A non-vanishing cosmological constant is geometnadayically
prohibited

K enneth Sandale’

If one solves the electromagnetic wave equatigdhén_orenz gauge for a charged
particle moving with a uniform velocity, and therserts this solution into the gauge
condition, mathematically one gets the result thatcurrent density must be the charge
density times the velocity. Thus the field equasiof electromagnetism through the
gauge condition imply a correct velocity requireitriem the current density four-vector,
much like the field equations of General Relativityply through the Bianchi Identities a
correct acceleration requirement.

Likewise we can construct a velocity requiremenmttfi@ stress-energy tensor from the
gauge condition of the Linear Field Equations @wgiation. However, the correct
velocity relationship will be implied only if theosmological constant vanishes. Thus the
cosmological constant must vanish.

. Introduction

The possibility of a cosmological constant wasddtrced by Einstein in 1917 in an attempt to
cause the Field Equations to support a stable ts#d]. Ironically, shortly thereafter,
observational data [2,3] indicated that the Unigexss expanding rather than being maintained
in a stable state.

Indeed, even if the Universe was in equilibriuntraduction of a cosmological constant would
be somewhat questionable in that while it coulddpo® equilibrium, the equilibrium would be
unstable.

The currently accepted accelerated expansion dfittierse [4-12] cannot be explained by the
standard Einstein Field Equations involving normakter, and has led to renewed interest in
adding a cosmological constant into the Field Equnat A non-zero cosmological constant is
now considered to be a leading contender [4,13¢t4he purported “dark energy”.

Theoretical justification for modification of thedfd Equations by addition of a cosmological
constant has been based on the fact that becausgethic has a vanishing covariant derivative
the addition of a cosmological constant term toEhestein Tensor would not tamper with the
covariant derivative of the stress-energy tensargoeero, a property necessary for the Field
Equations to imply that matter acted upon by aigatignal field accelerates in a way consistent
with the acceleration expected from the actionraf/y.

However, while correctly implied acceleration inecessary condition for a cosmological
constant to be acceptable, it is not a sufficiemidition. We will show that field equations can
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not only imply accelerations of sources, but cateed also imply velocities of sources. For
example, we will show that Maxwell's Equations reguhat the current density must be the
charge density multiplied by the velocity. We @dgo show that the Linear Field
Approximation equations for General Relativity reguithe correct velocity relationships between
the components of the stress-energy tensor, bytifothle value of the cosmological constant is
zero. Thus, contrary to previous belief, the equestiof General Relativity cannot really allow a
cosmological constant.

[I.  Example From Electromagnetism
i. Caseof aSingleParticle

In the Lorenz Gauge, the equations of electromégnedre

9 97 A =3 gu (1a)
C

9,A% =0 (1b)

, i
We of course “know” that)' = J° dd_xt for a point charge, but here we will not assuniruit
rather just treatl’ as the guantity appearing in Equation 1a, and pinewe that Equations 1

. i
imply J' must be of the formy° o:j_xt

For a point charge moving with a uniform velocitye solution to the Lienard-Wiechert formula
takes on the surprisingly simple form [15]:
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Inserting Equations 2 into Equation 1b, we get
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implying
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Equation 4 can be written
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From Equation 6, we see thamustbe the case thz@E is equal toR which of course

. i .
implies thatd' = J° ddit The field equations imply thal' moves with the physically required
velocity. Had the field equations implied othemyithey could not be acceptable to describe
what physically is believed about tlié’ four-vector.

