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Abstract 

In this paper we discuss some important consequences of application of fractional operators in 
physics. Also we present a unified integro-differential equation for relaxation and oscillation. We 
focus on time fractional formalism whose derivative is in Caputo sense. 
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1. Introduction 

Fractional calculus is a very useful tool in describing the evolution of systems with memory, which 
typically are dissipative and to complex systems. In recent decades the fractional calculus and in 
particular the fractional differential equations has attracted interest of researches in several areas 
including mathematics, physics, chemistry, biology, engineering and economics. Applications of 
fractional calculus in the field of physics have gained considerable popularity and many important 
results were obtained during the last years [1-4]. Despite these various applications, there are some 
important challenges. For example physical interpretation for the fractional derivative is not 
completely clarified yet. In this paper we focus on time fractional formalism whose derivative is in 
Caputo sense. We emphasize that fractional differentiation with respect to time can be interpreted as 
an existence of memory effects which correspond to intrinsic dissipation in our system. Fractional 
relaxation and oscillation has been subject of many researches in recent years [8-15]. Equations for 
standard and fractional relaxation and oscillation [8- 10] are given in Tab. 1 below. 
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Table 1: standard and fractional relaxation and oscillation equations 

In the above equations the fractional derivative of order   , 1n n   , n N is defined in the 
Caputo sense: 
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Where  denotes the Gamma function. For n  , n N  the Caputo fractional derivative is defined 
as the standard derivative of order n . Also, note that we have introduced an arbitrary quantity   with 
dimension of [second] to ensure that all quantities have correct dimensions. As we can see from 
Eq.(1) Caputo derivative describes a memory effect by means of a convolution between the integer 
order derivative and a power of time that corresponds to intrinsic dissipation in the system. Now, 
using the asymptotic behavior of the Mittag-Leffler functions for large values of arguments: 
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It is showed [9] that in the case of fractional relaxation the asymptotic behavior of the solution exhibit 
an algebraic decay for t   i.e. for arbitrary values of    we have:  

relaxation
1( ) ( )x t
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Also for arbitrary values of     for the fractional oscillation we have: 

oscillation 2

1( ) ( )x t
t  

 
These results prove that the algebraic decay of the solutions of the fractional equations contrary to the 
exponential decay of the usual standard form of the equations is the important intrinsic effect of the 
fractional derivative in the typical fractional equations. 

 
2. Effects of power-law memory 

As we can see from Eq. (1) Caputo derivative describes a memory effect by means of a convolution 
between the integer order derivative and a power of time that corresponds to intrinsic dissipation in 
the system. It becomes apparent that fractional equations naturally represent systems with memory [5-
7]. To see this consider the following integro-differential equation
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where x  is the quantity of interest, K  the memory kernel, and 0 1,   the parameters. This integro-
differential equation can be used to describe both Markovian and non-Markovian evolutions in the 
realm of classical physics. Let us consider two cases for Eq. (5): 
1- For a system without memory, we have the Markov processes, and the time dependence of the 
memory function is ( ) ( )k t t      where ( )t  is the Dirac delta-function and one gets: 
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For 1n  it becomes:  
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   above equation becomes standard relaxation equation and for 2n  we 

have:  
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If we set 0 1
k
m

   we will have the standard oscillation equation. 

2- For a system with power-law memory we have the non-Markovian processes, and the time 
dependence of the memory function is ( ) ( )k t A t       where A  , is a new parameter. Now 
substituting it into Eq. (5) we will have  
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where 2 1(1 )A     . Then for 1n  we have:  
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and for 2n    
2

2 0 0 12

( ) ( ) ( ) ( ) ( ) 0c
t

d x t D x t x t
dt

       

where above equations are linear fractionally damped relaxation and oscillation equations respectively 
and can describe many fundamental processes in physics. 
 
3. Conclusion 
 
Fractional calculus is a very useful tool in describing the evolution of systems with memory, which 
typically are dissipative. In this work, by use of the concept of relaxation and oscillation we discuss 
tow important consequences of application of fractional operators in physics. First we show that 
displacements of relaxation and oscillation show an algebraic decay in the asymptotic long time
t  and then we introduce an integro-differential equation that by suitable choosing of the 
parameters and memory kernel it produces standard and linear fractionally damped equations for 
relaxation and oscillation. 
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