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Abstract: The Universe is quantized simply because its age is very long, so its cycle
frequency is very small, but not zero! From this, the quantizations of all physical quantities
can be derived.
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Chapter 1: Quantization and Indetermination from the Universe.

Par. 1.1: Introductory concepts.

If the world had ever existed, then what is happening now should have already happened.
A. SCHOPENHAUER.

If an event, after having had at its disposal an infinite time, hasn’t happened yet, then it's
because it can never happen.

In physics an infinite time is meaningless. The infinite is something you can just say and
you can assign a symbol, but it can be neither imagined nor really handled.

In mathematics they talk about a tendency to infinite; just a tendency. The Universe
cannot be born an infinite time ago; and so, what was before it? Well, we cannot say
there isn't any answer, but rather we can say this question is wrong. Time was born
together with the Universe and in the Universe, so the expression “before the Universe” is
a contradiction. It exists since the moment when it started to exist and that's it. Or better,
it exists and that’s it. Rather, there is something more interesting: to understand how the
Universe can “appear” without violating the conservation laws and laws of physics in
general (see my explaination in App. 1).

Well, we have to admit that if matter shows mutual attraction as gravitation, then we are
in a harmonic and oscillating Universe in contraction towards a common point, that is the
center of mass of all the Universe. As a matter of fact, the acceleration towards the center
of mass of the Universe and the gravitational attractive properties are two faces of the
same medal. Moreover, all the matter around us shows it want to collapse: if | have a pen
in my hand and | leave it, it drops, so showing me it wants to collapse; then, the Moon
wants to collapse into the Earth, the Earth wants to collapse into the Sun, the Sun into the
centre of the Milky Way, the Milky Way into the centre of the cluster and so on; therefore,
all the Universe is collapsing. Isn't it?

So why do we see far matter around us getting farther and not closer? Easy. If three
parachutists jump in succession from a certain altitude, all of them are falling towards the
center of the Earth, where they would ideally meet, but if parachutist n. 2, that is the
middle one, looks ahead, he sees n. 1 getting farther, as he jumped earlier and so he has
a higher speed, and if he looks back at n. 3, he still sees him getting farther as n. 2, who
is making observations, jumped before n. 3 and so he has a higher speed. Therefore,
although all the three are accelerating towards a common point, they see each other
getting farther. Hubble was somehow like parachutist n. 2 who is making observations
here, but he didn’t realize of the background acceleration g (auniv)-

At last, | remind you of the fact that recent measurements on far galaxies type la
supernovae, used as standard candles, have shown an accelerating Universe; this fact is
against the theory of our supposed current post Big Bang expansion, as, after that an
explosion has ceased its effect, chips spread out in expansion, ok, but they must obviously
do that without accelerating.

Anyway, as the world wasn’'t born an infinite time ago, collapsing matter cannot come
from an infinite distance; therefore, hundreds of billions years ago there was an expansion
(post Big Bang), in the opposite direction with respect to the collapse we have now, and
so all that with a repulsive gravity. On the basis of all that, the Universe is cyclic and so it
has a cyclic frequency and this is the right key to understand why it is quantized! All the
frequencies which are in the Universe must so be, directly or indirectly, a multiple of the
Universe one and this one is the smallest existing frequency.



niv

In App. 1 I prove that the period Tuni Of the Universe is: T, _ PRy _ 2.47118%0%s
o

(7.840 billion years) (n,,
w=2p/T , and, for the whole Universe: c=wRynyv and w =2p /T,

=4,0540*Hz), as we know from physics that: v=wR and

+- And about the value
of the angular frequency, we have: W, @C/R,, ve. ey = 254X0 *rad/s, and it is the
right parameter for a reinterpretation of the global Hubble’s constant H ., , which is
H .. only for the Universe visible to us (W, = Hgua )-

Moreover, still in App. 1, by starting from data on the Coma galaxy cluster, we prove the
Universe, while collapsing with speed c, accelerates with acceleration g, = 7,620 m/s’ .

Par. 1.2: Quantization, Indetermination and Universe.

As per App. 1, we derive The Heisenberg Uncertainty Principle as a consequence of the
essence of the macroscopic, collapsing and a,,, accelerating Universe.

According to this principle, the product Ax Ap must keep above h/2, and with the equal
sign, when Ax is at a maximum, Ap must be at a minimum, and vice versa:

Dp xOx ¢ h/2 and Dp, XDx. =h/2 (h=h/2p)
Now, as DO we take, for the electron (“stable” and base particle in our Universe!),

DP e = (M, XC) and as DXmn for the electron, as it is a harmonic of the Universe in which
it is (just like a sound can be considered as made of its harmonics), we have:
Dx,, =&,,,/(2p)*, as a direct consequence of the characteristics of the Universe in which

it is; in fact, R, =a,,/W.,, as we know from physics that a=w’R, and then
W =20/ Tom = 2PNy, » @nd as w, of the electron (which is a harmonic of the Universe)
we therefore take the “n,,, —th” part of w,, , that is:

| like if the electron of the electron-positron pairs can make oscillations

|We| = |WUniv/nUniv
similar to those of the Universe, but through a speed-amplitude ratio which is not the
(global) Hubble Constant, but through Hgioba divided by n and so, if for the whole

. . _ 2
Universe: R, = %niv/Wuniv )

then, for the electron:

Univ ?

= %niv - %niv - %niv - %niv
" (We)z (|WUniv/nUniv|)2 (| HGIobaI /nUniv|)2 (a) )2

=meuv =570 [J 1.1
I:x)max >4:)xmln rnec (a))z [ S] ( )

and such a number (0,527x0 *Js), as chance would have it, is really h/2 !!

from which:




Par. 1.3: The Planck/Einstein Equation and the quantization.

As we said, there is a Universe with its frequency, the smallest and most basic one. Then,
through (1.1) we got h/2=h/4p and here Planck’s constant h=6,625X0 *J xsstarts

showing, as a function of macroscopic quantities, as a,,, and c. Moreover, still in App. 1,

we show that if we imagine an electron (“stable” and base particle in our Universe!)
irradiating all energy it's made of in time Tyny , We get a power which is exactly %2 of
Planck’s constants, expressed in watt! In fact:

_mc 1. _ 3
L, = ==h, =3316X0 W

TUniv

And Planck/Einstein Equation E=hv (and E; =nhv, in case of many photons), which tells
us the energy of a photon is v(frequency) times the energy box h (in joule), is held
somehow as the father of quantum physics, of energy boxes etc.
Before, we got such a special constant h from visual reasonings about the Universe and
particles, but in the last century it appeared through the Planck/Einstein Equation, mainly
through two separate phenomena: one, the Photoelectronic Effect, was studied mainly by
Einstein, while the other, that is the studies on the Black Body Radiation Spectrum, was
mainly treated by Planck. On the opinion of who is writing, here, both Einstein and Planck
didn’t intuite in advance their equation and the quantization, but rather were forced by
circumstances to such suppositions in order to just make the theoretical interpretation
match the results from the experiments!
Moreover, as a quantum is not as small as zero, but it has its own size somehow, then, in
the opinion of who is writing, here, in the evaluation of physical quantities, uncertainties
cannot be zero (The Heisenberg Uncertainty Principle, Schrodinger’s Equation etc). If you
see a particle, in order to figure out its position, you must interfere with it somehow,
although through the smallest quantum of energy, and so you “touch” it, so you move it,
so you change what you are going to measure.
In thermodynamics, too, where quantum physics acts deeply, if, for instance, | try to
make a liquid in a calorimeter reach the absolute zero, I'll put a thermometer inside and
start cooling as well as | can, through a refrigerator, but whenever | decide to check the
temperature reached, in order to see if the absolute zero has been reached, then, in the
opinion of the writer, |1 have to see the thermometer, so | have to illuminate it, although
through just the smallest quantum of luminous energy, and so | heat it and it transmits
some heat to to the liquid and therefore I'll never get the absolute zero.
Now, let's analyse both the above mentioned phenomena: the Photoelectronic Effect and
the Black Body Radiation Spectrum.




Chapter 2: The birth of Quantum Physics.

Par. 2.1: The Photoelectric Effect and the walk to quantization.
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Fig. 2.1: Device for the Photoelectronic Effect.

Let the voltage between the cup C and plate M be: DV =V, -V,, and let | be the current
measured by the ammeter. Then, let 1, be the saturation current, that is the maximum

current you can have with a certain light flux F .

From the experiments, we have:
I A

DV, © "DV

Fig. 2.2: Voltage-current graph.

Dy, © DV
Fig. 2.3: Voltage-current graph for different light fluxes F .

Incident light makes electrons jump out of the plate M, and they are then gathered by the
cup C, and accelerated, too, by a voltage.



We have that the electrons are emitted with a kinetic energy E, which can be measured
by supplying an inverse DV =DV, (stop voltage) so that the current of electrons emitted
also with DV =0 is reduced to zero; when this happens, we have: - eDV, = E, .

From the experiments, we see that DV, ! f(F), that is: DV,does not depend on F, but,

on the contrary, it depends on the frequency n of the incident light.
All this is in a complete disagreement with classic physics.
The experiments show what is in Fig. 2.4:

DV[V]
A

4
12 3456 7 8 9 1011 12 nl_lolHZJ

Fig. 2.4: Stop voltage-frequency of the incident radiation.

tgqg is fixed and is always: tgq =h/e. The equation of this line, known as Einstein
Relation, is, of course:

E.=-eDV,=hn- L, :%mevz, where L, is the extraction energy needed for the electron,

hn is the energy brought from the photon to the electron and E, :%mevzis the kinetic

energy with which the electron comes out.
The big news, here, is the relation E =hn (Planck/Einstein relation) through which light

brings energy: it depends on the frequency through a constant h=6,625x0*Js (Planck’s
constant).

Par. 2.2: Planck’s Black Body Spectrum.

preamble on Boltzmann's Distribution Law:
now we try to understand how changes, in a material, the number of molecules per unit of

volume, when the energy changes.
Suppose to have a column of gas at a constant temperature, in a container and under the

effect of the gravitational field.
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Fig. 2.5: Column of gas.

If this container has a volume V in which we have N gas particles, we define n as the
number of particles per unit of volume.

With reference to the above figure, we examine a section S of the column of gas at the
height h. The pressure Pn at the height h is obviously higher than that at the height h+dh,
as at h the mass of gas pushing downwards is higher.

Being pressure P defined as dF/dS =( weight of the disc dh high and section S) / S, we
have:

Prean - By =dP =~ Sy -

mgndh . (2.1)

~

where m is the mass of every single particle of gas, n is the number of particles per unit of
volume, S dh is the volume of the disc, g is the gravitational acceleration end the negative
sign tells us that dP is negative (P goes down while we go up).

We also know from thermodynamics that:

R
PV = Mo RT = Ny =T = N AT 2:2)

A
where the first equality is the law of ideal gases (R=const), Na is the number of particles
in a kilomole, i.e. the Number of Avogadro, N= Nkmoles Na= is the total number of gas
particles (made of Nkmoles) and k=R/Na is the Boltzmann’s constant.
For a proof of the equation of state of ideal gases, see any of the books on general
Physics.
From the previous equation, we have:

_N KT = nkT .
\%
By differentiating this equation, we get:
dP = dnkT (2.3)
By eg. (2.1) and (2.3) , we have:
de
dn__ —~dh=- —2 |
n KT KT

where dE,=mgdh is the differential of the potential energy of every particle.
The integration of this differential equation easily yields the following result:

o - EplKT
n=n,e , (2.4)

where no is constant.



In case the particles are subject not to the gravitational field, but to any other
conservative force, F; (for instance, the intermolecular forces themselves), which we
suppose is oriented along X, in (2.4), instead of the potential energy E,, we'll have the
corresponding potential energy E; coming from the force F;, that is:

E =- (R >dx.
Finally:
n=n,e ' (2.5)

The situation with non conservative forces is here not taken into account, as in this case it
wouldn’t be even possible to claim the thermal equilibrium.

In our opinion, the Boltzmann’s equation (2.5) can be considered as proved and we want
to remind you of what it means:

the probability to find molecules in a certain spatial disposition changes exponentially with
the opposite of the potential energy of that disposition, divided by KT.

Preamble on the linear harmonic oscillator:

We consider a mass fixed to one end of a spring; the other end is fixed to a wall.

