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1.Introduction. 
 

Let's remind that accordingly to naive set theory, any definable collection is a set. Let  R   

be the set of all sets that are not members of themselves. If  R  qualifies as a member of 
itself, it would contradict its own definition as a set containing all sets that are not members 
of themselves. On the other hand, if such a set is not a member of itself, it would qualify as 
a member of itself by the same definition. This contradiction is Russell's paradox. In 1908, 
two ways of avoiding the paradox were proposed, Russell's type theory and the Zermelo 
set theory, the first constructed axiomatic set theory. Zermelo's axioms went well beyond 
Frege's axioms of extensionality and unlimited set abstraction, and evolved into the 
now-canonical Zermelo--Fraenkel set theory ZFC. 

"But how do we know that  ZFC   is a consistent theory, free of contradictions? The short 
answer is that we don't; it is a matter of faith (or of skepticism)"--- E.Nelson wrote in paper 

[1]. However, it is deemed unlikely that  ZFC   harbors an unsuspected contradiction; it is 

widely believed that if  ZFC   were inconsistent, that fact would have been uncovered by 

now. This much is certain ---  ZFC  is immune to the classic paradoxes of naive set 
theory: Russell's paradox, the Burali-Forti paradox, and Cantor's paradox. 

Nevertheless it is easy to see that at level of metatheory  ZFC   is inconsistent and it 

guards. Let     be the countable collection of all sets  X   such that  ZFC  !XX,  

where  X   is any 1-place open wff i.e.,  



YY    !XX  Y  X. 1.1

  

Let  X ZFC
Y  be a predicate such that  X ZFC

Y  ZFC  X  Y.  Let            
be the countable collection of all sets such that  

X X    X ZFC
X . 1.2

  
From (1.1) one obtain 

 

     ZFC
. 1.3

    
But obviously this is a contradiction. However contradiction (1.3) it is not a contradiction 

inside  ZFC   for the reason that predicates  !XX  Y  X   and  X ZFC
Y  

not is a predicates in  ZFC   and therefore countable collections     and     not is a 
sets. Nevertheless by using Gödel encoding the above stated contradiction can be shipped 

in special consistent completion of  ZFC.   

Remark 1.1. We note that in order to deduce  ~conZFC   from  conZFC   by using 

Gödel encoding, one needs  something more than the consistency of  ZFC  , e.g., that  

ZFC   has an omega-model i.e., a model in which the integers are the standard integers.To 

put it another way, why should we believe a statement just because there's a  ZFC  -proof 

of it? It's clear that if  ZFC   is inconsistent, then we won't  believe  ZFC  -proofs. What's 

slightly more subtle is that the mere consistency of  ZFC   isn't quite enough to get us to 

believe arithmetical theorems of  ZFC;   we must also believe that these arithmetical 
theorems are asserting something about the standard naturals. It is "conceivable" that  

ZFC   might be consistent but that the only models it has are those in which the integers 
are nonstandard, in which case we might not "believe" an arithmetical statement such as " 

ZFC   is inconsistent" even if there is a  ZFC  -proof of it. 

We assume that: (i)  conZFC,  (ii)  conZFC    -model of  ZFC.   

Main result is:  ~conZFC    -model of  ZFC.  
  

2.Inconsistent countable set derivation. 
                 
Let Th be some fixed, but unspecified, consistent formal theory. For later convenience, we 
assume that the encoding is done in some fixed formal theory S and that Th contains S.We 



do not specify S --- it is usually taken to be a formal system of arithmetic, although a weak 
set theory is often more convenient. The sense in which S is contained in Th is better 

exemplified than explained: If S is a formal system of arithmetic and Th is, say,  ZFC  , 
then Th contains S in the sense that there is a well-known embedding, or interpretation, of 
S in Th.Since encoding is to take place in S, it will have to have a large supply of constants 

and closed terms to be used as codes. (E.g. in formal arithmetic, one has  0  , 1  ,... .) S 

will also have certain function symbols to be described shortly.To each formula,    , of 

the language of Th is assigned a closed term,  c  , called the code of    . [N.B. If  

x   is a formula with free variable  x,   then  xc   is a closed term encoding the 

formula  x   with  x   viewed as a syntactic object and not as a parameter.] 

