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Abstract: in this paper you will find a simple demonstration of the Navier-Stokes 
equation, while, most of times, in books, you find it broken into its vectorial components 
whose proofs are usually not so clear, so getting confused on the topic. Moreover, in the 
appendixes, you can also find an original proof of the Stokes’ (rotor) theorem, by the 
author of this paper. 
 
The Navier-Stokes Equation in the case o fan incompressibile fluid, that is const=ρ  and  
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φ (gravitational potential), ρ (density), vr (velocity), t (time). 
 
Proof:  
 

-Let’s start from the Continuity Equation 0)( =∇+
∂
∂ v

t
rr

ρ
ρ

, and we prove it: 

 

Jv
rr

=ρ is the mass current density ][ 2m
skg  (dimensionally obvious) 

∫ ⋅=
V

dVM ρ  (held obvious)  

 

We have: ∫∫∫ ⋅−=⋅
∂
∂

=⋅
∂
∂

=
∂
∂

SVV
SdvdV

t
dV

t
M

t
rr

ρ
ρ

ρ ,in fact, in terms of dimensions: 

SdldV
rr

⋅=   and so vSd
t
lSddV

t
rr

r
r

⋅=
∂
∂

=
∂
∂  and sign – is in case of “escaping” mass. 

 

So: ∫ ∫∫ ⋅⋅∇−=⋅−=
∂
∂

V VS
dVvSdvdV

t
)()( rrrr

ρρ
ρ , after having used the Divergence Theorem  in 

the last equality. 
 

Therefore: 0)]([ =⋅∇+
∂
∂

∫ dVv
tV

rr
ρ

ρ , from which we get the Continuity Equation. 

 
 
 
 

Sd
r

dV l
r

mailto:leonrubino@yahoo.it
http://www.vixra.org


-and let’s also start from the Euler’s Equation (
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this:   
(p is the pressure; moreover, this equation is a sketch of the Navier-Stokes Equation, 
whereas we’re not yet taking into account the gravitational field and the viscous forces) 
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with a force towards the small volume. Moreover: 
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Now, the terms of this Euler’s Equation have the dimensiono f an acceleration ar ; so, if we 
want to take into account the gravitational field, too, on the right side we can algebraically 
add the gravitational acceleration gr , with a negative sign, as it’s downwards.  

But we know that the gradient of the potential φ  is really gr  ( gr
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In the most general case where we have to do with a viscous fluid , we’ll also add a 
viscous force component: 
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whereas viscf

r
 is divided by the density because of the dimension compatibilità with other 

terms in that equation.  
(1.2) is already the Navier-Stokes Equation, whereas the viscous force viscf
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 is still to be 

evaluated. 
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Calculation of viscf

r
: 

 
VISCOSITY: 
 
 
 
 
 
 
 
 
 
 
          Fig. 1. 
 

We know from general physics that: 
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That is, in order to drag the slab whose base surface is S, over the fluid, at a d distance 
from the bottom, and drag it at a vr  speed, we need a force F

r
  

Now, let’s write down (1.3) in a differential form, for stresses τ
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We now use (1.4) on a small fluid volume dV in Fig. 2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Smal volume of fluid dV. 
 
                                                                Fig. 3: Axis y, faces 2 and 5. 
 
In Fig. 3 we have reproduced what shown in Fig. 1, but in a three-dimension context.  
 
Faces 2 and 5: 
 
so, with reference to Fig. 3, let’s figure out the viscous forces (due to variations of u) on 
faces 2 and 5 of the small volume, that is those we meet when moving along the y axis, 
by using (1.4): 
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This force acting on face 2 is positive (+) because the fluid over the point where it’s 
figured out (UP zone) has got a higher speed (longer horizontal arrows) which drags S 
along the positive x. 
 
On face 5, on the contrary, we’ll have a (-) negative sign, because the fluid under such S 
surface has got a lower speed (down) and want to be dragged, so making a resistance, 
that is a negative force: 
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The resultant on x is the difference  between the two equations, or better, the algebraic 
sum: 
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having multiplied numerator and denominator by dy. Therefore: 
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Faces 3 and 6: 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Axis z, faces 3 and 6. 
 
Similarly to the previous case, we have, as a result:  
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Faces 1 and 4: 
 
For what case )( xxF  is concerned, that is the viscous force on x due to variations of u 

(which is a component on x) along x itself, we will not talk about shear stresses, as, in 
such a case, the relevant force is still about x, but acts on S=dydz, which is orthogonal to 
x; so, it’s about a NORMAL force, a tensile/compression one, and we refer to Fig. 5 below: 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Axis x, faces 1 and 4. 
 
Anyway, nothing changes with numbers, with respect to previous cases, and we have:  
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Now that we have three components of the viscous forces acting along x (that is those 
due to variations of the u component (comp. x) of speed vr , with respect to y, z and x 
itself), let’s sum them up and get viscxF −  : 
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it below: 
 

udVF viscx
2∇⋅⋅=− η                                                                                                (1.8) 

 
Now we carry out the same reasonings fora n evaluation of viscyF −  and of visczF − , and 

obviously get ( ),,( wvuv =
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from which, finally, by adding (1.8), (1.9), and (1.10), we have: 
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Now, such a viscF

r
 must be used in (1.2), after having divided it by ρ   and by dV (that is, 

for dVM ⋅= ρ ), as both sides of (1.2) have got the dimensiono f a force per a mass, indie, 
so: 
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And therefore, finally, the Navier-Stokes Equation, and we write it better again: 
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Appendixes: 
 
Appendix 1) Compressible fluids – very rare cases:  
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cases… 
 
Appendix 2) Divergence Theorem (practical proof):  
 
 
 
 
 
 
 
 
 
 
 
 
                                        Fig. 6: For the Divergence Theorem. 
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Appendix 3) Rotor or Stokes’ Theorem (practical proof-by Rubino!):  
 
 
 
 
 
 
 
 
 
 
 
 
                   Fig. 7: For the Rotor Theorem (proof by Rubino). 
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Appendix 4) The Bernoulli’s Equations:  0
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If we are in a stationary situation, whereas )(tfv ≠
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If now we consider the divergence and the gradient in terms of directional derivative, on 
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 that is, really the statement! 
 

--------------------------------- 
 
Bibliography: 
 
1) (C. Mencuccini and S. Silvestrini) FISICA I - Meccanica Termodinamica, Liguori. 
 
2) ( Y. Nakayama) INTRODUCTION TO FLUID MECHANICS - Butterworth Heinemann. 
 
3) (L. D. Landau & E. M. Lifshitz) FLUID MECHANICS - Pergamon Press. 
 
4)  ME 563 - INTERMEDIATE FLUID DYNAMICS (Lectures). 
 
5) (R. Feynman) THE FEYNMAN PHYSICS II – Zanichelli. 
 
6) (L. Rubino) Publications on physics in the Italian physics website fisicamente.net. 
 
 

--------------------------------- 


