
   
Superconducting State generated by Cooper Pairs bound by 

Intensified Gravitational Interaction    
Fran De Aquino 

Maranhao State University, Physics Department, S.Luis/MA, Brazil. 
Copyright © 2012 by Fran De Aquino. All Rights Reserved.  

 
We show that by intensifying the gravitational interaction between electron pairs it is possible to produce 
pair binding energies on the order of 10−1eV, enough to keep electron’s pairs (Cooper Pairs) at ambient 
temperatures. By means of this method, metals can be transformed into superconductors at ambient 
temperature.     
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 1. Introduction 
 
          A pair of weakly bound electrons in a 
superconductor is called Cooper pair; it was 
first described in 1956 by Leon Cooper [1]. 
As showed by Cooper, an attraction between 
electrons in a metal can cause a paired state 
of electrons to have a lower energy than the 
Fermi energy, which implies that the pair is 
bound. In conventional superconductors, this 
attraction is due to the electron–phonon 
interaction. The Cooper pair state is 
responsible for superconductivity, as 
described in the BCS theory developed by 
John Bardeen, John Schrieffer and Leon 
Cooper for which they shared the 1972 Nobel 
Prize [2].  
          In spite of Cooper pairing to be a 
quantum effect the reason for the pairing can 
be seen from a simplified classical 
explanation [3]. In order to understand how 
an attraction between two electrons can 
occur, it is necessary to consider the 
interaction with the positive ions lattice of 
the metal. Usually an electron in a metal 
behaves as a free particle. Its negative charge 
causes attraction between the positive ions 
that make up the rigid lattice of the metal. 
This attraction distorts the ion lattice, moving 
the ions slightly toward the electron, 
increasing the positive charge density of the 
lattice in the local (See gray glow in Fig.1 
(a)). Then, another electron is attracted to the 
positive charge density (gray glow) created 
by the first electron distorting the lattice 
around itself. This attraction can overcome 
the electrons' repulsion due to their negative 
charge and create a binding between the two 
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Fig. 1 – Cooper Pair Formation 
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electrons (See Fig.1 (b)). The electrons can 
then travel through the lattice as a single 
entity, known as a Cooper Pair (See Fig.1 
(c)). While conventional conduction is 
resisted by thermal vibrations within the 
lattice, Cooper Pairs carry the supercurrent 
relatively unresisted by thermal vibrations.  
          The energy of the pairing interaction is 
quite weak, of the order of 10−3eV, and 
thermal energy can easily break the pairs. So 
only at low temperatures, are a significant 
number of the electrons in a metal in Cooper 
pairs.  
          Here is showed that, by intensifying the 
gravitational interaction * [4] between 
electrons pairs, it is possible to produce pair 
binding energies on the order of 10−1eV, 
enough to keep them paired at ambient 
temperatures.  Thus, by this way, metals at 
ambient temperature can have a significant 
number of the electrons in Cooper pairs, 
transforming such metals in superconductors 
at ambient temperature.     
 
 2. Theory 
 
          The quantization of gravity showed 
that the gravitational mass mg and the 
inertial mass mi are correlated by means of 
the following factor [4]: 
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where  is the rest inertial mass of the 
particle and  is the variation in the 
particle’s kinetic momentum;  is the speed 
of light.   

0im
pΔ

c

          When  is produced by the 
absorption of a photon with wavelength

pΔ
λ , it 

is expressed by λhp =Δ . In this case, Eq. 
(1) becomes  
                                           
* De Aquino, F. (2008) Process and Device for Controlling  
    the  Locally  the  Gravitational  Mass   and   the  Gravity  
    Acceleration, BR  Patent Number: PI0805046-5, July 31,  
    2008. 
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where cmh i00 =λ  is the DeBroglie 
wavelength for the particle with rest inertial 
mass .   0im
          In general, the momentum variation 

pΔ is expressed by tFp Δ=Δ  where is the 
applied force during a time interval 

F
tΔ . Note 

that there is no restriction concerning the 
nature of the force, i.e., it can be mechanical, 
electromagnetic, etc. For example, we can 
look on the momentum variation  as due 
to absorption or emission of electromagnetic 
energy by the particle. 

pΔ

          This means that, by means of 
electromagnetic fields, the gravitational mass 
can be decreased down to become negative 
and increased (independently of the inertial 
mass ). In this way, the gravitational 
forces can be intensified. Consequently, we 
can use, for example, oscillating magnetic 
fields in order to intensify the gravitational 
interaction between electrons pairs, in order 
to produce pair binding energies enough to 
keep them paired at ambient temperatures. 
We will show that the magnetic field used in 
this case must have extremely-low frequency 
(ELF). 

