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Abstract In this article we derived an importent example of the inconsistent    

countable set. Main result is:  ~conZFC    -model of  ZFC.   
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1.Introduction. 
 

Let's remind that accordingly to naive set theory, any definable collection is a set. Let  R   

be the set of all sets that are not members of themselves. If  R  qualifies as a member of 
itself, it would contradict its own definition as a set containing all sets that are not members 
of themselves. On the other hand, if such a set is not a member of itself, it would qualify as 
a member of itself by the same definition. This contradiction is Russell's paradox. In 1908, 
two ways of avoiding the paradox were proposed, Russell's type theory and the Zermelo 
set theory, the first constructed axiomatic set theory. Zermelo's axioms went well beyond 
Frege's axioms of extensionality and unlimited set abstraction, and evolved into the 
now-canonical Zermelo--Fraenkel set theory ZFC. 

"But how do we know that  ZFC   is a consistent theory, free of contradictions? The short 
answer is that we don't; it is a matter of faith (or of skepticism)"--- E.Nelson wrote in paper 

[1]. However, it is deemed unlikely that  ZFC   harbors an unsuspected contradiction; it is 

widely believed that if  ZFC   were inconsistent, that fact would have been uncovered by 

now. This much is certain ---  ZFC  is immune to the classic paradoxes of naive set 
theory: Russell's paradox, the Burali-Forti paradox, and Cantor's paradox. 

Nevertheless it is easy to see that at level of metatheory  ZFC   is inconsistent and it 

guards. Let     be the countable collection of all sets  X   such that  ZFC  !XX,  

where  X   is any 1-place open wff i.e.,  



YY    !XX  Y  X. 1.1

  

Let  X ZFC
Y  be a predicate such that  X ZFC

Y  ZFC  X  Y.  Let            
be the countable collection of all sets such that  

X X    X ZFC
X . 1.2

  
From (1.1) one obtain 

 

     ZFC
. 1.3

    
But obviously this is a contradiction. However contradiction (1.3) it is not a contradiction 

inside  ZFC   for the reason that predicates  !XX  Y  X   and  X ZFC
Y  

not is a predicates in  ZFC   and therefore countable collections     and     not is a 
sets. Nevertheless by using Gödel encoding the above stated contradiction can be shipped 

in special consistent completion of  ZFC.   

Remark 1.1. We note that in order to deduce  ~conZFC   from  conZFC   by using 

Gödel encoding, one needs  something more than the consistency of  ZFC  , e.g., that  

ZFC   has an omega-model i.e., a model in which the integers are the standard integers.To 

put it another way, why should we believe a statement just because there's a  ZFC  -proof 

of it? It's clear that if  ZFC   is inconsistent, then we won't  believe  ZFC  -proofs. What's 

slightly more subtle is that the mere consistency of  ZFC   isn't quite enough to get us to 

believe arithmetical theorems of  ZFC;   we must also believe that these arithmetical 
theorems are asserting something about the standard naturals. It is "conceivable" that  

ZFC   might be consistent but that the only models it has are those in which the integers 
are nonstandard, in which case we might not "believe" an arithmetical statement such as " 

ZFC   is inconsistent" even if there is a  ZFC  -proof of it. 

We assume that: (i)  conZFC,  (ii)  conZFC    -model of  ZFC.   

Main result is:  ~conZFC    -model of  ZFC.  
  

2.Inconsistent countable set derivation. 
                 
Let Th be some fixed, but unspecified, consistent formal theory. For later convenience, we 
assume that the encoding is done in some fixed formal theory S and that Th contains S.We 



do not specify S --- it is usually taken to be a formal system of arithmetic, although a weak 
set theory is often more convenient. The sense in which S is contained in Th is better 

exemplified than explained: If S is a formal system of arithmetic and Th is, say,  ZFC  , 
then Th contains S in the sense that there is a well-known embedding, or interpretation, of 
S in Th.Since encoding is to take place in S, it will have to have a large supply of constants 

and closed terms to be used as codes. (E.g. in formal arithmetic, one has  0  , 1  ,... .) S 

will also have certain function symbols to be described shortly.To each formula,    , of 

the language of Th is assigned a closed term,  c  , called the code of    . [N.B. If  

x   is a formula with free variable  x,   then  xc   is a closed term encoding the 

formula  x   with  x   viewed as a syntactic object and not as a parameter.] 

