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Abstract: in this paper you will find a simple demonstration of the Navier-Stokes
equation, while, most of times, in books, you find it broken into its vectorial components
whose proofs are usually not so clear, so getting confused on the topic. Moreover, in the
appendixes, you can also find an original proof of the Stokes’ (rotor) theorem, by the
author of this paper.

The Navier-Stokes Equation in the case o fan incompressibile fluid, that is r =const and
L

N» =0:

(this situations is about most of practical cases)
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r[‘I‘ITT_\t/ +W \5+%Nv2]:-Np- rNf +hR2 | where  W=N"V (vorticity), n (viscosity),

f (gravitational potential), p (density), v (velocity), t (time).

Proof:

o N LI P SN .
-Let’s start from the Continuity Equatlon.”—t + N (rv) =0, and we prove it:

FV = j is the mass current density [kg_/zs] (dimensionally obvious)
m

M = Qr xdV (held obvious) ds
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e have: — M ——Qr xdV = O xdV =- Qrvde,ln fact, in terms of dimensions:
It It .ﬂt
1 i rr

dv =1 xdS and so —-dV = dSﬂ =dSx» and sign — is in case of “escaping” mass.
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So: (‘)1‘}1—1 av =- Q(r\E) xS =- (‘)N >‘(r\5) xdV , after having used the Divergence Theorem in

the last equality.
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Therefore: ¢ [‘ﬂ_r +N >(r\5)]dv =0, from which we get the Continuity Equation.
Ot
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-and let's also start from the Euler's Equation (%+(V>‘N)V=- —p), and we also prove
r

this:

(p is the pressure; moreover, this equation is a sketch of the Navier-Stokes Equation,
whereas we’re not yet taking into account the gravitational field and the viscous forces)
The force acting on a small fluid volume dV is df =- p>dé , with sign -, as we are dealing
with a force towards the small volume. Moreover:

f =- Qp>dS QNp xdV , after having used a dual of the Divergence theorem (a Green’s

formula), to go from the surface integral to the volume one.
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We also have: ‘”W :%[- QNp xdV]=-Np, but, in terms of dimensions, it's simultaneously
true that:
Ir_da M ﬁ] —d—Mﬁ =r ﬂ = and from these two equations, we have:
1\ dV dt” dv dt dt
dv
r —=- N 1.1
o p. (1.1)
] L
Now we remind that: dl =(dx,dy,dz) , N:(E,E,E) and v= %ﬂ% , SO we can
dx dy dz dt dt dt
easily write that:
Vo
U U T U [ U
av_1Tv [Iviax|ividy | Vidz L IV 0¥ =&Y and for (1.1) we finally have:
at it [fix|dt || fy/|dt || Tz|dt | 9t dt
Ny
N
11]]\{ ( ><N)v =- r_p that is the Euler’s Equation, indeed.

Now, the terms of this Euler’s Equation have the dimensiono f an acceleration &; so, if we
want to take into account the gravitational field, too, on the right side we can algebraically
add the gravitational acceleration ¢, with a negative sign, as it's downwards.

But we know that the gradient of the potential f is really § (Nf = 6 ), so:

2
(W N" V), we have:
L L
%+W \5+ ;Nv _p_ Nf and, so far, we have also taken into account the
r

gravitational field.




In the most general case where we have to do with a viscous fluid , we’ll also add a
viscous force component:

visc (12)

whereas lzvisc is divided by the density because of the dimension compatibilita with other
terms in that equation. .
(1.2) is already the Navier-Stokes Equation, whereas the viscous force f, . is still to be

evaluated. .
We will evaluate f, . in the case of incompressibile fluids, that is fluids withr =const,

1 - . L S L S
>>ﬁ =0 so, for the Continuity Equations, N(rv)=0, >> Nx=0.

