literature and tested in laboratory or astronomical 
phenomena. We only mention here: 
 
1) Possible consequences of modifying and testing the Newton and 
 Coulomb forces. 
2) The redshift and variable velocity of electromagnetic waves results 
 from the rotational inertial drag of extended photons moving in 
 vacuum: an effect already observed in light traversing around the 
 earth [28]. 
3) The possible measurable existence of the redshift of transverse 
 gravitational waves… possible in the near future. 
4) Observational redshift variations of light emitted by Pioneer close to 
 the solar limb, i.e. also of photons grazing a massive object [28]. 
5) The observed anisotropy of the Hubble constant in various directions 
 in the sky [28] associated with various galactic densities. 
6) Observed torques on rotating spheres in the vicinity of large massive 
 bodies. This also appears in some experiments, i.e.: 
  a)  Secular retardation of the earth’s rotation. 

0

0
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b) Earth-moon rotation in the solar system etc. 
7) Apparent evolution with time of angular momentum in the solar-
 planetary system. 
8) Different variation of redshift of light traveling up and down in the 
 Earth’s gravitational field…Which also supports existence of photon 
 mass. 
 
7 Relativistic Maxwell's Equations in Complex Form 
 
We will now outline the relativistic formalism which gives a more 
comprehensive explanation of the complexification scheme. Such issues 
as the Higgs (soliton) monopole depend on considering Lorentz 
invariance and relativistic causality constraints. We will also relate the 
complexification of Maxwell's equations to models of nonlocality. We 
examine, for example, the manner in which advanced potentials may 
explain the remote connectedness which is indicated by the Clauser test 
of Bell's theorem. Similar arguments apply to Young's double slit 
experiment. The collective coherent phenomena of superconductivity is 
also explainable by considering the relativistic field theoretic approach in 
which wave equations are solved in the complex Minkowski space (such 
as the Dirac equation).  
 
 
 7.1 Relativistic conditions on Maxwell's equations in complex 
geometries and the invariance of the line element  
 
This section introduces the relativistic form of Maxwell's equations. The 
fields E and B  are defined in terms of ( ,A  ), the four vector potential; 

and the relativistic form of E and B  is presented in terms of the tensor 

field, F (where indices and run 1 to 4). We then complexity F and 

determine the expression for the four vector potential  ,jA A   in 

terms of F . (index j runs 1 to 3). Discussion of line element invariance 

is given in terms of F . 

 In section 6.8 we describe the complex form of A fields and through 

the formalism in this section we can relate this to the complex forms of 
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E and B . We utilize Weyl's action principle to demonstrate the validity 

of the use of the complex form of F . Weyl relates the gravitational 

potential,G , to the EM ‘geometerizing’ potential A , or geometrical 

vector, using the principle of stationary action for all variations G and

A  . The quantity A , or vector potential, which we identify with A , 

is related to F , the EM force field, by a set of gauge invariant relations. 

The EM force F is independent of the gauge system. The curl of A has 

the important property 

         
A A

F
x x
 


 

 
 
 

        (41) 

where F is antisymmetric or F F   , and changing ~ A  to 
' /A A x       is a typical gauge transformation where the intrinsic 

state of the world remains unchanged. 
 We define the four vector potential as A , which can be written in 

terms of the three vector jA and , where  is the fourth or temporal 

component of the field. The indices ,   run 1 to 4 and j runs 1 to 3. 

 Then we can write Maxwell's equations in compact notation in their 
usual tensor form in terms of F , (for c = 1); 

           

0

0

0

0

z y x

z x y

y x x

x y z

B B E

B B B
F

B B E

E E E



 
    
     

     (42) 

then the equations   1/ /E c B t     and 0B  can be written 

        as 0
F F F

x y z
    
  

  
      (43) 

or 0F   for 1 2 3, , ,x x x y x z    and  4x t . 

To complexity the elements of F  we can take conditions,  
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    For  41 42 43, ,F F F iE  and  23 32 12, ,F F F B ,  

    or  , ,x y zE E E iE  and  , , .x y zB B B B      (44) 

 We can write the complex conjugate of the electric and magnetic 

fields in terms of the complex conjugate of F  or *F F 
   . There is a 

useful theorem stating [29] 4 *
123 F F     or *( ).t

xyz F F      

Then for  23* 31* 12*, ,F F F iE  and  41* 42* 43*, ,F F F B   we obtain

* / 0F x     or 
* 0F   which gives the same symmetry between 

real and imaginary components as ours and in Inomata's formalism. [30]. 
 The expressions for the other two Maxwell equations 4E    

and 
1

e

E
B J

c t


  


can be obtained by introducing the concept of 

the vector potential in the Lorentz theory as first noticed by Minkowski 

[31]; we have the four vector forms  1 2 3, , A    and 4 ,i  then 

B A  and
1

.
A

E
c t

 
  


 Then we have 

AA
F

x x


  


 
 

 or 

F A   for the vector and scalar potentials  1 2 3, , ,A A A A  . If A 

is a solution to F A   then '

x 

 



 also is (by gauge invariance) 

and 41
0A

c t


   


. We term the fourth component  or 4  inter-

changeably. Then from Lorentz theory we have the 4D form as 0
A

x









or 0.A   We can now write the equations for 4F   and 

1
e

E
B J

c t


  


 as 

       
F

s
x










  or  .F S              (45) 

 The most general covariant group of transformations of the  EM field 
equations (more general than the Lorentz group) is formed by affine 

transformations which transform the equation of the light cone, 2 0s   
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into itself. (The properties of the spacetime manifold are defined in terms 
of the constraints of the line element, which relate to the gravitational 
potential, g . We also form an analogy of the metric space invariant to 

the EM source vector, s ) [32]. 