When the mass starts oscillating, as F=ma and, by Hooke, F=-kx, we can write the
following differential equation:

d*x —
ma + kx = m-—— + kx = Q » whose solution is:
dt
X=X,sin(wt +q), (2.6)
h = [k :
where y = %ﬂ

Now, we write the expression for the total energy E (which is the sum of the kinetic
energy with the elastic potential one) of such an oscillating mass:

2
MG, Ly —E=E +E,’ @2.7)
28dty 2
This is true because:
1

E,=-0oF >¢dx:okx>ﬂdx:5kx2-
Using (2.6) in (2.7) and taking into account the expression for W , we get:

m > 2 o 1, 2.2

=—W cos"wt+q) +— sin“(wt+q) =
;WX Cos (Wt +q) + o sin"(wt +q) 28)

= K [cos" (Wt +0) + Sin*(wt-+0)] = ko

As, from the previous expression, kinetic and potential components are the same, we have
justified the reason why we assigned two identical values (¥2)kT for the total energy of
the oscillators in the cavity of a black body.

preamble on standing waves:
If a wave S1 propagates in a limited mean, the superposition of it with its reflected one S2
generates a standing wave S:

S = Asin(kx- wt) , S, = Asin(kx +wt) .




The difference in sign in the arguments is due to the fact that those waves propagate in
opposite directions; moreover, the term wt = Z2pnt tells us that if we fix a point x, we
have an oscillation in time, while the term KX tells us that, if we fix a time t, we see an
oscillation by moving along x.

Therefore, a propagating wave oscillates in time and also along the space through which
it's propagating indeed.

S=S_L+SZ=2A>sinkx>coswt=2A>sin|§x>cos2pnt ; (2.9)

after that we take into account the following trigonometric equality:
@-b)  (@tb)
x§in
2 2

sina +sinb =2cos

Planck’s Black Body Spectrum:

Let’s consider a cavity whose sides are at temperature T, uniform and constant.
Microscopic charges which makes the sides move because of the thermal agitation and, so
doing, they radiate electromagnetic waves which fill the cavity; there is an energy transfer
from the cavity sides to the electromagnetic field. Simultaneously, electromagnetic waves
move into the cavity and hit the sides; so doing, they transfer energy from the field to the
cavity sides. An equilibrium is so settled.

The black body radiation spectrum is the function f(n)so that f(n)dn is the energy

had by the electromagnetic field in the unity of volume of the cavity, and with frequency
between n and n +dn, that is:

f(n)dn =du [J/m

Cavity sides emit and absorb radiation and can be held as made by small oscillating dipole.
Moreover, we can assign the radiation in the cavity two degrees of freedom corresponding
to two polarization planes which are perpendicular and independent each other and on
which every electromagnetic wave can oscillate; in simpler words, an electromagnetic
wave which propagates along z can oscillate transversally on both planes zx and zy.

We know from the kinetic theory of gases that for every particle, and so for every em
wave emitted by the particles, and for every degree of freedom we can assign an energy

equal to twice %kT, that is kT, as the total energy is made of a kinetic part and a

potential part and their mean values are the same (see (2.8)).

For a proof of the fact that the total energy to be conferred is really kT/degree of freedom
see any of the available general physics books.

Now, suppose we have, out of simplicity, a cubic cavity whose electromagnetic radiation
propagates along the three axis, so generating standing waves; moreover, we consider
just one polarization plane per propagation axis (y), and we’ll later take into account the

7t

a

/

Fig. 2.6.




real existence of two degrees of freedom.
As the cavity is place of standing waves, and considering the x axis as the propagation
one, we will write the following equation for a standing wave (see (2.9)):

E,(x,t) = E, sin(kx) >sin(Zpnt), k is the wave number = 30/ and | is the

wavelength.
We remind that : c=In, and: w=2p /T = 2pn.
As the standing wave must be zero in x = 0 and in X = a , we have:

ka=np ® n=2a/l ®n -c-on.
| 2a
n is positive and not zero, otherwise we don’t have any wave.
In general, for a wave propagating along a random direction, we have, component by
component:

E, (x,t) = E, sin(k X) >sin(2pnt) k =(2p/l)>cosa
E,(y.t) = E,sin(k,y) >sin(2Zpnt) kK, =(2p/1)>cosb
E. (zt) = E, sin(k,z) >sin(Zpnt) k,=(20 /1 )>cosg

where the three direction cosines are the components of the versor k which indicates the
direction of propagation of the wave.
Still by analogy with the single dimension case, we have:

ka=np ® (2a/l)cosa =n,
ka=np ® (2a/l )cosb =n,
ka=np ® (2a/l )cosg =n,

n’+n’+n’=(2a/l )*(cos’a +cos’b +cos’g) =4a’/l?

from which:

n="="S/n?+ n’+n’ (2.10)
| 2a

With all values of n, we have all possible ways of vibration. If we put such values nx , Ny,

Nz on three axes and considering the example Nx , Ny, Nz = (1, 2, 2), we see that the

number of possible vibrations corresponding to terns Nx , Ny , Nz (nx, ny,nz ?! 0,

or we have a singularity case) are the vertexes of the following graph, where the n values
are different from zero, so they are all the red spots.

=

a8

/ Y Fig. 2.7.
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The fundamental thing we must take into account now (and this has a general validity) is
that such possible ways of vibration ( @) correspond, in number, to the small unit side
cubes (which are four, too).

So: n . of possible ways of vibration= total volume V located by the tern nx , Ny,
nz.

The radical in the expression (2.10) is just the radius of an octant of sphere located by the
three components Nx , Ny, Nz (of course, we consider just the octant where

Nx , Ny, Nz are positive, as those must be positive and not zero).

The last remark makes us use the more suitable polar coordinates:

as the volume of an octant of a sphere is equal to %gp x 3, the number N of modes of
possible vibrations for a value of r between 0 and r is:

:__p )q‘
83
As a consequence, the number N(r) dr of possible modes of vibration for a value of r

between r and r + dr can be obtained by differentiating the previous equation:
N(r)dr :—rzdr :

Now, let's deflne an N(n) so that N(r)dr = N(n)dn =number of possible modes of
vibration for frequencies between n and n +dn ; we see that, according to (2.10),
n=r c/ (2a), and by differentiating the last equation, we have:

dn = c dr ; and then we get:
2a

N(n)dn = Baé-’_gnzdn — ﬂ;Vn 24n » Where V = a® = volume of the cavity.
Cg Cc
Now, in order to pass from the previous equation to f(n), and remembering that,
according to the definition of f(n) itself we gave before, we have to:
-divide by V to refer to the unity of volume
-multiply by two to take into account the two possible states of polarization of the
radiation (as well as we will do when we’ll consider the black body)
-multiply by kT, that is, by the mean energy corresponding to each degree of freedom.

Therefore:
f()dn :iéanzdn , (2.11)
C

and this equation is known to be the Rayleigh-Jeans equation.

Of course:
f(n)= &; KTn?
C

The graph of this equation is here below:
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Fig. 2.8: Rayleigh-Jeans’ graph.

The experiments, on the contrary, show a different behaviour:

Jm’s]

A

f(n)

3"

Fig. 2.9: Real emission.

In the real situations, there is a peak, that is a value of frequency around which the
emission of the black body concentrates.

Of course, the above curve is for a fixed temperature T and we’ll see the more the
temperature increases, the higher the frequency values are.

That's why, for instance, a piece of iron at ambient temperature emits an electromagnetic
radiation in the range of the infrared waves, or around it, while if you heat it, it will emit
visible radiation, at temperatures around some hundreds of centigrade degrees (white
heat, red heat).

Similarly, you can find many characteristics of the surface of a star by just studying the
frequency spectrum of the light the star irradiates.
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Fig. 2.10: Spectrum of the electromagnetic radiation.

Nothing similar is shown by the Rayleigh-Jeans graph, which leads to an ultraviolet
catastrophe. All this was the beginning of the chrisis of classic physics, and there was the
need to bring new ideas and quantum hypotheses to make the theoretical deductions
match the reality; as an example, we bring the Max Planck’s supposition:

first of all, we see that if we want to figure out the mean energy E among all energies of
the elements of a system, we can carry out a weighed average of all energies, which are
distributed according to the already proved Boltzmann’s formula (2.5) for n(E); therefore:

2 E.

aEmE) AE moe'% _aE* i

o] - - ’

a n(g) é Noe E%T é e E%T
the numerator is the sum of all energies and each of them is weighed according to the
number of components which have it, while the denominator is the total number of
particles. For the moment, such an average value should be kT, and this is exactly the
energy value we conferred to every constituent.
In order to jump from the Rayleigh-Jeans equation to one whose graph is that of the

Planck’s black body above reported, Planck supposed that for every value of frequency n,
the energy of the system could have just discrete (quantized!) values:

E=

(2.12)

E=hn,2hn,....... .nhn , (n integer). [Planck/Einstein equation]
By such an assumption, (2.12) becomes (summation over n):

g _ nhn
é_ nhn xe Ve
E=-0

éf _nhn T
ae
0

The result is:



¥

O -
a nz>xe ™
0

hn _
In fact, by assuming that 7= =Z, we have: E=KT— . by defining:
kT S _-nz
ae€
0
g g g
f(z2)=q e ™, we have: - zxdf /dz=zg nx ™ =g nzxe ™, so:
0 0 0
ﬁ/
= d d, &
E=-kTzL%Z = k12" Inz=- KTz—Ing e™
f dz dz =
Now, for Taylor’s series, or for the study on geometrical series:
¥
ax"=——, andifwesay:e ?=x, we have:
0 1-x

1 N2z e’ _kTz _ hn
(1_ e-Z)-l (l € ) € kTZl_ e—z ez -1 ehn/kT -1
that is, the assumption , after that we have taken into account the expression for z.
Therefore, Planck’s news was to put in Rayleigh-Jeans’ equation (2.11), the value of E,
just found, instead of the mean energy per component, that is, kT:

_8n? hn
f(n)dn = o g 1dn (2.13)

and this is really the Planck’s equation.
By dividing both sides by dn, we get an expression for f(n) which excellently describes
the experimental graph above reported on the black body emission!

E-=- szEIn(l- e7)t=-KkTz
dz

Par. 2.3: The Stefan-Boltzmann’s Law.

We defined the black body as a cavity. Now, let's make a hole to make some radiation (u
[3/m®]) come out from the cavity, as in the figure below:
u A

Radiation coming out

Hole dS
Fig. 2.11: Hole and radiation coming out.

Then, we had, through (2.11) that:
f@)cn = HkMch  [/m) (2.14)



If now we introduce the power W [J/s=W] and the solid angle Q [sr], we easily have,
about dSy:

(ﬂ)dV\blv du>c>d$1$ [W] (power in the interval dv and dW.) (2.15)

as such watt on dS, are due to du [J/m°] which comes out of the hole by speed ¢, which is
the speed of the radiation, and get [Jm/(m?®s)]= [W/m?], then again by square meters of
dS, (and we get watt), but all by the fraction of solid angle (dimensionless fraction)

j—\é\' under which dS,, is seen.

We remind, now, that dS, =dScosg and du= f(v)dv, and (2.15) becomes:
dw dw

——)dWav = f (v)dvxc xdScosq —

( dV\Uv) (V) sq = [W]

If now we introduce the intensity of radiation, that is I [W/m?], we have, of course:
2
4 v =2 (IWy e = S cosg sy W]
dWdv ds dWdv 4p
(the cosine law just seen is the Lambert’s Cosine Law).
If now we remind a solid angle can be expressed as a function of polar coordinates angles

in the following way: dW=snqdqdj , we also have:
d’l 1 dW cf (v)

cf (v) 2
v =— ——2 cosg xdWhv = ——~2cosqg xsing xdadj d /m
ey as vy TV =y oS Wy =7 Feosq eing dady dv [W/n

By integrating this equation over dW, that is, over dqdj (6 between 0 and p ) (¢ between
0 and p ), and considering that:

6cosq sinqgdq :26/200511 sinqgdg =2(1/2) =1, while the integral over @ is obviously p, we
have, in the end:
., d?l cf(v)

cf(v)
_( )d v=dl = X v = 2 gy
Pawav

but as % =eM) [W/(Hz>xm*)]=[J/n¢], we have:
v

e(n)dv= (%) f(v)dv [W/m’] (2.16)
Now, through (2.14) and the following one: n =c/l , we have:
e(n)dv = (%) f (V)dv = (%)% KTn?2 xdv = i—'fn 2KTdv

Now, by differentiating n=c/l , we easily have:dn =c>dl /I *and defining f (I ) and
e(l ) as follows (of course):

f()d =f(v)dv

e(l)dl =e(v)dv

we’'ll have:

f(1)dl :f(v)%dl = kT gl" dl _aoan xl—dl 8ka><dI (2.17)
C

2

e(l )dl =e(v)%dl =@n2kT%d| =2—p 2kTI di —2|kaT sl (2.18)
C C



If now, as well as we did with (2.11) to get (2.13), in (2.17) and (2.18) we put, in place of

KT, the expression: d 1 we’ll have the following versions of the Planck’s Equation:

PO
f (V)dv = 8'2;’ hV/T—TV_ldv [3/r7] (2.19)
hc 1
f(1)dl =8';’—5Wd| [3/mP] (2.20)
2oV hv
e(v)dv:%mdv W/ m?] (2.21)
he> 1
el )d = ZFI’S s d W/ (2.22)
Then, by integrating (2.21), we have:
h ¥ V3 h hV/kT 3 y y iy
= 2:2 Q ] V= 2p Ql = hv/kT 2 Q[V3 TS ¥(e h/kT) ]dV_ZP; QV e "™ Dgy
If now we put: b—% and a= (I:O we have again:
o ¥ d d®* ., 1, 6aox 1 _6Gap*_2p°%* 2
=a - v=ag. ((-—=)(—)=—Fa, -7 —-= sT"=e
A1 Gon) a. d(bn)® donbn’ Tb* 1t T bt 00 150
[W/n?] (Stefan-Boltzmann’s Law)
51,4
where s =2 K_=567040° W
15¢°h® m°K*

4

In order to prove that éf%yields a number equal to %you can just sum the first terms
n

of that series.