Corresponding to the logical connectives and quantifiers are function symbols,  neg  ,  

imp  , etc., such that, for all formulae    ,   :   S        negc   c,    S    

    impc, c           c   etc. Of particular importance is the substitution 

operator, represented by the function symbol  sub,   . For formulae  x  , terms  t   

with codes  tc :  

 

S  subxc, tc   tc. 2.1

                                   
It well known [3] that one can also encode derivations and have a binary relation  

ProvThx,y   (read " x   proves  y   " or " x   is a proof of  y  ") such that for closed  

t1 , t2 :  

 S     ProvTht1 , t2    iff  t1   is the code of a derivation in Th of the formula with     

code t2 . It follows that  

Th   iff S  ProvTh t, 
c  2.2

  

for some closed term  t.  Thus one can define  

  

PrTh y  xProvTh x,y, 2.3

 
and and therefore one obtain a predicate asserting provability. We note that is           
not always the case that [3]: 



 

Th   iff S  PrTh 
c . 2.4

      
It well known [3] that the above encoding can be carried out in such a way that the 

following important conditions  D1,D2   and  D3   are met for all sentences [3]:  

D1.Th   implies S  PrTh 
c ,

D2.S  PrTh 
c   PrTh PrTh 

c c ,

D3.S  PrTh 
c   PrTh   c   PrTh 

c .

2.5

  

Conditions  D1,D2   and  D3   are called the Derivability Conditions. 

Lemma 2.1. Assume that: (i)  ConTh   and (ii)  Th  PrTh
c ,   where             

is a closed formula.Then  Th  PrTh
c .   

Proof. Let  ConTh  be a formula  

ConTh   t1t2ProvTh t1 , c   ProvTh t2 ,negc 

t1t2ProvTh t1 , c   ProvTh t2 ,negc .

2.6

  

where  t1 , t2   is a closed term. We note that  ThConTh  ConTh   for any    

closed  .   Suppose that  Th  PrTh
c ,  then (ii) gives 

 

Th  PrTh 
c   PrTh 

c . 2.7

  

From (2.3) and (2.7) we obtain    
 

t1t2ProvTh t1 , c   ProvTh t2 ,negc . 2.8

  



But the formula (2.6) contradicts the formula (2.8). Therefore  Th  PrTh
c .   

Lemma 2.2. Assume that: (i)  ConTh   and (ii)  Th  PrTh
c ,   where            

is a closed formula.Then  Th  PrTh
c .      

Assumption 2.1. We assume now that: 

(i) the language of  Th  consists of: 

numerals  0  , 1  ,... 

countable set of the numerical variables:  v0 ,v1 , . . .    

countable set     of the set variables:    x,y,z,X,Y,Z,, . . .    

countable set of the  n  -ary function symbols:  f0
n , f1

n , . . .   

countable set of the  n  -ary relation symbols:  R0
n ,R1

n , . . .   

connectives:  ,   

quantifier: .   

(ii)  Th  contains  ThZFC;   

(iii) Let     be any closed formula, then  Th  PrTh
c &M

Th     implies  

Th  .   

Definition 2.1. An  Th -wff     (well-formed formula    ) is closed - i.e.     is a 
sentence - if 
it has no free variables; a wff is open if it has free variables.We'll use 

the slang ` k  -place open wff ' to mean a wff with  k   distinct free variables. 

Definition 2.2.We said that, Th#
  is a nice theory or a nice extension of the  Th  iff 

(i)  Th#
  contains  Th;   

(ii) Let     be any closed formula, then  Th  PrTh
c    implies  Th#  .   

Definition 2.3.We said that, Th#
  is a maximally nice theory or a maximally nice 

extension of the  Th  iff  Th#
  is consistent and for any consistent nice extension     

Th   ofthe  Th :   De d Th#  DedTh   implies  Ded Th#  DedTh.    