 This group contains the Lorentz transformations as well as inversion 
with respect to a 4D sphere, or hyperboloid in real coordinates. Frank 
[33] discusses the Weyl theory and gives a proof that the Lorentz group 
together with the group of ordinary affine transformations is the only 
group in which Maxwell's equations are covariant [33]. Recall that an 

affine transformation acts as x x  
 with an inverse 'x x  


 . 

The affine group contains all linear transformations and the group of 
affine transformations transforms s2 = 0 on the light cone into itself.  
 In the Weyl geometry, if we have from before, F    and   

            
1 g F

F
xg






  


       (46a) 

and       
1 g F

F
xg







  


          (46b) 

with the signature (+,+,+,-). Then using the theorem in W. Pauli [34],  
          F F F               (47) 

and from before, F S  and since 0  and then 0x    and 

we have from 
         A A S                 (48) 

or         A S                 (49) 

for our potential equation, where  is the D'Alembertian operator, and 

3

2 2 2 2 2
2

2 2 2 2 2 2

1
Rx y z c t t

 
       

            
    

  (50) 

 The important aspect of this consideration [35] is our ability to relate 
the EM potential to a corresponding spacetime metric interval s or s2. 
Hence we can construct the invariant relations for our fields in terms of 
our Lorentz invariance four space conditions. We can also relate the 
introduction of a complex spacetime to the complex expansion of the 
electric and magnetic fields in this section and demonstrate their self-
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consistency. We will look at this in more detail at the end of this section 
where we consider a generalized affine connection. We can relate the 
EM potential, A and 4 to g as g and also to the square root of the 

invariant, or s.  
 The key to the relationship of complex F and complex spacetime is 

the analogy between   and g .We can relate the EM scalar potential 

into the interval of time as in Eq. (49), A S    and we make the 

analogy of A to g which is tied to the invariance conditions on s2. 

Both potentials are then related to spacetime or spacetime interval 
separation. Note that in the A s   equation we have a g  factor in 

order to form the invariant. In the equation for s2, the invariant is found 

directly as 2 .s g x x 
 We will write a set of invariant relations for the 

case of complex E  and B fields at the end of this section. We can relate 

this then to the deSitter algebras and the complex Minkowski metric. 

 Note that we associate the Ex component of F or 41 xF E with '
4  

as follows: 

         '
41 4 2x

e
F E

r
           (51) 

in which 4 e is associated with electric charge on the electron. This 
approximation is made in the absence of a gravitational field. Maxwell's 
equations are intended to apply to the case in which no field of force is 
acting on the system or in the special system of Galilean coordinates

 , , , ,x y zA A A A  where  , ,j
x y zA A A A  is the vector potential 

and  is the scalar potential and A is the covariant form. Also, for the 

contravariant form, we have  , .x y zA A A A     And in empty 

space we have 

          0A            (52) 

In non-empty space then 

          A J                (53) 
or we can write this as 
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     


         (54) 

which is true only approximately in the assumption of flat space for 
Galilean coordinates. This is the condition which demands that we 
consider the weak Weyl limit of the gravitational field. 

 The invariant integral, I for F   is given by 

        I = 
1

4
F F gd

           (55) 

The quantity, L is called the action integral of the EM field. Weyl [36] 
demonstrates that the action integral is a Lagrangian function, or 

  L =  2 2 2 2 2 21

2 x y z x y zdt B B B E E E dxdydz           (56) 

which is of the form L = (T – v)dt. By describing an electron in a field by 
Weyl's formalism one has a more general but more complicated 
formalism than the usual Einstein-Galilean formalism [37]. We can write 
a generalized Lagrangian in terms of complex quantities. For example, 

we form a modulus of the complex vector B as 
2 * 2 2

Re Im.B BB B B  
This is the Lagrangian form for the real components of E and B in four 
space. We can again consider Re ImE E iE  and Re ImB B iB  for the 

complex forms of E  and B . The complex Lagrangian in complex eight-

space becomes 

             L  2 2 2 2
Re Im Re Re Im Im

Re Im

1

2
dt dt B E B E          (57) 

Re Re Re Im Im Imdx dy dz dx dy dz  

 Note that this is an 8D integral, six over space. Also all quantities of 
the integrand are real because they are squared quantities. We can also 
write a generalized Poynting vector and energy relationship. We also 
have two equations which define a vector quantity A  in EM theory 

which corresponds to the gravitational potential .g We have 

             
1 1

4 2
F F E

g
 




      
       (58) 

and 
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1

4
F F J

A
 




       
      (59) 

where E  is the energy tensor and J   is the charge and current vector. 
Two specific cases are for a region free from electrons, or 

0,T E    or a region free of the gravitational potential or in the 

weak Weyl limit of the gravitational field, F J J     where  is 

the four space D'Alembertian operator. The solution for this latter case is 
for the tensor potential ,A  

            1

4

de
F A A

r  
          (60) 

 
if all parts of the electron are the same or uniform in charge. For the 

proper charge 0 ,  we have 0 .J A   

 In the limit of 0,A
   then 0 ,  the proper density, is given as 

2

0 12
J J 





   for  
1

2 21 . 