The result that the standard equations of electgoiizsm imply a correct velocity relationship
betweenJ® and J' might seem trivial, but in reality it is highly ndrivial. We can see this by

considering a concrete example. If the equati@usieen, for examplé, 0 A* = ﬂ\]” with
C

d,A" = A“J , rather thard ,07 A* = ﬂ\]” with @ ,A# =0, it would not be possible fod'
C
il

to be equal ta° ax :
dt

ii. Case of aContinuum of Rigidly Attached Particles

Let us derive the result for a general distributddicharge, not just a point charge, moving with a
unique velocity—i.e. all of the charges moving witle same velocity, as if rigidly attached to
each other. For the cases of two such chargesawmnent like that above shows in a

i 1
straightforward way thafQ, + QZ)% = (R1 + Rz). For a continuum of charges moving with

the same velocity as if rigidly attached to eadteatmore specifically, a system where



H 1
A (X) = '|.%|]—(>):|) d®x' and where the charges move with the same velscitie gauge
X —

condition implies

i
([p(x)dx d (jJ (x)d?® x (7)
iii. Generalization
Our result that
1) a charge distribution is moving rigidly with #ile pieces moving at the same velocity
and
H 1
2) A“(X) = J'W_(X)cpx-
X=X

and
3) aﬂA/‘ =0

is required by mathematical identity to conform to

JOdL“_JI
dt

can trivially be generalized to, for example, oaté that:

1) If a matter distribution is moving rigidly with alhe pieces moving at the same velocity

V]
2) and the quantitied ** and L*¥ exist such that* (x) = J.”T'—ilx)dsx'
X_
and
3) 9,L(x)=0

Then

Ovdii': iv
(2] o .

[11.  Example From Gravitation

For the Linear Field Equations of gravitation ie iauge analogous to the Lorenz Gauge of
electromagnetism, the equations are:



3,0% W =KTH (9a)

3, =0 (9b)

whereg*’ =n* +h*, andw" =h*" —%ﬂ”“h.

Applying Equation 8, where thtl # is T#" | and the and*" is w*¥, we get that

TOV dill :Til/
dt '

Thus just as we demonstrated that the field equaitd electromagnetism imply the correct
velocity relationships between the components efctirrent-density for a point charge with
uniform velocity, the linear field equations of gitation imply the correct velocity relationships
between the components of the stress-energy témsampoint mass with uniform velocity. Had
they done otherwise they could not be acceptabiiesoribe what physically is believed about
the stress-energy tensor. So we see that juledsinstein equations for gravitation require (via
the Bianchi Identities) that a particle in a grati@inal field moves with the appropriate
acceleration, the equations for electromagnetistingaavitation also turn out to require that a
particle move with the appropriate velocity.

IV. A Maodification of the Linear Field Equations

Before considering the behavior of the Linear FEetpiations with a cosmological constant it
will be pedagogically useful to examine the behaeftthe Linear Field Equations with a more

simple modification. Let us add a terfacw”” to the left-hand side of the linearized equatiohs
gravitation®

Working in the equivalent of the Lorenz gatiges have the equations:

3,07 W + Nt =KTH (10a)

! This system however of course does not reprekeriirtear field equations with a cosmological canst
-the cosmological constant termAsg*”, not A’ . The quantityaw*"” is most certainly nog*” .

Our use of an equation with the additiod®stv*"” term is done only to make the treatment of the
Cosmological Constant situation which we will engag later in the paper easier to analyze.

% The linear field equation with the addeflcoV term are not gauge invariant, and thus it is not
immediately obvious that splitting of that equatioto (10a) and (10b) is really justified. Howeygsuch a
splitting will turn out to yield a solution, andedrly such a solution will satisfy our modifieddar field
equation-- and thus justification is eventually derstrated.



9,0 =0 (10b)

Although Equation 10a is a Yukawa Equation, for purposes we do not want to analyze it via
that route. It will be useful to us to use a metbbduccessive approximations.

Let us move the\w™ term to the right-hand side, and treat the situradis one where the
N’ term acts as if it was a source along with & source.

3,07 = KTH = N (11a)
9,0 =0 (11b)

Consider a situation whef@*" is sufficiently small thatw*” is small enough that a second-
order approximation is sufficiently accurate. (Thethod though could be extended in a
straightforward way to work for all orders of apgiroation.)

