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LASER THEORY: 
                                                                          
The Laser is a device which is today used in a wide list of fields.  
Laser is an acronim for Light Amplification by Stimulated Emission of Radiation. 
The very first electromagnetic radiation amplifier was built with ammonia in the range of 
microwaves and was called Maser, for Microwave Amplification by Stimulated Emission of 
Radiation. After that they started building amplifiers in the visible range, from 1960 on, 
the word Laser was then introduced.  
Let’s consider a material immersed in radiation; we expect the following behaviours: 
 
         a) From the fundamental status of minimum energy Ei, the atom can absorb    
         photons whose frequency is ν , so that  hν  = Ef – Ei, where Ef  is the energy of   
         the excited state adjacent to Ei. 

         (a description of the Planck/Einstein equation E=hν can be found in the appendix)  

At the same time, the electron which absorbs the photon jumps from its 
fundamental state to the state Ef. This process is called stimulated absorption of 
radiation. 
Albert Einstein supposed that the probability per unit of time that this happens is 
proportional, through a constant, to the energy density of the radiation, at the 
frequency  ν , that is f(ν ) (see Planck’s eq. in the appendix); so: 

 
)(νfBR ifif ⋅=  ;  Bif is the B coefficient of Einstein. 

            
          The frequency of the stimulated events with transition i ----f  referred to the unit of    
          volume of the material will be: 
             

            )(νfBnRnN ifiifif ⋅⋅=⋅=                                                                  [1.1]                                                              
where ni is the number of atoms, per unit of volume, which are in the fundamental 
state Ei (population of the fundamental state).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

         b) Once excited in the final state Ef, the atom tends to fall again in the fundamental   
         state Ei. This can happen through several mechanisms; we are here interested to  
         the following two radiative mechanisms:  

Ef 

Ei 

e
-- 

e 

Initial state Final state 

Stimulated absorption 



 3 

-spontaneous emission of a photon, whose frequency is ν = (Ef – Ei) / h as well.  
The mean life, per spontaneous emission, of the excited states, can change a lot 
from state to state: it can be from nanoseconds to milliseconds. 
The spontaneous emission is the basis for all the standard light emitters, such as 
light bulbs. 
-stimulated emission, when the atom which is in the excited state is struck from 
another photon whose frequency is ν = (Ef – Ei) / h. In this case, the return to the 
initial state happens together with the emission of another photon, which will be 
together with the striking one and has, with respect to it, the same frequency, the 
same phase and the same propagation direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 --------------------------------------------------------------------- 
 
 
 
 
 

             
 
 
 
 
 
 
 
 
 
 
The probability Rfi, per unit of time, that the atom goes back to its fundamental initial 
state, can be written in this way: 
 

)(νfBAR fififi ⋅+=  ,  
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where Afi is the Einstein’s A coefficient, and represents the spontaneous emission term, 
while Bfi f(ν ) is the stimulated emission term. 
We see that the spontaneous emission term does not depend on the radiation f(ν ), while 
the stimulated emission one, of course, does, and is proportional to the stimulating 
radiation density, that is, f(ν ).  
The emission frequency with transition f-----i, just like in the previous case, will be: 
  

)]([ νfBAnRnN fififfifi ⋅+=⋅=                                                               [1.2]                                                                                                                 
 
where nf is the population of the excited state. 
 
Let’s start supposing that the material and the radiation are at balance. The number of 
photons emitted per unit of time must so be equal to the number of absorbed photons, 
that is: 
 

)]([)( νν fBAnfBnNN fifififiif ⋅+=⋅⋅→=  

 
Resolving for f(ν ), we get: 
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At the thermal equilibrium, for the Boltzmann’s distribution (see appendix), we have: 
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so: 
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Therefore, for f(ν ):  
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As, at the thermal equilibrium, we have also Planck’s equation on the blackbody emission 
(vedi appendice): 
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we’ll have, by comparison, the Einstein’s relations: 
 
 

                                    1/ =fiif BB  

 