  In Weyl's 4D world then, matter 

cannot be constituted without electric charge and current. But since the 
density of matter is always positive the electric charge and current inside 
an electron must be a space-like vector, the square of its length being 
negative. To quote from Eddington:  
 

It would seem to follow that the electron cannot be built up of 
elementary electrostatic charges but resolves into something more 
akin to magnetic charges [38].  

 
Perhaps we can use the structure of Maxwell's equations in complex 
form to demonstrate that this magnetic structure is indeed the complex 
part of the field. 
 In considering F and A as complex entities rather than four space 

real forms, we may need complex forms of the current density. Also the 
relationship between F and A has a spatial integral over charge. If we 

consider F and A as complex quantities, we see possible implications 

for the charge e or differential charge de being a complex quantity. 
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Perhaps the expression Re Ime e ie  is not appropriate, but a form for the 

charge integral is, such as: Re Imde de

r  where Re Imr r ir  is more 

appropriate. Fractional charges such as for quarks, the issue of the source 
of charge (in an elementary particle) and its fundamental relationship to 
magnetic phenomena (magnetic domains) are essential considerations 
and may be illuminated by this or a similar formalism. Neither the source 
of electrics or magnetics is known, although a great deal is known about 
their properties. 
 Faraday's conclusion of the identical nature of the magnetic field of a 
loadstone and a moving current may need reexamination as well as the 
issue of Hertzian and non-Hertzian waves. Again, a possible description 
of such phenomena may come from a complex geometric model [39]. As 
discussed, one can generalize Maxwell's equations and look at real and 
imaginary components which comprise a symmetry in the form of the 
equations. We can examine in detail what the implications of the 
complex electric and magnetic components have in deriving a Coulomb 
equation and examine the possible way, given a rotational coordinate, 
this formalism ties in with the 5D geometries of Kaluza and Klein. 

 Starting F  , A and ,J  Maxwell's equations can be compactly 

written as
F

J
x










and again,

A A
F

x x
 


 

 
 
 

 and F J 
  . Now 

suppose that an electron moves in such a way that its own field on the 

average just neutralizes an applied external field 'F in the region 

occupied by the electron. The value of F averaged for all the elements 

of change constituting the electron is given by 
 

         1 2

12

1

4

de de
eF A A

r  
    

and                           (61) 

         
21

4

e
eF A A

a  
   

 
where 1/a is the average value of 1/r12 for every pair of points in the 



29 
 

electron and a will then be a length comparable to the radius of the 
sphere throughout which the charge is spread. The mass of the electron is

2 / 4 .m e a We thus have a form of Coulomb's law, as we have shown 

the complex form of F  to be consistent with this and Maxwell's 
equations and that we will have a real and an imaginary Coulomb's law. 
 Self-consistency can be obtained in the model by assuming that all 
physical variables are complex. Thus, as before, we assumed that space, 
time, matter, energy, charge, etc. were on an equal footing as coordinates 
of a Cartesian space quantized variable model. It is reasonable then to 
complexity space and time as well as the electric and magnetic fields and 
to determine the relationship of the equations governing standard 
physical phenomena. Also to be examined in detail is any unifying 
properties of the model in terms of complexifying physical quantities as 
well as examining any new predictions that can be made. 
 Faraday discusses some possible implications of considering A , 

rather than F  as fundamental in such a way that A  may act in a 

domain where F  is not observed [39]. In a later section we present a 

complexification of A rather than E and B (in F  ). 

 Continuing with the relationship of ,F  the vector A  , and scalar 

potential , and the metric space, s  let us relate our complex EM field,

,F  to complex spacetime. We have the volume element  

d gdxdydz  for  

         2ds g dx dx 
          (62) 

 

and for a particular vector component of .F g f 
   

Then we have 

        
1 f g

F
xg






  


         (63) 

 

For F    the function f   is related to the EM potential and 
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gravitational potential as f g
x

 






. As before, 

F
J

x









 and   

.
F

J
x


 








As before we also had  41 42 43, ,F F F iE  and 

 23 31 12, ,F F F B  then the generalized complex form of ,F  is 

     

0

0

0

0

z y x

z x y

y x z

yx z

i
B B E

c
i

B B E
c

F
i

B B E
c

iEiE iE

c c c



   
 
   

  
  
 
 
  
 

           (64) 

which we can denote as 

     ,
i

F B E
c

   
 

    or    * , .
iE

F B
c

   
 

     (65) 

We can now relate the complex E and B fields of the complex spacetime 
coordinates. 
 Returning to the compact notation for the two homogeneous 

equations, 1 0
B

E
t


  


 and 0B   as 

          0
F F F

x x x
  

 

 



  
  

  
           (66) 

It is very clear that introducing the imaginary components into these 

equations as  / ix  and  / it  leaves them unchanged. 

