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Abstract 

We investigate the time evolution of the fractional electromagnetic waves by using the time 
fractional Maxwell's equations. We show that electromagnetic plane wave has amplitude which 
exhibits an algebraic decay, at asymptotically long times. 
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1. Introduction 

Fractional calculus is a very useful tool in describing the evolution of systems with memory, 
which typically are dissipative and to complex systems. In recent decades fractional calculus and 
in particular fractional differential equations have attracted interest of researches in several areas 
including mathematics, physics, chemistry, biology, engineering and economics. Applications of 
fractional calculus in the field of physics and astrophysics have gained considerable popularity 
and many important results were obtained during the last years [1-15]. In classical mechanics, as 
we can see in Ref. [7-9] the fractional formalism leads to relaxation and oscillation processes that 
exhibit memory and delay. This fractional nonlocal formalism is also applicable on materials and 
media that have electromagnetic memory properties. So the generalized fractional Maxwell’s 
equations can give us new models that can be used in these complex systems. The aim of this 
work is to investigate the time evolution of the fractional electromagnetic waves by using the 
time fractional Maxwell's equations. In particular, we show that electromagnetic plane wave has 
an amplitude which exhibits an algebraic decay , at asymptotically large times. For this purpose in 
the following section we briefly review fractional electrodynamics theory [7, 19]. 

2. Fractional electrodynamics 

In classical electrodynamics, behavior of electric fields ( E


), magnetic fields ( B


) and their 
relations to their sources, charge density ( ( , )r t

 ) and current density ( ( , )j r t
  ), are described by 

the following Maxwell’s equations: 
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Where  and   are electric permittivity and magnetic permeability, respectively. Now, 
introducing the potentials, vector ( , )iA x t


and scalar ( , )ix t  
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and using the Lorenz gauge condition we obtain the following decoupled differential equations 
for the potentials: 
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  and  v is the velocity of the wave. Furthermore, for a particle motion with charge 

q in the presence of electric and magnetic field we can write the Lorentz force as 
( )LF q E v B  

    
here, v  is the particle's velocity. In terms of scalar and vector potentials, Eq. (5, 6) we may write 
the Lorentz force as  

1( ( ))L
AF q v A

c t


     


     

As we can see in Ref. [7-9], in classical mechanics, the fractional formalism leads to relaxation 
and oscillation processes that exhibit memory and delay. This fractional nonlocal formalism is 
also applicable on materials and media that have electromagnetic memory properties. So the 
generalized fractional Maxwell’s equations can give us new models that can be used in these 
complex systems. Up to now, several different kinds of fractional electrodynamics based on the 
different approaches to fractional vector calculus have been investigated [20-25]. For instance a 
fractional-dimensional space approach to the electrodynamics is presented [20] using the 
fractional Laplacian operator D  [17, 18]: 
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where, three parameters 1 2 3(0 1, 0 1 0 1)and        are used to describe the 
measure distribution of space where each one is acting independently on a single coordinate and 
the total dimension of the system is 1 2 3D      . 
However, in this paper we study a new approach on this area [19]. The idea is in fact, to write the 
ordinary differential wave equations in the fractional form with respect to t , by replacing the 
time derivative with a fractional derivative of order   ( 0 1  ) namely: 
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And the Eq. (5, 6) become 
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And the Lorentz force Eq. (10) becomes 
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A simple example of application of the Eq. (18) is provided in Appendix. In above equations 
the fractional derivative of order   ,  1n n   , n N is defined in the Caputo sense: 
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Where  denotes the Gamma function. For n  , n N  the Caputo fractional derivative is 
defined as the standard derivative of order n . Also, note that we have introduced an arbitrary 
quantity   with dimension of [second] to ensure that all quantities have correct dimensions. As 
we can see from Eq. (19) Caputo derivative describes a memory effect by means of a 
convolution between the integer order derivative and a power of time that corresponds to 
intrinsic dissipation in the system. Now we can apply Lorentz gauge condition to obtain the 
corresponding time fractional wave equations for the potentials 
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If 0   and 0j 


, we have the homogeneous fractional differential equations 
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We are interested in the analysis of the electromagnetic fields starting from the equations. Now 
we can write the fractional equations in following compact form 
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where ( , )Z x t  represents both ( , )A r t
  and ( , )r t

 . We consider a polarized electromagnetic 
wave, then 0, 0, 0x y zA A A   . A particular solution of this equation may be found in the 
form 
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where k is the wave vector in the x direction and 0Z  is a constant. Substituting Eq. (25) into 
Eq. (24) we obtain 