                                    
33 /8/ chBA fifi νπ=  

 
c is the speed of light in vacuum ( )smc /103 8⋅= . 
These relations are necessary to assure the general conditions required at the thermal 
equilibrium and they have a general validity. 
The first one says the B coefficient for the induced emission is equal to that for the 
induced absorption. The second one says the higher ν  is the more probable the 
spontaneous emission is, and so it’s so high as high the difference Ef – Ei in energy is.  
That’s why the making of X-rays Lasers (high ν ) is so problematic. 
By putting Bif = Bfi in equation [1.3], we get an equation which is valid at the thermal 
equilibrium and shows the ratio of the probability of a spontaneous decay and that of a 
stimulated decay:  

                                                ( )1
)(

/ −=
⋅

kTh

fi

fi e
fB

A ν

ν                                   [1.4] 

 
At ambient temperature, with a ν  value in the visible or infrared spectra, hν  >>kT, and 
so such a ratio is >>1, that is, the spontaneous emission dominates on the stimulated 
one. 
(We remind you that the Boltzmann’s constant k is KJ /1038,1 23−⋅ , while Planck’s constant 

h is 6,625  sJ ⋅−3410 ; in order to have an interpretation of such constants, see the 
appendix).  
A Laser is a device in which, through some methods, the populations ni and nf of those 
two states are controlled from the external side, bringing them to values different with 
respect to those at thermal equilibrium. 
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More exactly, one makes nf > ni, i.e., one keeps the population of the excited state higher 
than that of the fundamental one. We see that for small ν  (for instance.: microwaves), 
hν << kT; therefore, the left side of [1.4] would be small enough; in this situation, the 
ratio of [1.2] with [1.1] yields:  
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         (the expression between brackets ≅  1) 

 
From this formula we see that if nf > ni, then Ni > Nf, so the radiation emitted is higher 
than the absorbed one. 
By suitably shaping the geometry of the material, the radiation due to the stimulated 
emission is kept in the material, so the density f(ν ) becomes very high and the stimulated 
emission will dominate over the spontaneous one. 
As with the stimulated emission the photon which is emitted is in phase with the 
stimulating one, we get a light beam which is monochromatic and very intense, coherent 
(photons in phase) and collimated. 
nf can be held higher than ni by a pumping (optical, electrical, gasdynamical). 
As photons in a Laser beam are all in phase (coherence), their effects (for instance: 
thermal ones) on a material where it strikes, sum up, so making the well known efficacy of 
the Laser beam itself. 
 
                                                

OPTICAL PUMPING: 
  
You choose a material with a state Ef which is metastable, that is, with a long mean life   
(for instance: s310−=τ  ) adjacent to a state Ep > Ef    with a short mean life (for instance: 

s810−=τ  ). 
By putting this material under a radiation ν  = (Ep – Ei)/h  (pumping radiation), electronic 
transitions towards Ep are induced.  From there, the electrons spontaneously decay 
towards the state Ef, and as they have the possibility to stay there for a much longer time, 
the population can be increased to satisfaction. 
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Ep 
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AN EXAMPLE OF A RUBY LASER: 
 
 
 
 
 
 
 
      
 
 
 
 
 
The ruby Laser is the first kind of Laser ever built; the ruby is a corundum crystal ( 32OAl ) 

with impurities of ions +++Cr  . Ruby has got a strong absorption band in the green and it’s 
used to make the inversion of population.  
Through a strong source of green light (high pressure mercury light), chromium ions are 
excited to levels whose decay time to a lower level is very short. Such fast transitions are 
caused by interactions of ions with vibrations of the crystal lattice.  
The lower level becomes the active one through the laser action which takes place at a 
wavelength of 694,3 nm.  
The ruby crystal has got a cylindrical shape; one base is mirror-like, while the other is 
semi mirror-like. Despite photons out of the axis, which can get out of the cylinder side 
surface, the other photons moving along the axis make a long travel in the crystal, and so 
they have a high probability to activate a stimulated emission in the crystal, so multiplying 
the presence of photons all in phase and collimated. 
Around the crystal, a spiral shaped lamp provides for the optical pumping; for the ruby, 
the pumping radiation frequency is ν  = 5,455 1410 Hz. From the semi mirror-like side a 
coherent and collimated beam comes out and its frequency is 4,321 1410  Hz. 
 