Proposition 2.1. Assume that (i)  ConTh   and (ii )  Th  has an    -model  M
Th .  

Then theory  Th  can be extended to a maximally consistent nice theory  Th# .   

Proof. Let  1 . . .     i. . .   be an enumeration of all wff's of the theory  Th  (this can   
be achieved if the set of propositional variables can be enumerated). Define a chain  

  Thi|i  ,Th1  Th  of consistent theories inductively as follows: assume that 

theory  Thi   is defined. (i) Suppose that a statement (2.9) is satisfied  

Th  PrTh  i c  and Thi   i &M
Th  . 2.9

  

Then we define theory  Thi1   as follows  Thi1  Thi  i.   

(ii) Suppose that a statement (2.10) is satisfied    



Th  PrTh  i c  and Thi   i &M
Th  . 2.10

  

Then we define theory  Thi1   as follows:  Thi1  Thi  i.   
(iii) Suppose that a statement (2.11) is satisfied  

Th  PrTh  i c  and Th   i. 2.11

  

Then we define theory  Thi1   as follows:  Thi1  Thi  i.   
(iv) Suppose that a statement (2.12) is satisfied  

Th  PrTh  i c  and Th   i. 2.12

  

Then we define theory  Thi1   as follows:  Thi1  Thi.   

We define theory  Th#
  as follows:  

Th#  
i

Thi 2.13

  

First, notice that each  Thi   is consistent. This is done by induction on  i   and by 

Lemmas 2.1-2.2. By assumption, the case is true when  i  1.  Now, suppose  Thi   is 

consistent. Then its deductive closure  DedThi   is also consistent. If a statement (2.11) 

is satisfied,i.e.  Th  PrThi c    and  Th  i,   then clearly  Thi1  Thi  i   is 

consistent since it is a subset of closure  DedThi.  If a statement (2.12) is satisfied,i.e.  

Th  PrThi c    and  Th  i,   then clearly  Thi1  Thi  i   is consistent 

since it is a subset of closure  DedThi.   
Otherwise: 

(i) if a statement (2.9) is satisfied,i.e.  Th  PrThi c    and  Thi  i   then clearly  

Thi1  Thi  i   is consistent by Lemma1 and by one of the standard properties of 

consistency:    A   is consistent iff    A;   

(ii) if a statement (2.10) is satisfied,i.e.  Th  PrThi c    and  Thi  i   then clearly  

Thi1  Thi  i   is consistent by Lemma 2 and by one of the standard properties of 

consistency:    A   is consistent iff    A.   



Next, notice  Ded Th#
  is maximally consistent nice extension of the  DedTh.    

De d Th#
  is consistent because, by the standard Lemma 2.3 belov, it is the union of a 

chain of consistent sets. To see that  Ded Th#
  is maximal, pick any wff  .   Then     

is some   i   in the enumerated list of all wff's. Therefore for any     such that  

Th  PrTh
c    or  Th  PrTh

c   , either    Th#
  or    Th# .  Since  

DedThi1   Ded Th# ,   we have    Ded Th#
  or    Ded Th# ,  which 

implies that  Ded Th#
  is maximally consistent nice extension of the  DedTh.   

Lemma 2.3. The union of a chain    i|i     of consistent sets   i  , ordered by  

  , is consistent. 

Definition 2.4. Let  x   be a one-place open wff such that conditions:  

(   )  Th  !xx    or 

(    )  Th  PrTh!xx c    and  M
Th  !xx    is satisfied.  

Then we said that, an set  y   is a  Th#
 -set iff there is exist a one-place open  Th -wff  

x  such that  y  x.   

Definition 2.5. Let   be a collection such that  : x x    x is a Th#-set .   

Proposition 2.2. Collection     is a  Th#
-set. 

