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Abstract
It is shown that there-exist conditions for which scientific theories qualify as Gödel’s 'related systems', 
and that observable features can exist which cannot be derived within the scientific theory. However, 
this is just a descriptive problem arising due to restricting scientific theories to be in physically-real  
terms, and can be circumvented by the use of non-physically-real terms, which is shown to give a 
derivation of Quantum Theory. Incompleteness is also shown to be possible in scientific theories of 
living cells, ecosystems and the economies of nations. The impact on natural language descriptions of 
these systems is also considered.

Although the initial target of Gödel’s incompleteness theorems (Gödel [1931]) was the formulation of 
mathematics given in  Mathematica Principia (Russell  [1910-13]), the meta-mathematical proof can 
also apply other sufficiently related systems. Gödel’s proof applies to any formal system S in language 
L based  upon the  set  of  axioms  GA which  support  logical  deduction,  arithmetic  over  the  natural-
numbers, and the creation of all the number-theoretic functions. The proof uses the arithmetic contained 
in the formal system S for a meta-mathematical approach within the scope of S that proves that the set 
of statements PD derivable from GA is less than the set of all true statements P within S. This approach 
can also be applied to any scientific theory S with axiomatic basis PA, such that if GA is a sub-set of PA, 
then the scientific theory  S can be proven to be incomplete. Unfortunately, the direct pursuit of this 
approach encounters the difficulty that most scientific theories are not presented in axiomatic form, and 
the axiomisation of a scientific theory S can be highly non-trivial.

However, there is an alternative meta-science approach which looks at what constraints the underlying 
postulates of science place upon the unknown axiom set PA of a scientific theory S in general. The mere 
act  of  writing  down a  scientific  theory in  the  expectation  that  it  can  be  used  to  make qualitative 
inferences  and  compute  quantitative  predictions  in  reality  is  implicitly  based  upon  a  number  of 
assumptions. The first assumption is that there-exists some language  L that can be used to write the 
scientific  theory  S,  such  that  logical  inference  and  computation  will  be  possible.  This  places  the 
axiomatic requirements of mathematics upon the language L, and those required for the incompleteness 
proof are itemised in section 1. However, this does not advance the search for incompleteness in a 
scientific theory because these requirements apply to the language L used for the theory S, and not to 
the theory S itself; the fact that mathematics over the natural-numbers is proven to be incomplete does 
not imply that a theory S written in the language of mathematics is incomplete. 

Assumptions are also made about the character of reality which a scientific theory  S is intended to 
predict, where such assumptions have historically varied over time and between scientific disciplines. 
The postulates itemised in section 2 can be characterised as being among those of classical physics 
(specifically non-quantum physics) and are shared across the physical sciences. For the purposes of this 
paper,  the  set  of  postulates  in  section  2  will  be  taken  to  give  a  restricted  definition  of  scientific  
materialism1, where objects in reality are assumed to only change due to causal events involving other 
objects. The assumptions of  scientific materialism given in section  2 will mean that every scientific 
theory S based upon them will be about how material causation results in changes which the theory S 
seeks to predict. The term scientific materialism as used here roughly corresponds to the meaning of 
physicalism or  materialism,  but  its  usage  is  specifically  being  restricted  to  the  issue  of  scientific 
description in scientific theories. When the incompleteness result is placed in a non-scientific context in 

1 Terms used with a restricted meaning in this paper will be italicised throughout
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section 10, the more general term materialism will be used instead.

The construction of a scientific theory S in language L and the framework of scientific materialism (§2) 
makes  further  assumptions  about  how to relate  the terms  of  S to  the objects  of  reality.  The rules 
itemised in section 3 will be taken to define physically-real terms as a 1-to-1 notation of reality, which 
will give the theory  S a form of  scientific realism if  the postulates of sections 2 and 3 are strictly 
adhered to. This restricted definition of scientific realism is about representation in scientific theories, 
where every term or operation given in physically-real terms in a theory S directly corresponds to some 
observable object or process in reality. Some of the meaning that may commonly be associated with the 
use of the term scientific realism is covered by the restricted definition of scientific materialism (§2). 
The terms  scientific materialism and  scientific realism are given these restricted definitions because 
their general usage is too ambiguous for the purposes of this paper. This gives the view of a scientific 
theory S as being:

1) written in a formal language L (§1)
2) based upon a general set of science postulates (§2)
3) having a set of correspondence rules (§3) that provide an empirical interpretation of S in terms of 

observable objects and processes
4) having a set of axioms specific to the physical system being modelled

This  broadly corresponds  to  the  view of  a  scientific  theory given by the  semantic  approach (van 
Fraassen [1970]),  but  where the implicit  assumption about  a suitable  language has been explicitly 
stated, and the axiomatic basis for S has been divided into the general metaphysical basis for science 
(2) and a system specific set (4). 

In this  view of a scientific theory  S,  the postulates of  scientific  materialism (§2) and the rules of 
physically-real terms (§3) will guide the choice and expression of system specific axioms (4) in the 
construction of a scientific theory S, such that it displays scientific realism and has the properties listed 
in section 4. This view is not being claimed to be universally applicable to all scientific theories, but to 
instead define a sub-set of scientific theories that fit this pattern. The reason for defining this sub-set is 
that the postulates of sections 2 and 3 will place restrictions upon the possible axioms of the unknown 
set of axioms  PA of any scientific theory  S in this sub-set. This allows for a meta-science approach, 
where the postulates of sections 2 and 3 can be used to find the conditions for which the unknown set 
of axioms PA of a scientific theory S must contain the axioms GA required for Gödel’s incompleteness 
proof. Now S will only be proven to be incomplete if S is known to be consistent, but if S is consistent 
then  Gödel’s  incompleteness  theorems  (Gödel  [1931])  also  show  that  S cannot  be  proven  to  be 
consistent within  S. However, the postulates of  scientific materialism (§2) include the assertion that 
reality is consistent, and the rules of physically-real terms (§3) define a 1-to-1 correspondence between 
S and reality. So if the  scientific materialism of section 2 is true and a scientific theory  S is in the 
strictly physically-real terms of section 3, then the  scientific realism of  S (§4) will mean that it  is 
known to be consistent. 

This meta-science approach does not seek to find the axioms PA of some scientific theory S, but defines 
a sub-set of scientific theories that will be guaranteed to possess an axiomatic basis of some form, and 
then finds  the physical  conditions  for which  PA will  have to  contain  GA in  order  for  S to  possess 
scientific realism (§4). Gödel’s incompleteness theorems (Gödel [1931]) further prove that extending 
an  incomplete  theory  with  additional  axioms  of  the  same  form as  those  in  GA will  not  alter  the 
incompleteness proof. So once the axioms GA are shown to be a sub-set of the unknown set of axioms 
PA of some scientific theory S, the additional axioms of PA will not change the incompleteness result as 
long as they are of the same form as those of GA. This will be true for the additional unknown axioms 
of PA if they comply with the postulates of scientific materialism (§2) and the rules of physically-real 
terms (§3), which are required for the scientific theory  S to retain  scientific realism. In this way, a 
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scientific theory S with unknown axiomatic basis PA can nonetheless be proven to be incomplete by the 
requirement of scientific realism as defined in section 4.

For  the  sub-set  of  scientific  theories  that  fit  the  view  given  above,  other  concepts  arising  in  the 
philosophy of  science  will  also  be given restricted definitions  for  the  purposes  of  this  paper.  The 
process of deriving the elements of PD from the axiomatic basis PA, and experimentally testing whether 
they predict  all  the  statements  of  observations  PO expressed in  the  language  L,  can  be viewed as 
constituting normal science research. Finding an element p of PO which is not an element of PD would 
technically falsify the scientific theory S, in the manner discussed by Popper ([1935]). However, not all 
such falsifications will  be equal.  It  may often be possible for such a statement  p∈PO,  p∉PD to be 
accounted for in a modified theory S' where an existing axiom is altered and/or axioms added such that 
p can be derived and PO ⊂ PD. In the exceptional case, the observation p could be labelled as being an 
anomaly in S', and the statement p directly added to PA as an exceptional axiom. Such successful theory 
modification can be viewed as constituting the practise of  normal science progress. This leaves the 
cases where one or more such observations (p∈PO, p∉PD) cannot be accounted for by modifications to 
the axiomatic set PA of an established scientific theory S, and instead requires a totally new axiomatic 
set. Such a discontinuous jump in axiomatic basis will be viewed as giving the basis for the scientific 
paradigm shifts of Kuhn ([1962]).

1 Formal Systems
This paper will have a number of points of comparison with Wittgenstein's Tractatus ([1921]) through 
the underlying theme being the use of language to describe reality: through picture theory in Tractatus; 
and in terms of physically-real scientific theories here. There will arise some points of comparison, but 
the Tractatus starts with a very significant point of disagreement:

1.1 The world is the totality of facts, not of things

The view of scientific materialism (§2) is essentially the other way round, with the material things of 
the world being viewed as primary and facts being stated about those things. In spite of the primacy of 
things in the scheme of science, it first assumes that there-exists a suitable formal language L, which is 
why the structural points required for the language  L will be stated first. Issues with regards to the 
philosophy of mathematics will be ignored here; the points given are mostly just those required for the 
identification of Gödel’s 'related systems'. A relaxed view of symbolic notation is adopted because the 
comparison of axioms will be in functional terms that are independent of the notation used.