The first order value ots*"Y, which we will call a)(‘l‘)” comes from the action of tHe*" .

0,07y =KTH (12)

The solution for the case of mass distribution mgwvith uniform velocity is

v 2 [T ) g
C()u(l) —jwd:%x (13)

. . L . ax'
We will assume thal ¥ has the correct velocity relationships — i.e. thét o =T" —

and see if that leads to a contradiction. Theegforoceeding under that assumption, Equation 13
indicates that theuyy” field moves rigidly through space with the samieeigy as theT # field.

Next we calculate the second order approximaméﬁ from Equation 11a, where we umg)”

as the approximate value af*V in Equation 11a

0,07 = KTH ~ Neof (14)

Equation 14 indicates that mathematically mwg;’ field acts like a supplement@”” field.
The solution to Equation 14 is thus



KT (X X'
gy = [P OO0 as)
[x=x]
And as noted in our analysis of Equation &$y" moves rigidly attached to the field with
the same velocity as the*" field. Therefore Equation 14 is a special castnefEquation 8
situation, wherexT #¥ (x') = A @ (x) istheM#(x') and w? 2 Y (x) is the L¥Y (x). Thus,
applying Equation 8, we get
(kT - OV)O'X“ (kT = Aad?) 16
K Wl g =% &) (16)
Substituting Equation 13 into Equation 16, we get
(KTOV(X) /\IVKT (T)d XJ " _(KTW(X) /\IVKT (T)d XJ (17)

. . . , dx i . .
Equation 11 is clearly not inconsistent willf” F =T'" and thus a putative linearized system

of gravitation given by Equations 11 is not ruled by our geometrodynamic velocity
requirement.

However, Equations 11 are neither tensor equatimnsilo they satisfy the Bianchi Identities.

The equations of General Relativity with a cosmuadalgjconstant are tensor equations and do
satisfy the Bianchi Identities, so we now apply m&thodology to them.

V. Gravitation with a Cosmological Constant

The linearized equations in the equivalent of theehz gauge for General Relativity with a
cosmological constant afe:

3 Again we face a situation where a modified linéeld equation is not actually gauge invariant, &#mas
the splitting is not immediately obviously justifieOur reasoning here is similar to our reasonmipé
footnote in the previous section,--we will be atdeshow that field equations with a cosmologicaistant
do have solutions in the gauge choice we are makimg) thus those solutions are solutions to themgén
equations. These solutions will be solutions witiphysical velocity behavior, thus leading us toatode
that a non-vanishing cosmological constant canxigt.e



0,0% W™ +AlgH +h# )= kT (18a)

9,0 =0 (18Db)

We re-write them as
0,07 =KTH - /\W‘” + —%w/]”") (19a)
a/,wf” =0 (19b)

We must digress to address something that coulonbea serious point of confusion. When the
weak-field approximation for General Relativityeigpressed in the form of Equation 19a and
Equation 19b, there actually is no de Sitter effé@bnsider the (0,0) Einstein Field Equation

(with cosmological constant) written in the forR . = 877((T % —19%T - /\g°°). The

left hand side, if the fields are weak enough ifwearity to be a reasonable approximation, can be
thought of as being composed of two pieces. Oeecps essentiall@ZQOO, and produces the
sort of Newtonian gravitation that causes planetzrbit the Sun and objects to accelerate
downwards on Earth. The other piece contains skderivatives with respect to time €4,

J,, and J35. This piece causes expansion of the Universetsffdf there is a cosmological
. : 00 0
constant, the second piece causes the de Sittet®ffSo we havé —% g OT as well as a

supplementar)/\goo term driving two effects—the Newtonian gravityexff and the expansion
of the Universe effect. However when we made thegg transformation to get Equation 19a,
the expansion of the Universe effect became nodopgesent. In the Equation 19b gauge, the
ngoo term becomes a four-dimensional wave equationtfieethree dimensionall®

2

. . 2 . . .
becomes the four-dimension&l _F and the expansion of the Universe term disappears
Thus, in this gauge, the equations do not contajnda Sitter effect, and an assumption of such
an effect would be due to an erroneous prejuditeousistent with the actual operative
equations.

