
Fig. 1: Weak isospin theory and the electromagnetic low-energy Moller scattering Feynman diagram, which by “crossing-

symmetry” has the same cross-section as Bhabha’s p +e  attraction. In more complex Feynman diagrams, each additional

pair of vertices (due to a loop) reduces the contribution of the diagram to the path integral by a coupling factor α, thus

making their contributions to the path integral trivial if α is very small (observable gravity has the smallest coupling α).

For this reason, only the simplest diagram need be considered for low energy quantum gravity, where the theory can be

easily checked by predicting the observable strength of gravity. These diagrams depict simple 2-vertex Moller type scatter-

ing diagrams, where forces are physically caused by the momentum exchanged by gauge boson being transferred between

the charges, like bullets delivering forces. Using Feynman’s rules for Feynman diagram contributions to the perturbative

expansion of the path integral, we correctly predicted the cosmological acceleration of the universe (published in 1996, two

years ahead of observational confirmation). Gravity was correctly predicted as the asymmetry in the total isotropic inward

graviton exchange force Ftotal = ma, caused by a particle’s gravitational coupling cross-section σ at distance R from the

observer, which blocks a fraction of Ftotal equal to the fraction of sky blocked, σ/(4πR2 ), so Fgravity = ma σ/(4πR2 ).
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Feynman’s relativistic path integral replaces the non-relativistic 1st quantization indeterminancy principle (required when

using a classical Coulomb field in quantum mechanics) with a simple physical mechanism, multipath interference between

small mechanical interactions. Each mechanical interaction is represented by a Feynman Moller scattering diagram (Fig. 1)

for a gauge boson emitted by one charge to strike an effective interaction cross-section of the other charge, a cross-sec-

tionl that is proportional to the square of the interaction strength or running coupling. Each additional pair of vertices in

a Feynman diagram reduce its relative contribution to the path integral by a factor of the coupling, so for a force with a very

small couplings like observable (low energy) quantum gravity, only the 2-vertex Feynman diagram has an appreciable contribution,

allowing a very simple calculation to check the observable (low energy) quantum gravity interaction strength. Evidence is

given that quantum gravity arises from a repulsive U(1) gauge symmetry which also causes the cosmological acceleration.



1. Feynman’s rules (Fig. 2) prove that the graviton scatter cross-section area is: σgravity =  σweak (GNewton/ GFermi )2

≈ π(2GM/c2 )2 ≈ 2 × 10-79 barns. (The nuclear cross-section unit is: 1 barn = 10-28 m2.)  The probability of hitting cross-

section σ (in area units) from distance R when firing radiation out isotropically is σ/(4πR2 ), which is equal to the fraction

of the total isotropic radiation which is actually received by cross-section σ. (See Reference 1.)

2. Isotropic cosmological acceleration a (the dark energy produced cosmological acceleration, first observed in 1998) of the

universe’s mass m produces from our perspective an effective radial outward force by Newton’s 2nd law F = dp/dt ≈ ma ≈

[3 × 1052 kg][7 × 10-10 ms-2] ≈ 2 × 1043 N, and Newton’s 3rd law of motion (the rocket principle), in our frame of ref-

erence as observers of that acceleration predicts an equal and opposite (inward directed) reaction force (see Figures 2, 4, 5

and 6 in Reference 1.). Hence g ≈ Mc4/(amR2 ), predicting a ≈ c4/(Gm) = 7 × 10-10 ms-2, or Λ = c4/(G2m2 ), which was

confirmed by observations of supernovae two years later in 1998, so G and Λ are not independent as assumed in general

relativity, but are instead interdependent. The Lambda-CDM FRW metric based on general relativity ignores this dynamic

mechanism where the dark energy causes gravity, so it falsely treats Λ and G as independent variables. But since momentum is

conserved, a falling apple cannot gain momentum (accelerate) from a purely “geometric spacetime” without a backreaction

upon the field (Newton’s 3rd law). (Objections to LeSage-type gravity like heating or drag are inapplicable to all offshell field

quanta, which in the Casimir force push metal plates together without any heating or drag, while the small cross-section of

σ ≈ 2 × 10-79 barns prevents the LeSage “overlap” problem; see Reference 1.)