Corresponding to the logical connectives and quantifiers are function symbols,  neg  ,  

imp  , etc., such that, for all formulae    ,   :   S        negc   c,    S    

    impc, c           c   etc. Of particular importance is the substitution 

operator, represented by the function symbol  sub,   . For formulae  x  , terms  t   

with codes  tc :  

 

S  subxc, tc   tc. 2.1

                                   
It well known [3] that one can also encode derivations and have a binary relation  

ProvThx,y   (read " x   proves  y   " or " x   is a proof of  y  ") such that for closed  

t1 , t2 :  

 S     ProvTht1 , t2    iff  t1   is the code of a derivation in Th of the formula with     

code t2 . It follows that  

Th   iff S  ProvTh t, 
c  2.2

  

for some closed term  t.  Thus one can define  

  

PrTh y  xProvTh x,y, 2.3

 
and and therefore one obtain a predicate asserting provability. We note that is           
not always the case that [3]: 



 

Th   iff S  PrTh 
c . 2.4

      
It well known [3] that the above encoding can be carried out in such a way that the 

following important conditions  D1,D2   and  D3   are met for all sentences [3]:  

D1.Th   implies S  PrTh 
c ,

D2.S  PrTh 
c   PrTh PrTh 

c c ,

D3.S  PrTh 
c   PrTh   c   PrTh 

c .

2.5

  

Conditions  D1,D2   and  D3   are called the Derivability Conditions. 

Lemma 2.1. Assume that: (i)  ConTh   and (ii)  Th  PrTh
c ,   where             

is a closed formula.Then  Th  PrTh
c .   

Proof. Let  ConTh  be a formula  

ConTh   t1t2ProvTh t1 , c   ProvTh t2 ,negc 

t1t2ProvTh t1 , c   ProvTh t2 ,negc .

2.6

  

where  t1 , t2   is a closed term. We note that  ThConTh  ConTh   for any    

closed  .   Suppose that  Th  PrTh
c ,  then (ii) gives 

 

Th  PrTh 
c   PrTh 

c . 2.7

  

From (2.3) and (2.7) we obtain    
 

t1t2ProvTh t1 , c   ProvTh t2 ,negc . 2.8

  



But the formula (2.6) contradicts the formula (2.8). Therefore  Th  PrTh
c .   

Lemma 2.2. Assume that: (i)  ConTh   and (ii)  Th  PrTh
c ,   where            

is a closed formula.Then  Th  PrTh
c .      

Assumption 2.1. We assume now that: 

(i) the language of  Th  consists of: 

numerals  0  , 1  ,... 

countable set of the numerical variables:  v0 ,v1 , . . .    

countable set     of the set variables:    x,y,z,X,Y,Z,, . . .    

countable set of the  n  -ary function symbols:  f0
n , f1

n , . . .   

countable set of the  n  -ary relation symbols:  R0
n ,R1

n , . . .   

connectives:  ,   

quantifier: .   

(ii)  Th  contains  ThZFC;   

(iii) Let     be any closed formula, then  Th  PrTh
c &M

Th     implies  

Th  .   

Definition 2.1. An  Th -wff     (well-formed formula    ) is closed - i.e.     is a 
sentence - if 
it has no free variables; a wff is open if it has free variables.We'll use 

the slang ` k  -place open wff ' to mean a wff with  k   distinct free variables. 

Definition 2.2.We said that, Th#
  is a nice theory or a nice extension of the  Th  iff 

(i)  Th#
  contains  Th;   

(ii) Let     be any closed formula, then  Th  PrTh
c    implies  Th#  .   

Definition 2.3.We said that, Th#
  is a maximally nice theory or a maximally nice 

extension of the  Th  iff  Th#
  is consistent and for any consistent nice extension     

Th   ofthe  Th :   De d Th#  DedTh   implies  Ded Th#  DedTh.    

Proposition 2.1. Assume that (i)  ConTh   and (ii )  Th  has an    -model  M
Th .  

Then theory  Th  can be extended to a maximally consistent nice theory  Th# .   