 Now let us look at the inhomogeneous equations 4E    and 

1
.e

E
B J

c t


  


 Consider then 

         
AA

F
x x


  


 
 

                  (67) 
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or 

           F A      for   ~ ,jA A   

for j runs 1 to 3 and all Greek indices run 1 to 4, as before. Then the 

inhomogeneous equations become in general form, F x s      

which sets the criterion on s for using  Imix  ; that is, ' .s is  To be 

consistent [40], we can use
1

, .iA A
c    

 
 

 We can consider the group of affine connections for a linear 
transformation from one system S to another S’ where S and S' are two 
frames of reference and  

          'x a x             (68) 

where a a  


  and det 1.a  In general we can form a 4 x 4 

coefficient matrix for the usual diagonal condition where, 11 1,a   

22 331, 1a a  and 44 1,a   all the other elements are zero, i.e. the 

signature (+++-). We can choose arrays of 'a s  both real and 

imaginary for the general case so that we obtain forms for space and time 
components as being complex; for example, 

          '
3 4sx x i x            (69) 

for   1/ 22
4 , 1 / .x t and v c  


    Other examples involve 

other combinations of complex space and time which must also be 
consistent with unitarity. 
 Let us briefly examine the effect of a gravitational field on an 
electron. Then we will discuss some multidimensional models in which 
attempts are made to relate the gravitational and EM forces. Some of 
these multidimensional models are real and some are complex. The 
structure of the metric may well be determined by the geometric 
constraints set up by the coupling of the gravitational and EM forces. 
These geometric constraints govern allowable conditions on such 
phenomena as types of allowable wave transmission and the manner in 
which remote space-times are connected. Nonlocality or remote space-
time connections have implications for EM phenomena such as Young's 
double slit experiment and Bell's theorem. 
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 In fact, these experiments are more general than just the properties of 
the photon, that is, both experiments can be and have been conducted 
with photons and other particles; and therefore what are exhibited are 
general quantum mechanical properties. Remote connection and/or 
transmission and nonlocality are more general than just EM phenomena 
but certainly have their application in electrodynamics and the nonlocal 
properties of the space-time metric can be tested by experiments 
involving classical and quantum electrodynamic properties. 
 
 
7.2 Complex E & B in real 4-space & the complex Lorentz condition 
 
Another attempt to relate the relativistic and electro- magnetic theories is 
the approach of Wyler in his controversial work at Princeton. The model 
of Kaluza and Klein use a fifth rotational dimension to develop a model 
to relate EM and gravitational phenomena. This geometry is one-to-one 
mappable to our complex Minkowski space. Wyler introduces a complex 
Lorentz group with similar motives to those of Kaluza and Klein [41,42]. 
Wyler’s formalism appears to relate to our complex Maxwell formalism 
and to that of Kaluza and Klein. The actual fundamental formalism for 
the calculation of the fine-structure constant,  , is most interesting but 
perhaps not definitive. 

        
22

0

04 2

e ce

c h




 


        (70) 

where e is elementary charge, 0 vacuum permittivity and 0 the magnetic 

constant or vacuum permeability. An anthropic explanation has been 
given as the basis for the value of the fine-structure constant by Barrow 
and Tipler. They suggest that stable matter and intelligent living systems 
would not exist if  were much different because carbon would not be 
produced in stellar fusion [43]. 
 Wyler [44] introduces a complex description of spacetime by 
introducing complex generators of the Lorentz group. He shows the 
Minkowski Mn group is conformally isomorphic to the S0(n,2) group and 
then introduces a Lie algebra of M4 which is isomorphic to S0(5,2). From 
his five and four spaces he generates a set of coefficients that generate 
the value of the fine structure constant, . It is through introducing the 
complex form of the Lorentz group, L(Tn)  that he forms an isomorphism 
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to S0(n,2). 
 Wyler calculates the EM coupling constant in terms of geometric 
group representations. He expands the generators of the set of linear 
transformations, Tn, of the group L(Tn). By definition, L(Tn) is 
isomorphic to the Poincairé group P(Mn), where Mn is the Minkowski 
space with signature (+++-) or, more generally, (1, n-l). The conformal 
group C(Mn) is then isomorphic to the S0(n,2) group, which is of 
quadratic form and signature (n,2).  
 Wyler then chooses the complex form   
 
          Tn = Rn + iVn          (71) 
 
(where Rn represents TRe , and Vn represents TIm) for y Rn , or y is an 
element of Rn and all y's are y > 0. The Poincairé group, P(Mn) is the 
semidirect product of the Lorentz group S0(l, n-l) and the group of 
transformations Rn  then is g  S0(n,2). 
 Then C(M4) S0(4,2) is the invariance group of Maxwell's equations. 
The hyperboloids of the 4-mass shell momentum operators are 