2
2

2

( ) ( ) 0f
d u t u t

dt



    

where 
2 2 2 2(1 ) 2 2(1 )

f v k         
and  is the fundamental frequency of the electromagnetic wave. Using the Laplace integral 
transformations, one obtains the solutions: 
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.  So with the boundary conditions  

0 1(0) and (0)u u u u    
the general solution of the Eq. (26) may be 
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is one-parameter Mittag-Leffler function. Substituting the Eq. (31a) in Eq. (25) we have a 
particular solution of the equation as 
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We can easily see that in the case 1  , the solution to the equation is 

( )
0 0( , ) Re( )i t kxZ x t Z u e    

which defines a periodic, with fundamental period 2T   , monochromatic wave in the, x , 
direction and in time, t .This result is very well known from the ordinary electromagnetic waves 
theory. However for the arbitrary case of  ( 0 1  ) the solution is periodic only respect to x 
and it is not periodic with respect to t .The solution represents a plane wave with time decaying 

amplitude. For example for the case 1
2

   we have  
22

1( ) ( ) tu t E t e        
where for simplicity, we have used 0 1u   initial condition.  Therefore the solution is 

2

0( , ) ( )t ikxZ x t Z e e    

(27) 

(29) 

(32)  

(34) 

(35) 

(36) 

(26) 

(25) 

(33)  

(28) 

(30) 

(31) 



Also for the case of  
1
4
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where erfc  denotes the complimentary error function and the error function is defined as 
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    ( ) 1 ( ),erfc z erf z      z C  

For large values of z ,the complimentary error function can be approximated as 
21( ) exp( )erfc z z

z
  

Substituting Eq. (37) into Eq. (25) leads to the solution  
3 4
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At asymptotically large times, and using Eq. (39) we have  
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Then for these cases, the solutions are periodic only respect to x and they are not periodic with 
respect to t . In fact solutions represent plane waves with time decaying amplitude. 
 
3. Asymptotic behavior of the solution 

The algebraic decay of the solutions of the fractional equations is the most important effect of the 
fractional derivative in the typical fractional equations contrary to the exponential decay of the 
usual standard form of the equations. To describe this algebraic decay in our case, we consider 
the integral form for the Mittag-Leffler function. The asymptotic expansion of ( )E z  based on 
the integral representation of the Mittag-Leffler function in the form [16] 
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where ( ) 0,  ( , )z C  and the path of integration   is a loop starting and ending at  and 

encircling the circular disk 
1

t z     in the positive sense argt   on . The integrand has a 
branch point at 0t  .The complext -plane is cut along the negative real axis and in the cut plane 
the integrand is single-valued the principal branch of t  is taken in the cut plane. Eq. (42) can be 
proved by expanding the integrand in powers of  t  and integrating term by term by making use 
of the well-known Hankel’s integral for the reciprocal of the gamma function, namely 
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The integral representation Eq. (42) can be used to obtain the asymptotic expansion of the 
Mittag-Leffler function at infinity. Accordingly, the following cases are obtained. 

If  0 2   and    is a real number such that  min[ , ]
2
      then for *N N , * 1N   

there holds the following asymptotic expansion:  
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as z  , arg z  and 
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as z  , arg z   . In our case, 2 2
fz t   and 
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Then, substitution of Eq. (46) into Eq. (33) gives 
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As we can see in this result, we arrive to the asymptotic solution for the electromagnetic wave 
equation which represents a plane wave with algebraic time-decaying amplitude. This is a direct 
consequence of the fractional time derivative in the system. In the other word fractional 
differentiation with respect to time can be interpreted as an existence of memory effects which 
correspond to intrinsic dissipation in our system. 
 
4. Conclusion 

The asymptotic behavior of Mittag-Leffler functions [16] plays a very important role in the 
interpretation and understanding of the solutions of various problems of physics connected with 
fractional phenomena that occur in complex systems. In this article we have studied the time 
evolution of the fractional electromagnetic waves by using the time fractional Maxwell's 
equations. We showed that electromagnetic plane wave has amplitude which exhibits an 
algebraic decay for t  in our case (Eq. (41, 47)). 
 
Appendix: Fractional dynamics of charged particles 

For the simplest case we can consider motion of charged particles in a uniform electric field 
ˆ

zE E k


. So using the fractional Newton’s second law we have  
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where zp  is the z-component of particle's momentum. Also we can easily calculate z-component 
of particle's position as a function of time, i.e. ( )z t  from  
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Taking into account the initial condition (0) 0z   and substituting Eq. (49) into Eq. (50) leads to 
the solution 
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For the case of 1  we can easily show that  
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as expected from the standard electrodynamics. 
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