im

          From Electrodynamics we know that 
when an electromagnetic wave with 
frequency and velocity  incides on a  
material  with relative  permittivity 

f c

rε , 
relative magnetic permeability rμ  and 
electrical conductivity σ , its velocity is 
reduced to rncv =  where  is the index of 
refraction of the material, given by [

rn
5]  

 

( ) ( )311
2

2 ⎟
⎠
⎞⎜

⎝
⎛ ++== ωεσ

με rr
r v

cn

 
 



 3
If  ωεσ >> , fπω 2= , Eq. (3) reduces to 
 

( )4
4 0 f

n r
r πε

σμ
=  

 
Thus, the wavelength of the incident 
radiation (See Fig. 2) becomes 
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Fig. 2 – Modified Electromagnetic Wave. The 
wavelength of the electromagnetic wave can be
strongly reduced, but its frequency remains the same.

v = c v = c/nr 

λ = c/f λmod = v/f = c/nr f

nr 

  
 
        If a lamina with thickness equal toξ  
contains  atoms/mn 3, then the number of 
atoms per area unit is ξn . Thus, if the 
electromagnetic radiation with frequency 

incides on an area  of the lamina it 
reaches
f S

ξnS  atoms. If it incides on the total 
area of the lamina, , then the total number 
of  atoms reached by the radiation is 

fS

ξfnSN = .  The number of atoms per unit of 
volume, , is given by n
 

( )60

A
N

n
ρ

=

 
where  is the 
Avogadro’s number; 

kmoleatomsN /1002.6 26
0 ×=

ρ  is the matter density 
of the lamina (in kg/m3) and A is the molar 
mass(kg/kmole).                
          When an electromagnetic wave incides 
on the lamina, it strikes  front atoms, 
where

fN
( ) mff SnN φ≅  , mφ  is the “diameter” of 

the atom. Thus, the electromagnetic wave 
incides effectively on an area  , where mf SNS=

2
4
1

mmS πφ=  is the cross section area of one atom. 
After these collisions, it carries out  
with the other atoms (See Fig.3).   

collisionsn

 
 
  
 
 
 
 
 
 
 
Fig. 3 – Collisions inside the lamina.   
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Thus, the total number of collisions in the 
volume ξS is 
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The power density, , of the radiation on the 
lamina can be expressed by 

D

( )8
mf SN

P
S
PD ==  

           We can express the total mean number 
of collisions in each atom, , by means of 
the following equation  

1n

 

( )91 N
Nn

n collisionsphotonstotal=

 
Since in each collision a momentum λh  is 
transferred to the atom, then the total 
momentum transferred to the lamina will be 

( ) λhNnp 1=Δ . Therefore, in accordance 
with Eq. (1), we can write that 
 

( )

( )
( )

( )101121

1121

2
0

2
0

1
0

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
+−=

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
+−=

λ
λ

λ
λ

collisionsphotonstotal

li

lg

Nn

Nn
m
m

  

 



 4
Since Eq. (7) gives ξSnN lcollisions = , we get 

( ) (112 ξSn
hf
PNn lcollisionsphotonstotal ⎟⎟

⎠
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⎝

⎛
= )  

 
Substitution of Eq. (11) into Eq. (10) yields 
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Substitution of P given by Eq. (8) into Eq. 
(12) gives 
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Substitution of ( ) mflf SnN φ≅  and mf SNS =   
into Eq. (13) results 
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where ( ) ( ) ( )llli Vm ρ=0 .  
 
         Now, considering that the lamina is 
inside an ELF electromagnetic field with 
E and B , then we can write that [6] 
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Substitution of Eq. (15) into Eq. (14) gives 
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Note that tEE m ωsin= .The average value 
for 2E  is equal to 2

2
1

mE  because E  varies 
sinusoidaly (   is the maximum value 

for
mE

E ). On the other hand, 2mrms EE = . 
Consequently we can replace 4E  for . 