2 2
1 4,...,p p  = m2 from the representation of the Lie group geometry of M4 

isomorphic to S0(5,2). The intersection of the D5 (five-dimensional) 
hyperspace with D4 gives a structure reduced on D4 which is colinear to 
the reduction of a Casimir operator function, f(z) harmonic in D4. 
 The coefficients of the Poisson group Dn as D4 and D5 give the value 
of  ~ 1/137.036. Actually, it is the coefficients of the Poisson nucleus 
Pn(z, )  harmonic in Dn which gives the value of   in terms of z where 

z is, in general, a complex function and  is a spinor. The value is 

obtained from the isomorphic groups S0(5) x SO(2) and S0(4) x SO(2) 
which gives (9 /8 4) (V(D5)) = 1/137.037 where V(D5) is a Euclidean 

value of the D5 domain [45]. 
 The expression for the Poisson nucleus is given by Hau [45]. Note 
that the Wyler calculation is another example of the relationship between 
a fifth dimension and a complex "space" of Lorentz transformation. The 
Wyler theory appears to strongly support the fundamental nature of 
geometric models. If one can calculate the fine structure constant or any 
other force field coupling constants from first principles, this gives great 
impetus to the concept that geometric constraints are extremely 
significant and may potentially be able to explain the origin of scientific 
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law. In particular, we may be able to at least describe the major force 
fields (nuclear, EM, weak, and gravitational in terms of a geometric 
structure and, perhaps, by this formalism demonstrate the unifying 
aspects of major forces of nature [46]. 
 Wyler also associates the conformal group C(Mn) S0(4,2) with the 
invariant group of Maxwell equations. The mass shell conditions on the 
hyperboloids of mass form the representation of the Lie algebras of M4. 
Isomorphism to S0(5,2) and S(4,2) intersection lead to a model of the 
intersection of Maxwell's field and the elementary particle field, i.e. a 
possible unification of  EM and weak interactions [47]. 
 In the presence of an external gravitational field, the cosmological 
term is small and finite and depends on the state of vacuum state 
polarization. In fact, the cosmological term is given by the sum of all 
vacuum diagrams. In the supersymmetry then, the cosmological term 
vanishes and therefore the total zero-point energy density of the free 
fields vanishes [48]. 
 Let us return to our complex E  and B  fields and suggest the relation 

of our formalism to the Wyler formulation. Using the invariance of line 

elements 2 2 2s X c t  for 2r ct X   for 2 2 2 2 ,X x y z    to 

measure the distance from a test charge to an electron charge, we can 
write for the imaginary part of the complex Maxwell equation 

   Im
Im Im

1 iB
iE iJ

c t


  


then for Im 0.E   

        Im
Im Im

1
0

iB
iE or iJ

c t


  


     (72) 

or 

          
 Im Im

Im Im

iB B
icJ or cJ

r r

 
 

 
     (73) 

for the assumed i, BIm commutator relation. 
 Now let us examine the energy associated with the imaginary part of 
the magnetic field, Im.B We can calculate an energy invariant by squaring 

and integrating the above equation as [30,49] 

         E 
2

2 0z
m

B
J Rd Rd

r 
               (74) 
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The distance function R(r) over the volume element d  is assumed to be 
point-symmetrical and vanishes for positive real energy states. The 
volume d  is constructed to include a small real domain where a point 
charge is located, avoiding possible divergences. The negative value of 
the energy integral leads us to hypothesize about what the source of this 
energy may be. Perhaps it can be related to vacuum state polarization in a 
Fermi sea model, as we have presented before [10]. Another possible 
association is with advanced potential models such as those of de 
Beauregard [50,51]. A third and perhaps the most interesting association 
would be with the complex coordinate space [52,53].  
 In Weyl's non-Riemannian geometry, [36] he presents a model that 
does not apply to actual spacetime but to a graphic representation of that 
relational structure, which is the basis in which both EM and metric 
variables are interrelated [38]. This is the deep significance of the 
geometry and relates to work of Hanson and Newman [54] on the 
complex Minkowski space as well as Wyler's work [44] on complex 
group theories, such as complex Lorentz invariance, where he attempts to 
reconcile Maxwell's equations and relativity theory. The examination of 
the hyperspheres of the de Sitter space is presented by Ellis, where he 
attempts to unify EM and gravitational theory [55]. Eddington has 
suggested that the Weyl formalism, developed around 1923, is one of the 
major advances in the work of Einstein. 
 There is a significant difference between Einstein's generalization of 
Galilean geometry and Weyl's generalization of Riemannian geometry. 
The gravitational force field renders Galilean geometry useless and 
therefore the move to Riemannian geometry was made. In terms of 
Weyl's geometry, we find that the EM force, F , is comparable to the 

surface of an electron of 4 x 1018 volts/cm, [38] and the size of the charge 
was compatible with the radius of curvature of space. 

 For the EM mass, 2 / 4 ,em e a  we have  

          
1

8gm ds G gd


           (75) 

 
where we denote the curvature R by G for the general case of both 
gravitational and EM field. The ratio of the masses /g em m  relates to the 

ratio of field strengths.  
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7.3 Complex EM Forces in a Gravitational Field  
 
We have considered the weak Weyl limit of the gravitational force in 
previous calculations of this chapter. We will briefly outline how the 
complexification of F can be formulated geometrically. We show that 

we obtain the same results for the relationship of mass and charge. 