 PUMPING METHODS:  
 
-optical pumping by standard sources (incandescent lamps, gas discharge, flash, Sun,   
 etc), with Light Emitting Diodes or other Lasers. 
-pumping through radiofrequency. 
-pumping through electric discharge, if the material is a gas. 
-pumping of solid material by collisions with electrons. 
-chemical separation in excited states (chemical Lasers). 
-thermodynamical processes (for instance: fast gas expansion). 
 
KINDS OF LASERS: 
 
The ruby Laser just described works on three levels Ei(1), Ef(2) and Ep(3), and so is a 
three level one, and the cycle is 1------3 -------2. There are also Lasers working on four 
levels, in which level Ef is enriched by the transition 4-----3 from Ep to Ef, and, 

Pumping lamp Semireflecting side Reflecting side 
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simultaneously, level Ei is impoverished 2-----1 to a lower level. Four level Laser has got 
an efficiency higher than that of the three level one. 
 
                     
 
 
 
 
 
 
 
 
 
One of the most common gas Lasers is the He-Ne one and oscillates at the wavelength of 
632,8 nm. 
The Laser action takes place among the neon atom levels, while helium is used in the 
active mean to facilitate the pumping process.  
 
For what the excitation method (pumping) is concerned, an electric discharge is held in 
the low pressure helium neon mixture; because of collisions among electrons and ions,  
also some metastable helium levels are populated, that is, those which have a very low 
probability to decay to lower levels. The population of those states becomes not negligible 
and, through collisions, their energy can be transferred to the neon atoms, in order to 
excite some proper levels. Therefore, the method of the inversion, in this case, is the 
following: population of a higher state of neon, through selected collisions; emptying, 
through transitions, towards the lower state; electric energy which is transformed directly 
into luminous energy.  
We point out that the He-Ne Laser can work not only at the standard wavelenght of 632,8 
nm, typical of all commercial Lasers, but also at further wavelenghts, in the visible range  
(for instance: 612 nm) , as well as in the infrared one (for instance: 1,15 μm,   3,39 μm).   
 
Among Lasers working with a liquid active mean, the most known are the organic 
colouring matters. 

Usually, it’s about solutions of rhodamine, coumarin or similar substances, in water, 
alcohol or other suitable solvents. The molecules of colouring matters have a very complex 
structure, with a high density of energy levels. This permits a lot of transitions, so that the 
Laser emission can cover wide frequency bands, around 30/40 nm in λ. The working 
layout is a four level kind; the excitation at the highest state is obtained through flash 
lamps or through other visible Lasers, while the mean fast transitions are assured by 
strong interactions in liquids. The main interest to these Lasers is the possibility to have an 
emission tunable in frequency.  

There are also many Lasers working on a pulsed basis, in which the inversion of 
population can be made for very short times, so that the emission, too, lasts just some 
nanoseconds. Among those, we remind you of some gas Lasers, like nitrogen Lasers, and 
excimer Lasers, that is, molecules made of halide of noble gases.  

--------------------------------------------------------- 

Fast transition 

Laser 
emission 

Fast transition 

Excitation 

1 

2 

3 
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Laser Theory 

 
 

APPENDIX: 
 
 
A)Boltzmann’s Distribution Law: 
 
Now we try to understand how changes, in a material, the number of molecules per unit 
of volume, when the energy changes. 
Suppose to have a column of gas at a constant temperature, in a container and under the 
effect of the gravitational field.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If this container has a volume V in which we have N gas particles, we define n as the 
number of particles per unit of volume. 
With reference to the above figure, we examine a section S of the column of gas at the 
height h. The pressure Ph at the height h is obviously higher than that at the height h+dh, 
as at h the mass of gas pushing downwards is higher. 
Being pressure P defined as dF/dS =( weight of the disc dh high and section S) / S, we 
have: 
 

mgndh
S

gdhSnmdPPP hdhh −=
⋅⋅⋅⋅−

==−+ ,                                            [A.1] 

where m is the mass of every single particle of gas, n is the number of particles per unit of 
volume, S dh is the volume of the disc, g is the gravitational acceleration end the negative 
sign tells us that dP is negative (P goes down while we go up). 

h 

h + dh  

g 
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We also know from thermodynamics that: 

TkNT
N
RNnRTnPV

A
Akmoleskmoles ⋅⋅=⋅== ,                                                           [A.2] 

where the first equality is the law of ideal gases (R=const), NA is the number of particles 
in a kilomole, i.e. the Number of Avogadro, N= nkmoles NA= is the total number of gas 
particles (made of nkmoles) and k=R/NA is the Boltzmann’s constant. 
For a proof of the equation of state of ideal gases, see any of the books of general 
Physics. 
From the previous equation, we have:  

nkTkT
V
NP == . 