Boson exchanged between charges to produce fundamental interactions have been detected, e.g. weak bosons (Fig. 1) have

been detected as neutral currents and their masses were found at CERN in 1983. It’s a fact that Feynman’s rules work for

all three Standard Model forces, so their use for the fourth force, gravity, in σgravity =  σweak (GN/ GFermi )2 is based

on the general, empirically confirmed Feynman rules. It’s a fact that an acceleration of mass is a force by Newton’s 2nd law (thus

the outward acceleration of 3 × 1052 kg in the universe constitutes a radial outward force ≈ 2 × 1043 N), and that Newton’s

3rd law predicts an equal inward force. It’s not speculative to suggest that this inward radial force of 2 × 1043 N is carried by

gravitons, because this prediction was confirmed in 1998 by Saul Perlmutter’s discovery of supernovae accelerating away

from us with acceleration around 7 × 10-10 ms-2. This gravity prediction is not a speculation but a confirmed fact, based on

consistent empirical physics.  This predicted the cosmological acceleration in 1996, two years before confirmation by

Perlmutter’s automated software analysis of CCD telescope output, unlike spin-2 graviton speculation in unpredictive string theory.

Fig. 2: the predominant interaction is the single propagator

Feynman diagram with two vertices, in which the cross-section

is proportional to the square of the coupling. This scaling uses

Feynman’s diagram calculating rules: two-vertex interaction

probability and cross-section are proportional to (coupling)2.

It empirically extrapolates the cross-section of a proton for

scattering a graviton independently of any assumed graviton spin:

σgravition-proton =  σneutrino-proton (GN/ GFermi )2 ≈

(10-11) (10-38/10-5 )2 = 10-77 mb or 10-80 barns (1 barn =

10-28 m2). GN is the gravity coupling, in the same mproton
2

units as the weak coupling, GFermi and using the h = c = 1 con-

vention. This approximation (protons are not fundamental) is the black

hole event horizon size, π(2Gmproton/c2)2 = 1.93 × 10-79 barns.

(From Los Alamos Science, Summer/Fall 1984, p. 23, Table 1.)

WEAK INTERACTION:

Neutrino-Proton Scattering

v + p g v + p          σ ~ 10-11 mb

GFermi mproton
2 = 21/2 g 2 mproton

2 /(8Mw
2 ) ~ 10-5

GRAVITATIONAL INTERACTION:

Graviton-Proton Scattering

g + p g g + p          σ ~ 10-77 mb

GNewtonian mproton
2 ~ 10-38



Implications for physics

The application of general relativity to cosmology, i.e. the Friedmann-Robertson-Walker metric of general relativity, is plain

wrong in the sense that it lacks the quantum gravity dynamics for gravity being the product of the surrounding accelera-

tion of matter, so Friedmann cannot be used as a basis for analyzing the Hubble recession, big bang or any other large-

scale (cosmological) features. General relativity is not an empirically validated prediction system for cosmology anyway

since relies in any case upon ad hoc adjustable parameters, such as its cosmological constant which is not fixed by gneral

relativity (unlike the situation in quantum gravity), but is adjusted to fit observations. However, general relativity does

include energy conservation and corrects defects in Newtonian gravitation, allowing confirmed local (non-cosmological)

predictions like the correct deflection of light by gravity, gravitational time dilation and redshift, etc.

Production of the useful predictions from general relativity

The basic method used by Einstein to arrive at the field equation of general relativity in 1915 can still be used for the local

(non-cosmological) confirmed predictions; basically this is a matter of taking the low-energy Newtonian approximation we

have derived from quantum gravity (based entirely on observables), converting it into tensor field form, and introducing

field energy conservation.

The Einstein-Hilbert gravitational field Lagrangian

The Einstein-Hilbert action, S = ∫ Ldt = ∫ Ld 4x = ∫R(-g)1/2c4/(16πG)d 4x, when “varied” to find its minima, i.e. for the

condition dS = 0 (the Euler-Lagrange law), gives the basic field equation of general relativity). However, this free field

Lagrangian L = R(-g)1/2c4/(16πG) (see Reference 2 for its derivation) is geometrically contrived to model accurately only the clas-

sical path of least action (i.e. the real or onshell path in a path integral), unlike quantum field theory Lagrangians which must be generally appli-

cable for all paths. The way that general relativity is mathematically made into the Holy Grail of quantum gravity is obfus-

cating and misleading, spuriously focussing on a search for spin-2 graviton theories (which are merely consistent with the

rank-2 field tensors of general relativity’s field description), rather than on a search for theories which are consistent with

the physical content of general relativity, i.e. the use of the metric in the relativistic correction to Newtonian gravitation

which is required for conservation of energy. This relativistic correction produces the essential experimental checks on

general relativity. Whether gravitation is described by curved spacetime using rank-2 tensors or with curved field lines using

rank-1 tensors (vector calculus) is not empirically defensible physics. There is a confusion in the literature over which parts

of general relativity are experimentally defensible; spin-2 gravitons are not experimentally defensible. We show how the

metric can be used with rank-1 tensors and spin-1 or even spin-0 gravitons to produce the same relativistic corrections to

Newtonian gravity as are usually done using general relativity with rank-2 tensors and assumed spin-2 gravitons.