 Let v denote the velocity vector as /v dX dS
 of the electron in 

the field, and 0 denote the proper density of charge, called e. Then the 

current is given by 0 .J v  Let F refer to the applied external force 

of the electron. Returning to Eddington's calculation [38], we then have 
 

        0 .mA A F A 
           (76) 

 
We can also write 0 as e in the above equation.  

 In the limit of our gravitational field we can neglect the gravitational 
field as an external field or also the gravitational energy of the electron. 
To discuss the presence of an electron in a gravitational field we start 

from the field equations with R
  the Ricci curvature tensor and g

  the 

metric tensor for the case where no matter is present we have:  
 

      
4

1 8

2
G R g R GE

c
   
   


          (77) 

 

using the scalar curvature,
4

8
0.

GE
R

c


  Where  Then this equation 

simplifies to  
           8R E   .            (78) 

 
This equation applies to regions that contain EM fields but no matter and 
no electron charges in the region. 
 For the only surviving component in the energy considerations, we 
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have 

           41 14F F
r


  


         (79) 

where r is the radial separation. Then 41 44
41F g F  and 

2r r
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


and 
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1 1
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2 2
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r r

 
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
 

 
 Jeffrey associates m, the mass of the electron, with 4 ,  giving

2
132

~ 1.5 10
m

   cm and justifies identifying 4  with the 

electrical charge e or 

            41 2

1

4

e
F

r r





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

         (80) 

We can then use F J J     for
4

de
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r



  and then 
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
          (81) 

because all parts of the electron have the same relativity where 

         
2

2
2

A
A J

t


 

 


 

and  

         
1

4

ds d
A v

dt r
 



 


  .      (82) 

for velocity, v , we will drop the   since all measurements will be 

assumed to be proper time measurements. Now integrating over the 
electron between pairs of points on the electron surface, 
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where 1/a is the average value of 1/r12. We can write Eq. (83) as 
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and using the equation from before, relating , ,v A F
   and 

, ,A mv A F eA  
   so that 2 / 4m e a  as before. 

 

 
 

Figure 2 Plotted are the geodesies of the deSitter space which represent the field 
lines of the  EM field. Various conditions for signal propagation are given.   
 
 How does this relate to the de Sitter spaces? In the de Sitter algebras 
the proper time in all inertial frames of intervals is the same (or 
equivalent). This is the powerful absolute of the de Sitter space. The 



39 
 

proper time interval d  on its geodesic world-line in the de Sitter 
picture is given as 

             2 2 2 2td dt e dX            (85) 

for 2 2 2 2dX dx dy dz   in Euclidean coordinates and t is the cosmic 

time. The metric form of the de Sitter universe represents the metric form 
consistent with the observed (approximately flat, low density) universe 
that we observe. It is constant with Einstein dynamic equations and is 
therefore consistent with the Hubble's expansion [56].  
 Ellis [55] suggests that geometry and EM can be unified by a rigorous 
analysis of time. The hyperspheres of de Sitter space can be represented 
as a five-dimensional metric manifold which tie the geometric models of 
gravity and electromagnetism to the structure of matter, and time is not 
primary but a property of the matter (elementary particles). If t   is 
allowed in the de Sitter space, then the typical geodesies represent what 
appears to be EM field lines. This is the manner in which Ellis attempts 
to describe the EM phenomena as geometric! 
 The conformal invariant is given as  
 

       2 2 2 2 2
2

1
ds dx dy dz dR

R
              (86) 

 
which depends only on the ratios of distances and is thus independent of 

scale. Let  t = - l nR, then R = e-t  and  2 2 2 2 2 2tds e dx dy dz dt     

which is the de Sitter metric element. Ellis' geodesies of his angle metric 
correspond to geodesies of the de Sitter space (Figure 6.3a). In Figure 
6.3b, they are time-like subluminal geodesies, and in 3c they are luminal, 
and in 6.3d they are space-like superluminal. The figures also contain 
Euclidean space planes as spheres of infinite radii.  
 Feinberg [57] suggests that the first step in the test of multi-
dimensional geometric models is to predict some simple phenomena 
such as the Coulomb attraction-repulsion; note that Figure 6.3 may point 
a way to do this, because if we can relate this five-dimensional geometry 
to the complex geometry, then we can relate this complex geometry to 
Coulomb interactions.  
 The curvature of space may then be related to a rotation or angular 
momentum component as a Kaluza-Klein 5th dimension. We can form an 
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isomorphism of this geometry to an 8D real-complex coordinate 
geometry which appears to not only unify EM theory and gravitational 
theory but may also resolve some other apparent paradoxes [58,59]. 
 We have seen that the introduction of the complex E and B fields or 

complexifying the field, F  , can be handled in such a way as to not 
distort the electric charge on the electron. We also find consistency with 
the five-dimensional geometry of Kaluza and Klein, the 8D Minkowski 
space, and the deSitter space where the geodesic represents the EM field 
lines. We can also maintain Lorentz invariance conditions for both real 
and complex transforms on the line element.    

 
 
Figure 3 Hertzian and non-Hertzian waves.  
 