By differentiating this equation, we get: 
 

dnkTdP =                                                                                                   [A.3] 
 
By eq. [A.1] and [A.3] , we have: 
 

kT
dE

dh
kT
mg

n
dn p−=−=   , 

 
where dEp=mgdh is the differential of the potential energy of every particle. 
The integration of this differential equation easily yields the following result: 
  

kTE penn /
0

−= ,                                                                                            [A.4] 
 
where no is constant. 
 
In case the particles are subject not to the gravitational field, but to any other 
conservative force, Fi (for instance, the intermolecular forces themselves), which we 
suppose it is oriented along x, in [A.4], instead of the potential energy Ep, we’ll have the  
corresponding potential energy Ei coming from the force Fi, that is:  

∫ ⋅−= dxFE ii . 

 
Finally: 
 

kTEienn /
0

−=                                                                                                [A.5] 
 
The situation with non conservative forces is here not taken into account, as in this case it 
wouldn’t be even possible to claim the thermal equilibrium. 
In our opinion, the Boltzmann’s equation [A.5] can be considered as proved and we want 
to remind you of what it means: 
the probability to find molecules in a certain spatial disposition changes exponentially with 
the opposite of the potential energy of that disposition, divided by kT. 
The same equation can be extended to our Laser on populations of energy levels.  
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B)Planck’s Blackbody Spectrum: 
 
Let’s consider a cavity whose sides are at temperature T, uniform and constant. 
Microscopic charges which makes the sides move because of the thermal agitation and, so 
doing, they radiate electromagnetic waves which fill the cavity; there is an energy transfer 
from the cavity sides to the electromagnetic field. Simultaneously, electromagnetic waves 
move into the cavity and hit the sides; so doing, they transfer energy from the field to the 
cavity sides. An equilibrium is so settled. 
The blackbody radiation spectrum is the function )(νf so that νν df )(  is the energy 
had by the electromagnetic field in the unity of volume of the cavity, and with frequency 
between ν  and  νν d+ , that is: 
 

dudf =νν )(       ]/[ 3mJ  

 
Cavity sides emit and absorb radiation and can be held as made by small oscillating dipole. 
Moreover, we can assign the radiation in the cavity two degrees of freedom corresponding 
to two polarization planes which are perpendicular and independent each other and on 
which every electromagnetic wave can oscillate; in simpler words, an electromagnetic 
wave which propagates along z can oscillate transversally on both planes zx and zy.  
We know from the kinetic theory of gases that for every particle, and so for every em 
wave emitted by the particles, and for every degree of freedom we can assign an energy 

equal to twice kT
2
1 , that is kT, as the total energy is made of a kinetic part and a 

potential part and their mean values are the same (see [A.12]). 
For a proof of the fact that the total energy to be conferred is really kT/degree of freedom 
see any of the available general Physics books. 
Now, suppose we have, out of simplicity, a cubic cavity whose electromagnetic radiation 
propagates along the three axis, so generating standing waves; moreover, we consider 
just one polarization plane per propagation axis (y), and we’ll later take into account the 

 
 
real existence of two degrees of freedom. 
As the cavity is place of standing waves, and considering the x axis as the propagation 
one, we will write the following equation for a standing wave (see [A.13]): 
 

a 
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)2sin()sin(),( tkxEtxE oyy πν⋅= , k is the wave number = λ
π2  and λ  is the 

wavelength. 
We remind that : λν=c , and: .2/2 πνπω == T  
As the standing wave must be zero in x = 0 and in x = a , we have: 
 

a
nccannka

2
/2 ⋅==→=→=

λ
νλπ  . 

 
n is positive and not zero, otherwise we don’t have any wave. 
 