Par. 2.4: The Wien’s Law.

2
From (2.22) we have: e(l ) = 2?20 ehc/k%l et with reference to Fig. 9, here shown:
(Im®)s
A
E f(n)
n. =cll . n

Fig. 2.12: The maximum frequency.

if we want to understand through what Anax the emission takes place, by mathematical

de(l )
dl

analysis we put =0, that is, we put to zero the first derivative, so:



5l 4(e"K - 1)+ %MK (- h_cz) =0, so: 5 ¥ - 5 - e gren =0, so, again:
KTI KT
€ -0 . _pwn _ hc o .
@ —1-e =——— this trascendental equation, if numerically solved, but also
e 5KTI

graphically solved, if you like, yields: kh?(lz =4,965, from which:

2
I _C_ hc 1_02689740° _, | [M - (Wien’s Law) (2.23)
T kx4965T T

and C=0,2897x07 [K>m] is the Wien's Constant.

Par. 2.5: The Compton Effect.

Residual radiation A,

Incident radiation A;

Target

Fig. 2.13: The Compton Effect.

We are here in a situation similar to that of the Photoelectronic Effect; but here, on the
contrary, the incident radiation on the target has a very small wavelength A; , equal to
some tenths of an A. Therefore, we are talking about very energetic photons.

The electrons will have a certain angle 6’, but we’ll see also a residual radiation at Ae.
Being this a very energetic collision, as much as the kinetic energy of the electron can be
compared with its rest one mec?, it will be held as well as a collision of a photon against a
free electron, as if it weren't linked to its nucleus. And we’ll have to use the relativistic
formulas anyway.

Such an effect, of course, cannot be understood on a classic physics basis.

Now, we show that: | . =1, +1 .(1- cosq) (2.24)

| =N 0,025 A is the Compton’s wavelength.

Cc rnec
Now, we show the vectorial composition of the linear momenta involved:
hv,
hv e

Fig. 2.14: Vectorial composition in the Compton Effect.



We have P, :TI_ Te so, by scalarly multiplying side to side with itself:
rr _hv hv hy hvy, _hv hy _
pe >(pe =—X + x -2—x—=% , that is:
cC ¢C cC ¢C cC ¢
hv, hv, hv
( ') +(—2)?- 2—-—=cosq (2.25)
C cC C
Moreover, because of the energy conservation:
E,+hv, =E+hy, (2.26)
Now, about the rest quantities, we have: E, = TTL,CZ, (2.27)
bo =0, while, about the dynamic ones:
C2
E=—% _=gnc? and (2.28)
1Y
C
r % r
Pe = il = =~ gmy (2.29)
1Y
C
and moreover from relativity and from the two previous equations, we have:
c? pe - mc* (2.30)

Now, multrply (2.25) by c”and in (2.26) isolate E and then square, so getting:
c?pZ = (hv,)? + (hv,)? - 2h*vv, cosq
E? = (B, +hv - hv,)? =me’ +(hv)? + (hv,)? + 2mc?(hv - hv,) - 2hvhy,

and by subtracting side to side those two equations and taking into account (2.30),
2

h2v
hv, - hv, = mZ'\;e (1- cosq) (2.31)

— €6 — 1

h
d b Itipl by —(=—=2=—"), we get:|, - | ,=——(1- cosq) and (2.24) has
and now, by multiplying yV.Ve( v e) we g . rrlaC( q) (2.24)
been proved.

hv. hv, r
Now, we calculate 0’ by projecting the already introduced equation TI: ce + P, on

axes; we have:

h - h
0= We M _ Ve cosq’, that is:
c cC ¢
— hv, hv, ,
sing = p, COSQ
cC cC
._ v,sing _ sinqg
and by dividing side to side, we have: t90'= = , but for the (2.31):
Vi-VCosq M e
, sin cot(q/2
Y tgg'=—— A = (qh<,).
Ve mc (1+—3)(- cosq)
c



Chapter 3: A more formal treatise on Quantum Mechanics.
Par. 3.1: The Schrodinger’s Equation (formal deduction).

We know the Planck/Einstein’s Equation:

E=hn (3.1)
And we also know the relation between pulsation (angular velocity) w and frequency n :

W =2pn (3.2)
Then, for the energy of a particle:

E=mc?= b>«': (3.3)
alnd th(lan the linear momentum:

p=mc (3.4)

and, moreover, the general relations c =1 n (velocity is wavelength by frequency)

" 2p r 2p~ _h .
|k| =1 (modulus of the wave vector k = I_k) and h —5 (Dirac’s constant — barred h).

Now, from (3.1) and (3.3), we have: p= h% =ID=%2|_F’ = hk (3.5)
Moreover: E = hn :ZLan =hw. (3.6)
p
: 1 o1 L, P
And for a particle, E==mv" =—mVv° =— (3.7)
2 2m 2m
2 21,2
and E=hw=P_ ="K (3.8)
2m  2m

Now, as in order to locate a particle |1 have to interfere with it, by illuminating it, or
perturbing it somehow, and as, simply speaking, the smaller a particle is, the more that
perturbation disturbs it, diverts it, slows sit down, accelerates it etc, one is led not to
imagine anymore it as a single point, but rather through a wave.

With De Broglie, we can associate a wavelength to a particle, through (3.5):

| :Dp , Where, now, V is the velocity of the particle and p is the modulus of

mv
r 1
p=mV.
For what has been just said, we are also led to introduce a wave function
Y =Y (,t)=Y(xt) which describes the particle when moving along f(xy,z) (or
X(X,Y,2)).

wave function:

for all what previously said, the particle isn’'t anymore a dimensionless point, but rather
something like a clould which is the space in which the probability to find the particle is
higher; if we put r (x,t)d*x the probability to find the particle in the volume between x
and x+d3 (d°x as we are thinking in three dimensions), it must be proportional,

. . r .
through a proportionality constant, to the square modulus |Y(x,t)|2 of the wave function

Y =Y (x,t). We are talking here about a square modulus, as, in general, we can express a

wave through trigonometric functions, and so also in a complex form, that is, with
complex numbers and we have quantifiable quantities in the real field, as long as we take
their moduli:



Y (% 0f d* = N[*r (X,t)d*x (Y ) =Y (R 1)Y * (1)) , where Y *(kt) is the
complex conjugated of Y (x,t), (i swapped with —i).

Y is typical of every single electron. Now, by the definition of probability, the integration
over all the space must yield the maximum probability:

. T ao I

¢r (x0)d* =1, so: Y (x,t) d*x =|N[’

Let’s normalize the function Y so that ¢|Y (>r<,t)|2d3x:1, and we have:
r r

Y (X1) :%Y(x,t)

Let’s write down a list of some of the properties Y must have:

-it must be continuous, as the probability to find the particle, for instance, in Xo, must be
the same, whatever you tend to X, , whether from left or from right.

-it must be limited everywhere, as well as the probability to find the particle in a certain
place is.

-for a particle which is localized in a region Q, we must have Y =0for xi W.
-it must be a monodrome function (just one value)

-wave functions which differs just by the normalization describe the same physical system
(and Y =0® Vacuum)

-if a system can stay in a state Y, and also in a state Y, , then it can stay also in a
generic state Y =aY, +bY,.

wave function of a free particle:
we know from wave physics that, of course, a wave propagating through time and
through x, must have, as an argument, a function like:

~r rr . , . N :
iﬁkxx- 2|—pvt =k xx- wt, as if we fix a point in time (as: t=0) we have a variability with x
and fixing x we have a variability in time, that is a real wave.

r 1
Now, according to (3.5) and (3.6) we have: k ><>r< wit :Fp{( %t and so the wave function

must be like:
r 1
f(kxi-m):f(%’!?-%t) (3.9)

We notice that deriving (3.9) over t means to factor w, while deriving it over x means to

factor k.
2

Now, as according to (3.8): w :ZL , We understand, for all what has been just said, that
m

we have to take a t-first order wave equation which is also an x-second order:
v _ TY

= . 3.10
it =90 (3.10)




Now, Fourier should suggest to propose base functions as candidates to be solutions of
(3'10).’ the following four:

Asin(k % - wt) (3.11)
Bcos(k xx - wt) (3.12)
Celiok-w) (3.13)
De () (3.14)

So, we notice that (3.11) and (3.12), in their monodimensional form, (x in place of X etc),

cannot satisfy (3.10), while (3.13) and (3.14) can, provided that we consider:
w hw . E _ih

- iw=-gk?, from which: g=i— =ih—— =ih— =— and we notice that is here
* 970 h’k? p>  2m g
independent from dynamic quantities as p, therefore it works for us.
2 2
If, on the contrary, if we chose the d’Alembert wave equation ﬂﬂ;t( :g?”i (not ok), all
X
four candidates should have satisfied it, but for g we would have had:
w? _ hw,, E2 p’ . .
— = (—) = not ok, as such a g should be a dynamic parameter, as it has

p |nS|de, SO such an equation would have changed its characteristics with p.
So, we put (3.13) in our good candidate (3.10), so getting:
v _ih Y

it 2m %’
inTY _ h* 7Y

and, after multiplying both sides by ih:

(3.15)

(Schrddinger’s Equation for a free particle and on a monodimensional motion)

If now we put the expression for Y (x,t) ((3.13) monodimensional) in (3.15), we get:

21,2
hwY = Y , that is:
m
p2
EY =—Y ; (3.16)
2m

2

in fact, we already had: E =P .
2m

Now, we rewrite, one over another, (3.15) and (3.16):

w_ hy
qt 2m qx?
2
Ey =P v
2m

By a comparison side to side, we see that it is possible to make the following associations
of operators:

2
E® i and p°® -hz‘”—2 >>>p® _ih L
fit fix ix

In three dimensions, (3.15) becomes:
T h?

hﬁ—-z—DY , (3.17)
m



which is the three-dimension Schrodinger’s equation for a free particle, where

2 2 2 ryr
:‘”—2+.”—2+‘”—2 is the Laplacian, then Y(>r<,t):Cei""“‘“"), |Y(>'<,t)|:C, E® ih ,
> Ty 1z it
5 5 e hk? '
p°® -h°D, p® -ihN , p=hk, w=——, con k:|k|.
2m
. . . _w_E_p . .
We notice that the velocity of the wave is v, —?——p—% , that is, a phase velocity,
. . L _p_dw _ d hk®_ . .
while the particle velocity is v, =—=—=———=2v,, and so it is a group velocity.
P Y B Y ok dkom group veloely

2
Now, as in (3.17) the quantity - S—D has got the dimension of an energy E, a kinetic
m

one, in this case, and this quantity corresponded to:
2 2
LY I (3.18)
2m 2m  2m
if the particle is also in a potential V, we’ll have, in place of the mere kinetic energy, the

total energy H=T+V=E+V (H is the Hamiltqnian) and (3.17) will become:
(Y (>r<,t) =Ce** " wave function and Y * (>r<,t) =Ce ' "is jts complex conjugated)

2
ih%{ =(- 2—D+V)Y Complete Schrodinger’s Equation! (3.19)
m

As an alternative, according to (3.18) we can write:

2 2
E =P dH-v=F_ (3.20)
2m 2m
and also:
h2
- L DY =(H- V)Y (3.21)
2m
that is : |DY +i—r2n(H - V)Y =0|An alternative for the complete Schrodinger’s Equation! (3.22)

Regarding phase and group velocities, for a photon, which is monocromatic and follows
the d’Alembert equation, those two velocities are the same (v, =v,=c), and all this

shows us once again that Schrodinger’s Equation is not the same as the d’Alembert wave
equation and for it we have: v; ' v, .