Proof. Let us consider an one-place open wff  x   such that conditions (   ) or (    ) 

is satisfied, i.e.  Th  !xx .  We note that there is exists countable collection     

of the one-place open wff's    nxn   such that: (i)  x     and (ii)  

Th  !xx   nn  x   nx 

or

Th  PrTh !xx   nn  x   nx 

and

M
Th  !xx   nn  x   nx 

2.14

     
or in the equivalent form  



Th  !x 11x 1   nn  1x 1   n,1x 1 

or

Th  PrTh !xx 1   nn  x 1   nx 1 

and

M
Th  !xx 1   nn  x 1   nx 1 

2.15

  

where we set  x  1x1 ,nx1   n,1x1    and  x  x1  . We note that  

everyone collection  k  n,kxn,k  1,2, . . .   such above defines an        

unique set  xk ,  i.e.  k1
k2

    iff  xk1
 xk2

.   

We note that collections  k ,k  1,2, . .   is no part of the  ZFC,  i.e. collection  k   

there is no set in sense of  ZFC.   However that is no problem, because by using Gödel 

numbering one can to replace any collection  k ,k  1,2, . .   by collection  

k  gk     of the corresponding Gödel numbers such that   

k  gk   gn,kx k n ,

k  1,2, . . . .

2.16

  

But obviously any collection  k  gk ,k  1,2, . . is a Th -set.This is done by    
Gödel encoding [3],[5] of the statament (2.15) by Proposition 2.1 and by axiom      
schema of separation [4], see  

Proposition 2.3. Let  gn,k  gn,kx k ,k  1,2, . .   be a Gödel number of the wff  

n,kx k .  Therefore  gk   gn,kn,   where we set  k  k ,    k  1,2, . .      
and  

k 1k 2gn,k1


ngn,k2


n    x k1
 x k2

. 2.17

  

Let  gn,knk   be a family of the all sets  gn,kn.   By axiom of choice [4] one 

obtain unique set  
  gkk   such that  kgk  gn,kn .  Finally one obtain a set  

   from a set      by axiom schema of replacement [4]. 



Thus one can define a  Th#
 -set  c   :   

xx  c  x    PrTh x  x c . 2.18

  

Proposition 2.3. Any collection  k  gk ,k  1,2, . .   is a  Th -set. 

Proof. We define  g1  g1x1   1x1 c,v1  x1 c.   Therefore           

Frg1 ,v1    is satisfied,(see Appendix,def.10). Let us define predicate 

gn,1 ,v1  :    

gn ,v 1   PrTh !x 11x 1 c  

!x 1v 1  x 1 c PrTh 1x 1 c   PrTh Frgn,1 ,v 1 .

2.19

  

We define now  1
  gn,1 |gn,1 ,v1    and  1  1

  g1.  But obviously   
definitions (2.16) and (2.19) is equivalent. 

Proposition 2.4. (i)  Th#  c,  (ii)  c   is a countable  Th#
 -set. 

Proof.(i) Statement  Th#  c   follows immediately by using statement     and 

axiom schema of separation [4]. (ii) follows immediately from countability of a set  .   

Proposition 2.5. A set  c   is inconsistent. 

Proof.From formla (2.18) one obtain    

Th#  c  c  PrTh c  c c . 2.20

  

From formla (2.18) and Proposition 2.1 one obtain    

Th#  c  c  c  c 2.21

  
and  

Th#  c  c   Th#  c  c . 2.20

  



But this is a contradictions. 

 
 

 
Appendix 

Let  Seq  be the set of sequence numbers, i.e. those numbers with no gaps in their list of 

prime divisors. For such numbers  a  , we have [3],[5]:  

a  
Iha 

pi

a1 . 1

  

If  a,b   are sequence numbers encoding  a0 , . . . ,am ,b0 , . . . ,bn   , respectively, then  

a  b   is a sequence number encoding the concatenation  a0 , . . . ,am ,b0 , . . . ,bn .   

  We write  a0 , . . . ,an    for  2a01 . . .2an1 .  In particular, a  2a1 .   
Definition 1.[3]. We generate codes for complex terms and formulae as follows: 

(i) If  t1 , . . . , tn   have codes  t1 c, . . . , tn c,   then  

f i
n t1 , . . . , tn c  f i

n c, t1 c, . . . , tn c ,

Ri
n t1 , . . . , tn c  Ri

n c, t1 c, . . . , tn c .