1.1 Logical terms A, B, … etc. and logical operations between the terms, A and B, A or B, not-A.

Such terms will be required to denote objects in reality.

1.2 Predicates: P(object) → value.

Such predicates will be required to denote the measurement of the property values of objects.

1.3 Logical implication: if A and A implies B, then B.

This is the basic form of inference required for logical deduction within the language L.

1.4 Sets with types, and cardinal numbers defined over the sets.

A predicate  P can be used to define the classification of objects into a set where all the elements 
possess the same value for the predicate P. It must be noted that the set theory required for science 
will be required to distinguish between urelements denoting objects, e.g. A, and sets of objects, e.g. 
{A, ...}, as the two are inequivalent in reality. The use of types will have the effect of preventing set-
type paradoxes from occurring in scientific language.
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1.5 Arithmetic over the cardinal numbers.

The set theory must support the addition and removal of new elements to a set, and this defines the 
successor s(n) → n+1 and predecessor function p(n) → n–1 over the cardinal numbers of the sets. A 
repeat the successor or predecessor functions a specific number of times N will define addition and 
subtraction respectively. Multiplication can then be defined as an N repeat of addition, and in this 
way give the operations of arithmetic over the natural-numbers.

1.6 Logical induction: if P(0) and P(s(n)) ∀n, then P(n) ∀n.

Induction over the natural-numbers is specifically required for Gödel’s incompleteness theorems, 
and so this form of induction will be required to be present within a scientific theory for Gödel’s 
incompleteness proof to be applied.

1.7 A set of axioms PA can be used to derive a set of deduced statements PD expressed in the language L.

The condition that L is a deductive language will be required for the intention of science to make 
predictions of new facts about reality from some finite basis of knowledge.

1.8 Initial functions (s(n), p(n), z(n), Pi).

An n-repeat of the predecessor function  p(n) ∀n>0 will define the zero function z(n) → 0, and the 
projection functions Pi(x1, …, xm) = xi ∀x1, …, xm can be defined in terms of predicates (1.2). 

1.9 Number-theoretic functions f(x) over natural-number valued variables x.

With the initial functions defined in 1.8, all number-theoretic functions can be generated starting 
from them by the  use  of  the  function  creation  rules  of  substitution  and  recursion  (Mendelson 
[2010])). Function f is obtained from functions g, h1,…, hm by substitution when:

f(x1,..., xn) = g(h1(x1,..., xn),…,hm(x1,..., xn))

Function f is obtained from functions g and h by recursion when:
f(x1,..., xn, 0) = g(x1,..., xn)

f(x1,..., xn, y+1) = h(x1,..., xn, y, f(x1,..., xn, y))

Such functions will be used in scientific theories to make numerical predictions of the measured 
values of properties of objects.

1.10 Gödel  ([1931]) proved that  for a consistent  formal  system  S possessing the properties 1.1-1.9 
there-exists a set PU  in the set of statements P expressed in the formal language L which cannot be 
deduced, i.e. PU ≠{} and PU ∩PD ={}.

There are two important features about the proof which must be carefully noted in order to show 
that it applies to formal systems other than that of mathematics. The first is its meta quality, where 
the arithmetic of the formal system  S is used to perform the arithmetic of the proof within the 
context of the formal system S itself. For a scientific theory, this will mean that the operations of 
arithmetic must be present within the scientific theory itself, and not just in the mathematics used to  
manipulate the elements of the theory. 

The second point to note about Gödel’s proof is that it includes a universality condition: that every 
number-theoretic function must be expressible within the formal system S. This is because the proof 
uses induction over the natural-numbers (1.6) to show that the Gödel number  g of some specific 
statement u is not within the set of Gödel numbers of the derivable statements PD. This universality 
feature will also be required to be present within the details of a scientific theory in order for the 
theory to qualify as one of Gödel’s 'related systems'.
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2 Scientific Materialism
The construction of formal theories in science for the purposes of predicting the results of experiments 
is based upon a number of assumptions about reality, of which the key ones for the purposes of this 
paper are given here. Although the various justifications for the underlying assumptions of science vary 
significantly in quality, the focus of this paper is strictly on the use of formal language for deduction in 
scientific  theories,  and from this  perspective  all  such justifications  share  exactly  the  same logical 
classification: they are not deduction. The underlying issue being the problem of induction, and all the 
assertions given here either contain this problem explicitly by using the words 'all' and 'every', or by 
implicitly assuming universal applicability. This problem of induction has to be carefully addressed 
here because Gödel’s incompleteness proof critically depends upon the use of logical induction within 
the scope of a formal system, and so logical induction within a scientific theory is required to be 
logically valid for the purposes of this paper.

Explicitly, the problem is that induction from a statement pn about a finite set of empirical observations 
PO of size n to an assertion p∞ about the set of all possible observations is not logically valid. The way 
that the formal system specified in section 1 achieves valid logical induction (1.6) over the natural-
numbers is through the use of the generator of the natural-numbers, the successor function (1.5). Such 
use of generators is one of the most significant approaches used in the construction of a scientific 
theory S such that induction within the scope of S is logically valid. Of course the problem of induction 
hasn't gone away, it has just been transferred from the set PO to the generator g of the set. A finite set of 
observations PO may allow a generator gn to be logically inferred for the set, but the induction of gn to 
be the generator g∞ of all possible observations isn't logically valid. If the inferred generator gn is the 
same for all the elements of PO, this provides a very good justification for thinking that g∞ will be the 
same as  gn, but this still isn't valid logical induction. This problem can be 'resolved' by asserting the 
generator g∞ in the axiomatic basis of the theory, and this is the tactic used in mathematics where the 
successor function s(n) is part of the axiomatic basis of arithmetic over the natural-numbers. However, 
the problem of induction still hasn't really gone away, it has now just been transformed into an issue of  
falsification. The assertion of a universal generator g∞ for all possible observations can now be directly 
falsified by a single observation that cannot be generated using  g∞, giving instances that are in strict 
accordance with Popper ([1935]) on the role of falsification. Such an assertion of a universal generator 
g∞ underlies Relativity in physics, where one and only one example of an empirical observation of a  
speed in excess of the speed of light is sufficient to falsify Relativity, because such an observation 
would falsify the underlying universal generator g∞ of Relativity.

For the purposes of this paper, this generator approach is implicitly contained within assertion 2.8 that 
the countable numbers of objects of different types only change due to object conversion reactions, as 
this gives realisations of the predecessor function p(n) and successor function s(n) over the countable 
numbers of objects of different types. This will mean that logical induction of the form given in 1.6 will 
be logically valid within the scope of a scientific theory S based upon the assertions given here, which 
is all that will be required in this paper.

These logical difficulties with constructing a scientific theory on the basis of empirical observation can 
be more succinctly expressed when the scientific theory S has an identifiable axiomatic basis PA. In this 
case, the practise of  normal science research provides direct tests between the predictions contained 
within the set of derived statements PD of S and the set of empirical observations PO. If discrepancies 
arise between PO and PD, the practise of normal science progress includes methods by which the set of 
observations  PO can be used to logically infer how to modify the axiomatic basis  PA of  S in order to 
change  the  set  PD so  that  it  encompasses  PO.  This  is  most  obvious  for  the  anomaly approach  to 
discrepancies, as the anomalous observation is simply added to the axioms PA. It is also possible that the 
required modifications to the axioms of PA can be logically inferred from empirical observation, but it 
can be a different matter when it comes to the insertion of new axioms or the total change in axiomatic 
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basis of a paradigm shift. The issue being that the set of statements PD can be derived from the axioms 
PA, but the axioms cannot be logically derived, which is why they have to be declared as axioms. This  
would not be a problem for science if the set of axioms PA could be logically inferred from the set of 
empirical observations PO, but this almost inevitably encounters the problem of induction. So in strictly 
logical terms, this means that the practise of science does not contain methods by which the axioms of  
science can be logically inferred. This limitation of science when it comes to its own axioms provides a 
basis for some agreement with the views of Feyeraband ([1975]) about the lack of universal methods in 
science. Furthermore, if the strict use of logical inference takes a prominent position in the definition of 
science, then the resulting demarcation line would in effect separate science from its own axioms. 

With this point of view, the assertions of this section are  metaphysics. The circularity of using the 
results of a scientific theory in justification of its axiomatic basis, and the problem of induction, can 
both  be  viewed  as  being  broken  by  metaphysical assertions  of  science  axioms.  No  matter  how 
convincing a justification for science axioms may seem, ultimately they are just asserted. So this paper 
will adopt a straightforward approach, and simply present the following naked assertions as being the 
metaphysical basis of scientific materialism required for the purposes of this paper.

2.1 There-exists an objective reality that can be reliably and repeatedly measured.
The underlying assumption of science, in that if it wasn't true the pursuit of science would then 
appear to be somewhat pointless. All of reality would have to be measured for this assumption to be 
technically verified, and only then it would no longer be metaphysical.

2.2 All the features of reality can be measured.
Perhaps the defining metaphysical assumption of scientism. The universality of the word 'all' means 
that the assumption would only have been verified when every feature of reality had been measured.

2.3 There-exist material objects that can be classified into different types.
As was noted in 1.4, this will require a set theory in the descriptive language L of science with a 
system of types to distinguish between objects and the sets into which they can be classified. 