The Schrédinger’s Equation sounds like a tied wave, standing like. As chance would have
it. Wanna see the Schrodinger’s Equation, in the formulation of the (3.22), is a
standing wave equation???

Let’s try and see:

first of all, we notice that (3.22) really looks like the equation of standing waves:

7Y
%
Out of simplicity, we consider (3.22) in a monodimensional form:

+k?*Y =0; (standing waves equation) (3.23)




7Y . 2m
> T2
X h
(3.23) is the standing wave equation, indeed; as a matter of fact, if a generic
Y,propagates in a limited mean, the superposition of it with its reflection Y, makes a

standing wave Y =Y, +Y,: Y, =Asn(kx-wt) , Y,=Asn(kx+wt).

The difference in sign in the arguments shows that those two waves propagate in opposite
directions; moreover, the term wt = 2pnt tells us that, if you fix a point X, you have an
oscillation in time, while the term kx tells us that if you fix a time t, you'll see an

oscillation when you move along x.
Y , therefore, oscillates in time and along the direction of propagation.

Y =Y, +Y,=2Asn kx>«:oswt:2Asin2|—px>«:052pnt; (3.24)

(H-V)Y =0; well, it's exactly the same.

after that we have used the following trigonometric identity:

sina +sinb :2003(a - b)>sin(a th) .

2
Now, if you fix t in (3.24), you'll have: Y =const ssinkx , from which:
2 2
1 Z = - const X”sinkx = - kY , from which, again: 1]”\2 +k%Y =0, so the (3.23), that is,
X X

the standing wave equation!
Therefore, as a further intuitive proof of the Schrddinger’s Equation, we give the following:
let Y be the wave function; it must withstand the following wave equation:

2
1 Z +k?Y =0;

X

2
then we know from the previous pages that p =hk, from which: k* :% and so:
T[ZY pZ
+=Y =0. 3.25

™ h? (3.25)

2

2
Then, we know through (3.20) that: H -V:Zp—m, and so: i—rzn(H -V):%and (3.25)

2 2 2
yields: g+%Y -1 Z +2—r2n(H - V)Y =0 so really the (3.22) monodimensional!
X h X h

Par. 3.2: The Heisenberg’s Indetermination Relations (formal deduction).

preamble on the mean value of an operator: , ,
we know that by (Y,Y) we mean the following: (‘Y*(x,t)Y(x,t)d3x, which is 1 for

normalized W.
Before, we talked about probability P as a function of the space (x or x) and proportional
ro the square modulus of the wave function:

r r r Uy . '
Pu |Y(x,t)|2 =Y (X,1)Y *(x,t), where Y *(x,t) is the complex conjugated of Y (x,t)
(i swapped with —i). If then you want to calculate the mean value (over the space) for an
operator F, we can use the weighed mean value calculation, where the weight evaluated
for every point where you want to calculate the mean value, isY (X,t)Y * (x,t):

(F)=(Y,FY) = &Y * (LUFY (x,1)d (3.26)



preamble on fundamental commutators:

we define the commutator of the operator A with the operator B: [A B] = AB- BA. Now, in
case A and B are just numbers, their commutator will be zero, but if they are operators,
then things can be different.

For fundamental commutators, we have:

[%,%]=%X; - x;x =0 (x=position)
L R | K (I | 1
L, p.]=(-ith—)(-ih—) - (-ih—)(-ith—) = -ih—).
[p.p]=(1i ‘HXi)( i ‘ij) (-i ‘ij)( i ‘Hxi) 0, (we saw that p® Ih‘ﬂx)
[%, pj]:ihdij;

in fact, if you apply the commutator to an auxiliary and generic operator ¢:

1 1l fix . 1
[X,p; ] =x%(-th—)- (|h =-ih +ih +|h.——|hdi.
X Pl =X fix )(>s1 ) =-ihx = fix .”XJJ X fix i
where d; is the Kroneckers Delta, andisOif it j and 1if i =j. In fact, as x; and x; are
ortogonal and linearly independent (as x, y and z are), we really have T =d; .

i

About the commutator [t,E]: (as E® ih%)
1 ‘ﬂ._.‘ﬂj.‘ﬂt..‘ﬂj_.‘ﬂt._.. .
E]] =ith—- ih— zith—-ih—=j -ith—=-ih—j =- :
[t,E]} =it ‘ﬂ ﬂt(tj) it 1t i ﬂtj it 1t i tl ihj and so
[t,E] =

preamble on the eigenvalue equation and on deviations:

as x; is a certain position on a certain axis (for instance, xi1=x, X»=Yy, X3=z), then also W; is
a certain state i, considered as a component i of a wave functio W in a maybe infinite-
dimension space i=infinite).

If states “i” exist, where an operator F (which can be simply a real number f) has a well
defined value, then we have: (F) = f,.

F should be an "observable”, likely. Then, we know the definition of mean square
deviation DF for F and we want it becomes zero:

DF = <F2>i - <F>.2 =0. We also define the “simple deviation” D, :

D. =F - (F).. Then, we have:

(B:) =((F- (F))") =(F?) +(F)"- 2(F) (F). =(F?) - (F)’ = (DF)?. Now, the request
according to which: DF =0, becomes as follows: (D) =0=(Y,,D;Y,)=0. And as F is an
observable, then hermitian (F*=F), also D will be hermitian, and so we can write:

(DL) =(Y,,BLY,) = (D;Y,,DY,) = @§P: ;[ dx =0, from which: DY, =0, that is:

FY. = fY., which is the eigenvalue equation for F.

preamble on the Schwarz’s Inequality:
if we consider the scalar product between two vectors as the projection of one over the

other, we have: 15><\X/:|15||v(,1cosq £|15||v(,1 = Vi Wk = JIZW2 | as cosg £1.

r.r . ,
uxwE /uxu+/wxw is a general form for the Schwarz’'s Inequality.




If now we go back to our quantum operatorial mean values formalism, we have, from
analogy: |(Y,FGY)|£\/(Y,F2Y)\/(Y,GZY), that is, also (by squaring both sides, if we
like):

(Y ,FGY )|2 £(Y,F?Y)(Y,G?Y) =(Y,FFY)(Y,GGY) and as F and G are hermitian, we'll
also have:|(FY,GY)|2 £(F*Y,FY)G*Y,GY)=(FY,FY)(GY,GY), (3.27)

as, from the definition of (3.26), it's very easy to see that an operator between round
brackets can be moved from left to right, with respect to the comma, provided that you
turn it into its complex conjugated and if it is hermitian, its complex conjugated is equal to
itself.

(3.27) is the Schwarz's Inequality we're interested in.

at last, the Heisenberg'’s Indetermination Relations:
as now we can well manage with all quantum terminology and formalism, as per all what
has been said so far, let's try and evaluate the following expression: (i([F,G], ))?, where F

and G are hermitian:

(i[F,G], ))* =|[(Y ,FGY)- (Y,GFY )|2, but we can also say that:

((Y,FGY)- (Y,GFY )|2 £((Y,FGY)|+|(Y,GFY)))*, as the sum of moduli is for sure not less
than the simple difference.

As F and G are hermitian, we can say:

(Y,GFY)=(GY,FY)=(FGY,Y)=(Y,FGY)* and (Y,FGY)=(FY,GY)and so, about
the previous equations:

(i[F,G], ))* £ 4(FY ,GY )|2; then, according to Schwarz:

(FY,GY)[" £ (FY ,FY)(GY,GY)and so:

(i[F,Gly )? £4(Y ,F2Y)(Y,G?Y) = 4F?) (G*) (3.28)
Before we said: D, =F - (F),, and, from analogy: D; =G- (G), , that is:

D=+ (F),

D, =G- (G), (3.29)
and we also got:: (D) =(F?) - (F). =(DF)? and, still from analogy, then

also: (O%,) =(G?), - - (G)2 =(DG)?, that is:

Y

D:), =(F?), - (F)y =(OF)’

Di), =(G%), - (G )? = (DG)? (3.30)
From (3.29) we have: [D.,D;]=[F,G], (3.31)
as, in making [D.,D;] explicit, products of F and G with the m.v. cancel each other (while

FG and GF don’t). Now, in (3.28) let's make a replacement: F® D. and G® D;; we
have:

({i[D:,Dely ))* £ 4D¢%) (Ds), (3.32)

and also taking into account (3.30) and (3.31), (3.32) changes again:
(ilF,Gly ))* £ 4(DF)*(DG)?, from which:




DF DG 3 %|<i[F,G]Y>| (3.33)

which is the Heisenberg’s Indetermination Relation.
If we now put F=x and G=p and remembering the preambles on fundamental

commutators, from (3.33) we have the famous: |Dx>Dp 3 g . (if I want to know well the

position of an electron, then I have to give up some accuracy on the evaluation of its
speed U p, and vice versa)
On the contrary, if we put F=t and G=E and still remembering preambles on fundamental

commutators, still according to (3.33) we’ll have the famous (as well):|DE XDt 3 h .

2

Chapter 4: Physical constants as an effect of the Universe (the origins of
physical constants).

Par. 4.1: The speed of light.

We know from physics that for a gravitating body at a distance R from the center of mass
of the system in which it's gravitating, the centrifugal acceleration is:

_V
8= (4.1)

Now, talking about our Universe (%), it's contracting with an acceleration
a,,;, @7,62X0"?m/s’ towards its center of mass and we are, of course, at a certain

distance from it, and we call it R,,, @.,179080*m.

We also know that in the place of the Universe where we are, the speed of light is c, of

course, so (4.1) becomes:
2

8., = —— , from which: (4.2)
c = V aUniv >4%Jniv @&Osmls (43)
We also have: c= CMuny @®0’m/s.

niv

(*): for an analytic treatment of our Universe, see Appendix 1.
Par. 4.2: Mass and radius of the electron.

Our Universe is Harmonic and oscillating, contracting towards its center of mass. Such a
contraction makes the getting closer of all matter, and towards the center of mass of the
Universe, indeed. This mutual getting closer physical effect is what we commonly call,
from centuries, force of gravity. Then, as we are talking about a “harmonic” motion, we
are led to think that harmonics of the Universe can exist, as well as a sound can be held
made of its harmonics (of Fourier) and there are strong reasons to think that the electron
is a harmonic of the Universe, or better a real Universe in small size or, if we like, a smal
particle of “God”, or a small Higgs boson of nowadays, better known as God’s particle; the



only difference is that the God’s boson hasn’'t been found yet, provided that it exists and
that it serves to what they say, while we know the electron somewhat well.

Well then, we think the electron is so similar to the Universe, in the microscopic range,
that the “classic” gravitational acceleration on its surface, as if it were a small planet, is
the same as the contraction cosmic acceleration a,,, of the Universe; so we have to write

that:
m,xg, =G ™ from which:
I

e

d. :G% =a,,, =7,6240”m/s* and so:

e

rne — %niv

Zo G (4.4)
Now, as the Coulomb’s electric force between an electron e and a positron e, or between
an electron e and a proton p* in an atom of hydrogen, is very higher than the
gravitational one, | suspect such an enormous force is due to the huge gravitational force
all the surrounding Universe transmits to the electron itself; and vice versa, too, that is,
the composition of all electrical forces from all particles in the Universe shows, on a
macroscopic range, like a gravitational force.

Now, as we do not have other different reasons to explain such an intense electric force,
and as the gravitational force, for the moment, is the only one I clearly know, if I don't
want to invent new unknown forces, and | do not intend to do that, I can suppose that
the electrostatic energy of a charge in a pair e - e* at distance re (classic radius of the
electron) is due to the gravitational influence of the Universe around, that is:

1 ez GM Univrne

£ (4.5)
4peO re Rva
2
from which: myr, = MATIN (4.6)
4peO GMUniv
(M,,,,, =15948610%kg )

If now we combine (4.4) and (4.6), we get:

7 1
r = (X Rm® )5 Gpe179x0 B m
4peO aUnivIVIUniv

m, = % r? =910 *kg

which are exactly the values physics has always taught us!

Par. 4.3: Planck’s Constant.

1) We know from physics that: v=wR and w=2p/T , and, for the whole Universe:
C=WRunv and w =2p /T, , from which:

niv ?

T

Univ

= PRoiv — 5 471181075 (7.840 billion years) (4.7)
c



About the angular frequency, we have: W, @/ R, ue. nay = 25440 *rad /s, and it is a
right parameter for a reinterpretation of the global Hubble's constant H ., , whose value

is H, only in the portion of Universe visible by us (W, = Hgo )-

Now, if we imagine an electron (“stable” and base particle in our Universe!) irradiating all
energy it's made of in time Tyny , We get a power which is exactly Y% of Planck’s constants,
expressed in watt!