Thus, for 

4
rmsE

modλλ = , the equation above can 
be rewritten as follows 
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Electrodynamics tells us that 

( )( ) rmslrrmsrms BncvBE == . Substitution of 
this expression into Eq. (17) gives 
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Since ( )lrnλλ =mod then Eq. (18) can be 
rewritten in the following form 
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        In order to calculate the expressions of 

Beχ   for the particular case of a free electron 
inside a conductor, subjected to an external 
magnetic field  with frequency , we 
must consider the interaction with the 
positive ions that make up the rigid lattice of 
the metal.  

rmsB f

          The negative charge of the free 
electron causes attraction between the 
positive ions lattice of the metal. This 
attraction distorts the ion lattice, moving the 
ions slightly toward the electron, increasing 
the positive charge density of the lattice in 
the local (See gray glow in Fig.1 (a)). Then, 
another electron is attracted to the positive 
charge density (gray glow) created by the 
first electron distorting the lattice around 
itself, which produces a strong attraction 
upon the electron deforming its surface as 
showed in Fig. 4. Under these circumstances,  
the volume of the electron does not vary, but 
its external surface is strongly increased, 
becomes equivalent to the external area of a 
sphere with radius  ( is the radius 
of  the free electron out of the ions “gage” 

exe rr >> er



 5
showed in Fig. 1 (a)). Based on such 
conclusions, we substitute  in  Eq.(19)  by ln
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 – Schematic diagram of Electrons’
structure inside the ion lattice.  The positive ions
lattice around the electron produces a strong
attraction upon the electron deforming its surface.
The volume of the electron does not vary, but its
external surface is increased and becomes
equivalent to the area of a sphere with radius

exe rr >> .  
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Fig. 5 – The deformation of the proton. 
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411 ee rV π=  ,  by ( )fS eee VSSA ρ   ( is the 

specific surface area for electrons in this 
case:

eSSA

eexeeeeeeeSSA = VrVAmA ρπρ 2
2
1

2
1 2== ), 

 by , mS 2
xee rS π= ξ  by xem r2=φ  and  

by . The result is 
( )lim 0

em
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          In order to calculate the value of we 
start considering a hydrogen atom, where the 
electron spins around the proton with a 
velocity . The electrical 
force acting on the proton is

xer

16 .103 −×= smve
2

10
2 4 reFe πε= , 

which is equal to the centrifuge force 
where 0

2rmF epc ω= eω is the angular velocity 
of the electron and is the distance between 
the inertial center of the proton and the center  

0r

of the moving proton (See Fig. 5, where we 
conclude that ( ) pxpp rrrr +=+02 ; is the 
radius of the sphere whose external area is 
equivalent to the increased area of the 
proton). Thus, we get 

xpr

( )pxp rrr −= 2
1

0 . 
Substitution of this value into expression of 

ec FF = gives  
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Therefore, we can write that pxpxp rkr = , 
where 
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The electron is similarly deformed by the 
relative movement of the proton in respect to 
the electron. In this case, by analogy, we can 
write that 

mr
vm

er e
ee

xe
11

2
0

2

104.6
4

−×=+=
πε

and exexe rkr = , where is the radius of the 
sphere whose external area is equivalent to 
the increased area of the electron. The radius 
of free electron is 

xer

mre
141087.6 −×=  (See 

Appendix A). However, for electrons in the 
atomic eletrosphere the value of  can be 
calculated starting from Quantum Mechanics. 

er
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The wave packet that describes the electron 
satisfies an uncertainty principle 
( )h2

1≥ΔΔ xp , where  and kp Δ=Δ h kΔ  is 
the approximate extension of the wave 
packet. Thus, we can write that ( 2

1≥ΔΔ xk ). 
For the ``square'' packet the full width in  is k

02 λπ=Δk  ( cmh e=0λ is the average 
wavelength). The width in x  is a little harder 
to define, but, lets use the first node in the 
probability found at ( ) πλπ =22 0 x  or 

0λ=x . So, the width of the wave packet is 
twice this or 02λ=Δx . Obviously, 
cannot be greater than 

er2  
xΔ , i.e.,  must be 

smaller and close to 
er

mcmh e
12

0 1043.2 −×==λ . 
Then, assuming that , we 
get

mre
12104.2 −×≅
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e
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r
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Note that . In the case of electrons 
inside the ion lattice (See Fig. 4), we can note 
that, in spite of the electron speed  be null, the 
deformations are similar, in such way that, in this 
case,  we can take the values above. 

xpxe kk ≅

ev

            Substitution of these values into Eq. 
(20) gives 
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Similarly, in the case of proton and neutron 
we can write that 
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In the case of the neutron,  due to its 
electric charge be null. The radius of protons 
inside the atoms (nuclei) is 

1=xnk

mrp
15102.1 −×=  

[7,8], pn rr ≅ , then we obtain from Eqs. (22) 
and (23) following expressions: 
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Since eBege mm χ= , pBpgp mm χ=  and 

nBngn mm χ= , it easy to see, by means of 
Eqs. (21), (24) and (24a), that  is much 
greater than and . This means that, in 
the calculation of the gravitational force 