2.4 All material objects are composed of fundamental (atomic) objects.
Finding the fundamental objects of all material objects is assumed to provide the basis for deriving 
all the properties of material objects. Again, the universality contained in 'all' implies that this would 
not have been technically verified until every material object had been measured.

2.5 Reality is consistent.
The most important part of the consistency of reality for this paper will be the condition that no 
object can both exist and not exist at the same time (considerations of Quantum Theory will be 
shown to be irrelevant in §8).

2.6 There-exist  events  in  reality  such that  the  measured  values  of  observations  only change when 
caused to do so by these events.
It is the denotation of these causal events which will give all the operations contained within a 
scientific theory. For the cases being considered in this paper, this will mean that the operations of 
arithmetic over the numbers of objects in some physical system must be implemented as causal 
events by the objects of the physical system itself. If this is not the case, then the operations of 
arithmetic  will  be in  mathematics  only and not  within the scope of  the scientific  theory itself. 
Consequently the proof of incompleteness can then not be constructed solely within the scope of the 
scientific theory, and so the theory will not be proven to be mathematically incomplete.

This paper will demonstrate in §8 that this principle of strict material causation is not challenged by 
Quantum Theory, by deriving Quantum Theory on the basis of the assertions of this section.
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2.7 Logical inference over observations is valid.
This is required for the purposes of science, where the assumption is also made that the formal 
system of mathematics provides a valid deductive language for describing reality (§1).

2.8 There-exist object conversion reactions where objects are caused to change object type.
This is the critical feature which will be required for the incompleteness proof of §6.

2.9 The numbers of objects does not spontaneously change.
The scientific theories of interest here will be those where the numbers of differently classified 
objects are causally changed by object action. This is an important part of strict material causation, 
and it is explicitly given here so as to rule out object numbers changing spontaneously without a 
cause that can be traced back to an object in reality.

2.10 Relativity principles explain how measured values can change without causal events.
Such Relativity principles  are  technically required in  order to  have a consistent  framework for 
science where measurements of reality only change due to the causal events of 2.6. Relativity can 
be viewed as requiring further metaphysical assumptions about time, space and motion, but these 
will have no direct impact on the proof when 2.8 is true. However, the Relativity principles do lead 
to two features of reality that are relevant to the physical conditions required for the incompleteness 
proof of §6, but not for the actual mathematics of the proof.
2.10.1 Energy postulate.

There-exists an energy measure of objects such that the total energy is always conserved.
2.10.2 Wave motion.

The application of the Relativity principles to time and space lead to wave equations where such 
wave motion is classified as being distinct from particle motion. It can be noted that for gravity 
waves and electromagnetic waves, the question of what is actually being subject to wave motion 
is given the answer of the 'vacuum' in physics, where the 'vacuum' has a metaphysical character. 

3 Physically-Real Terms
With the basis for the formal language L used by science given in section 1, and the core metaphysical 
basis of scientific materialism given in section 2, the rules for physically-real terms can now be given.

3.1 A physically-real term is a strictly 1-to-1 bi-directional denotation of an experimentally measurable 
feature of reality in some formal language L (§1).

3.1.1 Reality→notation: this allows for the construction of scientific models of the physical features 
measured in experiments.

3.1.2 Notation→reality: this allows scientific models to be used to make successful predictions of 
the measurements of future experiments.

3.2 Physically-real predicate P(object) → value.

In this notation, the predicate P (1.2) is denoting a process of experimental measurement, where the 
value of the predicate gives the experimentally measured result.

3.3 A physically-real predicate P can be used to classify objects into a set.

This gives the definition of a  well-defined  set  in physically-real notation, where the set contains 
urelements of a different set-theoretic type from sets (1.4) and an urelement is physically-real term 
denoting an object. 
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3.4 A physically-real term or proposition  P is true if the object state it denotes exists, and false if it 
doesn't exist. 

This is logical truth values strictly given by existence, so when this physically-real notation is used 
for denoting a consistent  reality (2.5) the consistency of reality will  be transferred to a formal 
system L strictly based on physically-real terms. 

3.5 Logical operations (1.1) on physically-real terms also have logical truth values given by existence.

3.5.1 Logical-negation: not-P says that P doesn't exist.

3.5.2 Logical-and is given by conditional existence: A and B exist.

3.5.3 Logical-or is given by alternate existence: A or B exist.

3.6 An operator notation denotes object changes produced through causal events (2.6): A → B.

Such operators denoting causal events are the only operators acting within the scope of a scientific 
theory. All other mathematical operators reside within the scope of mathematics (L) and not within 
the scope of a scientific theory  S, and so will be unavailable for the purposes of Gödel’s meta-
mathematical proof of incompleteness.

4 Scientific Theories
The metaphysical postulates of section 2 define scientific materialism, such that strictly adhering to the 
rules of section 3 for physically-real terms will result in a scientific theory S that possesses scientific  
realism.  This section itemises such a construction for a  generic  theory  S to  which system specific 
axioms can then be added to give an axiomatic scientific theory S of some physical system.

4.1 A physically-real scientific theory is a formal model S in some formal language L that is based upon 
denoting the reality of some physical system in strictly physically-real terms (§3).

The scientific program assumes that it will always be possible to construct such a formal model S of 
a physical system.

4.2 A scientific theory S in strictly physically-real terms with physically-real operator causation (3.6) 
will be consistent for a consistent reality (2.5).

Scientific models must be consistent so that their predictions of reality are reliable and definite.

4.3 Qualitative and quantitative predictions of experiment measurements can be inferred or calculated 
using the formal scientific model S.

In order to make accurate quantitative predictions for experimental measurements, the scientific 
model  S will  be required to  use computable functions  which will  necessarily take the form of 
partially recursive number-theoretic  functions.  The significance  of  this  for  the  purposes  of  this 
paper  is  that  all  such  functions  can  be  derived  from the  set  of  initial  functions  (1.8)  by  the 
application of the function creation rules of substitution and recursion (1.9).

4.4 Verification or falsification of the scientific predictions made by S for experimental results can be 
used to partially verify or falsify the scientific model S.

For a consistent reality (2.5) and scientific theories constructed in physically-real notation (4.1) any 
inconsistency with  experimental  measurements  for  some scientific  theory of  a  physical  system 
necessarily implies that the scientific theory has not been correctly constructed.

4.5 Physically-real implication: If A exists and A is the cause of B then B exists.

This gives the basis for scientific deduction of the future measured values for some object state 
caused to exist by the current object state. The time scale between the two causally related states is  
not given because it will not directly impact the incompleteness proof.
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4.6 Physically-real induction: If physically-real predicate  P is true for a set containing one  urlement, 
and it is always true for the successor function operating over the set, then the predicate P is true for 
the set no matter how many urlements it contains. 

This is is logical-induction for n>0, which differs from the mathematical induction of n≥0, as it does 
not include the unique empty set {}. This difference is because spontaneous object creation for 
every different type of object does not occur (2.9), which is what would be required to be true for 
logical-induction from n=0. 

4.7 A physically-real scientific theory S is a consistent formal system in some formal language L that 
supports deduction, arithmetic and computation.

The operation of deduction will be within the scope of all physically-real scientific theories because 
inference is given by modelling causation (4.5). This is a critical feature of using  physically-real 
terms and  gives  the  basis  for  scientific  realism.  In  contrast,  the  operations  of  arithmetic  and 
computation will only be within the scope of the scientific theory if they are denoting causal events  
that implement these operations over the sets of objects. When these operations are not within the 
scope of the scientific theory itself, they will still be available through the mathematical basis of the  
formal language L used for scientific theories.

5 Physically-Real Arithmetic
The basis for scientific realism in a scientific theory S has been given in the preceding sections by the 
condition that the theory should be strictly expressed in the scientific language of physically-real terms. 
We will now start to address the physical conditions required for the set of axioms PA of the theory S to 
contain the set of axioms GA as a sub-set. This first requires considering the physical conditions under 
which  the  operations  of  arithmetic  will  be  expressed  in  physically-real  terms within  the  scope of 
scientific theory S. The arithmetic in question will solely be in terms of the numbers of objects in some 
physical system that are classified into different sets by physically-real predicates.

5.1 Object type conversion reactions (2.8) of the form: A → B.

The two types of object denoted A and B will be classifiable into well-defined sets by physically-real 
predicates that identify the two types of object, and each set will have a cardinal number giving the 
number of urelements denoting the number of objects in reality.

5.1.1 Successor operation: s(n) → n+1.

This will be a physically-real operation in any scientific theory of the object reaction because 
each conversion A → B increments the number of B type objects by 1.

5.1.2 Predecessor operation p(n) → n–1.

This will be a physically-real operation in any scientific theory of the object reaction because 
each conversion A → B decrements the number of A type objects by 1.

5.1.3 Zero operation z(n) → 0 .

If the object conversion A → B occurs for every A type object in any initial collection of A type 
objects, then the object conversion process will decrease any number n of A type objects down 
to 0. This means that the operation of the zero function z(n) in a scientific theory of this object 
conversion process will be physically-real.

5.1.4 Projection functions Pi

These can be constructed in physically-real terms for physically-real predicates (3.2)
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5.2 N-repeat causal control CN of another operation.

The operation of addition will be physically-real when some number n of objects in a particular set 
has a specific number N of further objects added to the set: n → n+N. The specificity of the number 
N added will necessarily require some form of control, which by  scientific materialism (§2) can 
only be implemented by some type of control object CN. 