Action is the Lagrangian energy density integrated over spacetime, which for a free field (with no matter) is given by grav-

itational field energy density (see Reference 2):

S = ∫ Ld 4x = ∫R(-g)1/2c4/(16πG)d 4x,

and the law of least action states that classical laws are recovered in the limit of least action, which must be an action min-

ima where dS = 0 (the Euler-Lagrange law):

dS = ∫ {d[R(-g)1/2c4]/(16πGdgµν)}dgµνd 4x = 0,

hence the derivative d[R(-g)1/2]/dgµν = 0. Employing the product rule of differentiation gives:

d[R(-g)1/2]/dgµν = (-g)1/2dR/dgµν + (-g)-1/2Rd(-g)1/2/dgµν.

Therefore, in order that dS = 0, it follows that (-g)1/2dR/dgµν + (-g)-1/2Rd(-g)1/2/dgµν = 0, where the partial derivative

of the Ricci scalar is dR = Rµνdgµν, and by Jacobi’s formula dg = ggµν dgµν, so that (-g)-1/2Rd(-g)1/2/dgµν = - 1Rgµν.

Thus,

d[R(-g)1/2]/dgµν = Rµν - 1Rgµν.



This Rµν - 1Rgµν rigorously corrects Rµν = 4πGTµν/c2. The celebrated 8πG/c 2 multiplication factor of Einstein’s field

equation is not a G prediction, but is just the Newtonian law normalization for weak fields. Set Rµν− 1Rgµν=  κTµν and

multiply out by gµν (to give contractable tensor products):

gµνRµν− 1Rgµνgµν=  κgµνTµν.

Introducing the scalars T = gµνTµν and R = gµνRµν and the identities gµνgµν = δµ
µ = 4 (for 4-dimensional spacetime)

and T = g00T00 = ρ, yields:

R − 4(1R) =  κT

R = -κT = -κg00T00 = -κρ.

Putting this scalar curvature result into Rµν− 1Rgµν= κTµν and repeating the contraction procedure by multiplying out

by g00 (note of course that g00T00 = δ0
0 = 1):

Rµν = 1(-κρ)gµν + κTµν
or

R00 = 1(-κρ) + κρ = 1κρ.

Thus, in the Newtonian (non-relativistic) limit, R00 = 1κρ = s2k = 4πGρ/c 2, so 1κρ = 4πGρ/c 2, or κ = 8πG/c 2.

If a term for the kinetic energy of matter, Lm is added to the free field Lagrangian for the action, the variation of the

Lagrangian by amount dgµν then produces a formula for the contributions by matter to the stress-energy tensor, Tµν = -

2(dLm/dgµν) + gµνLm. Einstein’s “cosmological constant,” Λ (lambda), is included by changing the free field part of the

Lagrangian to L = (R - 2Λ)c 4(-g)1/2/(16πG), which yields:

Rµν− 1Rgµν + Λgµν = 8πGTµν/c 2.

But Λ is not a checkable prediction in this equation, because it is not mechanistically linked to G, but instead is just an

adjustable ad hoc parameter which reduces the checkable falsifiability of the theory. Einstein in his 1917 paper “Cosmological

Considerations on the General Theory of Relativity” added Λ with a large positive (outward acceleration) value, to just can-

cel out gravity at the average distance between galaxies, to keep the universe static (as then allegedly observed by

astronomers). Beyond the average distance of separation of galaxies, repulsion predominated in Einstein’s model. There

are serious falsehoods in Einstein’s Λ-based static universe. First, Alexander A. Friedmann in 1922 showed it to be theo-

retically unstable: any perturbation would cause the expansion or contraction of such Einstein’s universe.

Second, in 1929 Einstein’s static universe was shown by Edwin Hubble’s expansion evidence to be observationally false.