In fact:
2
L, = rTneC =1h, =331640 %W (4.8)

Univ
(One must not be surprised by the coefficient ¥2; in fact, at fundamental energy levels, it's always present,
such as, for instance, on the first orbit of the hydrogen atom, where the circumference of the orbit of the

electron (2nr) really is 1, e of the electron. The photon, too, can be represented as if it were contained
2 eBroglie

in a small cube whose side is 1, )-
2 photon

Therefore,| h=|2L,| = ‘2% hN‘ =6,625%0 *Js.

2) As an alternative, according to the Principle of Indetermination of Heisenberg, as the
product Ax Ap must keep above h/2, and with the equal sign, when Ax is at a maximum,
Ap must be at a minimum, and vice versa:

Dp XOx 2 h/2 and Dp, XDx. =h/2 (h=h/2p)
Now, as DO we take, for the electron (“stable” and base particle in our Universe!),

Db = (M, C) and as DXmn for the electron, as it is a harmonic of the Universe in which
it is (just like a sound can be considered as made of its harmonics), we have:
Dx,, =&,,,/(2p)*, as a direct consequence of the characteristics of the Universe in which
it is; in fact, from (1.15), R, =a,;, /W, . as we know from physics that a=w’R, and
then w,,, =2p/T,., =2pn,,, . and as w, of the electron (which is a harmonic of the

| like if the
electron of the electron-positron pairs can make oscillations similar to those of the
Universe, but through a speed-amplitude ratio which is not the (global) Hubble Constant,
but through Hgiovar divided by n and so, if for the whole Universe: R, =a,,,/W

Universe) we therefore take the “n,,,,—th” part of wy, , that is:|w,| =Wy, /Ny,

Univ ? niv ?

. — %niv — %niv — %niv — %niv H .
then, for the electron: Dx,, = = = = , from which:
(We)z (|WUniv/nUniv|)2 (| HGIobaI /nUniv|)2 (a) )2

Dp, ., DX, :mc%:o,&?&O‘“ [Js] and such a number (052730 *Js), as chance

2
would have it, is really h/2 !!
Then, as h=h/2p , we have: h=2ph = mec% = 6,625%0 *Js.




Par. 4.4: Stephan-Boltzmann’s Constant.

Let’'s go on considering the electron as a harmonic of the Universe, so a small Universe,
and consider the proportion electron-Universe between mass and irradiated power, also
using (4.8):

L .
_e — I‘Un|v , SO: LUniv __hN Un|v -
rne IVIUniv TUniv

M, . c?

Univ

=5,8040>'W

L[W] -
4pR?

If now we remember the Stephan-Boltzmann’s Law: =sT*, and if we use it for the

Universe, after having given the Universe the same temperature of the Cosmic Microwave
Background Radiation T(CMBR)= Temp,,, @2,73K (isn’t it?!...), we get:

L =5,67X0°W/mPK* |
4pRJn|v (TernpUmv )

which is the very value all general physics books show.
Remark: the mean temperature you can “give” to an electron is:

Ih

T, = (_'-e2 Y =(-2
dpr.’s dpr.’s

@2,73K !

Par. 4.5: The Fine Structure Constant.
1 5
e
_dpe,
h
—¢C
2p
understand the physical meaning of such a constant, by multiplying numerator and

We know that a = —13—7 = (Alonso-Finn) is the Fine Structure Constant; let’s try and

denominator by 1 , or also by i, where re is the classic radius of the electron and ap is
r 2

the Bohr's radius, that is the radius of the orbit of the electron in a hydrogen atom:
1 € 1 €

- - 4peO re - 4peO a0 . 4 9
—C —C
2pr, 2pa,

The numerator is the electrostatic energy of the electron, while the denominator is the
energy that can be irradiated by the electron itself, through a photon whose frequency is

—— (E=hn= h—) as, if the electron had the speed of light, it ran the circumference
2|an 2pa,

_ ZDao 1_ ¢
of the orbit 2pa, in the period T = , and so we have a frequency n_ = ? = E
Let’s write down (4.9) again:



1 ¢ 1¢é€
2 hv
q =3 _4ea . 1 e _hac_ —hn

hn, ‘he 77 4peja, 2pa, 2pa,
2pa,

see that the real speed V of the electron is ac, that is % of the speed of light, and so

v =ahn_. From this equation, we

also the energy of the photon which is emitted from such an electron in the H atom, that

. .1 . . . .
is hn,, is TS of the energy hn_ which would be emitted if the electron were not in H,
but in a pair electron-positron at distance r. and so at speed c, that is: ahn_. As a matter

of fact, we know from physics that speed V of the electron in H is Bi?c.

Besides, @ is also given by the speed of an electron in a hydrogen atom and the speed of light ratio:
a =Ve in n /c:e2/2e0hc , or also as the ratio between Compton wavelenght of the electron (which is the
minimum A of e when it's free and has the speed of light c) and the wavelength of e” indeed, on the first orbit of H:

a =1 compron /1 1.1 =(Yme)/(W/my, 4, ;). Moreover, @ =.r,/a, , where &, = 0,529 A is the Bohr's radius.
But we also see that the Fine Structure Constant can be expressed by the following
equation:

1 _Gm
a=——= hng., » 4.10
137 re / Univ ( )
where, of course, n., = Tl . Before, we've also seen that the other expression for it, is:
Univ
1 &
a :i :ﬂ (4.11)
137 h
—¢C
2p
We could so set the following equality and deduce the relevant consequences:
1 . G
. 2 2 2
@-= 1):4‘0;?0 =Te  from which: l g=_¢ Om_ ¢ Gme:RJnimae
137 —C hn Univ 4peO 2anniv re H global re re
iy
2 2
Therefore, we can write that: 1 & . Gmy .
4peO RJniv re

Now, if we temporarily imagine, out of simplicity, that the mass of the Universe is made of
N electrons e and positrons €, we could write:

1 ez — GM Univrne

4peo RJniv B \/N\/Nre

My, = Nxm, , from which: , or also:

Univ

1 ez — Csl\/IUnivrne .

4peO y(RJniv/\/N) ) \/Nre

If now we suppose that R, =+/Nr., or, by the same token, "=~ RJniv/m, then (4.12)
becomes:

(4.12)



2
1 Xe— - GMUnivrne 1 (413)
re

4peO RJniv

Now, first of all we see that the supposition R, . =+/Nr, is very right, as from the
definition of N above given and from the value of the mass of the Universe, we have:

N =Muw g 750% (~Eddington), from which: +/N @4,13x10” (~Weyl) and
m,

R,., =+/Nr, @,1840%m, that is the very R, value we know.

Summing up: (4.10), (4.11) and (4.13) tell us that the Fine Structure Constant comes out
not only from the characteristics of atoms and particles, but also from those of the
Universe and there is a more important particular: such characteristics, microscopic and
macroscopic ones, are deeply linked each other!

Par. 4.6: The Boltzmann’s Constants.

The integration of the Planck’s Black Body Radiation Equation gives the Stephan-
Boltzmann’s Law:

2ph ¥ n’dn 20°%k* _, s . 2p°k* .
e= = T"=sT", thatis: s =———, from which:
@@ -1 1502 15¢2H°
_ 15¢*h*s & s , :
k=( )4 =1,38X40 ~J /K, coming out from constants we've already found, so far.

2p°
Par. 4.7: The Universal Gravitational Constant.

In Par. 4.1 we saw that:

c= CMuny @3x0®m/s, from which, if we like:

niv

2
G =S Ruv @g 6700 N 17 /kg?.

Univ
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App. 1-Par. 1.1: No dark matter!

ON DISCREPANCIES BETWEEN CALCULATED AND OBSERVED DENSITIES pUniv :
The search for 99% of matter in the Universe, after that it has been held invisible sounds somewhat strange. And it’s a

lot of matter, as dark matter should be much more than the visible one (from 10 to 100 times more).

Astrophysicists measure a p value of visible Universe which is around: I @2 10" ®kg/m®,
Prevailing cosmology nowadays gives the following value of p: (see also (A1.6)):

r =H?

local

Wrong

/(ng) @20 ®kg/m® (too hight) .

Let’s use the following plausible value for Hlocal (local Hubble’s constant — see (A1.7) below):

H,.., @75km/(sXMpc) @2,338>§L0‘18[(?) m]

Page 32

Page 32
Page 32
Page 33
Page 34
Page 35
Page 35
Page 37

Page 38
Page 38
Page 39
Page 40

Page 41
Page 41

€ previously used for the unification of electric and

Page 43
Page 43
Page 44
Page 44
Page 45
Page 45

Page 45
Page 47

Page 48
Page 48

(AL.1)

(A1.2)

confirmed by many measurements on Coma cluster, for instance, (see (A1.7) below) and this also confirms that the
farthest objects ever observed are travelling away with a speed close to that of light:

Hiow » S/ Ryiverse. o » from which: R, o4 » €/ H, ., » 4000Mpc » 135X0°light _ year

(A1.3)



Moreover, one can easily calculate the speed of a “gravitating” mass m at the edge of the visible Universe, by the
following equality between centrifugal and gravitational forces:

2
— Vi c —_ 2
m>xa=m =G>m>xM Univ- Old / RJniv- old (A1.4)
niv- Old

from which, also considering (A1.3), we have:

M Univ- Old = C3 /(G XI_I local ) @"67 >§'053 kg (A1-5)
and so:
4 4 ¢ 4 _
M wrong = Muniv- oid /(ngjniv- od) = (Cs/GHlocal )/[3[3 (T)3] = HI(chaI /(5 pG) @20 *kg/m’ (AL.6)
local

i.e. (Al.1) indeed (too high valuel)

Good..., sorry, bad; this value is ten thousand times higher than the observed density value, which has been measured
by astrophysicists. Moreover, galaxies are too “light” to spin so fast (see further on). As a consequence, they decided to
take up searching for dark matter, and a lot of, as it should be much more than the visible one (from 10 to 100 times
more).

On the contrary, astrophysicists detect a value for p around: I @2X10 *kg/m®.

Let’s try to understand which arbitrary choices, through decades, led to this discrepancy. From Hubble’s observations on,
we understood far galaxies and clusters got farther with speeds determined by measurements of the red shift. Not only;
the farthest ones have got higher speeds and it quite rightly seems there’s a law between the distance from us of such
objects and the speeds by which they get farther from us.

Fig. A1.1 below is a picture of the Coma cluster, about which hundreds of measurements are available; well, we know
the following data about it:

distance Ax=100 Mpc = 3,26 10® l.y. = 3,09 10* m

speed Av=6870 km/s=6,87 10° m/s.

Fig. A1.1: Coma cluster.

If we use data on Coma cluster to figure out the Hubble’s constant Hlocal, we get:
i m
i = DY/ Dx @2.22200((T) /i, )
S
That is a good value for “local” Hubble’s constant.

App. 1-Par. 1.2: The cosmic acceleration aypiy-
As a confirmation of all we just said, we also got the same Hlocal value from (A1.3) when we used data on the visible

Universe of 13,5 10° l.y. radius and ~c speed, instead of data on Coma cluster. By the same reasonings which led us so



far to get the Hlocal constant definition, we can also state that if galaxies increase their own speeds with going farther,
then they are accelerating with an acceleration we call ay,, , and, from physics, we know that:

Dx:%aXDtZ:%(aXDt)th:%Dv@t , from which: DtZZ)DX

, which, if used in the definition of

acceleration aypy, , yields:

S — = —=——=a,,, @7,62 X0 ¥m/s*,  cosmic acceleration (A1.8)

after that we used data on Coma cluster.
This is the acceleration by which all our visible Universe is accelerating towards the center of mass of the whole
Universe.

App. 1-Par. 1.3: The new density of the Universe.
Now, we say the Universe is 100 times bigger and heavier:

RJniv- New @'OORJniv @.,17908 40*m (A1.9)
M @L00M .., @1,59486 40 kg (A1.10)

Univ- New Univ

This value of radius is 100 times the one previously calculated in (A1.3) and it should represent the radius between the
center of mass of the Universe and the place where we are now, place in which the speed of light is c.

((as we are not exactly on the edge of such a Universe, we can demonstrate the whole radius is larger by a factor \/E ,
that is Ry,,=1,667 10°m.))

Anyway, we are dealing with linear dimensions 100 times those supported in the prevailing cosmology nowadays. We
can say that there is invisible matter, but it is beyond the range of our largest telescopes and not inside galaxies or
among them; the dark matter should upset laws of gravitations, but they hold very well.

By these new bigger values, we also realize that:

GMUniv
—dnv (A1.11)

RJniv

By the assumptions in the (A1.9) and (A1.10), we get:

c’=

r =Mynv. new /(gp MR ) = 23227340 ¥kg/m® 1 (AL.12)

which is the right measured density!