5.2.1 Addition through N-repeat control of the successor operation 5.1.1, CN(s(n)) → n + N.

5.2.2 Multiplication through N-repeat control of arithmetic operation 5.2.1, CM(CN(1)) → M×N.

5.3 A non-thermal energy source is required to power the arithmetic operations of 5.2.

The energy measure (2.10.1) and entropy measure (defined as the configurational entropy over the 
distribution of objects into classification sets) of physics imply that the additive operation 5.2.1 due 
to some control object CN(n) →  n+N will require an energy source on two counts. Firstly, a control 
process would necessarily do work (follows from §2) and so require an energy source, and secondly 
an additive process over object numbers will lower the entropy of an object system and so cannot 
occur without a source of energy. The detailed consideration of entropy in thermodynamics reveals 
that such arithmetic processes will specifically require a non-thermal energy source, but such details 
will not impact the incompleteness proof given in §6.

6 Incompleteness
Although Gödel’s incompleteness theorems can be briefly described as applying to formal systems that 
contain full logical deduction and arithmetic over the natural-numbers, the detail of the incompleteness 
proof  is  dependent  upon every possible  number-theoretic  function being present  within the formal 
system S (1.10). This means that a physical system that implements the object arithmetic of section 5 
will be insufficient for a physically-real scientific theory of the system to be one of Gödel’s 'related  
systems'.

Number-theoretic functions will occur in scientific theories as terms which model the causal processes 
by which the numbers of objects of different types are changed, such as the object conversion process 
of  5.1.  So  in  any  physical  system  with  a  finite  number  of  physical  processes  that  change  the  
classification  types  of  objects,  the  number  of  number-theoretic  functions  directly  occurring  in  a 
scientific theory will be strictly finite. This means that the universality condition referred to in 1.10 will 
not be realised in physically-real terms within the scientific theory, and consequently it will not be one 
of Gödel’s 'related systems'.  However, it  is possible for a physical system to exist where recursive 
number-theoretic functions can be generated within the scope of a physically-real scientific theory S 
when  both  the  initial  functions  (s(n),  p(n),  z(n),  Pi)  and  the  function  creation  rules  (substitution, 
recursion) are expressed as physically-real operations within the scientific theory. When this is the case, 
those recursive number-theoretic functions not directly occurring within the scientific theory,  could 
nonetheless  be  generated  in  physically-real  terms within  the  scope  of  the  scientific  theory.  If  the 
physical system is such that this function creation process will always be possible, then the universality 
condition of 1.10 will be satisfied and the physically-real scientific theory S of the physical system will 
be one of Gödel’s 'related systems' which is proven to be incomplete. This section details when Gödel’s 
incompleteness proof can be applied to a scientific theory S of a real physical system.

6.1 Formal deductive system S expressed in a formal language L.

6.1.1 A scientific model S in formal language L (§1) is defined by the use of physically-real terms 
(§3) to denote objects (2.3) and object causation (2.6) on the states of other objects.

6.1.2 The scientific model S is consistent because it is based upon a calculus denoting a consistent 
reality (2.5) in physically-real terms; it is consistent because reality is consistent (4.2).
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6.1.3 The  scientific  model  S is  a  deductive  system because  the  causal  events  (2.6)  denoted  in 
physically-real terms give rules of implication (4.5) and induction (4.6) within S.

6.2 Includes arithmetic over the natural-numbers.

6.2.1 The classification of objects by physically-real predicates (3.2) gives  well-defined sets (3.3) 
with cardinality given by the natural-numbers.

6.2.2 A scientific model  S of a physical system meeting the physical conditions given in  §5 will 
include the denotation of the operations of arithmetic within S itself.

6.3 Partial recursive number-theoretic functions f(x) over natural-number valued variables x.

6.3.1 The variable x denotes the number of objects classified into a particular well-defined set (3.3).

6.3.2 The domain of the variable x and function f is restricted to the physical system for which the 
scientific model S is proposed to hold, and so every function f is partial.

6.3.3 Every function  f in  S models object causation (2.6) in the physical system so as to make 
predictions of the future number of objects in some object classification set. This requirement of 
computable functions (f(x)) over natural-number valued variables (x) means that every function 
f must be a partial recursive number-theoretic function (4.3).

6.4 Every partial recursive number-theoretic function f(x) (1.9) can be expressed within the scope of S.

6.4.1 The initial functions (1.8) are present within S for a physical system that satisfies the physical 
conditions of §5.

6.4.2 Substitution: function  f is obtained from functions  g,  h1,…, hm by substitution (Mendelson 
[2010]) when:

f(x1,..., xn) = g(h1(x1,..., xn),…,hm(x1,..., xn))

The variables  x1,...,  xn will  denote the number of objects  classified into  n sets in  S and the 
functions  hi will denote  m causal actions which change the objects into different types. This 
notation specifies some functional  unit  of  objects  (denoted by  hi)  which takes  a  number of 
objects  of  n different  types  (denoted by  x1,...,  xn)  to  generate  some number of  objects  of  a 
different type (this action is denoted by hi(x1,..., xn)). The given function substitution rule would 
then denote the object output of these functional units being input into another functional unit 
denoted by  g. The net action on object numbers given by this hierarchy of object conversion 
processes  would then be denoted by the function  f as  defined.  This  gives the basis  for the 
function substitution rule to be physically-real terms as a tree-like cascade of object conversion 
reactions which feed into each other.

6.4.3 Recursion: function  f is obtained from functions  g and  h by recursion (Mendelson [2010]) 
when:

f(x1,..., xn, 0) = g(x1,..., xn)

f(x1,..., xn, y+1) = h(x1,..., xn, y, f(x1,..., xn, y))

The meaning of the variables and functions is the same as for 6.4.2, where the new natural-
number valued variable y must denote the number of objects in a new object classification set 
defined  by some  physically-real  predicate.  This  addition  of  the  variable  y will  only  be  in 
physically-real terms in  S if the physical system generates new types of object that were not 
previously present in the system. The recursion rule then requires a step-wise operation where 
the next step of the object conversion process is dependent upon the previous step, which it will  
be for discrete objects (2.4) subject to individual causation (2.6).

6.4.4 Universality: the function creation rules 6.4.2 and 6.4.3 must always be applicable in strictly 
physically-real terms for all  possible states of the physical system. 

For the function creation rules to be repeated indefinitely some of the newly created object types 
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(with variable y denoting their numbers) must be input into some pre-existing object conversion 
processes. This condition is so that the outputs of functions created by recursion (6.4.3) then 
form part of further function creation by substitution (6.4.2). In physical terms, this will require 
a physical system of the form of a indefinitely growing network where new nodes are added and 
linked into the network by the action of the physical system itself.

6.5 The Gödel number g can be constructed for any expression P expressed within S because S contains 
both arithmetic over the natural-number valued variables  x and every partial  recursive number-
theoretic function  f(x) (6.4).

6.6 The diagonal function D giving the Gödel number g of an expression P(g) taking as argument the 
Gödel number g of P itself can be constructed within the scope of S by 6.4 and 6.5.

6.7 Both the Gödel sentence G and Rosser sentence R can be constructed within the scope of S by the 
above conditions, to give 2 known elements of a set PU of undecidable propositions. Gödel’s meta-
mathematical proof can be constructed within the scope of S and so the scientific model S for the 
physical system meeting the required conditions is proven to be mathematically incomplete.

6.7.1 The scientific model S is known to be incomplete because scientific realism has ensured that S 
is known to be consistent for a consistent reality (2.5). So Gödel’s proof that an incomplete 
theory  S cannot  be proven to be  consistent  within itself  is  irrelevant,  as  S is  known to  be 
consistent by other means.

6.7.2 There is no hidden variable theory  T which can be constructed from S by the addition of a 
further natural-number valued variable xh such that T is mathematically complete.

This  is  because  the  universality  condition  6.4.4  ensures  that  every possible  natural-number 
valued variable  y has already been included in the course of the incompleteness proof. This 
means  that  the  hidden  variable  theory  T has  already  been  considered  in  proving  S to  be 
incomplete, and so T has also been proven to be incomplete.

7 Describe Another Way
The incompleteness  result  given in  section  6 might  lead to an expectation that  this  section would 
contain a similar proposition to that of section 7 in Wittgenstein's Tractatus ([1921]):

7. What we cannot speak about we must pass over in silence

However, this is not what the incompleteness result of section 6 means. Although it may be tempting to 
dismiss  the  proven  existence  of  undecidable  propositions  as  having  any  scientific  relevance,  this 
ignores the fact that strict adherence to scientific realism means that the undecidable propositions will 
be expressed in  physically-real terms. The bi-directional character of the physically-real notation of 
section  3 implies that these undecidable propositions in theory can correspond to physical states in 
reality (3.1.2). So an undecidable proposition  u would be expressed in the  physically-real terms of 
scientific language L within the scope of a scientific theory S, meaning that we would be able to speak 
about it. The issue stemming from the incompleteness of section 6 is that it isn't possible to derive u 
within the scientific theory S, and so we would not be able to derive what we could speak about in the 
very same terms.