Noting the similarity between Equation 19a and Hgualla — the only difference is that the
A" on the right-hand side of Equation 11a is repld:;ezt\(ly‘“’ + " —%a)/]‘“’). We
therefore start to proceed analogously.

The first order value os*¥, which we will call w(‘{;’ comes from the action of the*" .

0,07l =KTH (20)



The solution for the case of mass distribution mgwvith uniform velocity is

v = (SETE(X) s,
C()g) —de?’x (21)

Like before will assume that#” has the correct velocity relationships — i.e. that
ax' . - . o
T o =T'" — and see if that leads to a contradiction. Wetkat Equation 21 implies, as

Equation 13 had implied in the previous sectioaf thew(‘{;” field moves rigidly through space

with the same velocity as the” field.

Next we calculate the second order valuedft .

aaaa( (2§)=KTW ‘/\(’7W + Wy —%a)(l)q””) (22)

Equation 22 indicates that mathematically Ik&y”" + a)g)" —%a)(l)q”") field acts like a

supplementall # field. The solution to Equation 22 is thus, agalas to Equation 15 in the
previous section,

s T 00 = A () + i () = Sy (0™ ) o
—j d3x (23)
@ |x = x|
In order for theT#¥ to have the proper velocity relationships we ningstible to apply Equation
8 to Equation 23, whert! #¥ would be KT ' (X') —/\(/7”“ (X) + afy (X) =5 Wy (x')/7”“). To
do so we need to be assured thatAfig" (x') —/\(/7‘“’ (X) + Wy (X') =3y, (x')/7‘“’) field
moves through space rigidly with a single velocibet's proceed by assuming that thé” field

moves rigidly with a single velocity and that itsiie proper velocity relationships between its
components (which will lead us to later concludat th reality it actuallycannothave the proper

velocity relationships). From Equation 21 thisuasption aboufr #¥ causeswg)" to also move
rigidly with the velocity of theT #V field. By virtue ofwé;’ moving rigidly with the velocity of
the T4 field, so will @y, and by virtue oiwy, moving that way, so wiltyy, 7. But what

about then”V term?



m* (x)

d*x' a moving field
[x=x]

Is the field generated by thg”’ term, a field of the for
produced by a moving”” that moves rigidly with th@ #” field? Is it instead a constant
background field, in which case it can be ignordetmwwe apply Equation 8 to Equation 237

Since thep”” field is a spatially uniform field, whether it mes or not is physically moot. So
the answer to whether we should consider it to beimg is both “yes” and “no”.

One can argue from symmetry considerations thaig¢tegenerated byy** field would need to

be itself spatially uniform since there is no predd direction in the distribution of thg"" field,

and that the spatial uniformity of the generatettfimakes the answer to the question of whether
this generated field moves both “yes” and “no”t jas was the situation regarding whether the

n*" field moves. However one can instead argue Heagénerated field is not uniform, as is

very often implicitly done. Consider a point masshe origin of a coordinate system in a linear
field equation scenario with a cosmological conistarhe situation is often treated as if there was

an effective mass equal to the sum of the poinshraass plus the volume integral af7*" .

The strength of the gravitational field would adtyiancrease with distance as compared to a
situation with no cosmological constant. In thmaitiof the point mass’ mass going to zero we
actually have a very disturbing asymmetry in thduiced gravitational field, an asymmetry
occurring for no physical reason—the origin of toerdinate system, though arbitrary, becomes
a special position. Indeed whether light travellfrom one point to another point is red-shifted
or blue-shifted would depend on which point we tagbily assign to be the origin of the
coordinate system—a physically intolerable stateff#firs. Likewise, we can expect that in a
zero mass case with a cosmological constant therayshould behave like a deSitter Universe, a
behavior disturbingly non-consistent with the cafa finite mass of unlimitedly decreasing
magnitude.