And we also see that:
c? V2
a,y ——=1,62 X0 m/S2 , (as we know, from physics, that a = — )
niv- New r
as well as:

A = GOM U naw ! R nay = 7,62%0°7 m/S2 (from the Newton’s Universal Law of Gravitation)

The new density in the (A1.12) is very very close to that observed and measured by astrophysicists and already reported
at page 32.

Nature fortunately sends encouraging and convincing signs on the pursuit of a way, when confirmations on what one
has understood are coming from branches of physics very far from that in which one is investigating.

On the basis of that, let's remind ourselves of the classic radius of an electron (“stable” and base particle in our
Universe!), which is defined by the equality of its energy E=m.c? ant its electrostatic one, imagined on its surface ( in a
classic sense):

, 1 €
m,>x¢ =




1 €

r, = ~ @2,817940 *m (A1.13)
4pe, m,xc
Now, still in a classic sense, if we imagine, for instance, to figure out the gravitational acceleration on an electron, as if it
were a small planet, we must easily conclude that: M, Xg, = G% , SO:
e
m, 2.2 Gm;j'C“ 12 2
9. =G—2=8p%) ——=—=a,,, =7,6240 7 m/s’ (A1.14)
r e

e

that is the very value obtained in (A1.8) through different reasonings, macroscopic, and not microscopic, as it was for
(A1.14). All in all, why should gravitational behaviours of the Universe and of electrons (making it) be different?

App. 1-Par. 1.4: Further considerations on the meaning of ayny-

Well, we have to admit that if matter shows mutual attraction as gravitation, then we are in a harmonic and oscillating
Universe in contraction towards a common point, that is the center of mass of all the Universe. As a matter of fact, the
acceleration towards the center of mass of the Universe and the gravitational attractive properties are two faces of the
same medal. Moreover, all the matter around us shows it want to collapse: if I have a pen in my hand and | leave it, it
drops, so showing me it wants to collapse; then, the Moon wants to collapse into the Earth, the Earth wants to collapse
into the Sun, the Sun into the centre of the Milky Way, the Milky Way into the centre of the cluster and so on; therefore,
all the Universe is collapsing. Isn't it?

So why do we see far matter around us getting farther and not closer? Easy. If three parachutists jump in succession
from a certain altitude, all of them are falling towards the center of the Earth, where they would ideally meet, but if
parachutist n. 2, that is the middle one, looks ahead, he sees n. 1 getting farther, as he jumped earlier and so he has a
higher speed, and if he looks back at n. 3, he still sees him getting farther as n. 2, who is making observations, jumped
before n. 3 and so he has a higher speed. Therefore, although all the three are accelerating towards a common point,
they see each other getting farther. Hubble was somehow like parachutist n. 2 who is making observations here, but he
didn’t realize of the background acceleration g (ayni)-

At last, | remind you of the fact that recent measurements on la type supernovae in far galaxies, used as standard
candles, have shown an accelerating Universe; this fact is against the theory of our supposed current post Big Bang
expansion, as, after that an explosion has ceased its effect, chips spread out in expansion, ok, but they must obviously
do that without accelerating.

Moreover, on abundances of U 2 and U?we see now (trans-CNO elements created during the explosion of the
primary supernova, we see that (maybe) the Earth and the solar system are just (approximately) five or six billion years
old, but all this is not against all what just said on the real age of the Universe, as there could have been sub-cycles
from which galaxies and solar systems originated, whose duration is likely less than the age of the whole Universe.
About Ty, of the Universe, we know from physics that: v=wR and W = 2p /T , and, for the whole Universe:

c=WRyny and W =2p /T, , from which:

= _ZpRJniv =24711840%"s (7.840 billion years) (A1.15)
c

About the angular frequency: W,

Univ

@/ R e naw = 25420 ®rad /s, and itis a right parameter for a

niv
reinterpretation of the global Hubble’s constant H global » Whose value is H . only in the portion of Universe visible by

us (Wyyy = Hgiopa )-
App. 1-Par. 1.5: Further confirmations and encouragements from other branches of physics.

1) Stephan-Boltzmann’s law:
e =sT*[w/m?, where s =567x0°W/(m’K*)
It's very interesting to notice that if we imagine an electron (“stable” and base particle in our Universe!) irradiating all

energy it's made of in time Ty, , we get a power which is exactly ¥z of Planck’s constants, expressed in watt!
In fact:

2
L, = rTneC =1h, =3316X0 %W

Univ

(One must not be surprised by the coefficient ¥%; in fact, at fundamental energy levels, it's always present, such as, for
instance, on the first orbit of the hydrogen atom, where the circumference of the orbit of the electron (2nr) really is

E| N of the electron. The photon, too, can be represented as if it were contained in a small cube whose side is
2 eBroglie

1

=1
2

photon



2) Moreover, we notice that an electron and the Universe have got the same luminosity-mass ratio:

M,..C°
in fact, L, = ——" =580x10>'W (by definition) and it's so true that:
Univ
2 2
M UnivC rnec 1 hN
. T, ¢ L T, cc o
Luniy =__unv__ — = =_Unv — =2 and, according to Stephan-Boltzmann’s law, we can
IVIUniv IVIUniv TUniv rne rne TUniv me

consider that both an “electron” and the Universe have got the same temperature, the cosmic microwave background
one:

1q

L i b i L _ 2 Ya=273K
4pR2) (4.pRJn|V) (4p ) ( e)

L
4pR?

=sT" so: T=(

3) The Heisenberg Uncertainty Principle as a consequence of the essence of the macroscopic and @&, accelerating

Universe:
according to this principle, the product Ax Ap must keep above h/2, and with the equal sign, when Ax is at a
maximum, Ap must be at a minimum, and vice versa:

Dp xDx 3h/2 and Dp_ Xx. =h/2 (h=h/2p)
Now, as meax we take, for the electron (“stable” and base particle in our Universel!),

Dxmiﬂ for the electron, as it is a harmonic of the Universe in which it is (just like a sound can be considered as made of
its harmonics), we have: DX, =@, / (2p )2 , as a direct consequence of the characteristics of the Universe in

which it is; in fact, RJniv = E\Jniv/wjniv , as we know from physics that a :WZR, and then
Wiy = 2P/ Tomy = 2PNy, » @nd as W, of the electron (which is a harmonic of the Universe) we therefore take the

“Ny,, —th” part of W, that is:

Univ niv ’

|We| = |WUniv/nUniv| like if the electron of the electron-positron pairs can make oscillations similar to those of the
Universe, but through a speed-amplitude ratio which is not the (global) Hubble Constant, but through Hgna divided by

n and so, if for the whole Universe: R, ., = E\Jniv/wjniv , then, for the electron:
%niv - %niv - %niv - %niv

2 2 2 2
(We) (|WUniv/nUniv|) (| HGIobaI /nUniv|) (a))

Dp, DX = mec% =0,52720 * [3s] and such a number (0,527 0 * Js), as chance would have it, is

Univ ’

Dxmin =

from which:

really h/2 1

4) As we previously did, let's remind ourselves of the classic radius of an electron (“stable” and base particle in our
Universe!), which is defined by the equality of its energy E=m.c? ant its electrostatic one, imagined on its surface ( in a
classic sense):

, 1 €
m > =

1 €
r:

*" dpe,

Now, still in a classic sense, if we imagine, for instance, to figure out the gravitational acceleration on an electron, as if it

_gmom

were a small planet, we must easily conclude that: M, Xg, =

3 4
9. :G%:8p2e§ Gr;]jc 7,62>§LO'12m/32!!!

~ @2,817940 *m

, SO

e




1 Gny
5) We know that & = E is the value of the Fine structure Constant and the following formula 7ma hn vyields
I
e

1 _GnY
the same value only if N is the one of the Universe we just described, thatis: a = —137 = 7me hnumv , Where,
I
e
1
clearly: Ny, = (see (A1.15)) !!
TUniv

6) If 1 suppose, out of simplicity, that the Universe is made of just harmonics, as electrons € (and/or positrons e ),
M, .
their number will be: N = —Y". @), 75X10% (~Eddington); the square root of such a number is: v N @4,13X10%
m,

(—Weyl).
Now, we are surprised to notice that +/ NT, @L18X0%m (1), that is, the very Ry, value we had in (A1.9)

(Runiv :\/Nre @L,18x40% m) 1

App. 1-Par. 1.6: On discrepancies between calculated and observed rotation speeds of galaxies.

Andromeda galaxy (M31):

Distance: 740 kpc; Rga=30 kpc;

Visible Mass Mga = 3 10™*Msun;

Suspect Mass (+Dark) Mipark = 1,23 10%*Msyn;
Msin=2 10*°kg; 1 pc= 3,086 10'®m;

Fig. A1.2: Andromeda galaxy (M31).

By balancing centrifugal and gravitational forces for a star at the edge of a galaxy:
2
v m,. M GM
=G—%; G from which: v=_|—Ca

F\)Gal F\)Gal F\)Gal

On the contrary, if we also consider the tidal contribution due to ay,y , i.e. the one due to all the Universe around, we
get:

My

= Mo , ; let's fi for i in M31, h Real (N k times) f f
V= [—=+a,,,Rsy ; let's figure out, for instance, in , how many Rg, (how many k times) far away from

Rea

the center of the galaxy the contribution from ay,;, can save us from supposing the existence of dark matter:

\/GM“DE‘”‘ :\/GMGE" + 8y, KRsy  so k:\/G(NI +Dark _ZMGa') @4, therefore, at 4Rg, far away, the
kI:\’Gal kI:\)Gal aUniv F\)Gal

existence of ay,, makes us obtain the same high speeds observed, without any dark matter. Moreover, at 4Rg, far
away, the contribution due to aygy, is dominant.
At last, we notice that ayn, has no significant effect on objects as small as the solar system; in fact:

G h @8,9240° >> AynivReartn- sn @14

arth- Sun



All these considerations on the link between ayn, and the rotation speed of galaxies are widely open to further
speculations and the equation through which one can take into account the tidal effects of @, in the galaxies can

have a somewhat different and more difficult look, with respect to the above one, but the fact that practically all galaxies
have dimensions in a somewhat narrow range (3 — 4 Rk, way Or N0t so much more) doesn't seem to be like that just by
chance, and, in any case, none of them have radii as big as tents or hundreds of Ryiiy way , but rather by just some
times. In fact, the part due to the cosmic acceleration, by zeroing the centripetal acceleration in some phases of the
revolution of galaxies, would fringe the galaxies themselves, and, for instance, in M31, it equals the gravitational part at
a radius equal to:

GM,,, GM

= 8,0 Reat. max » oM which: Rey .y = . [—2% @2,5R,, 4, ; in fact, maximum radii ever observed in

%al - Max aUniv

galaxies are roughly this size.

App. 1-Chapter 2: The unification of electromagnetic and gravitational forces (Rubino).

App. 1-Par. 2.1: The effects of My,;, on particles.

. L . . eZ _ 2 . Z—GMUniv
We remind you that from the definition of I, in (Al.13): X— =m,C" and from the (Al.11): C" =
4peo re niv
(~Eddington), we get:
2
1 & _GMy,m |, (A2.1)
4peO re RJniv

As an alternative, we know that the Fine structure Constant is 1 divided by 137 and it's given by the following equation:

1
762
_ 1 _ 4pe, _ 1 . : :
a =—— =—— (Alonso-Finn), but we also see that —— is given by the following equation, which can be
137 h, 137
2p
considered suitable, as well, as the Fine structure Constant:
Gy
1 r Ecox mi 1
a = =_—e = P Mn , where N, = —— . Egoy winis the smallest box of energy in the Universe (the
137 hnUniv EEmanabIe TUniv
electron), while EEmanabIe is the smallest emanable energy, as N, is the smallest frequency.

Besides, @ is also given by the speed of an electron in a hydrogen atom and the speed of light ratio:
a =V, ,, H/c:e2/2e0hc , or also as the ratio between Compton wavelenght of the electron (which is the

e_

minimum A of e when it's free and has the speed of light ¢) and the wavelength of e indeed, on the first orbit of H:

a =1 compron /I 1.1 =(Yme)/(h/MV, 4, ;). Moreover, @ = \Te/@ , where @, = 0,529 A is the Bohr's radius.

So, we could set the following equation and deduce the relevant consequences (Rubino):

1 . G

2 2 2
(a-= L )= 4p|‘?0 =L , from which: e = c_Gm =_¢ Gmy =R, Gme
137 —C hnUniv 4peo 2anniv re H global re re
after that (A1.15) has been used.
1 €& _Gm

Therefore, we can write: (and this intermediate equation, too, shows a deep relationship

4peO RJniv re

between electromagnetism and gravitation, but let’s go on...)