The philosophical framework of scientific materialism (§2) implicitly includes within it the reductionist 
assumption that it will always be possible to describe observations of reality in the strictly physically-
real terms of  scientific realism, which is still true here. However, the postulates of  section  2 do not 
guarantee that this process will be reversible, and the incompleteness result of  section  6 claims that 
examples  of  such irreversibility can exist  in reality: there can exist  observations  of  some physical 
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systems  which  are  due  to  the  physical  basis  found by reductionism,  but  the  actual  statements  of 
observation cannot be derived from that basis. The known undecidable propositions (e.g. the Gödel and 
Rosser sentences) can be characterised as being self-referential, which through logical implication in a 
scientific theory S being realised due to modelling causation in reality (4.5), could only correspond to a 
state of causal closure in a physical network system (by 6.4.4). 

Despite the incompleteness proof of section 6, it is nonetheless possible to construct a formal model SC 

in which undecidable propositions can be incorporated, such that  SC is both consistent and complete. 
Gödel’s incompleteness theorems (Gödel [1931]) prove that this would not be possible in physically-
real terms denoting the numbers of objects in different classification sets as natural-numbers, and so the 
adherence to physically-real terms (§3) will have to be dropped in order to construct such a complete 
theory SC. This necessity of having to change the descriptive framework can be expressed in a form 
corresponding to that of Wittgenstein as:

What we cannot derive in deductive language using only physically-real terms we must describe 
another way

This section outlines this 'other way' and the consequences of such a change in descriptive framework.

7.1 Assume that there-exists causal closure within a physical network system that meets the required 
conditions of §6 and can be observed to possess one undecidable property p.

Such a physical system with an undecidable property p is not guaranteed to exist at this point, and 
so we will simply assume that such a physical system exists. The purpose of this assumption is to 
consider what steps would be required to transform the incomplete physically-real scientific theory 
S into a complete theory SC.

7.2 Add the observed undecidable property p to the scientific theory S to give a modified theory S'.
Although this may appear to be straightforward, the undecidable property p has been assumed to be 
a property of a causally closed arithmetic state of a physical network system (7.1). This means that 
the property p is not being attached to an urelement denoting a single object, but being attached to a 
collection of urelements forming a causally closed state in the physical system. As such a collection 
of urelements will be denoted as a set of objects in S, the property p  is being attached to a set in the 
modified scientific theory S'. If this set is denoted s and the undecidable property p attached to it, 
this will give a set-theoretic type conflict for s in the scientific theory S' because a set is not strictly 
a physically-real term in  S;  it  is the  urelements inside a set which are the physically-real terms 
denoting real physical objects. The implicit reductionism assumption of 2.4 is that every observation 
of reality can be reduced to the properties of one or more objects inside a set denoted in a scientific  
theory. When this reductionism is true, the type distinction between urelements and sets will be true 
within S. However, when an undecidable property p is attached to a set s, such reductionism is not 
possible because p cannot be derived from the state of the objects inside the set s, and so s has the 
status of an urelement in the scientific theory S'. This is a set-theoretic type conflict and indicates 
that this form of modified theory S' will not be acceptable in the language L (§1).

7.3 Change the physically-real terms x(n) denoting the numbers of objects in S, into non-physically-real 
terms x(r) denoting the numbers of objects in terms of real-numbers in SC.

Gödel’s  incompleteness  theorem only  applies  to  formal  systems  including  arithmetic  over  the 
natural-numbers, not over the real-numbers, and so the incompleteness proof of §6 will not apply to 
scientific theory SC. The undecidable property p can also be attached to a non-physically-real term s 
such that the theory SC can be complete. There will not be a set-theoretic type conflict in this case 
because the real-number valued non-physically-real terms x(r) aren't denoting the cardinality of sets. 
They are instead giving real-number valued estimates for the numbers of objects of particular types, 
and so the theory SC doesn't contain the sets which were causing the set-theoretic type conflict.
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7.4 In order to extract predictions for the physically-real values x(n) actually measured in experiment, a 
mathematical conversion function will be required such that x(n)=M(x(r)).

This conversion process from the real-number values of x(r) to the natural-number values of x(n) will 
have no viable interpretation other than in terms of a probability estimate over the sets which were 
present in S but are not present in SC.

7.5 The mathematical function M cannot be derived in physically-real terms within S.

If  M could be deduced within  S then it  would be of the form of a recursive number-theoretic 
function over the x(n) that also holds for the real-number values of x(r). However, if M were deducible 
within S, then its inverse M−1 would also be deducible within S and this inverse M−1  could then be 
used in SC to replace the x(r) with the x(n) to give a modified scientific theory S' over natural-number 
valued variables. But Gödel’s incompleteness theorems prove that any modified theory S' over the 
natural-numbers cannot be both consistent and complete. So M−1  cannot exist, which in turn means 
that M cannot be derived in physically-real terms within S.

7.6 The theory will contain inconsistencies in any direct interpretation I of the theory SC, but these will 
not appear in any experimental predictions of the theory SC given by the conversion function M.

Similarly to 7.5, the simple interpretation I attempts to convert the complete theory SC over the real-
numbers  x(r) into a complete theory over the natural-numbers  x(n), but such a theory  S' cannot be 
both consistent and complete. Since S'  will have the same form as the complete theory and includes 
the undecidable property p, the natural-number theory S' resulting from the direct interpretation I of 
the complete theory SC must be inconsistent.

8 Physical Systems
The postulates of scientific materialism given in section 2 form a common basis for scientific theories 
of the physical sciences, and the incompleteness proof of section 6 identifies a generic set of conditions 
in terms of a network of object reactions. Discrete objects were assumed to form the basis of material  
reality in 2.3,  where the objects  were assumed to be composed of fundamental  objects  in 2.4 and 
further  assumed  to  participate  in  object  conversion  reactions  in  2.8.  These  assumptions  cover  the 
occurrence of the object reaction networks of section 6 in a range of physical systems: 

1) the chemical reaction network of the cellular metabolism (§8.2).
2) the organism 'reaction' network of an ecosystem (§8.3).
3) the socio-economic system of a nation (§8.4) where the production and consumption of traded-

goods constitute the required 'object reactions'.

In  all  these  cases,  the  incompleteness  proof  given  in  section  6  can  apply  within  the  scope  of  a 
physically-real scientific theory S of the system because the terms of S allow for object arithmetic and 
the construction of a potentially infinite network within the scope of the theory, despite the fact that the 
network in question is finite at all times (Goodband [2012a]).

The assumptions of fundamental objects 2.3 and object conversion reactions 2.8 also covers the case of 
particle reactions (§8.1), where the interconversion between mass and energy seen in particle reactions 
has already been included in the postulates of section 2 through the Relativity principles of 2.10. In this 
case, an infinite particle reaction network will be given in both a physically-real scientific theory S and 
reality if the assertion of a Vacuum Reservoir Effect (8.1.1) is true. Some sort of assertion of this form 
would be required in a physically-real scientific theory S of particles and radiation in order to account 
for  the  experimental  measurements  of  the  Casimir  effect  (Lamoreaux [1997],  Bressi  [2002]).  The 
significance of considering the case of a physically-real scientific theory  S based upon adding one 
system specific axiom (8.1.1) for particle reactions to the generic axioms of scientific materialism, is 

14



that the theory S is proven to be incomplete. The application of the replacement procedure of section 7 
to this incomplete physically-real scientific theory  S of particle reactions provides the basis for the 
derivation of Quantum Theory (Goodband [2012a]).

8.1 Quantum Theory is the complete theory SC of the form deduced in §7, which is required because the 
physically-real scientific theory S of particle reactions can be proven to be incomplete,

8.1.1 Vacuum Reservoir Effect: A physical system with energy E and particle number n can increase 
its energy ΔE and increase particle number  N during some physical process of duration  Δt>0, 
such that both the energy and particle number return to the values of E and n when the process 
has finished.

The Heisenberg Uncertainty Principle (Bransden [1989]) has essentially been converted into an 
assertion about the vacuum, where energy ΔE can be taken from the vacuum V and input into 
particle reactions, just as long as it is returned to the vacuum within time period Δt>0. The actual 
numerical value of the time-scale Δt is not relevant to the incompleteness proof, beyond it being 
non-zero. As any experimental measurement would be based upon the sort of physical process 
covered by the assertion, the assertion is metaphysical by its own terms. Within the time period 
Δt  in which  N extra particles exist,  the vacuum state would be of the form VN denoting the 
vacuum state as having a deficit of N particles.

8.1.2 Virtual-particle2 reactions.

The existence of object reactions which interchange the types of the particle was assumed in 2.8, 
e.g.  A +  B →  C +  D.  Adding the metaphysical assumption of the Vacuum Reservoir Effect 
(8.1.1) to such real-particle reactions gives virtual-particle reactions which involve a change in 
the vacuum state, such as:

A + V0 → B + C +  VN

In this vacuum-particle reaction allowed by 8.1.1, the real-particle A reacts with the vacuum V0 

to produce virtual-particles B and C, where the vacuum state VN carries the particle accounting 
required by 8.1.1 for the vacuum state V0  to be restored when all the virtual-particles disappear, 
and we are just left with the real-particle A. For the purposes of the incompleteness proof of §6 
the exact collection of particles and their particle reactions is not required. All that is needed is 
the existence of some finite set of particles which can interchange by particle reactions, and the 
Vacuum Reservoir Effect of 8.1.1.