Einstein then set Λ = 0, adopting the Friedmann-Robertson-Walker solution for the uniform curvature of a homogeneous,

isotropic universe: k = R2[8πGρ/3) - H2] where H is Hubble’s recession law parameter, H = v/R, and R = ct is the scale

factor. In flat spacetime, k = 0, and the Einstein-de Sitter critical density (needed to just make the universe collapse, if grav-

ity were a universal attractive force, rather than a mechanistic result of cosmological acceleration) is ρcritical= 3H2/(8πG), so that the ratio

of the actual mass density to the critical density in flat spacetime is Ω = ρ/ρcritical = 8πGρ/(3H2). The Friedmann-

Lemaitre equation states:

a = RH2 = (R/3)(Λ - 8πGρ)

We define Λ as positive for outward acceleration. Readers will find other versions, where Λ is defined negative and multi-

plied by c2 to give energy density (not mass density), or where the geometric multiplier is 4π (for Newtonian non-relativis-



tic motion) rather than 8π (for relativistic motion).

Einstein’s heuristic derivation of the basic field equation of general relativity

Einstein, however, initially used an heuristic method to obtain and understand the basic field equation. In the Newtonian

(or weak field) limit, gravitation is given by the scalar traces of the Ricci and stress-energy tensors (top-left to bottom-right diag-

onal sums of the tensor matrices):

R = gµνRµν = R00 + R11 + R22 + R33,

T = gµνTµν = T00 + T11 + T22 + T33.

For the non-relativistic Newtonian fall of an apple, Ricci’s curvature is approximated by Poisson’s law, R00 ≈ s2k =

4πGρ/c 2, while T = g00T00 = ρ. For radial symmetry about radius r, the Laplacian of k is s2k = (a/rx) + (a/ry) + (a/rz)

= 3a/r.

Einstein’s field equation is derived by transforming Newton’s law into a tensor spacetime curvature, with a correction for

energy conservation.

(1) Convert Newtonian gravity’s Poisson law, s2k = 4πGρ/c 2, into a tensor equation by substituting s2k g R00 g Rµν

and ρ g T00 g Tµν, so that Rµν = 4πGTµν/c 2 (note that E = mc 2 converts energy density ρ to mass density ρ/c 2).

(2) Recognise the local energy conservation error: both sides must have zero divergence, and while this is true for the Ricci

tensor, sµRµν = 0, it is not correct for the stress-energy tensor, sµTµν ≠ 0.

This makes Rµν = 4πGTµν/c 2 fail a self-consistency test, since both sides must have identical divergence, but they don’t:

sµRµν ≠ sµ(4πGTµν/c 2). To give an example, the free electromagnetic field energy density component of the gravi-

tational field source tensor is T00 = (εE2 + B2/µ)/(8π), which generally has a divergence.

(3) Correct Rµν = 4πGTµν/c 2 for local energy conservation by recognising that Bianchi’s formula allows the replacement

of the wrong divergence, sµTµν ≠ 0, with: sµ(Tµν − 1Tgµν) = 0, implying the stress-energy tensor correction, Tµν g

Tµν − 1Tgµν.

The term Tµν − 1Tgµν has zero divergence because subtracting 1Tgµν removes non-diverging components from the

stress-energy tensor, giving the correct formula, Rµν=  (8πG/c 2)(Tµν − 1Tgµν), which is exactly equivalent to field equa-

tion Rµν − 1Rgµν = 8πGTµν/c 2.

Einstein originally used trial and error to discover this. In his 11 November 1915 communication to the Berlin Academy5

Einstein suggested that the solution is that the scalar trace, T, has zero divergence. But after correspondence with Hilbert

who had ignored the physics and concentrated on the least action derivation, Einstein around 25 November 1915 realized

from Bianchi’s identity was compatible with Hilbert’s tentative more abstract and guesswork mathematical approach, and

the simplest correction is Tµν g Tµν − 1Tgµν, which gives zero divergence. In this nascent approach, Einstein was explor-

ing various possibilities and trying out general ideas to solve problems, not working on an axiomatic proof. After Einstein had the insight

from Bianchi’s identity, he able to grasp the physical significance of the result from finding the least action to free-field “prop-

er path” Lagrangian, Rc4(-g)1/2/(16πG). This crucial background is often eliminated from textbooks on general relativity.

The Einstein-Hilbert Lagrangian is that for relativistic Newtonian gravity, dealing with particles following the path of least action, on

the relativistic mass shell, i.e. where curvature (field) always results from energy. By contrast, Lagrangians for fields in tested quantum

field theories are based on non-classical Maxwell-Einstein and Yang-Mills field field potential amplitudes, which the Aharonov–Bohm effect jus-

tifies, allow field energy to exist in space even where there is no directly measurable (onshell) electromagnetic field present, just energy due to can-



celled-amplitude offshell field quanta.