Now, if we temporarily imagine, out of simplicity, that the mass of the Universe is made of N electrons € and

. + .
positrons € , we could write:

1 e? - CSI\/IUnivrne
4p€% F%mv \/RI\[RIQ
1 e? (BAAUman

& (Ru/YN) NI,

If now we suppose that RJniv =4/ NI’e (see also (A4.2)), or, by the same token,
becomes:

My = Nxm, , from which:

or also: (A2.2)

e RJniv/\/N

, then (A2.2)

1 (Rubino) that is (A2.1) again.

Now, first of all we see that the supposition RJniv = NI’e is very right, as from the definition of N above given
(A1.10), we have:

N = My @\, 75%.0% (~Eddington), from which: VN @4,13X10% (~Weyl) and

m
=+/Nr, @L,18X0%®m, that is the very R, . value obtained in (A1.9).
nv e nv

App. 1-Par. 2.2: The discovery of the common essence of gravity and electromagnetism.

Now, (A2.1) is of a paramount importance and has got a very clear meaning (Rubino) as it tells us that the electrostatic
energy of an electron in an electron-positron pair (e*e' adjacent) is exactly the gravitational energy given to this pair

by the whole Universe M at an RJ”‘V distance! (and vice versa)

Univ

Therefore, an electron gravitationally cast by an enormous mass M for a very long time TU and through a long

Univ niv

travel RJ”iV , gains a gravitationally originated kinetic energy so that, if later it has to release it all together, in a short

time, through a collision, for instance, and so through an oscillation of the e'e pair - spring, it must transfer a so huge
gravitational energy indeed, stored in billion of years that if this energy were to be due just to the gravitational potential
energy of the so small mass of the electron itself, it should fall short by many orders of size. Therefore, the effect due to

IVIUnivrne

) G
the immediate release of a big stored energy, by € , which is known to be ————————, makes the electron “appear”,
niv
in the very moment, and in a narrow range (), to be able to release energies coming from forces stronger than the

gravitational one, or like if it were able to exert a special gravitational force, through a special Gravitational Universal
Constant G, much bigger than G:

L e ey Mmm_ SULE
4pe, mom’ o, 2

run taking effect due to its eternal free (gravitational) falling in the Universe. And, at the same time, gravitation is an
effect coming from the composition of many small electric forces.

; it's only that during the sudden release of energy by the electron, there is a

I also remark here, that the energy represented by (A2.1), as chance would have it, is really meC2 111, that is a sort of

run taking kinetic energy, had by the free falling electron-positron pair , and that Einstein assigned to the rest matter,
unfortunately without telling us that such a matter is never at rest with respect to the center of mass of the Universe,
as we all are inexorably free falling, even though we see one another at rest; from which is its essence of gravitationally
originated kinetic energy meCZ:
1 & GMy,
2
nkc - X__ = Umvnk ]

4p€% @ F%mv




App. 1-Par. 2.3: The oscillatory essence of the whole Universe and of its particles.

We're talking about oscillations as this is the way the energy is transferred, and also in collisions, such as those among
billiards balls, where there do are oscillations in the contact point, and how, even though we cannot directly see them
(those of peripheral electrons, of molecules, of atoms etc, in the contact point).

So, we're properly talking about oscillations also because, for instance, a single hydrogen atom, or a e'e pair, which
are ruled by laws of electromagnetism, behave as real springs: in fact, in polar coordinates, for an electron orbiting
around a proton, there is a balancing between the electrostatic attraction and the centrifugal force:

1 € di \»
F=-——— +m(=)% =-
"= dpe 12 me(dt)

Let’s figure out the corresponding energy by integrating such a force over the space:

1 e p d _ 3 3 3 )
—2+ 3 , Where E =W and Pp=mM\VX =mwrr =mwr

dpe, rc myr

2

1e2+p

U=-gdr=-

u

5. (A2.3)

4pe, r 2mr

A

! UParab = k(r - r0)2 +U0
I/

Uo

/ Fig. A2.1: Graph of the energy.

The point of minimum in (ro,Ug) is a balance and stability point (F,.=0) and can be calculated by zeroing the first
derivative of (A2.3) (i.e. setting F,=0 indeed).

Moreover, around rg, the curve for U is visibly replaceable by a parabola Upqp, SO, in that neighbourhood, we can write:
U paap = K(r - 1,)? +U, , and the relevant force is: F, =- TU ., /Tr =- 2K(r - 1,)

r

Which is, as chance would have it, an elastic force (F =- kX - Hooke’s Law).

Moreover, the gravitational law which is followed by the Universe is a force which changes with the square value of the
distance, just like the electric one, so the gravitational force, too, leads to the Hooke’s law for the Universe.




By means of (A2.1) and of its interpretation, we have turned the essence of the electric force into that of the
gravitational one; now we do the same between the electric and magnetic force, so accomplishing the unification of
electromagnetic and gravitational fields. At last, all these fields are traced back to ay, , as gravitation does.

App. 1-Chapter 3: The unification of magnetic and electric forces.
App. 6-Par. 3.1: Magnetic force is simply a Coulomb'’s electric force(!).

Concerning this, let's examine the following situation, where we have a wire, of course made of positive nuclei and
electrons, and also a cathode ray (of electrons) flowing parallel to the wire:

z Direction of the cathode ray (v)

® 66 —

Wire

Cathode ray E- y

.

E
F+

Fig. A3.1: Wire not flown by any current, seen from the cathode ray steady ref. system I (X, y’, Z)).

We know from magnetism that the cathode ray will not be bent towards the wire, as there isn’t any current in it. This is
the interpretation of the phenomenon on a magnetic basis; on an electric basis, we can say that every single electron in
the ray is rejected away from the electrons in the wire, through a force F identical to that F* through which it's attracted
from positive nuclei in the wire.

Now, let’s examine the situation in which we have a current in the wire (e” with speed u)

z

y
Cathode ray Direction of the ray (v)

F- |Y
®©® 060 @66 G ® 6 —

e Wire Direction of the current 1,

* @ /)Whose e;' speed is u

Fig. A3.2: Wire flown by a current (with e speed=u), seen from the cathode ray steady ref. system | (X, y’, 7).

In this case we know from magnetism that the cathode ray must bend towards the wire, as we are in the well known
case of parallel currents in the same direction, which must attract each other.

This is the interpretation of this phenomenon on a magnetic basis; on an electric basis, we can say that as the electrons
in the wire follow those in the ray, they will have a speed lower than that of the positive nuclei, in the system I', as such
nuclei are still in the wire. As a consequence of that, spaces among the electrons in the wire will undergo a lighter
relativistic Lorentz contraction, if compared to that of the nuclei's, so there will be a lower negative charge density, if
compared to the positive one, so electrons in the ray will be electrically attracted by the wire.

This is the interpretation of the magnetic field on an electric basis. Now, although the speed of electrons in an electric
current is very low (centimeters per second), if compared to the relativistic speed of light, we must also acknowledge
that the electrons are billions and billions...., so a small Lorentz contraction on so many spaces among charges, makes a
substantial magnetic force to appear.

But now let's see if mathematics can prove we're quantitatively right on what asserted so far, by showing that the
magnetic force is an electric one itself, but seen on a relativistic basis.

On the basis of that, let’s consider a simplified situation in which an electron e”, whose charge is g, moves with speed v
and parallel to a nuclei current whose charge is Q* each (and speed u):



YA

—‘—0—'

I z d =dyy/1- UZ/CZ_

[
»

X
Fig. A3.3: Current of positive charge (speed u) and an electron whose speed is v, in the reader’s steady system I.

a) Evaluation of F on an electromagnetic basis, in the system | :
First of all, we remind ourselves of the fact that if we have N charges Q in line and d spaced (as per Fig. A3.3), then the
linear charge density A will be:

=N>Q/N>d =Q/d
Now, still with reference to Fig. A3.3, in the system I, for the electromagnetics the electron will undergo the Lorentz
force F; =Qq(E + Vv~ B) which is made of an originally electrical component and of a magnetic one:

1Q/
=Exq= (— —)q (——=L=)Qg due to the electric attraction from a linear distribution of charges Q, and:
e, 2pr e, 2pr

Fmagn=nb' m)Q/t %Q/$K”)=%—”§O/rd

Q d uQ/d, _ _Q/d, 1 1

so: F =q(— Qd - vm, / )=d / (- mW)—— . (A3.1)
& 2pr 2pr Z 1- u’/c

where the negative sign tells us the magnetic force is repulsive, in that case, because of the real directions of those

currents, and where the steady distance d, is contracted to d, according to Lorentz, in the system | where charges Q

have got speed u (d = d,4/1- UZ/C2 ).

b) Evaluation of F on an electric base, in the steady system I’ of q:
in the system I’ the charge q is still and so it doesn’t represent any electric current, and so there will be only a Coulomb

electric force towards charges Q:
1 Q/d! 1 Q/d, 1

F =E%=(——
9=( 5= 2 a=aC ) T

where U’ is the speed of the charge distribution Q in the system I', which is due to u and v by means of the well known
relativistic theorem of composition of speeds:

u'=(u- v)/(1- w/c?) , (A3.3)

(Biot and Savart).

(A3.2)

and d,, this time, is contracted indeed, according to u: d'=d,/1- U'Z/C2
We now note that, through some algebraic calculations, the following equality holds (see (A3.3)):
22 - (1- U%/c*)- V¥/c?)
1- u?/c?
(1- uv/c?)?

| 1 Q/d' 1 Q/d (1- uv/c?)
=g = (2 )g= U o) Ty
€ 2pr e 2pr roJ1- u?/c?|1- v/
We now want to compare (A3.1) with (A3.4), but we still cannot, as one is about I and the other is about I'; so, let's
scale F'y in (A3.4), to 1, too, and in order to do that, we see that, by definition of the force itself, in I':

Dp. _ Dp _ Fy(in_1)
Dt. Dty 1- v¥/c?  |1- v¥/c

along the direction of the relative motion, so, according to the Lorentz transformations, it doesn't change, while Dt , of
course, does. So:

, Which, if replacing the radicand in (A3.2), yields:

(A3.4)

F'y@n_I")= , where Dp,. =Dp,, as Dp extends along y, and not



F,(in_1)=F', (in_I")y1- v?/c? q(1 Q/d, )\/1 (3/-cl:\\///1(:-2)v2/c2 J1-V?/c? =

=F,(in_I) (A3.5)

_ (1 Q/d, )(1- uv/c?)
€& 2pr " \1- u?/c?

Now we can compare (A3.1) with (A3.5), as now both are related to the I system.
Let’s write them one over another:

1Q/ Q/d

Fn_t=at vauzp )= quI/OdO(l ‘)W

1 Q/d, )(1- w/c?) _
& 2pr " 1- u?/c?

Fy(in_1) =a(—

Therefore we can state that these two equations are identical if the following identity holds: C = ]/ 1€y . and this

identity is known since 1856. As these two equations are identical, the magnetic force has been traced back to the
Coulomb’s electric force, so the unification of electric and magnetic fields has been accomplished!!

JNI,

App. 1-Chapter 4: Justification of the equation RJ”‘V € previously used for the unification of electric
and gravitational forces (Rubino).

App. 1-Par. 4.1: The equation R, =~/ NI, ().

First of all, we have already checked the validity of the equation RJniv =+/N I., used in (A2.2), as it has proved to be

numerically correct.

And it's also justified on an oscillatory basis and now we see how; such an equation tells us the radius of the Universe is
equal to the classic radius of the electron multiplied by the square root of the number of electrons (and positrons) N in
which the Universe can be thought as made of. (We know that in reality almost all the matter in the Universe is not
made of e*e” pairs, but rather of p*e” pairs of hydrogen atoms H, but we are now interested in considering the Universe
as made of basic bricks, or in fundamental harmonics, if you like, and we know that electrons and positrons are basic
bricks, as they are stable, while the proton doesn’t seem so, and then it's neither a fundamental harmonic, and so nor a
basic brick).

Suppose that every pair ee” (or, for the moment, also p*e” (H), if you like) is a small spring (this fact has been already
supported by reasonings made around (A2.3)), and that the Universe is a big oscillating spring (now contracting towards
its center of mass) with an oscillation amplitude obviously equal to Ry, , which is made of all microoscillations of e™e”
pairs.

And, at last, we confirm that those micro springs are all randomly spread out in the Universe, as it must be; therefore,
one is oscillating to the right, another to the left, another one upwards and another downwards, and so on.

Moreover e and e” components of each pair are not fixed, so we will not consider N/2 pairs oscillating with an amplitude
2re, but N electrons/positrons oscillating with an amplitude r..

=T, —_

I%.Jniv

Fig. A4.1: The Universe represented as a set of many (N) small springs, oscillating on random directions, or as a single
big oscillating spring.



Now, as those micro oscillations are randomly oriented, their random composition can be shown as in Fig. A4.2.