8.1.3 At least one term γ denotes a wave.

This is not required for the incompleteness proof of §6, but is being assumed here so that it will 
be available for the view stated in 8.1.9

8.1.4 Particle arithmetic occurs because the vacuum state VN acts as the control entity CN of 5.2.

The vacuum state VN gives the control condition required for a specific number of particles and 
particle reactions to be added to any particle state. This includes  VN being applied to a single 
particle state to give particle addition for some specific number N, and VM being applied to such 
particle addition to give multiplication in particle numbers. Such a hierarchy could be repeated 
indefinitely by the terms of 8.1.1, but the implementation of addition and multiplication over 
particle numbers is sufficient for a realisation of the operations of arithmetic within the theory S.

8.1.5 The vacuum-particle reaction network satisfies the conditions of the proof given in §6.

The  Vacuum Reservoir  Effect  of  8.1.1  allows  for  the  unlimited  addition  of  virtual-particle 
reactions to any real-particle state, so as to give an unlimited network of particle reactions which 
includes arithmetic over the natural-number of virtual-particles (8.1.4). With 8.1.1 asserting that 

2 Some label is required for the particle states that exist in conjunction with the vacuum state VN, and 
virtual-particles is chosen because they will correspond to the virtual-particles of Quantum Theory.
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such virtual-particles must be denoted in physically-real terms, the physically-real theory S must 
denote the full extent of the virtual-particle reaction network. This means that the arithmetic 
operations must be denoted within  S (6.2), as well  as the network growth process whereby 
additional  reactions  are  added  according  to  8.1.1.  So  the  function  creation  processes  of 
substitution  (6.4.2)  and  recursion  (6.4.3)  will  be  modelled  within  the  scope  of  S,  and  the 
unlimited nature of 8.1.1 means that the universality condition (6.4.4) will also be met. So the 
physically-real scientific theory  S is proven to be incomplete. Note that the lack of a hidden 
variable theory for the complete theory SC of particle reactions (i.e. quantum theory) is given by 
6.7.2. 

8.1.6 Every real-particle is given by a self-consistent virtual-particle reaction state, and so the sort of 
self-referential propositions which are undecidable in S could be describing the state of a real- 
particle. Assuming that this is true gives the prediction that every real-particle possesses at least 
one undecidable property.

This is experimentally verified by every particle possessing a wave property. The assertions of 
§2 give a classification distinction between particle motion and wave motion, such that it is not 
possible to start from physically-real terms denoting particles and deduce a wave property for an 
individual  particle.  This  classification  divide  means  that  an  observed  wave  property  for  a 
particle can definitively be known to be undecidable in the physically-real terms of S.

8.1.7 The fields of Quantum Field Theory are continuous real-number valued descriptive fields for 
the numbers of particles.

The conversion process identified in §7 involves changing the natural-number valued variables 
x(n) of S denoting the numbers of particles with real-number valued variables x(r). The associated 
loss  of  the  particle  classification  sets  from  S allows  the  undecidable  wave  property  to  be 
attached to  these variables without  causing a set-theoretic  type conflict  within the complete 
theory SC; note that there will still exist a set-theoretic type conflict for a direct interpretation I 
of  SC (8.1.8). These changes will  give the variables  x(r) the form of continuous real-number 
valued fields in space-time.

The Relativity principles of 2.10 mean that the descriptive field x(r)=Φ for a single particle with 
its wave property will satisfy a Relativistic wave equation. For the scalar representation of the 
Poincaré symmetry group of Relativity,  Φ will obey the Klein-Gordon wave equation (Ryder 
[1985]):

∂2Φ + m2Φ = 0

Whereas for the fundamental spinor representation of the Poincaré group, the descriptive field 
x(r)=Ψ will necessarily obey the Dirac equation (Ryder [1985]):

γµ∂µΨ + mΨ = 0

These simply follow from the principles of Relativity (2.10) which apply to any continuous field 
in space-time, and so will apply to the descriptive fields of a complete theory  SC of the form 
deduced in §7. 

8.1.8 The mathematical function  M of  §7 is the origin of the process called the 'collapse of the 
wave-function' in Quantum Theory.

The inability to derive the conversion process M from the quantum fields to predictions is given 
by 7.5, and the existence of inconsistencies in the direct interpretation of quantum fields is given 
by 7.6, which are both characteristics of Quantum Theory. The complex character of the term Φ 
denoting the waves satisfying equations of 8.1.7 implies that the conversion process is of the 
form x(n) = M(Φ†Φ).

8.1.9 The descriptive fields for Relativistic spin of integer and half-integer eigenvalues are subject 
to the boson and fermion spin statistics.
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The observable values  x(n) =  M(Φ†Φ) are subject to the conditions of Relativistic invariance 
(2.10) and material causation (2.8), which are sufficient conditions for the derivation of boson 
and fermion spin statistics for the descriptive fields Φ and Ψ (Mandl [1984]).

8.1.10 The  same  symmetry  arguments  used  in  particle  physics  for  the  introduction  of 
electromagnetic fields etc. will also apply to the descriptive fields of SC and so give descriptive 
field equations of the same form as those of Quantum Field Theory. 

This origin for Quantum Field Theory was given for Quantum Electrodynamics in Goodband 
([2012a]), and also discussed for Yang Mills theories.

8.1.11 Metaphysical interpretation of wave-particle duality.

The self-consistent particle reaction state of a particle  p is conceptually given by the above as 
being of the form p → (p, γ) → p, where (p, γ) is some mixed combination of particle and wave 
states (8.1.3). The time scale of this transformation is less than the minimum time required for 
any experimental observation (8.1.1), and so every particle p  will be observed to be in a dual 
state (p, γ) of particles and waves in any experiment.

8.2 The physically-real scientific theory S of the gene-protein system of a living cell is incomplete.

8.2.1 All the chemical molecules inside a cell are the objects being classified into sets by type (2.3), 
where the numbers of chemicals in these sets is changed by the chemical reactions that occur 
between the different chemicals (2.8).

8.2.2 The control entity CN required for physically-real object arithmetic (5.2) could be realised in 
terms of a sequential molecule which has a property that changes at some number N, or in terms 
of a sharp phase-transition in chemical state due to antagonistic chemical reactions.

For the case of a sequential molecule Cn of  n chemical units, the molecule  Cn would promote 
some other chemical reaction which realises the successor function s(n) for some chemical type 
for  n<N.  When  the  control  molecule  contains  N units  it  would  be  required  to  change  its 
properties such that it  no longer promoted the other chemical reaction.  In this  way it  could 
increase the number of some other type of chemical molecule by N units, i.e. the addition of +N. 

For the phase-transition case, the net result of antagonistic chemical reactions could suddenly 
jump when the number of molecules of some chemical type exceeded N. The control entity Cn in 
this  case is a effectively a set of molecules of some chemical type which are incrementally 
increased in number. When the number reaches N, the phase-transition characteristic would then 
be required to inhibit the chemical reaction producing the chemical molecules in question, and 
so realise a net increase of +N in the numbers of such chemical molecules. 

Repeats  of these control  mechanisms over  chemical  processes  which realise  object  addition 
would then realise multiplication in object numbers, and in this way the operations of  arithmetic 
would be present in the chemical system. This would have to be expressed in the scientific  
theory  S in  physically-real  terms,  and so the  operations  of  arithmetic  would be  realised  in 
physically-real terms within the scope of the theory S itself.

8.2.3 Metabolic network of chemical sequences and cycles.

The individual chemical reactions of a living cell are linked up to form chemical sequences and 
cycles, which are linked together through the common genetic system of protein production, and 
the common energy molecules of ATP and NADH, to form a metabolic network. The modelling 
of this network in the scientific theory S will give a realisation of function substitution (6.4.2) 
within the scope of the theory S.

8.2.4 Random genetic mutations are a source of ongoing variation in the network structure.

Mutations of the genetic templates of proteins will give rise to new variations of protein, some 
of which will catalyse new chemical reactions that produce new types of chemical molecule 
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within the metabolism of a living cell. Although such mutations are random and so not directly 
caused by any component of a cell, they are nonetheless the result of protein actions. So any 
attempt at a complete scientific theory S in strictly physically-real terms would need to also 
describe the occurrence of random variation within the metabolism of the cell. This would give 
a realisation of function recursion (6.4.3) within the scope of the theory S. 

8.2.5 The scientific theory S of the gene-protein system can satisfy the conditions of §6.

The random variation in the genetic templates of proteins can occur at all times and so will 
occur  on  an  ongoing basis.  This  provides  a  realisation  of  the  universality  condition  (6.4.4) 
within the scope of the theory S. It must be noted that there is a clear distinction between the 
occurrence of an infinite network in reality, which is what assumption 8.1.1 leads to for particle-
reactions, and the ability to construct an infinite network within the scope of a scientific theory 
S in strictly physically-real terms, which is what can occur in this case. The physical system 
itself is finite at all times, and any undecidable propositions about a causally closed or self-
consistent dynamic state of the metabolic network will also be finite. It is the dependence of the 
proof upon the universality condition (6.4.4) which requires an infinite network, but the proof 
only requires an infinite network to be realised in physically-real terms within the scope of the 
theory S, and not in reality. So the scientific theory S itself is proven to be incomplete under 
these conditions.

8.3 The physically-real scientific theory S of an ecosystem is incomplete.

8.3.1 All the organisms in an ecosystem are objects being classified into sets by type (2.3), where 
predation and reproduction change the numbers of organisms in these sets (2.8).

8.3.2 The control  entity  CN required  for  physically-real  object  arithmetic  (5.2)  can  be given by 
behavioural changes in organisms after a certain numbers of object transformation behaviours 
have been repeated.