Proof. Let  1 . . .     i. . .   be an enumeration of all wff's of the theory  Th  (this can   
be achieved if the set of propositional variables can be enumerated). Define a chain  

  Thi|i  ,Th1  Th  of consistent theories inductively as follows: assume that 

theory  Thi   is defined. (i) Suppose that a statement (2.9) is satisfied  

Th  PrTh  i c  and Thi   i &M
Th  . 2.9

  

Then we define theory  Thi1   as follows  Thi1  Thi  i.   

(ii) Suppose that a statement (2.10) is satisfied    



Th  PrTh  i c  and Thi   i &M
Th  . 2.10

  

Then we define theory  Thi1   as follows:  Thi1  Thi  i.   
(iii) Suppose that a statement (2.11) is satisfied  

Th  PrTh  i c  and Th   i. 2.11

  

Then we define theory  Thi1   as follows:  Thi1  Thi  i.   
(iv) Suppose that a statement (2.12) is satisfied  

Th  PrTh  i c  and Th   i. 2.12

  

Then we define theory  Thi1   as follows:  Thi1  Thi.   

We define theory  Th#
  as follows:  

Th#  
i

Thi 2.13

  

First, notice that each  Thi   is consistent. This is done by induction on  i   and by 

Lemmas 2.1-2.2. By assumption, the case is true when  i  1.  Now, suppose  Thi   is 

consistent. Then its deductive closure  DedThi   is also consistent. If a statement (2.11) 

is satisfied,i.e.  Th  PrThi c    and  Th  i,   then clearly  Thi1  Thi  i   is 

consistent since it is a subset of closure  DedThi.  If a statement (2.12) is satisfied,i.e.  

Th  PrThi c    and  Th  i,   then clearly  Thi1  Thi  i   is consistent 

since it is a subset of closure  DedThi.   
Otherwise: 

(i) if a statement (2.9) is satisfied,i.e.  Th  PrThi c    and  Thi  i   then clearly  

Thi1  Thi  i   is consistent by Lemma1 and by one of the standard properties of 

consistency:    A   is consistent iff    A;   

(ii) if a statement (2.10) is satisfied,i.e.  Th  PrThi c    and  Thi  i   then clearly  

Thi1  Thi  i   is consistent by Lemma 2 and by one of the standard properties of 

consistency:    A   is consistent iff    A.   



Next, notice  Ded Th#
  is maximally consistent nice extension of the  DedTh.    

De d Th#
  is consistent because, by the standard Lemma 2.3 belov, it is the union of a 

chain of consistent sets. To see that  Ded Th#
  is maximal, pick any wff  .   Then     

is some   i   in the enumerated list of all wff's. Therefore for any     such that  

Th  PrTh
c    or  Th  PrTh

c   , either    Th#
  or    Th# .  Since  

DedThi1   Ded Th# ,   we have    Ded Th#
  or    Ded Th# ,  which 

implies that  Ded Th#
  is maximally consistent nice extension of the  DedTh.   

Lemma 2.3. The union of a chain    i|i     of consistent sets   i  , ordered by  

  , is consistent. 

Definition 2.4. Let  x   be a one-place open wff such that conditions:  

(   )  Th  !xx    or 

(    )  Th  PrTh!xx c    and  M
Th  !xx    is satisfied.  

Then we said that, an set  y   is a  Th#
 -set iff there is exist a one-place open  Th -wff  

x  such that  y  x.   

Definition 2.5. Let   be a collection such that  : x x    x is a Th#-set .   

Proposition 2.2. Collection     is a  Th#
-set. 

Proof. Let us consider an one-place open wff  x   such that conditions (   ) or (    ) 

is satisfied, i.e.  Th  !xx .  We note that there is exists countable collection     

of the one-place open wff's    nxn   such that: (i)  x     and (ii)  

Th  !xx   nn  x   nx 

or

Th  PrTh !xx   nn  x   nx 

and

M
Th  !xx   nn  x   nx 

2.14

     
or in the equivalent form  



Th  !x 11x 1   nn  1x 1   n,1x 1 

or

Th  PrTh !xx 1   nn  x 1   nx 1 

and

M
Th  !xx 1   nn  x 1   nx 1 

2.15

  

where we set  x  1x1 ,nx1   n,1x1    and  x  x1  . We note that  

everyone collection  k  n,kxn,k  1,2, . . .   such above defines an        

unique set  xk ,  i.e.  k1
k2

    iff  xk1
 xk2

.   