General relativity: energy always contributes to the gravitational field, hence all of it always flows along the path of least

action. There is therefore deliberately no incorporation of other paths (hidden energy) in the Einstein-Hilbert Lagrangian

of general relativity. This delusion is summed up in the field equation of general relativity, where all energy contributes to

the field (curvature): no presence of energy is possible unless it contributes to the gravitational field. The whole definition

of gravitational energy in general relativity limits the Lagrangian to describing only onshell energy and paths of least action.

The Einstein-Hilbert Lagrangian is completely contrived and deluded, since it misses out all interference paths, which are

all of the paths off the path of least action.

Quantum field theory (path integral): energy doesn’t always contribute to a field, because amplitudes far off the path of least action

cancel one another, although offshell energy exchange still occurs along such paths, as shown by the Aharonov–Bohm effect.

Although the original Maxwell-Heaviside equations were analogous to Newtonian gravity in so much as they merely mod-

elled observable fields, Einstein in 1916 reformulated them into vector potential form, which includes hidden energy where

amplitudes cancel, but particle paths (offshell energy) is still present. In understanding quantum force fields, the presence

of the “cancelled” non-least action paths (ignored in general relativity) are vitally important.

We in 1996 predicted the isotropic cosmological acceleration outwards a ≈ Hc where H is Hubble’s empirical parameter

(from his empirical law of galaxy cluster recession velocities, namely v = HR, where R is distance) from Hubble’s law:

v = HR = Hct past = Hc (H -1 - t since big bang ),

a = dv/dtsince big bang = d [ Hc (H -1 - t since big bang ) ]/dt since big bang = - Hc = - 6.9 × 10-10 ms-2.

Because we have found that Fgravity = ma σ/(4πR2 ), introduction of a = - Hc and σgravity = π(2GM/c2)2 from the obser-

vations in Fig. 2 give:

Fgravity = ma σ/(4πR2 ) = -mH (G2M2/(R2c3 ).

Comparison of this result, Fgravity = -mHc (G2M2/(R2c4 ), with the Newton-Laplace law Fgravity = M1M2G/R2, shows

that G = c3 /(mH ) and M2 = M1M2, quantizing mass into similar fundamental units ( http://vixra.org/abs/1111.0111 ).

This equation G = c3 /(mH ) has been investigated by others independently since our publication in 1996. Louise Riofrio

empirically formulated it as Gm = tc 3 where t is the age of the universe (t = H -1 ) without the quantum gravity theory,

which shows that it is a valid and interesting result. She has suggested that the right hand side of Gm = tc 3 is a constant,

so that light velocity varies as inversely as the cube of time, c = (Gm/t )1/3. This is problemmatic theoretically and our

approach is different, in that the time variation in Gm = tc 3 is due to a direct proportionality between G and t.  Gravitational

interaction strength is predicted here to be increasing in direct proportion to the age of the universe, as demonstrated by

evidence from the small fluctuations in the cosmic background radiation proving the flatness of the universe at early times.

This flatness is due simply to a roughly 1,000 times weaker gravitational coupling at the 300,000 years CBR decoupling time,

not to the theory of “inflation” which tried to reduce gravitational curvature by dispersing matter faster than the speed of

light. Dirac investigated a time-varying G theory but assumed (wrongly) that it varied independently of the electromagnet-

ic and strong couplings, which led Teller to point out in 1948 that the variation in forces in the sun would affect fusion rates

incorrectly. All of the “checks” for time-variance of G are false because they make Teller’s assumption (implicitly) that the

gravitational coupling varies independently of the other force couplings, like electromagnetism. Force unification evidence

suggests that all of the couplings vary in the same way. This negates the “no-go” G variation data of Teller and others.

For example, the fusion rate in the sun depends on gravitational compression of protons overcoming their Coulomb repul-

sion. if you merely vary G then fusion rates are affected, but if you double both gravity and Coulomb (both inverse square

law forces), the relative increase in gravitational compression is offset by the relative increase in Coulomb repulsion.

Implications for dogmatically believed classical approximations like general relativity



Whenever a radically new idea that works comes along, people’s first defense against progress is to point out that the new

idea is “wrong” as judged from the standpoint of the previous theory. In fact, disagreements between a new theory and

an old theory are not detrimental if the new theory reproduces the empirically-confirmed predictions from the old theory in a new way. It

is not true that every new theory must contain the old theory as a subset (e.g., thermodynamics doesn’t include caloric).