The object transformation behaviours in question can be given by eating another organism, or by 
the symbiotic exchange of chemicals. Such feeding behaviour can trigger a change of behaviour 
when it has been repeated some number of times, of which an important example is reproducing 
after  having  accumulated  a  sufficient  reserve.  This  is  perhaps  most  obvious  in  uni-cellular 
organisms which divide (realising the +1 of the successor function s(n)) when they have reached 
a particular size.

8.3.3 The full food web of an ecosystem gives an interconnected network of organism predation and 
symbiotic exchange.

The  ecosystem network described  by the  physically-real  scientific  theory  S  will  only  fully 
model the ecological reality when it describes all the organisms in the ecosystem, including all 
the species of fungi and bacteria which can reproduce. Note that such full accounting would also 
have to model the numbers of mitochondria and chloroplasts inside the cells of organisms.

8.3.4 Random variation gives unending variation in the description of the network structure.

As for 8.2.4,  random variation of the network adds a physically-real  realisation of function 
recursion (6.4.3) to the network realisation of function substitution (6.4.2).

8.3.5 The scientific theory S of an ecosystem can satisfy the conditions of §6.

As for 8.2.5, unending random variation in the organisms of an ecosystem gives a realisation of 
the universality condition (6.4.4) and means that the incompleteness proof can be constructed in 
strictly physically-real terms within the scope of the scientific theory  S. The ecosystem itself 
remains finite at all times, and any undecidable propositions about a causally closed or self-
consistent dynamic state of the  ecosystem will also be finite. 

8.4 The physically-real scientific theory S of the socio-economic system of a nation is incomplete.

18



8.4.1 All the people and traded-goods being exchanged in a socio-economic system are the objects 
being  classified  into  sets  by  type  (2.3),  where  manufacturing  and  consumption  change  the 
number of goods present in these sets (2.8).

8.4.2 The control entity CN required for physically-real object arithmetic (5.2) can be realised as a 
behavioural change after some number N of goods have either been produced or consumed.

Such behavioural changes give a means for the realisation of arithmetic over the numbers of 
traded-goods, and also over the numbers of individuals in each of the occupations within the 
socio-economic system.

8.4.3 The socio-economic system of a nation forms a network which will tend to occupy dynamic 
self-consistent states.

All  the different supply chains for traded-goods link together to form a network because of 
connections between common suppliers, distributors and consumers. This will give a network 
realisation of function substitution (6.4.2) in the scientific theory S. When the traded-goods of 
the socio-economic system are only made in order to be sold to consumers, the economic costs 
of production will act to force the number of produced goods to match the number of goods 
bought.  As  this  condition  will  apply to  each  and  every traded-good of  the  socio-economic 
system, this will tend to drive the socio-economic system into self-consistent states where sellers 
match buyers. 

8.4.4 Innovation is a source of potentially unending variation in the traded-goods and occupations of 
a socio-economic system.

Although innovation is not technically random, it can satisfy the same role as played by purely 
random variation in 8.3.4 if it is always possible for innovation to create a new traded-good or 
occupation that has not existed before. When this is the case, the modelling of innovation in the 
scientific theory S will give a realisation of both function recursion (6.4.3) and the universality 
condition (6.4.4) in physically-real terms within the scope of the theory S.

8.4.5 The scientific theory S of an ecosystem can satisfy the conditions of §6.

As for 8.3.5, the theory  S of a finite socio-economic system meeting these conditions could 
possess a self-consistent dynamic state which is described by a finite undecidable proposition.

9 Paradigm Shift
The view of a scientific theory S used in the course of this paper is one where S has an axiomatic basis 
PA in which the axioms can be divided into the general set of section 2 and a system specific set. This 
division gives a basis for the classification of  paradigm shifts where there is a change in the set of 
axioms PA: the change is in the general set; or the change is in the system specific set. Such paradigm 
shifts just within individual scientific disciplines will tend to just involve changes to the system specific 
axioms, as changes to the general set of axioms will change the axiomatic basis for all of science. 
Historically, there have been two paradigm shifts where it would appear that the fundamental axioms of 
science  have  been subject  to  change:  the  scientific  revolution  of  Copernicus  and Galileo;  and the 
introduction of Quantum Theory in physics. 

The scientific revolution of Galilean mechanics was associated with the metaphysics of Aristotle being 
replaced by a new metaphysical basis for the study of mechanical bodies, and some of the metaphysical 
assertions given in section 2 can historically be traced back to Galileo. Equally significantly for the 
purposes of  scientific  theories,  Galileo's  use of mathematical  terms to describe the physical  world 
marked the beginning of the correspondence rules for physically-real terms (§3). So in the terms used 
in  this  paper,  the  scientific  revolution  of  Galilean  mechanics  was  associated  with  changes  to  the 
axiomatic basis of science, as for the restricted definition of a  paradigm shift given earlier, but also 
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involved a change in the descriptive framework. 

The historical view of the creation of Quantum Theory was that of a  paradigm shift involving very 
significant changes to the metaphysical basis of classical physics (§2), but the derivation of Quantum 
Theory in section 8 indicates that this was erroneous. The ability to derive Quantum Theory (§8.1) from 
the incompleteness proof of section 6, and its descriptive solution of section 7, without changing any of 
the axioms of  section  2,  implies  that  the  paradigm shift of Quantum Theory was actually about a 
change in the correspondence rules used for scientific notation. This gives a very different form of 
paradigm shift, one not due to a discontinuous jump in axiomatic basis for the scientific theory of some 
physical system, but one entirely due to a notational shift. Such a change in the descriptive framework 
has an effect on what can be said, and what questions can be addressed, in much the same way that  
changes  to  the  underlying  metaphysical  assumptions  do.  This  identification  of  a  different  class  of 
scientific paradigm shift has a relevance beyond Quantum Theory, because the other incompleteness 
proofs  of  section  8 appear  to  indicate  that  Quantum Theory was just  the first  instance of  a  more 
widespread paradigm shift in science that is yet to come. This section outlines the character of this class 
of paradigm shift due to changing the basis of notation used in the construction of scientific theories.

9.1 There-exists a formal language L (§1) suitable for denoting the reality of §2 in physically-real terms 
(§3), such that a set of axioms  PA, true statements P and deducible statements PD can be made about 
any physical system in reality.

9.2 Materialism: the set of all true statements P expressed in the physically-real terms of §3 in formal 
language L constitute all the true statements that can be said about reality.

9.3 Mechanistic paradigm: the set of statements PD that can be derived from the set of axioms PA within 
the scope of a scientific theory S in strictly physically-real terms constitute all the true statements of 
reality P expressible in the formal language L, i.e. it is asserted that PD. ≡ P.

9.4 Scientific incompleteness: there-exists a non-empty subset PU of P where  PU ∩PD. ={}.

The claim that the mechanistic paradigm (PD) accounts for the reality of materialism (P) is proven 
to be incorrect in §6 by proving PU ≠{}, and this is verified in §8.1.

9.5 Dualistic paradigm: the physically-real terms of S are replaced with non-physically-real terms that 
incorporate the observed undecidable properties3 to give a complete theory SC (§7). A mathematical 
conversion function  M also has to be added in order to obtain predictions for the physically-real 
terms of experimental measurement. 

The  character  of  M is  such  that  it  will  inevitably  involve  a  probabilistic  interpretation  of  the 
predictions made by the complete theory SC.

9.6 Paradigm shift in science from the mechanistic paradigm (9.2) to the dualistic paradigm (9.4).

The paradigm shift involves a switch from the physically-real scientific theories of §4 based upon 
using physically-real terms (§3) to the use of non-physically-real terms in scientific theories (§7). 
This will only be necessary for those physical systems for which physically-real scientific theories 
can  be  proven  to  be  incomplete.  When  this  is  not  the  case,  physically-real  scientific  theories 
constructed within the mechanistic paradigm will be complete, such that every proposition p about 
observations of the physical system will be derivable in physically-real terms, i.e. p∈PD ∀p∈PO.

3 They have to come from observation because they cannot be derived
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10 Reification
The paradigm shift of section 9 from the mechanistic paradigm (9.2) to the dualistic paradigm (9.4) is 
given  in  terms  of  a  shift  in  the  notation  used  in  scientific  theories.  However,  discussions  of  the 
observations of reality are generally conducted in natural-languages, including much of the discussion 
of experiments in science, and the experience of Quantum Theory indicates that the paradigm shift of  
section  9 induces a change in the use of natural-language. The incompleteness proofs of  section  8 
beyond that of the particle reactions would seem to indicate that the more widespread paradigm shift 
discussed in section 9 will lead to problems in using natural-language to describe these systems. 