 
8 Summation and Conclusions 
 
This model exploits:  
 
a) the analogy (underlined by Puthoff) between the four vector density 
 representation of gravity and electromagnetism in flat space-time [4]. 
b) the possibility of describing the causality of quantum mechanical 
 phenomena in terms of extended solitons piloted i.e. by quantum 
 mechanical potentials, by real guiding collective waves on a chaotic, 
 polarizable Dirac-type aether - both moving in a flat space-time [28].  
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c) the representation of this  real vacuum  (Dirac aether) in terms of  the 
chaotic distribution of real extended elements moving in the flat  space-
time. 
d) the introduction of internal motions within extended sub-elements and 
 their relation with local collective motions i.e. the hmcE  2  
 relation. 
e) the representation of the electron (and its associated pilot-wave) in 
 terms of extended elements with a point-like charge rotating around a 
 center of mass [28]. 
 
 These assumptions yield realistic physical characteristics to known 
empirical properties and predict new testable relations besides known 
properties of elementary particles. The present model must thus be 
extended, by associating new internal motions to these known properties 
and interpret them in terms of new strong spin-spin and spin-orbit 
interactions.  
 Our attempt is justified by the existence of EM phenomena not 
explained by Maxwell’s equations. Barrett [28] has stated that Maxwell’s 
theory does not explain the Aharonov-Bohm (AB) effect and Altahuler-
Aharonov-Spivak (AAS) effects. It does not cover the topological phase 
question i.e. the Berry-Aharonov-Anandan, Pancharatnam and Chio-Wu 
phase-rotation effects. An inclusion of Stoke’s theorem is necessary and 
results of Ehrenberg and Siday must be analyzed. The quantum results of 
Josephson, Hall, de Haas and van Alphen Sagnac-type experiments also 
need clarification.  
 The integration of gravity and electromagnetism however, is not 
finished, because unification is so far only accomplished in terms of 
bumps and holes rotating on the stochastic surface of the polarized Dirac 
Vacuum. Unification must also occur in terms of the richer Higher 
Dimensional (HD) structure of vacuum topology where one would show 
the geometric origin of charge and how  bumps  and holes transform into 
each other through quasi-particle like transitions piloted by advanced and 
retarded potentials of the fundamental unitary field itself.  
 
 
References 
 
[1] Einstein, A (1922) Geometry and Experience Sidelights on Relativity, 
Denver. 



42 
 

[2] Bass, L. & Schrödinger, E. (1955) Proc. Roy. Soc. A 232. 
[3] Maxwell, J.C. (1954) A Treatise on Electricity and Magnetism, New 
York: Dover. 
[4] Puthoff, H.E. (2002) Polarizable-Vacuum, Representation of General 
Relativity, in R.L. Amoroso , G. Hunter, M. Kafatos & J-P Vigier (eds.), 
Gravitation and Cosmology: From the Hubble Radius to the Planck 
Scale, Dordrecht: Kluwer. 
[5] Sakharov, A.D. (1967) Vacuum quantum fluctuations in curved space 
and the theory of gravitation, Sov.Phys.Dokl.12:1040-1041; 
[6] Sakharov, A.D. (1968)  Dokl. Akad. Nauk Ser.Fiz.,177:70-71; 
[7] Sakharov, A.D. (1967) Sov.Phys.Usp.34:394, (1991) Reprinted in 
Sov. Phys. Usp. Fiz. Nauk 161, No. 5 64-66. 
[8] Halbwachs, F., Souriau, J.M. & Vigier, J-P (1922) Journal de 
Physique et de Radium, 22, p. 26. 
[9] Halbwachs, F. (1960) Théorie Relativiste Fluides, Paris, Gauthier-
Villars. 
[10] Andrews, T. B. (1999) Observational tests of the static universe 
model and the derivation of the Hubble redshift,  The Hy-Redshift 
Universe: Galaxy Formation and Evolution at High Redshift, Berkeley, 
21-24 June, 1999. ASP Conference Proceedings, A.J. Bunker & W.J. M. 
van Breugel (eds.) Vol. 193, p.407. 
[11] Amoroso, R.L., Kafatos, M. & Ecimovic, P. (1998) The origin of 
cosmological redshift in spin exchange vacuum compactification and 
nonzero restmass photon anisotropy, in G. Hunter, S. Jeffers & J-P 
Vigier (eds.) Causality & Locality in Modern Physics, pp. 23-28, 
Dordrecht: Kluwer. 
[12] Aharanov, Y. & Bohm, D. (1959) Physical Review, 115, 485. 
[13] Dirac, P.A.M. (1951) Nature, 906. 
[14] Amoroso, R.L. &  Vigier, J-P  (2002) The origin of CMBR as 
intrinsic blackbody cavity-QED resonance inherent in the dynamics of 
the continuous-state topology of the Dirac vacuum, in R.L. Amoroso , G. 
Hunter, M. Kafatos & J-P Vigier (eds.), Gravitation and Cosmology: 
From the Hubble Radius to the Planck Scale, Dordrecht: Kluwer. 
[15] Arp, H. (1987) Quasars, Redshifts and Controversies, Berkeley: 
Interstellar Media. 
[16] Weyssenhof,  J.V. & Raabi, A.(1947)  Acta Phys. Polon., 9, 7-18. 3. 
[17] Vigier, J-P (1997) Phys. Lett. A., 235. 
[18] Kholmetsky, A.L. (1995) On relativistic kinematics in the Galilean 
space, Galilean electrodynamics, 6:3S; 43-50. 