We note that collections  k ,k  1,2, . .   is no part of the  ZFC,  i.e. collection  k   

there is no set in sense of  ZFC.   However that is no problem, because by using Gödel 

numbering one can to replace any collection  k ,k  1,2, . .   by collection  

k  gk     of the corresponding Gödel numbers such that   

k  gk   gn,kx k n ,

k  1,2, . . . .

2.16

  

But obviously any collection  k  gk ,k  1,2, . . is a Th -set.This is done by    
Gödel encoding [3],[5] of the statament (2.15) by Proposition 2.1 and by axiom      
schema of separation [4], see  

Proposition 2.3. Let  gn,k  gn,kx k ,k  1,2, . .   be a Gödel number of the wff  

n,kx k .  Therefore  gk   gn,kn,   where we set  k  k ,    k  1,2, . .      
and  

k 1k 2gn,k1


ngn,k2


n    x k1
 x k2

. 2.17

  

Let  gn,knk   be a family of the all sets  gn,kn.   By axiom of choice [4] one 

obtain unique set  
  gkk   such that  kgk  gn,kn .  Finally one obtain a set  

   from a set      by axiom schema of replacement [4]. 



Thus one can define a  Th#
 -set  c   :   

xx  c  x    PrTh x  x c . 2.18

  

Proposition 2.3. Any collection  k  gk ,k  1,2, . .   is a  Th -set. 

Proof. We define  g1  g1x1   1x1 c,v1  x1 c.   Therefore           

Frg1 ,v1    is satisfied,(see Appendix,def.10). Let us define predicate 

gn,1 ,v1  :    

gn ,v 1   PrTh !x 11x 1 c  

!x 1v 1  x 1 c PrTh 1x 1 c   PrTh Frgn,1 ,v 1 .

2.19

  

We define now  1
  gn,1 |gn,1 ,v1    and  1  1

  g1.  But obviously   
definitions (2.16) and (2.19) is equivalent. 

Proposition 2.4. (i)  Th#  c,  (ii)  c   is a countable  Th#
 -set. 

Proof.(i) Statement  Th#  c   follows immediately by using statement     and 

axiom schema of separation [4]. (ii) follows immediately from countability of a set  .   

Proposition 2.5. A set  c   is inconsistent. 

Proof.From formla (2.18) one obtain    

Th#  c  c  PrTh c  c c . 2.20

  

From formla (2.18) and Proposition 2.1 one obtain    

Th#  c  c  c  c 2.21

  
and  

Th#  c  c   Th#  c  c . 2.20

  



But this is a contradictions. 

 
 

 
Appendix 

Let  Seq  be the set of sequence numbers, i.e. those numbers with no gaps in their list of 

prime divisors. For such numbers  a  , we have [3],[5]:  

a  
Iha 

pi

a1 . 1

  

If  a,b   are sequence numbers encoding  a0 , . . . ,am ,b0 , . . . ,bn   , respectively, then  

a  b   is a sequence number encoding the concatenation  a0 , . . . ,am ,b0 , . . . ,bn .   

  We write  a0 , . . . ,an    for  2a01 . . .2an1 .  In particular, a  2a1 .   
Definition 1.[3]. We generate codes for complex terms and formulae as follows: 

(i) If  t1 , . . . , tn   have codes  t1 c, . . . , tn c,   then  

f i
n t1 , . . . , tn c  f i

n c, t1 c, . . . , tn c ,

Ri
n t1 , . . . , tn c  Ri

n c, t1 c, . . . , tn c .

2

  

where  f i
n c, Ri

n c   are the codes assigned for the  f i
n
  and  Ri

n
  respectively. 

(ii) If  ,,   have codes  c, c,   respectively, then  



c  c, c ,

  c  c, c, c ,

  c  c, c, c ,

  c  c, c, c ,

  c  c, c, c .