The defining character of the shift to 'another way' of describing the physical systems of section 8 is 
revealed by adopting a linguistic view of denoting the countable number of objects as if their numbers 
could take the values of the continuous real-numbers: 'as if' is the linguistic construction of a metaphor.  
Since the construction of scientific theories expressed in the deductive language of mathematics has 
had to resort to the use of linguistic metaphor, this would imply that natural-language descriptions are 
also going to have to involve the use of metaphor. However, the use of metaphor within the context of 
the scientific materialism of section 2 would seem to be vulnerable to the reification of such metaphors 
as being real  fields or 'things'  of some form. This can be seen in the history of the discussion of 
Quantum Theory in natural-language within the context of science. In wider society, such a reification 
of the field terms of Quantum Theory resulted in the appearance of mystical views where the reified 
'quantum fields' were taken to give a basis for a new form of vitalism. The adoption of such mystical  
views will be framed in terms of the 'category mistake' of Ryle ([1949]), where such reifications will be 
given Ryle's label of being 'ghosts'. However, the universal assertion of the mechanistic paradigm (9.3) 
also leads to a complementary category mistake where every physical system is classified as being 
'machine'. Such a view will be given the label of  machinism, to complement the mystical views of 
vitalism that  the reifications of metaphorical description are real 'things'  of some form. The initial 
preference of 'ism' for the mechanistic view would be the term mechanism, but this term is used with 
two different meanings. The first usage is the assertion that the simple mechanical actions of objects 
underlie all the observations of material reality, which is the same as what was labelled as materialism 
in  section 9. The second usage of mechanism is that every observation can be derived in mechanical 
terms, which was labelled machinism in section 9. The issue identified in this paper is that these two 
meanings are  different,  and there is  a gap between  machinism and the full  domain of  materialism 
addressed by science. So the designation of machinism is being used in order to handle this difference, 
because the meaning of mechanism is too ambiguous.

The philosophical framework given here for addressing the views of mysticism give some final points 
of comparison with Wittgenstein's  Tractatus ([1921]),  and include a series of propositions nakedly 
asserting that the reification of the undecidable features of physical systems like those in  section  8 
forms the observational basis for the views of vitalism in all its forms, and this is why such mystical  
views persist despite the fact that they involve 'ghosts'. The metaphysics of the  Tractatus is different 
from the  scientific materialism given in section 2, and this has resulted in significant differences in 
conclusion despite this paper sharing the theme of the use and limitations of language in the description 
of reality. This paper has been very focused on the use of formal language for deductive purposes, and 
has  only considered the issue of  what  constitutes scientific  knowledge in  so far  as  to recognise a 
distinction  between  metaphysical  knowledge  and  observational  knowledge.  The  benefit  of  this 
descriptive focus has been to identify the limitations of a particular form of scientific language, such 
that these limitations can be overcome by changing the form of scientific language used. 

10.1 Machine category: the set of propositions PD  about the components of a physical system that can 
be derived within the scope of a physically-real scientific theory S  in formal system L from the set 
of axioms PA.

This  corresponds  to  the  domain  of  the  mechanistic  paradigm of  9.3,  and  the  assertion  of  the 
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universality of the mechanistic paradigm is taken to define machinism, i.e. the claim that the set PD 

is the same as the set of all true propositions P that can be made about the physical system in reality.

10.2 Ghost category: the collection of observed undecidable features  PU which are expressed in the 
formal language L (PU ⊂P), but cannot be derived (PU ∩PD ={}).

The assertion that the features of PU are due to the existence of some undiscovered component of 
reality is taken to define vitalism.

10.3 Mechanistic duality: the set of observable propositions P is given by the pair (PD, PU) where the set 
PD can  be  derived  within  some  formal  system  L,  and  the  set  PU are  described  within  some 
descriptive system M that is independent of L, to give a dual philosophical system (L, M).

No further assumptions will be made about the character of M, but it can be noted that it is unlikely 
to be a logical deductive system and it cannot share the same basis as L. As materialism has been 
defined to be described by the full set of propositions P (9.2), a complete description of reality in 
physically-real  terms  will  split  into  the  pair  (PD,  PU)  where  the  view of  materialism given by 
mechanistic  duality is  given  by (machinism,  vitalism).  This  can  be  expressed  in  terms  of  the 
existence of a gap between  materialism (9.2) and  machinism (10.1) which is  filled by  vitalism 
(10.2), i.e. philosophically, materialism – machinism  = vitalism ≠ {}.

10.4 Apparent inference of top-down causation from the system level domain of M to the component 
level domain of L.

The undecidable propositions of  PU are statements in physically-real terms about causally closed 
arithmetic states of an object system (this is based on the conditions of §6 apparently being verified 
in §8.1), where the propositions cannot be derived from statements about the object content of the 
system. In the dual descriptive system (L,  M),  causal closure would be expected to involve the 
descriptions of L giving rise to those of M, which then in turn give rise to those of L, i.e. the closed 
cycle L→M→L. However, the undecidable propositions at the system level described in M cannot 
be deduced from the component level descriptions of L, which can be taken to imply that the step 
L→M doesn't exist. This would just leave the second part M→L, which can then be interpreted as 
top-down causation from the system level description of M to the component level description of L.

10.5 Ghost in the machine: the interpretation of (PD,  PU) in the dual philosophical system (L,  M) in 
terms of top-down causation from M to L is accompanied by the reification of one or more of the 
elements of M as being real 'things' in reality.

Such reifications are 'ghosts' in the sense of 'appearing but not actually existing' and are due to the  
categorisation mistake of mistaking the elements of the ghost category (10.2) as being real physical 
'things'. In reality, these 'ghosts' are just figments of a mistaken philosophy.

10.6 Quantum myth (§8.1): the reification of the descriptive fields of Quantum Theory as being real 
physical fields that affect top-down causation of the form M→L.

In biology, a reified 'quantum field' has been viewed as being the 'thing' that animates the chemical  
components of a cell to bring it to life, or the 'shaping field' that determines the final form of a 
multi-cellular organism. In physics, such reification of the descriptive 'quantum fields' of  §8.1 as 
being real physical fields underlies the assumption that Quantum Theory is fundamental in physics, 
such that gravity also has to be similarly 'quantised'. The points given here indicate that such reified 
'quantum fields' are 'ghosts', just figments of a mistaken philosophy. This would explain why all 
attempts at physics unification based upon this assumption have failed (Goodband [2012a, 2012b] 
outlines a more successful approach).

10.7 Proposition of Life (§8.2): the state of Life is a self-consistent arithmetic state of the gene-protein 
system of a living cell which possesses one or more undecidable features.

The universality required for the incompleteness proof is achieved through the inclusion of ongoing 
random genetic mutations in the scientific theory S, which means that the incompleteness proof is 
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effectively constructed over an infinite evolutionary time-scale within the theory S. This proposition 
is dependent upon a finite statement about a finite system being undecidable, which is shown to be 
possible  by the halting problem where a  finite  Turing Machine encounters a finite undecidable 
statement. The same condition also underlies all the remaining propositions.

10.8 Proposition of Form: the final developmental form of a multi-cellular organism possesses one or 
more undecidable features.

The basis for this proposition does not lie with the proofs of §6 and §8 but with a cellular realisation 
of a Turing Machine in physically-real terms (Goodband [2012a]). The proposition is simply given 
here as an unjustified assertion because the issue of a 'shaping field' naturally arises in this section.

10.9 Proposition Mind: the psychological state of the brain of a highly social mammal can possess one 
or more undecidable features.

The network-based incompleteness proofs of  §6 and  §8 do not apply directly to the network of 
neurons because neurons only come in a finite number of types, which means that a neural network 
cannot directly satisfy the universality condition 6.4.4. However, the formation of a network of 
memories can satisfy the conditions of  §6 under special circumstances (Goodband [2012a]), but 
whether these circumstances are realised in the human mind is a different matter. The proposition is 
given here as an unjustified assertion because of the history of Gödel’s incompleteness theorems in 
the  context  in  the  mind,  but  there  are  two points  to  note  about  the  Mind result  of  Goodband 
([2012a]): it is about memory linkage, not about rational reasoning; and an undecidable feature is 
undecidable in theory, which means that the feature cannot be predicted to be consciousness.

10.10 Proposition  of  Nature  (§8.3):  the  state  of  Nature  is  a  self-consistent  arithmetic  state  of  the 
ecosystem  formed  by  the  network  of  interacting  organisms  which  possesses  one  or  more 
undecidable features.

As for Life (10.7), the incompleteness proof is effectively constructed over an infinite evolutionary 
time-scale in theory, because the universality required comes from unending random variation.

10.11 Proposition of the Market (§8.4): the state of the Market is a self-consistent arithmetic state of the 
socio-economic system of a nation which possesses one or more undecidable features.

It must be noted that the required arithmetic can just be in terms of the traded-goods only, the use of 
money is  not  specifically  required  for  the  incompleteness  proof.  On  the  other  hand,  the  self-
consistency associated with causal closure is most obviously achieved by the use of money in the 
socio-economic system. 

10.12 Proposition of Us (§8.4): the state of Us is a self-consistent arithmetic state of the social system 
of a society which possesses one or more undecidable features.

As money is implicitly of the form of an I.O.U.4 the same enforcement of causal closure realised by 
the use of money could also be realised in a society that didn't use money, but instead implemented 
and maintained strict I.O.U. reciprocity in terms of the value of goods and services exchanged. The 
incompleteness proof of §8.4 would then still stand for such a system, despite of the lack of money. 
This state is given the social label of Us because it is possible that it could exist independently of 
the economic Market state of 10.11.

10.13 Proposition of Religion: a religion asserts top-down causation M→L.

This can be accompanied by the assertion that the domain of the religious system of description M 
is about a different domain of reality from the domain of the physical world described by L.

10.14 Proposition of Religious Reification: God is Us.

This proposition is based upon the reification of the collective societal state of Us (10.12) and the 
religious assertion of top-down causation (10.13)

4 The bank notes of some societies explicitly take the form of the Central Bank saying I.O.U.
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10.15 Philosophy is required to teach the difference between reality and reification
The points given here would seem to indicate that this will be necessary on an ongoing basis
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