1 N |
RJniv re

»X

Fig. A4.2: Composition of N micro oscillations re randomly spread out, so forming the global oscillation Ryp-
1 1
We can obviously write that: Rj\'mv = I’ and the scalar product Rﬂ\'niv with itself yields:

ﬂIV

1 1
R, RN =(RY ) =( nlv) + 2 v >¢ +172; we now take the mean value:

<<RJ“mV>2> ((RY?) + (2R ) +(12) = (RY?) + (12). (4.1

r 1
<2 niv e> =0, because I, can be oriented randomly over 360° (or over4p sr, if you like), so a vector averaging
with it, as in the previous equation, yields zero.

We so rewrite (A4.1): <(Rﬂ\'niv)2> <( ) > < ez> and proceeding, on it, by induction:
(by replacing N with N-1 and so on):

((RI)?) = (R + (1) and then: ((R}5)?) = ((Rns)*) + (1) ete, we get:
((R)?) = {((R)?) +(r2) = ((RN)*) + 2r2) = oo =0+ N(rZ) = N(r?) , that is:

<(Rﬂ\'niv)2> = N<I’ez> , from which, by taking the square roots of both sides:

<(R3\lniv)2> =Ry = \/N\/@ = \/le’e , that is:

n (Rubino) (A4.2)

Anyway, it's well known that, in physics, for instance, the walk R made over N successive steps r, and taken in random
directions, is really the square root of N by r (see, for instance, studies on Brownian movement).

App. 1-Chapter 5: “ayn,“‘as absolute responsible of all forces.

App. 1-Par. 5.1: Everything from “ayn;,".

Still in agreement with what has been said so far, the cosmic acceleration itself ay;, is responsible for gravity all, and so
for the terrestrial one, too. In fact, just because the Earth is dense enough, it's got a gravitational acceleration on its
surface g=9,81 m/s?, while if today we could consider it as composed of electrons randomly spread, just like in Fig. A4.1

M
for the Universe, then it would have a radius —Eath 5 = NEarth X

rr]e e e’

and the gravitational acceleration on its

surface would be'

Onew = _ Meww =a,,, = 7,6240"?m/s’

('\,/ Earth af )



Therefore, once again we can say that the gravitational force is due to the collapsing of the Universe by ay,y, and all
gravitational accelerations we meet, time after time, for every celestial object, are different from ay,, according to how
much such objects are compressed.

App. 1-Par. 5.2: Summarizing table of forces.

| causes causes
GRAVITY

\ 4

ELECTRICITY [ WEAK FORCE

\ 4

Auniv
(Rubino)

causes |(Einstein) -
4 (Maxwell) I
y !
1

STRONG FORCE !
MAGNETISM |

(my works in progress)

Fig. A5.1: Summarizing table of forces.

App. 1-Par. 5.3: Further considerations on composition of the Universe in pairs +/-.
The full releasing of every single small spring which stands for the electron-positron pair, is nothing but the annihilation,
with turning into photons of those two particles. In such a way, that pair wouldn't be represented anymore by a pointed

wave, pointed in certain place and time, (for instance SIN(X- Vt)/(X- Vt), or the similar d (X - Vt) of Dirac), where

the pointed part would stand for the charge of the spring, but it will be represented by a function like sin(x- Ct),

omogeneous along all its trajectory, and this is what a photon is. This will happen when the collapsing of the Universe in
its center of mass will be accomplished.

Moreover, the essence of the pairs e*e’, or, in this era, of ep”, is necessary in order not to violate Principle of
Conservation of Energy. In fact, the Universe seems to vanish towards a singularity, after its collapsing, or taking place
from nothing, during its inverse Big Bang-like process, and so doing, it would be a violation of such a conservation
principle, if not supported by the Indetermination Principle, according to which an energy AE is legitimated to appear

anyhow, unless it lasts less than At, in such a way that DE Dt £ h/2; in other words, it can appear provided that the

observer doesn’'t have enough time, in comparison to his means of measure, to figure it out, so coming to the
ascertainment of a violation. And, by the same token, the whole Universe, which is made of pairs +/-, has this property.
And the appearing of a AE made of a pair of particles, shows the particles to reject each other first, so showing the same
charge, while the successive annihilation after At shows a successive attraction, showing now opposite charges. So, the
appearing and the annihilation correspond to the expansion and collapsing of the Universe. Therefore, if we were in an
expanding Universe, we wouldn't have any gravitational force, or it were opposite to how it is now, and it’s not true that
just the electric force can be repulsive, but the gravitational force, too, can be so (in an expanding Universe); now it’s
not so, but it was!

The most immediate philosophical consideration which could be made, in such a scenario, is that, how to say, anything
can be born (can appear), provided that it dies, and quick enough; so the violation is avoided, or better, it's not
proved/provable, and the Principle of Conservation of Energy is so preserved, and the contradiction due to the appearing
of energy from nothing is gone around, or better, it is contradicted it itself.

App. 1-Par. 5.4: The Theory of Relativity is just an interpretation of the oscillating Universe just described,
contracting with speed ¢ and acceleration agpy-
On composition of speeds:

1) Case of a body whose mass is m. If in our reference system |, where we (the observers) are at rest, there is a body

1
whose mass is m and it's at rest, we can say: V;, =0 and E ZE mvf =0 . If now I give kinetic energy to it, it will
: : 1 5 . .
jump to speed v,, so that, obviously: E2 ZEmVZ and its delta energy of GAINED energy D E (delta up) is:

DE=E,- Elzémvzz- O:%m(vz- O)Zzém(Dv)2 ,with DV=Vv, - v,.

Now, we've obtained a Dv which is simply V, -V, , but this is a PARTICULAR situation and it's true only when it starts
from rest, that is, when v, = 0.



1 1 1 1
on the contrary: D E=E, - E = 5 mv; - =mv’ = 2 m(V; - V2) = 2 m(D,V)®, where D, is a vectorial delta:

2

Dv=4 (sz - V12 ) ; therefore, we can say that, apart from the particular case when we start from rest (v, = 0), if we
are still moving, we won't have a simple delta, but a vectorial one; this is simple base physics.

2) Case of the Earth. In our reference system I, in which we (the observers) are at rest, the Earth (E-Earth) rotates
around the Sun with a total energy:

1
, and with a kinetic energy EK :EmEvé . If now we give the Earth a delta up

MSJnrnE
-S

1
ETot ZErnEVé -G

D E of kinetic energy in order to make it jump from its orbit to that of Mars (M-Mars), then, just like in the previous
point 1, we have:

D E:%mEvé - %I‘YIEV,\Z,I :%mE(vé - vf,,):%mE(va)z ,with D,V=1/(VZ- V;) ,and so also here the

speed deltas are vectorial-like ( Dv ).

3) Case of the Universe. In our reference system I, where we (the observers) are at rest, if we want to make a body,
whose mass is mg and originally at rest, get speed V, we have to give it a delta v indeed, but for all what has been said
so far, as we are already moving in the Universe, (and with speed c), as for above points 1 and 2, such a delta v must
withstand the following (vectorial) equality:

— — 2\ 2
V=Dyv= \/(C = VNew- Abs- Univ- Speed) ' (AS.1)
where V. aps- univ- speed 1S the new absolute speed the body (mo) looks to have, not with respect to us, but with

respect to the Universe and its center of mass.
As a matter of fact, a body is inexorably linked to the Universe where it is, in which, as chance would have it, it already

moves with speed ¢ and therefore has got an intrinsic energy I‘TJOC2 .

In more details, as we want to give the body (mg) a kinetic energy E, , in order to make it gain speed V (with respect to
us), and considering that, for instance, in_a spring which has a mass on one of its ends, for the harmonic motion law,
the speed follows a harmonic law like:

V= (WX )sina =V, SNa (V. avs.univ- speed = CSINA , in our case),
and for the harmonic energy we have a harmonic law like:
E=E,,Sna (mc’>=(mc*+E,)sna ,inour case),

we get Sina from the two previous equations and equal them, so getting:

_.mc
VNew- Abs- Univ- Speed — Cm '

now we put this expression for Ve, aps- univ- speed 1N (AS.1) and get:

2
- — [(e2_\p2 — [fn2 MC  y27 = , _
V=D,v= \/(C = View- Abs- Univ- peed) = 1/[C” - (CCZ—+EK) ] =V, and we report it below:

(A5.2)

If now we get E¢ from (A5.2), we have:
— (L - T
EK =mcC (T - 1) T which is exactly the Einstein’s relativistic kinetic energy!
1-
V c

2




If now we add to Ey such an intrinsic kinetic energy of my (which also stands “at rest” — rest with respect to us, not with
respect to the center of mass of the Universe), we get the total energy:

1 1
E =E +mc’ =mc” +mec*(————- 1) =———mc’ =g Mc’ , that is the well known
\% \%
(1 2 J1- 2
E= g >ch2 (of the Special Theory of Relativity). (A5.3)

All this after that we supposed to bring kinetic energy to a body at rest (with respect to us). Equation (A5.3) works wery
well on particle accelerators, where particles gain energy, but there are cases (collapsing Universe and Atomic Physics)
where masses lose energy and radiate, instead of gaining it, and in such cases (A5.3) is completely inapplicable, as it’s in
charge for added energies, not for lost ones.

App. 1-Par. 5.5: On “Relativity” of lost energies.
In case of lost energies (further phase of the harmonic motion), the following one must be used:

E= L Xm,c®>  (Rubino) (A5.4)
g

which is intuitive just for the simple reason that, with the increase of the speed, the coefficient :I/g lowers mg in favour

of the radiation, that is of the lost of energy; unfortunately, this is not provided for by the Theory of Relativity, like in
(A5.4).
For a convincing proof of (A5.4) and of some of its implications, | have further files about.

By using (A5.4) in Atomic Physics in order to figure out the ionization energies D- EZ of atoms with just one electron,
but with a generic Z, we come to the following equation, for instance, which matches very well the experimental data:

Ze
2e,hc

and for atoms with a generic quantum number n and generic orbits:

D-E, =mc71- |1- ( )?] (A5.5)

ze?
D.-E, =mcil- |1- (—)? ahlin A5.6
Z-n rne [ (4neOhC) ] (W ) ( )
Orbit (n) Energy (J) Orbit (n) Energy (J)

1 2,1787 108 5 8,7147 10%

2 5,4467 107 6 6,0518 10°%°

3 2,4207 10° 7 4,4462 10°%°

4 1,3616 10™° 8 3,4041 10°%°

Tab. A5.1: Energy levels in the hydrogen atom H (Z=1), as per (A5.6).

On the contrary, the use of the here unsuitable (A5.3) doesn’t match the experimental data, but brings to complex
corrections and correction equations (Fock-Dirac etc), which tries to “correct”, indeed, an unsuitable use.

Again, in order to have clear proofs of (A5.5) and (A5.6), | have further files about.




App. 1-SUBAPPENDIXES.

App. 1-Subppendix 1: Physical constants.

Boltzmann's Constant k:  1,38X.0 2J /K

Cosmic Acceleration ayy,:  7,62X0 2m/ s?

Distance Earth-Sun AU: 1,496 40" m

Mass of the Earth Megrn: 5,96 X0 kg

Radius of the Earth Reay:  6,371X10°m

Charge of the electron e: - 1,60 °C

Number of electrons equivalent of the Universe N: 1, 75X10%
Classic radius of the electron r.;  2,818X0 *°*m

Mass of the electron me:  9,1X10° 31kg

Fine structure Constant a (@4/137) : 7,30%0°°
Frequency of the Universe N 4,05X0 *Hz

Pulsation of the Universe Wy, (= H o) : 25440 *rad/s

Univ :

Universal Gravitational Constant G: 6,67 X10" " Nm* / kg*
2,4740%s

Period of the Universe T, :
Light Year Ly.: 9,46X0"m
Parsec pc: 3,26 _al.=3,08X10"m

Density of the Universe pyny: 2,32 >§LO‘3°kg /m’

Microwave Cosmic Radiation Background Temp. T:  2,73K
Magnetic Permeability of vacuum po: 1,26 X10°°H /m

Electric Permittivity of vacuum &: 8,85X0 2F /m

Planck’s Constant h:  6,625X0 *J x5

Mass of the proton m,: 1,67 X10"* kg

Mass of the Sun Mg,,: 1,989X10% kg

Radius of the Sun Re,n: 6,96X08m

Speed of light in vacuum ¢:  2,99792458x0°m/ s
Stephan-Boltzmann's Constant o: 5,67 XL0" W / m?*K *

Radius of the Universe (from the centre to us) Rumy: 1,18 X10%m
Mass of the Universe (within Runy) Muv:  1,59%10% kg

Thank you for your attention.
Leonardo RUBINO
leonrubino@yahoo.it
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