In general, for a wave propagating along a random direction, we have, component by 
component: 
 

)2sin()sin(),( txkEtxE xoyy πν⋅=                      αλπ cos)/2( ⋅=xk  

)2sin()sin(),( tykEtyE yozz πν⋅=                      βλπ cos)/2( ⋅=yk  

)2sin()sin(),( tzkEtzE zoxx πν⋅=                       γλπ cos)/2( ⋅=zk  

 
where the three direction cosines are the components of the versor k̂  which indicates the 
direction of propagation of the wave. 
 
Still by analogy with the single dimension case, we have: 
  

πxx nak =        → xna =αλ cos)/2(  

πyy nak =        → yna =βλ cos)/2(  

πzz nak =        → zna =γλ cos)/2(  
 

222222222 /4)coscos(cos)/2( λγβαλ aannn zyx =++=++ , 

 
from which: 
 

222

2 zyx nnn
a
cc

++==
λ

ν                                                                              [A.6] 

 
With all values of n, we have all possible ways of vibration. 
If we put such values nx , ny , nz  on three axes and considering the example 
nx , ny , nz  = (1 , 2 , 2) , we see that the number of possible vibrations corresponding to 
terns nx , ny , nz      (nx , ny , nz  0≠ , or we have a singularity case) are the vertexes 
of the following graph, where the n values are different from zero, so they are all the red 
spots. 



 13 

 
The fundamental thing we must take into account now (and this has a general validity) is 
that such possible ways of vibration (    ) correspond, in number, to the small unit side 
cubes (which are four, too). 
So: n . of possible ways of vibration= total volume V located by the tern nx , ny , 
nz . 
The radical in the expression [A.6] is just the radius of an octant of sphere located by the 
three components nx , ny , nz  (of course, we consider just the octant where  
nx , ny , nz  are positive, as those must be positive and not zero).  
The last remark makes us use the more suitable polar coordinates: 

as the volume of an octant of a sphere is equal to 3

3
4

8
1 r⋅π , the number N of modes of 

possible vibrations for a value of r between 0 and r is: 
 

3

3
4

8
1 rN ⋅= π  . 

 
As a consequence, the number N(r) dr of possible modes of vibration for a value of r 
between r and r + dr can be obtained by differentiating the previous equation: 
 

drrdrrN 2

2
)( π=  . 

 
Now, let’s define an N(ν ) so that N(r)dr = N(ν )dν =number of possible modes of 
vibration for frequencies between ν  and  ν +dν ; we see that, according to [A.6],   
ν = r  c / (2 a) , and by differentiating the last equation, we have: 
 

dr
a
cd

2
=ν  ; and then we get:  

νν
π

νν
π

νν dV
c

d
c
adN 2

3
2

3 42
2

)( =





=  , where == 3aV  volume of the cavity. 

Now, in order to pass from the previous equation to f(ν ), and remembering that, 
according to the definition of f(ν ) itself we gave before, we have to: 
-divide by V to refer to the unity of volume 
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-multiply by two to take into account the two possible states of polarization of the 
radiation (as per what was said on page 11/18) 
-multiply by kT, that is, by the mean energy corresponding to each degree of freedom.  
Therefore: 

νν
π

νν dkT
c

df 2
3

8)( =    ,                                                                                     [A.7] 

and this equation is known to be the Rayleigh-Jeans equation. 
Of course: 

2
3

8)( ν
π

ν kT
c

f =  

The graph of this equation is here below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The experiments, on the contrary, show a different behaviour:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the real situations, there is a peak, that is a value of frequency around which the 
emission of the blackbody concentrates. 
Of course, the above curve is for a fixed temperature T and we’ll see the more the 
temperature increases, the higher the frequency values are.  

J/ 3m s 

ν  

f(ν ) 

f(ν ) 

ν  

Rayleigh-Jeans 
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That’s why, for instance, a piece of iron at ambient temperature emits an electromagnetic 
radiation in the range of the infrared waves, or around it, while if you heat it, it will emit 
visible radiation, at temperatures around some hundreds of centigrade degrees (white 
heat, red heat). 
Similarly, you can find many characteristics of the surface of a star by just studying the 
frequency spectrum of the light the star irradiates.  
        