(between the positive ions + electron and 
the external electron), we can 

gem

gpm gpm

gF
disregard the 

effects of the gravitational masses of the 
ions. Thus, the expression of  reduces to 
the expression of the gravitational forces 
between the two electrons, i.e.,  

gF
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For the creation of the Cooper Pairs  
must overcome the electrons' repulsion due 
to their negative charge 

gF

( )2
0

2 4 re πε . Thus, we 
must have 0

222 4πεχ eGmeBe > or 
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For the Cooper Pairs not be destructed by the 
thermal vibrations due to the temperature T , 
we must have kTrGmeBe >22χ  whence we 
conclude that rGmT eBe

22χ< . Consequently, 
the transition temperature, , can be 
expressed by the following expression  

cT

 



 7

( )27
22

ξ
χ

k
Gm

T eBe
c =

 
where ξ  is the size of the Cooper pair, which 
is given by the coherence length of the 
Cooper-pair wavefunction. It is known that 
the coherence length is typically 1000 Å 
(though it can be as small as 30Å in the 
copper oxides). The coherence length of the 
Cooper-pair in Aluminum superconductor is 
quite large ( [micron1≅ξ 9]). Substitution 
of this value into Eq. (27) gives 
 

( )28104 242
BecT χ−×=

 
For  we obtain  ( CKTc °= 127~400 )
 

( )29101 22×−=Beχ
 
By comparing (29) with (26), we can 
conclude that  this value of eχ  is sufficient 
for the creation of the Cooper Pairs, and also 
in order that they do not be destructed by the 
thermal vibrations due to the temperature up 
to .  ( )CKTc °= 127~400
          In order to calculate the intensity of the 
magnetic field  with frequency , 
necessary to produce the value given by 
Eq.(29), it is necessary the substitution of Eq. 
(29) into Eq. (21). Thus, we get  

mB f

 

( )301011108.2121 22
2

4
42 ×−≅

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−×+−

f
Brms

 
For Hzf 2= the value of is rmsB
 

TBrms 3>
 
Therefore, if a magnetic field with frequency 

Hzf 2=  and intensity TBrms 3> † is applied 
upon an Aluminum wire it becomes 
superconductor at ambient temperature 
( ( CKTc °= 127~400 )
                                          

). Note that the 
 

† Modern magnetic resonance imaging systems work  
   with magnetic fields up to 8T  [10, 11].   

magnetic field is used only during a time 
interval sufficient to transform the Aluminum 
into a superconductor. This means that the 
process is a some sort of “magnetization” 
that transforms a conductor into a 
“permanent” superconductor. After the 
“magnetization” the magnetic field can be 
turned off, similarly to the case of 
“magnetization” that transforms an iron rod 
into a “permanent” magnet.  
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Appendix A: The “Geometrical Radii” of Electron and Proton 
 
          It is known that the frequency of 
oscillation of a simple spring oscillator is  
 

( )1
2
1 A

m
Kf

π
=

 
where  is the inertial mass attached to the 
spring and 

m
K  is the spring constant (in 

N·m−1). In this case, the restoring force 
exerted by the spring is linear and given by  
 

( )2AKxF −=
 
where x  is the displacement from the 
equilibrium position. 
          Now, consider the gravitational force: 
For example, above the surface of the Earth, 
the force follows the familiar Newtonian 
function, i.e., 2rmGMF gg⊕−= , where 

 is the mass of Earth,  is the 
gravitational  mass of a particle and 

⊕gM gm
r is the 

distance between the centers. Below Earth’s 
surface the force is linear and given by 

( )3
3

Ar
R

mGM
F gg

⊕

⊕−=

where  is the radius of Earth.  ⊕R
          By comparing (A3) with (A2) we 
obtain 

( )4
3

A
x
r

R

GM

m
K

m
K g

g
⎟
⎠
⎞

⎜
⎝
⎛==

⊕

⊕

χ

Making , and substituting (A4) 
into (A1) gives 

⊕== Rrx

 

( )5
2
1

3 A
R

GM
f g

⊕

⊕=
χ

π
 
In the case of an electron and a positron, we 
substitute  by , ⊕gM gem χ  by eχ and  by 

, where  is the radius of electron (or 
positron). Thus, Eq. (A5) becomes 

⊕R

eR eR

 
 

( )6
2
1

3
A

R

Gm
f

e

egeχ
π

=

The value of eχ  varies with the density of 
energy [4]. When the electron and the 
positron are distant from each other and the 
local density of energy is small, the value of 

eχ  becomes very close to 1. However, when 
the electron and the positron are penetrating 
one another, the energy densities in each 
particle become very strong due to the 
proximity of their electrical charges e  and, 
consequently, the value of eχ  strongly 
increases. In order to calculate the value of 

eχ under these conditions ( ), we 
start from the expression of correlation 
between electric charge  and gravitational 
mass, obtained in a previous work [

eRrx ==

q
4]:  

 

( ) ( )74 0 AimGq imaginarygπε=

  
where  is the imaginary 

gravitational mass, and 
(imaginarygm )

1−=i .  
 