General relativity is today the gold standard in empirically validated gravitation, just as the Standard Model is the gold stan-

dard in empirically validated electroweak and strong interactions. It is therefore important to set out precisely what parts

of these theories, general relativity and the Standard Model of particle physics, are empirically defensible and how the new

theory retains those empirically-defensible predictions from the older theories.

General relativity survives as a classical approximation to gravity which makes Newtonian gravitation relativistic. All of the

falsifiable predictions from general relativity such as light deflection, clock slowing in gravitational fields, excess radius, and

gravitational redshift, stem from this relativistic correction, which exists in the mechanism of quantum gravity. General

relativity does not correctly predict cosmological acceleration for the simple reason that it is based on Newton’s delusion

that gravity is a universal force, rather than being a Casimir type “attraction” due to repulsive effects originating in the dis-

tant universe pushing together local masses (which non-receding relative to one another). This mechanism for quantum

gravity invalidates the application of general relativity to cosmology. Although Einstein included an ad hoc “cosmological

constant” in general relativity in 1917 to try to make it model the universe, this differs from the quantum gravity mecha-

nism we offer, which links together dark energy and gravitation, a ≈ c4/(Gm) = 7 × 10-10 ms-2, or Λ = c4/(G2m2 ).

Feynman’s “path integral” represents all of quantum mechanics complexity by interferences between amplitudes for small

mechanical interactions, each represented by a Feynman diagram consisting of the exchange of a gauge boson which hits an

effective interaction cross-section which is proportional to the square of the running coupling. The probability or relative

cross-section for a reaction is proportional to |ψeffective|2 = |ψ1 + ψ2 + ψ3 + ψ4 + ... |2 = |∫ e iS/h Dx|2, where ψ1,

ψ2, ψ3, and ψ4 are individual wavefunction path amplitudes representing all the different ways that gauge boson exchanges

mediated forces between charges in the path integral, ∫ e iS/h Dx. The complex wavefunction amplitude eiS where S is the
path action in quantum action units, is unjustified by the successes of quantum field theory where measurables (probabil-

ities or cross-sections) are real scalars. So the observable resultant arrow for a path integral on an Argand diagram must be

always parallel to the real axis, thus instead of eiS as a unit length arrow with variable direction, can replace it by a single

variable scalar quantity, eiS g cos S, eliminating Hilbert space and Haag’s theorem to renormalization. This reduction of
quantum field theory to real space gives a provably self-consistent, experimentally checked quantum gravity. Path integral

∫ e iS/h Dx is a double integral because  action S is itself the integral of the lagrangian energy for a given Feynman dia-
gram, which must be integrated over all paths not merely the classical path of least action, which only emerges classically

as a result of multipath interferences, where paths with higher than minimal action cancel out.

Lagrangian for quantum gravity and SU(2) Yang-Mills mechanism for electromagnetism

Quantum gravity is a U(1) Abelian theory with only a single charge sign, which bypasses renormalization loop problems;

there is no antigravity charge, preventing gravity-polarized pair production loops, so there is no running of the gravity coupling,

thus quantum gravity renormalization is not required. Electromagnetism employs massless Yang-Mills SU(2) charged bosons

(off-shell Hawking radiation). Cancellation of magnetic self-inductance for charged massless boson propagation necessi-

tates a two-way exchange equilibrium of massless field quanta charge (the charge exchange equilibrium obviously doesn’t

extend to energy, since a particle’s frequency can be redshifted to lower energy without any loss of electric charge), constrain-

ing to zero the Yang-Mills net charge-transfer current, 2εAν × Fµν = 0, reducing the total Yang-Mills current Jµ + (2εAν ×

Fµν) = -dFµν /dxν = -dνFµν to Maxwell’s Jµ = -dνFµν, so the Yang-Mills field strength Fµν = dµWa
ν − dνWa

µ +

gεabcW
b
νWc

µ loses its term for the net transfer of charge, gεabcW
b
νWc

µ = 0, yielding Maxwell’s Fµν = dµAν − dνAµ.

Notice that the weak coupling, g, occurs in the disappearing charge transfer term. The mechanism eliminates the weak

dependence on mass, turning a Yang-Mills theory into an effective Abelian one. (See References 1, 2 and 3.)
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