 
Nothing similar is shown by the Rayleigh-Jeans graph, which leads to an ultraviolet 
catastrophe. All this was the beginning of the chrisis of classic physics, and there was the 
need to bring new ideas and quantum hypotheses to make the theoretical deductions 
match the reality; as an example, we bring the Max Planck’s supposition: 
first of all, we see that if we want to figure out the mean energy E among all energies of 
the elements of a system, we can carry out a weighed average of all energies, which are 
distributed according to the already proved Boltzmann’s formula [A.5] for n(E); therefore: 
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  ;                                                     [A.8] 

 
the numerator is the sum of all energies and each of them is weighed according to the 
number of components which have it, while the denominator is the total number of 
particles. For the moment, such an average value should be kT, and this is exactly the 
energy value we conferred to every constituent. 
In order to jump from the Rayleigh-Jeans equation to one whose graph is that of the 
Planck’s blackbody above reported, Planck supposed that for every value of frequency ν , 
the energy of the system could have just discrete (quantized!) values: 
  

ννν nhhhE ,.......,2,=    , (n integer).                               [Planck/Einstein equation] 
 
By such an assumption, [A.8] becomes (summation over n): 
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The result is: 
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 In fact, by assuming that z
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Now, for Taylor’s series, or for the study on geometrical series: 
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that is, the assumption , after that we have taken into account the expression for z. 
 
Therefore, Planck’s news was to put in Rayleigh-Jeans’ equation [A.7], the value of E , 
just found, instead of the mean energy per component, that is, kT: 
 

ν
νπν

νν ν d
e

h
c

df kTh 1
8)( /3

2

−
=                                                                           [A.9] 

 
and this is really the Planck’s equation. 
By dividing both sides by dν , we get an expression for f(ν ) which excellently describes 
the experimental graph above reported on the blackbody emission. 
  
C)The Linear Armonic Oscillator 
 
We consider a mass fixed to one end of a spring; the other end is fixed to a wall.  
 
When the mass starts oscillating, as F=ma and, by Hooke, F=-kx, we can write the 
following differential equation: 
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02

2

=+=+ kx
dt

xdmkxma  , whose solution is: 

 
)sin(0 θω += txx ,                                                                                        [A.10]                                                                           

  
where  

m
k=ω    . 

 
Now, we write the expression for the total energy E (which is the sum of the kinetic 
energy with the elastic potential one) of such an oscillating mass: 
 

pk EEEkx
dt
dxm

+==+





 2

2

2
1

2
;                                                                         [A.11] 

 
 This is true because:   
 

2

2
1 kxdxkxdxFEp =⋅=⋅−= ∫ ∫ . 

 
Using [A.10] in [A.11] and taking into account the expression for ω  , we get:  
 

2
0

222
0

22
0

22
0

2

2
1)](sin)([cos

2
1

)(sin
2
1)(cos

2

kxttkx

tkxtxmE

=+++=

=+++=

θωθω

θωθωω
                                         [A.12] 

 
As, from the previous expression, kinetic and potential components are the same, we have 
justified the reason why we assigned two identical values (½)kT for the total energy of 
the oscillators in the cavity (see page 11/18). 
 
 
D)Standing Waves 
 
If a wave S1 propagates in a limited mean, the superposition of it with its reflected one S2 
generates a standing wave S:  
 

)sin(1 tkxAS ω−=  ,               )sin(2 tkxAS ω+=   . 

 
The difference in sign in the arguments is due to the fact that those waves propagate in 
opposite directions; moreover, the term tt πνω 2=  tells us that if we fix a point x, we 
have an oscillation in time, while the term kx  tells us that, if we fix a time t, we see an 
oscillation by moving along x. 
Therefore, a propagating wave oscillates in time and also along the space through which 
it’s propagating indeed.  
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txAtkxASSS πν
λ
πω 2cos2sin2cossin221 ⋅⋅=⋅⋅=+=  ;                        [A.13] 

after that we take into account the following trigonometric equality: 
  

2
)(sin

2
)(cos2sinsin βαβα

βα
+

⋅
−

=+   .      

 
 

---------------------------------------------------- 
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