Calculation of f,_ :
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(1.3)
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We know from general physics that: %:h

That is, in order to drag the slab whose base surface is S, over the fluid, at a d distance

from the bottom, and drag it at a v speed, we need a force F
Now, let’s write down (1.3) in a differential form, for stresses t' and for components: (x)

F, fu

t = :h'ﬂ_ , having set v =(u,v,w), and so:

s

F =h,g (1.4)
iy



We now use (1.4) on a small fluid volume dV in Fig. 2:
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Fig. 2: Smal volume of fluid dV.
Fig. 3: Axis y, faces 2 and 5.
In Fig. 3 we have reproduced what shown in Fig. 1, but in a three-dimension context.

Faces 2 and 5:

so, with reference to Fig. 3, let’s figure out the viscous forces (due to variations of u) on
faces 2 and 5 of the small volume, that is those we meet when moving along the y axis,
by using (1.4):

—

Viscous shear stress on face 2 =+h[—(in_y= dy)]jjdxd};
N
:\./_ \‘s_in_(l.s)
aln_(l.S)

This force acting on face 2 is positive (+) because the fluid over the point where it's
figured out (UP zone) has got a higher speed (longer horizontal arrows) which drags S
along the positive x.

On face 5, on the contrary, we’ll have a (-) negative sign, because the fluid under such S
surface has got a lower speed (down) and want to be dragged, so making a resistance,
that is a negative force:

Viscous shear stress on face 5=- h[% (in_y=0)]dxdz
y

The resultant on x is the difference between the two equations, or better, the algebraic
sum:

fTu, _ fu, _
u [ (y=dy)- —(y=0)] Tu

_ _ fu, _ _n Ty Ty _
F..\y =h[—(y=dy)- —(y=0)]dxdz=h dxdydz =h —-dV, after
W [.”y (y=dy) Ty (y=0)] dy % 1y

having multiplied numerator and denominator by dy. Therefore:




2
F_o=p

“y) = de (viscous force on x due to variations of u along y)
y
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Fig. 4: Axis z, faces 3 and 6.

Similarly to the previous case, we have, as a result:

Tu

Fuy =h de (viscous force on x due to variationd of u along z)
2

Faces 1 and 4:

(1.5)

(1.6)

For what case F,, is concerned, that is the viscous force on x due to variations of u

(which is a component on x) along x itself, we will not talk about shear stresses, as, in
such a case, the relevant force is still about x, but acts on S=dydz, which is orthogonal to
X; so, it's about a NORMAL force, a tensile/compression one, and we refer to Fig. 5 below:
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Fig. 5: Axis x, faces 1 and 4.

Anyway, nothing changes with numbers, with respect to previous cases, and we have:



2
=h %dv (viscous force on x due to variations of u along x itself) (1.7)
X

F

X(x)

Now that we have three components of the viscous forces acting along x (that is those
due to variations of the u component (comp. x) of speed v, with respect to y, z and x

itself), let's sum them up and get F,_ . :

X visc

thv +h Molv wn Tu ~av =h >«o|V(ﬂ u, Tu, ¥ ”) =h xdV N2 , and we rewrite
Ty 1z ‘Hz
it below:

F .. =h>dv \2u (1.8)

Now we carry out the same reasonings fora n evaluation of F,_,. and of F,_, , and

obviously get (V= (u,v,w)):

=h >V xK2v (1.9)

y visc

=h >dV 2w (1.10)

Z visc

from which, finally, by adding (1.8), (1.9), and (1.10), we have:

: 5 =h sdV[ N2 + §R2 + 2K2w] =h sV K% che riscriviamo:

visc = I:x- viscX + I:y- viscy + Fz- visc

F,_ =h >dv {1 (1.11)

Now, such a F,, must be used in (1.2), after having divided it by r and by dV (that is,
for M =r :dV ), as both sides of (1.2) have got the dimensiono f a force per a mass, indie,

SO:

L
r r r )
ﬂ+w Velfve=- NP Rr Dol (1.12)
it 2 r r

And therefore, flnally, the Navier-Stokes Equation, and we write it better again:

T~ RN AN N
/ﬂv rrr 1L, /N h/ ~ ol
W v+ =NV =- — - Nf j-l-{—xi\lzv
' Ar/ / \ Viscous forces
i = ﬂ + ﬂ ,,,,,,,, Pressure forces
M Tt T
General acceleration Gravity forces




Appendixes:

Appendix 1) Compressible fluids — very rare cases:

for those cases, r ! const, >>1111_rtl 0, >>N(r3)1 0, and to (1.12) we have to add the

+h") L L : . :
following term: +MN(N xg) , but (1.12) already enclose a big series of practical
r

cases...