43 
 

[19] Nakano, I. (1956) Progress in Theoretical Physics, 15. 
[20] Roscoe, D.F. (2006) Maxwell’s equations: New light on old 
problems, Apeiron, Vol. 13, No. 2. 
[21] Krogh, K. (2006) Gravitation without Curved Spacetime, 
arXiv:astro-ph/9910325v23. 
[22] Graneau, P., Graneau, N., Hathaway, G. & Hull, R. (2002)  
Why does lightning explode and generate MHD power? Infinite Energy, 
5:25; 9-11. 
[23] Saumont, R. (1998) Undermining the foundations of relativity, 21st 
Century Science & Technology, Summer, pp 83-87. Proc. Cold Fusion 
and New Energy Symposium, Manchester. 
[24] Evans, M.W. & Vigier, J-P (1996) The Enigmatic Photon, Vol. 1-4, 
Dordrecht: Kluwer. 
[25] Lehnert, B & Roy, S. (2000) Extended Electromagnetic Theory, 
Singapore: World Scientific. 
[26] Ghosh, A. (2000) Origin of Inertia, Apeiron, Montreal. 
[27] Assis, A.K. (1994) Weber's Electrodynamics, Dordrecht: Kluwer. 
[28] Barrett, T.W. (1993) Electromagnetic Phenomena not Explained by 
Maxwell’s Equations: Essays on the Formal Aspects of Electromagnetic 
Theory, Singapore: World Scientific. 
[29] Einstein, A. (1955) Relativity, Princeton : Princeton Univ. Press. 
[30] Inomata, I. (1976) Consciousness and complex EM fields, 
Electrotechnical Laboratory, MITI, Tokyo. 
[31] Minkowski, H. (1915) Ann, Phys. Lpz. 47; 927; Jber. Deutsche Mat. 
Vev. 24; 372. 
[32] Rauscher, E.A. (1982) Theoretical and field studies of extremely 
low frequency radiation and coherent linear phenomena, PSRL-726A. 
[33] Frank, P. (1911) Ann. Phys. Lpz. 34; 599. 
[34] Pauli, W. (1962) Theory of Relativity, Chicago: Permagon Press. 
[35] de Broglie, L. (1955) Mécanique Ondulatoire du Photon, Paris: 
Gauthier-Villas. 
[36] Wehl, H, (1918) Math. Z. 20, 384; Pruss. Akad. Wiss. 465. 
[37] Wehl, H, (1920) Phys. Z. 21, 649. 
[38] Eddington, A. (1922) The Mathematical theory of Relativity, 
London: Chelsea Publishing Co. 
[39] Faraday, M. (1855) Experimental Researches in Electricity, Vols. 1-
3, R. Taylor & W. Francis (eds.) London: Univ. London Press. 
[40] Stratton, J.A. (1941) Electromagnetic Theory, NY: McGraw-Hill. 
[41] Kaluza, T. (1921) Sitz. Berlin Preuss. Akad. Wiss., 966. 



44 
 

[42] Klein, O. (1926) Z. Phys. 37, 895. 
[43] Tipler, F.J. (1974) Phys. Rev. D9, 2203. 
[44] Wyler, A. (1969) Acad. Sc. Paris Series A, 269, 743; (1971) Acad. 
Sc. Paris Series A, 271, 186. 
[45] Hua, L.K. (1963) Harmonic Analysis in the Classical Domain, 
Providence: American Mathematical Society. 
[46] Gell-Mann, M., Raymond, P. & Slonsky, R. (1979) Supergravity, P. 
Van Nieuwenhuizen & D.Z. Freedman (eds.) Amsterdam: N. Holland. 
[47] Wyler, A. (1968) Arch. for Rational Mechanics & Analysis, 31, 35. 
[48] Wess, W. & Zumino, B. (1974) Nucl. Phys. B78, 1. 
[49] Wehl, H. (1957) Space-Time-Matter, New York: Dover. 
[50] Costa de Beauregard, O. (1976) Acad. Sci. Paris, 104, 1251. 
[51] Costa de Beauregard, O. (1977) Phys. Gelt. 60A, 93. 
[52] Rauscher, E.A. (1973) in The Iceland Papers: Fronteirs of Physics 
Conf. Amhert: Essentia Research Associates.  
[53] Ramon, C & Rauscher, E.A. (1980) Found. Phys. 10, 661. 
[54] Hanson, R.O. & Newman, E.T. (1975) Gen. Rel. & Grav. 6, 216. 
[55] Ellis, H.E. (1974) Found. Phys. 4, 311. 
[56] Rauscher, E.A. (1973) Early universe cosmological models, Bull. 
Amer. Phys. Soc. 18,1570. 
[57] Feinberg, G. (1967) Phys. Rev. 159, 1089. 
[58] Rauscher, E.A.& Targ, R. (1973) Why only 4D will not explain 
nonlocality, J Sci. Explor. 16, 655. 
[59] Ramon, C. & Rauscher, E.A. (1982) Remote connectedness in 
complex geometries, PSRL-4105.  