2

  

where  f i
n c, Ri

n c   are the codes assigned for the  f i
n
  and  Ri

n
  respectively. 

(ii) If  ,,   have codes  c, c,   respectively, then  



c  c, c ,

  c  c, c, c ,

  c  c, c, c ,

  c  c, c, c ,

  c  c, c, c .

3

  

(iii) If     has code  c   and  x i   is a variable, then 

 

x ic  c, x i c, c ,

x ic  c, x i c, c ,

x ic  c, x i c, c ,

!x ic  !c, x i c, c .

4

  

Definition 2. [5]. (1) ICx : x is the Godel number of an individual constant of Th,   

(2)  FL ( x  ):  x   is the Godel number of a function letter of  Th,   

(3)  PL ( x  ) :  x   is the Godel number of a predicate letter of  Th.   

Definition 3.[5]. (1) Let  EVblx   be the predicate:  x   is the Gödel number of an 
expression consisting of a variable.  

EVblx  zzx1  z  x  258z. 5

   

(2) Let  ElCx   be the predicate:  x   is the Gödel number of an expression consisting 

 



of an individual constant 

 

ElCx  yyxlCy  x  2y . 6

  

(3) Let  EFLx   be the predicate:  x   is the Gödel number of an expression consisting of 
a function letter  

EFLx  yyxFLy  x  2y . 7

  

(4) Let  EPLx   be the predicate:  x   is the Gödel number of an expression consisting of 
predicate letter  

EPLx  yyxPLy  x  2y . 8

  

Definition 4.[5]. (1)  Arg
T
x  qt8,x  1

0   (2)  Arg
P
x  qt8,x  3

0
.   

Definition 5.[5]. (1) Let  Gdx   be the predicate:  x   is the Gödel number of an 

expression of  Th.  

Gdx  EVblx  ElCx  EFLx  EPLx 

x  23   x  25   x  27   x  29   x  211   x  213  



9

  

Definition 6.[5]. 

Let  Genx,y   be the predicate: The expression with Gödel number  y   comes from the 

expression with Gödel number  x   by the generalization rule 

 



  

Ge nx,y  v vyEVblv  y  23  23  213  v  25  x  25  Gdx 10

  

Definition 7.[5].Let Trmx  be the predicate: x  is the Gödel number of a term of Th.    

Trmx  EVblx  ElCx  y
yp x x2 x  y

Ihy 1  EFLy
0
 

Ihy  Arg
T
x

0
  3  y

1
 y

0
 33  uuIhyu  1  u  Arg

T
x

0
 

 v vxyu
 y

u 1  v  27  Trmv 

v vy y
Ihy 2  y

Ihy 3  v  Trmv  y
Ihy 1  y

Ihy 2  25 .

11

  

Definition 8.[5].Let  Atfmlx   be the predicate:  x   is the Gödel number of an atomic wff 

of  Th,  i.e.,  

Atfmlx  y
yp x x2 x  y

Ihy 1  EPLy
0
  Ihy  Arg

P
x

0
 

3  y
1
 y

0
 33

12

  

Definition 9.[5].Let Fmlx  be the predicate: x  is the Gödel number of an wff of Th.   

 

  

Fmlx  13

  

Definition 10.[5]. Let  Fry,v   be the predicate: x   is the Gödel number of a wff of  Th  

which contains free occurrences of the variable with Gödel number  v :  



  

Fry,v  Fmly  Trmy  EVbl2v  Substy,y,258y . 14

  
 

Definition 11.[5].(1) Let  Thwff   be the collection of the all wff's of  Th  (2) Let  

GnThwff   be the collection of the Gödel numbers of the all members of  Thwff.   

 
 
 

 

Proposition 1.Collection  GnThwff   is a  Th -set. 

 

  

 

  

 
 

 
Proposition 2. 
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