Appendix 2) Divergence Theorem (practical proof):

A

C G 1 1 1
y oz i QE XS = ¢ylivEdV
B
|IE dt
dy /
H
0 A dx E

\4

; Fig. 6: For the Divergence Theorem.

Namef the flux of the vector I'E; we have:

df o = ExdS=- E(x,¥,2)dydz  (ymeansy “mean”)
df .oy = E,(X+dX, y,Z)dydz , but we obviously know that also: (as a development):

E. (x+dx,¥,2) =E.(X,V,2) +de s0:
X
of oy = EL(X, Y, Z)dydz+wolxdydz and so:
X
TE —
df sep O oy :ﬂ—xdv . We similarly act on axes y and z:
X
E
df aevp +Of pocr = h dv
fly
fE,
df rere T df CGHD — E dv

And then we sum up the fluxes so found, having totally:

E r L r
TE, + TE, + '”EZ)dV = (divxE)dV = (NxE)dV therefore:
™>x vy 1z

f5(E) = odf = QE>dS = ydivE>aV = §(N>E)>dV  that is the statement.

df =(



Appendix 3) Rotor or Stokes’ Theorem (practical proof-by Rubino!):

/B Pl = goBas=fi” B
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Fig. 7: For the Rotor Theorem (proof by Rubino).

Let’s figure out Il3>dll ;

Ondz BisB;; ondx BisByondy BisBy;

on -dz B is B;%dx- 11182 dy , for 3-D Taylor's development and also because to go
X y
from the center of dz to that of —dz we go up along x, then we go down along y and

nothing along z itself.

B B
Similarly, on -dx Bis B, - de+de and on -dy Bis B,- hdx+hdz :
1z Ty fix fz
By summing up all contributions:
rr
Bxdl =B,dz- (B,+ 1B, dx- Edy)dz+ B.dx- (B,- B, dz+de)dx+ B,dy -
x Ty 1z iy

1B B B, 1B 1B, 9B 1B, 1B
+(B, - —Ldx+—2dz)dy = (—=%- —L)dydz+ (—= - —2)dxdz+ (—L - —)dxdy =
% ¥ =y =g 1 g -y 0
=rotB>dS=N" B:dS  whereas here dS has got components [ x(dydz) , y(dxdz) , z(dxdy) ]

that is, the statement: g‘j%mlll = (‘JotI'B «dS = @tl I'3>dé after having reminded of:

r
rotB=N" B=

B =
<W§|—_-4~<>
Nwﬁ|ﬁ N>



Appendix 4) The Bernoulli's Equations: %rv2 +p+rgz=0

. . o ' \%
If we are in a stationary situation, whereas v f(t) >> % =0, and then r =const, and

where there’s no viscous forces, the Navier-Stokes Equation for sure reduce sto the Euler’s
one (but added with the gravitational component):

L
—+(VN)v=- —- gr; , and, better, as we said that % =0, we have:

r
W)Y = - r—p- g . (1.13)

If now we consider the divergence and the gradient in terms of directional derivative, on

direction di , Specifically, then we have in (1.13): % instead of N/ , and % instead of

Np and then, still in (1.13), the gravitational acceleration § (which exerts along z,
downwards) must be projected along dl (%is the relevant direction cosine), and so

(1.13) becomes:

V%F:' i% g% . from which: vdv+£dp+ gdz=0 and by integrating it:
r r

v gz=0, and by multiplying by the density r , we get: %rv2 +p+rgz=0

2 r
that is, really the statement!
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