3

  

(iii) If     has code  c   and  x i   is a variable, then 

 

x ic  c, x i c, c ,

x ic  c, x i c, c ,

x ic  c, x i c, c ,

!x ic  !c, x i c, c .

4

  

Definition 2. [5]. (1) ICx : x is the Godel number of an individual constant of Th,   

(2)  FL ( x  ):  x   is the Godel number of a function letter of  Th,   

(3)  PL ( x  ) :  x   is the Godel number of a predicate letter of  Th.   

Definition 3.[5]. (1) Let  EVblx   be the predicate:  x   is the Gödel number of an 
expression consisting of a variable.  

EVblx  zzx1  z  x  258z. 5

   

(2) Let  ElCx   be the predicate:  x   is the Gödel number of an expression consisting 

 



of an individual constant 

 

ElCx  yyxlCy  x  2y . 6

  

(3) Let  EFLx   be the predicate:  x   is the Gödel number of an expression consisting of 
a function letter  

EFLx  yyxFLy  x  2y . 7

  

(4) Let  EPLx   be the predicate:  x   is the Gödel number of an expression consisting of 
predicate letter  

EPLx  yyxPLy  x  2y . 8

  

Definition 4.[5]. (1)  Arg
T
x  qt8,x  1

0   (2)  Arg
P
x  qt8,x  3

0
.   

Definition 5.[5]. (1) Let  Gdx   be the predicate:  x   is the Gödel number of an 

expression of  Th.  

Gdx  EVblx  ElCx  EFLx  EPLx 

x  23   x  25   x  27   x  29   x  211   x  213  



9

  

Definition 6.[5]. 

Let  Genx,y   be the predicate: The expression with Gödel number  y   comes from the 

expression with Gödel number  x   by the generalization rule 

 



  

Ge nx,y  v vyEVblv  y  23  23  213  v  25  x  25  Gdx 10

  

Definition 7.[5].Let Trmx  be the predicate: x  is the Gödel number of a term of Th.    

Trmx  EVblx  ElCx  y
yp x x2 x  y

Ihy 1  EFLy
0
 

Ihy  Arg
T
x

0
  3  y

1
 y

0
 33  uuIhyu  1  u  Arg

T
x

0
 

 v vxyu
 y

u 1  v  27  Trmv 

v vy y
Ihy 2  y

Ihy 3  v  Trmv  y
Ihy 1  y

Ihy 2  25 .

11

  

Definition 8.[5].Let  Atfmlx   be the predicate:  x   is the Gödel number of an atomic wff 

of  Th,  i.e.,  

Atfmlx  y
yp x x2 x  y

Ihy 1  EPLy
0
  Ihy  Arg

P
x

0
 

3  y
1
 y

0
 33

12

  

Definition 9.[5].Let Fmlx  be the predicate: x  is the Gödel number of an wff of Th.   

 

  

Fmlx  13

  

Definition 10.[5]. Let  Fry,v   be the predicate: x   is the Gödel number of a wff of  Th  

which contains free occurrences of the variable with Gödel number  v :  



  

Fry,v  Fmly  Trmy  EVbl2v  Substy,y,258y . 14

  
 

Definition 11.[5].(1) Let  Thwff   be the collection of the all wff's of  Th  (2) Let  

GnThwff   be the collection of the Gödel numbers of the all members of  Thwff.   

 
 
 

 

Proposition 1.Collection  GnThwff   is a  Th -set. 

 

  

 

  

 
 

 
Proposition 2. 

 
 

 
 

 
 
 
References. 

 
[1] E.Nelson.Warning Signs of a Possible Collapse of Contemporary 
     Mathematics. 

      https://web.math.princeton.edu/~nelson/papers/warn.pdf   
[2] E. Nelson. Predicative Arithmetic. Princeton University Press, 
     Princeton,1986. 
[3] C.Smorynski, Handbook of mathematical logic, 



     Edited by J. Barwise.North-Holland Publishing Company, 1977 
[4] G.Takeuti and W. M, Zaring.Introduction to Axiomatic Set Theory, 
     Springer-Verlag, 1971. 
[5] E. Mendelson,Introduction to mathematical logic.June 1, 1997.  
     ISBN-10: 0412808307. ISBN-13: 978-0412808302  