          In the case of electron, Eq. (A7) gives  
 

( )

( )( )
( )( )

( )( ) ( )8106.14

4

4

4

19
03

2
0

2
03

2
0

00

0

ACmG

imG

imG

imGq

realeie

realeie

imaginaryeie

imaginarygee

−×−==

=−=

==

==

χπε

χπε

χπε

πε

 
where we obtain 
 

( )9108.1 21 Ae ×−=χ
 
This is therefore, the value of eχ  increased 
by the strong density of energy produced by 
the electrical charges  of the two particles, 
under previously mentioned conditions.  

e
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          Given that eiege mm 0χ= , Eq. (A6) 
yields        

( )10
2
1

3
0

2

A
R

mG
f

e

eieχ
π

=

  
From Quantum Mechanics, we know that  
 

( )112
0 Acmhf i=

 
where  is the Planck’s constant. Thus, in 
the case of we get 

h
eii mm 00 =

 

( )12
2

0 A
h

cm
f ei=

 
          By comparing (A10) and (A12) we 
conclude that 
 

( )13
2
1

3
0

22
0 A

R
mG

h
cm

e

eieei χ
π

=

 
Isolating the radius , we get: eR
 

( )141087.6
2

14
2

0

3
2

3
1

Am
c
h

m
GR e

ei
e

−×=⎟
⎠

⎞
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π
χ

 
Compare this value with the Compton sized 
electron, which predicts  
and also with standardized result recently 
obtained of  [

mRe
131086.3 −×=

mRe
131074 −×−= 12].            

         In the case of proton, we have  
 

( )

( )( )
( )( )

( )( ) ( )15106.14

4

4

4

19
03

2
0

2
03

2
0

00

0

ACmG

imG

imG

imGq

realpip

realpip

imaginarypip

imaginarygpp

−×−==

=−=

==

==

χπε

χπε

χπε

πε

 
where we obtain 
 

( )16107.9 17 Ap ×−=χ

 

 Thus, the result is 
 

( )171072.3
2

17
2

0

3
2

3
1

Am
c

h
m
GR p

pi
p

−×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

π

χ
 

          Note that these radii, given by 
Equations ( )14A  and ( , are the radii of 
free electrons and free protons (when the 
particle and antiparticle (in isolation) 
penetrate themselves mutually).  

)17A

          Inside the atoms (nuclei) the radius of 
protons is well-known. For example, protons, 
as the hydrogen nuclei, have a radius given 
by  [mRp

15102.1 −×≅ 7, 8]. The strong 
increase in respect to the value given by Eq. 
(A17) is due to the interaction with the 
electron of the atom.  
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	          A pair of weakly bound electrons in a superconductor is called Cooper pair; it was first described in 1956 by Leon Cooper [1]. As showed by Cooper, an attraction between electrons in a metal can cause a paired state of electrons to have a lower energy than the Fermi energy, which implies that the pair is bound. In conventional superconductors, this attraction is due to the electron–phonon interaction. The Cooper pair state is responsible for superconductivity, as described in the BCS theory developed by John Bardeen, John Schrieffer and Leon Cooper for which they shared the 1972 Nobel Prize [2].  
	          In spite of Cooper pairing to be a quantum effect the reason for the pairing can be seen from a simplified classical explanation [3]. In order to understand how an attraction between two electrons can occur, it is necessary to consider the interaction with the positive ions lattice of the metal. Usually an electron in a metal behaves as a free particle. Its negative charge causes attraction between the positive ions that make up the rigid lattice of the metal. This attraction distorts the ion lattice, moving the ions slightly toward the electron, increasing the positive charge density of the lattice in the local (See gray glow in Fig.1 (a)). Then, another electron is attracted to the positive charge density (gray glow) created by the first electron distorting the lattice around itself. This attraction can overcome the electrons' repulsion due to their negative charge and create a binding between the two   electrons (See Fig.1 (b)). The electrons can then travel through the lattice as a single entity, known as a Cooper Pair (See Fig.1 (c)). While conventional conduction is resisted by thermal vibrations within the lattice, Cooper Pairs carry the supercurrent relatively unresisted by thermal vibrations.  