It is important to note that these ambiguitiesratproblems with our analysis, but rather are
problems inherent with having a non-vanishing cdsgioal constant. Even without the result
we will formally reach later in this paper, the +&uft/blue-shift ambiguity is enough to make the
possibility of a non-vanishing cosmological constdubious.

m* (X)

| | d®x' to be the origin then in that special case we can
X=X

If we choose the £” in

unambiguously drop thg#” term in the gauge condition calculation, because

5 [117 ()

ov 1
d®x" will contain only vanishing terms—i.e(.zj.m—(x)d:*x' will be zero
“x = x] ot

[x=x|
m" (X)

WW (X')d SX',
[x=x]

d3®x' will vanish becausﬁ ,
x=x|

. oL 0
because;o" is constant in time, angl—ij
X

the metric generated by the cosmological constaes @sr > about the origin. So we can set up

a special case where we can unambiguously drogfheterm from Equation 23However,
these unpleasant considerations actually are afmmortance, being that it turns out that



regardless of whether we include th€” term in Equation 23 or do not include it, it

turaat

that we would get the same final conclusion thatabsmological constant must vanidie will

proceed dropping the”" term.

Applying Equation 8 to Equation 23, we get

[KTO" +/\(a)(1) (x) - 1a)(1)(x')/7°")] "

:[KTW*'/\( i (X) = a’(l)(xl)”iv)J-

Substituting Equation 21 into Equation 24 we get

o (X) 3y 1 WT(X) 3ty 0V dx'"

:|:/(Tiv+/\( VKTIV(X) 3 X'— J'VKT(X)d3 |I7|V}}

[x=x] d

whereT =7, T

To see if this is consistent with the correct vigjorelationship of T % (Fj =T" we

. dx v . .
substituteT % o =T" into Equation 25 and, cancelling terms, we get

( IW(X)dXHOVdX“J ( IVT(X)dxq}

Let us consider what happens in Equation 26 whes 0. Noting tha;’ =1 and7'°
get

W(X) 3.dX"
e

(24)

(25)

(26)

=0, we

(27)



. . .dx . .
This cannot be true for a non-vanlshmgt— unlessA vanishes! Thus we have shown that in
order for the field equations with a cosmologiaahstant to have the gauge condition consistent

. . dx' ! .
with TV =T o the value of the cosmological constant must be.zer

VI. Conclusion

As is well-known, adding a cosmological constarthi® Einstein Equations term does not
produce a conflict with the Bianchi Identities. r@aliance with the Bianchi Identities ensures
that a cosmological constant term will not implyptgsical acceleration characteristics of a
particle in a gravitational field. However, thssnot a sufficient condition to allow such a term i
the Einstein Equations. We have shown the add@df@acosmological constant term implies
unphysical velocity characteristics.

Appendix

We have derived the vanishing of the cosmologioaktant by assuming that the stress-energy
tensor must have the accepted velocity relatiosshipne might wonder if maybe a cosmological
constant does exist, and that the real velocigtiaiships for the stress-energy might be slightly
different from assumed. We can show that is moot.

If we define kT # as kT —/\Qﬂ’" + h“"), then Equation 18a will becondg, 0 w*” = kT #¥

. _ | 1
We see that the quantify*Y will obey the relationshig v =T % ddit will obey the Bianchi

Identities, and will generate a gravitational figldhout cosmological constant term effects. So
even if the equations have a cosmological constiaatyeometrodynamicphysicalbehavior

will be as if no cosmological constant term weresgnt, with the new quantify** behaving

just like a stress-energy tensor is assumed toviedrath in terms of velocity and acceleration,
and in terms of field generation. So we are lecklia General Relativity without a cosmological
constant.
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