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Abstract: 
In this paper you can find a complete treatise on the General Theory of Relativity, starting 
from the basic geometry, through the Einstein's field equations, to the calculation of the 
deflection of light by the Sun and of the precession of the perihelion of planets. 
Moreover, as appendixes, you will also find the Restricted Theory of Relativity and an 
explanation on how I see the Gravity (coming from) the Electromagnetism! 
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                                                                        Simplicity is the closest thing to intelligence. 
 
Introduction. 
The General Theory of Relativity (GTR) is an extension of the Special Theory of Relativity  
(or Restricted) (STR) shown in App. 1; it was necessary for Einstein to explain the 
Gravitation. The word gravity reminds the word acceleration; in fact, we will see in Par. 
2.1 that where there is an acceleration, rotation and gravity with a reference system, the 
metric is not simple anymore as in STR.  
Moreover, the GTR explains gravity as a curvature of the space, or better of the space-
time (mathematic space-time, in the opinion of the writer) caused by matter (and by the 
energy!) which is in such space-time. It’s like when, for instance, you put a ball of lead on 
a mattress: around the sphere you have a funnel-like hollow and there, the mattress is 
curved. Then, we can say that in such an area where the mattress is curved is the 
gravitational field of the ball of lead. If now we throw a small ball over the mattress, and 
neglecting frictions, it will move uniformly on a straight line, over the flat side of the 
mattress until, as it approaches the curved hollow, it will fall towards the ball of lead. 
Matter, in GTR, sees the space-time as a railway over which it can move; therefore, if this 
railway is curved, the trajectories followed by the matter will be curved. 
Then, if the ball of lead is so heavy that it completely sinks into the mattress, then the 
funnel will become like a closed bag and we would call it a black hole, and from it nothing 
would come out, not even light. 
In the GTR the Equivalence Principle holds, according to which a gravitational field can be 
cancelled by an acceleration and so it is not possibile to absolutely tell an acceleration 
from a gravitational field. In fact, let us consider the Einstein Elevator, in which a guy, 
standing stopped at a floor, rests with his weight on the floor of the elevator; if now we 
cut the cable holding the elevator, it will start a free falling in the terrestrial gravitational 
field and the guy inside will float as if in a space ship where there is no gravity, as he is 
falling with the elevator and with its floor and this floor will always fall under his feet. 
Therefore, an acceleration, that of the free falling, has cancelled the gravitational effect; 
and, at the same time, when the elevator is stopped, the guy inside it, instead of thinking 
that he was standing in a gravitational field (as he is resting on the floor of the elevator) 
could have thought that there weren’t any gravitational fields, but that the elevator was 
accelerating upwards, so pushing the soles of his shoes. 
Through the example of the mattress we have just introduced the concept of the 
(mathematical) space-time curvature, caused by the matter/energy. The tensor equation, 
which will be here proved, and which shows the correspondence between the 
matter/energy and the curvature indeed, is the Einstein Gravitational Field tensor 
Equation:      
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Its left side, all in R, shows the “curvature radius” and the geometric characteristics of the 
space in which the matter/energy is, and the measure of such a matter/energy is, on the 
contrary, given by the right side, through the momentum-energy tensor µνT , that, as we 
will see, in some of its components, is proportional to the density ρ  etc.  
Perhaps, only in the opinion of the writer (as the thought which follows, as well as many 
others, hasn’t been ever read on any books by me) the Newton classic gravitational 



equation shows a correspondence between geometrical characteristics and the presence 
of matter:  
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in fact, the left side of the last equation, that is 2

2

dt
rd r

, that is the second derivative of the 

spatial position, over the time, is a geometric characteristic of the space indeed, while the 

right side r
r
MG ˆ2−  tells us about M!  

Since the time when it was born, officially in 1916, the GTR has been always seen by 
many people with suspects, as it’s full of complexity, mathematical as well as conceptual; 
so, thinking that so many hypothesis and relevant calculations can lead to equations which 
stick to reality, sometimes led some critics to hold it as a weird theory.  
Classic tests in Chapt. 4 are encouraging in the opposite direction, even though also there 
the preambles, the suppositions and calculations are a lot, and then, for instance, in the 
calculation of the deflection of the light of stars by the Sun, during an eclipse in 1919, the 
accuracy of the measurement was very close to the result. Moreover, there are also 
alternative explanations and in competition with the GTR, to explain the deflection of light 
and the precession of the perihelion of planets. 
In the opinion of the writer, GTR is for sure a beautiful physical-mathematical theory, 
mathematical more than physical, maybe the most beautiful, but it’s also true that it has 
somewhat weird concepts inside. I think that the GTR is the typical falsifiable Popper-like 
theory, like if it were an interpretative model which works to explain many phenomena, 
but that it’s not the real essence of the phenomena just explained. And then, provided 
that the geometric interpretation of the curvature is real, we should still explain why the 
matter causes it; ok, it causes that, but why? To see is not the same as to explain and 
justify.  
In the GTR, the gravity is just attractive and Einstein, in his Theory of Unified Fields (let’s 
sum up a bit, out of brevity) after having used the concept of curvature in the GTR to 
explain the gravitational pull, also used the concept of torsion to try to explain also the 
repulsive forces of the electricity. All this unfortunately without success, that is, his unitary 
field equations (maybe 33) couldn’t be proved in the real Universe. Therefore, Einstein 
work didn’t finish with the GTR; in fact, he died in 1955 in a bed in a Hospital, with paper 
and pen in his hands! 
I personally think the force of gravity is a macroscopic force which is made of microscopic 
and electric forces among particles, positive and negative, which make the Universe, and 
that can be considered as randomly spread (see App. 2). In fact, I prove in Appendix 2 
that the electric energy of an electron in an electron-positron pair, which is: 
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Is exactly the gravitational energy given to an electron by all the mass of the Universe 
UnivM   at a distance UnivR , that is: 
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And it really doesn’t seem to be just by chance the fact that if we see the Universe as if 
made just by electrons and positrons (fundamental harmonics, whose mass is em ), and 
whose number is N, we easily have: 

851075,1 ⋅≅=
e
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and nothing is strange, so far, but we realize that if we multiply the square root of N 
( 421013,4 ⋅≅N ) by the classic radius of the electron er , we get exactly 

mRrN Unive
281018,1 ⋅≅≅ , that is, the radius of the Universe! And an explanation of all this, 

in a perfect harmony with the equivalence of electricity and gravity just shown, has been 
put in App. 2/at Par.4.1. 
 
Therefore, the attraction (/repulsion) particle-antiparticle, that is, the fast oscillations of 
the particle-antiparticle pairs, in composing together, generate the slow oscillation of the 
Universe (Big Bang, expansion, contraction, Big Crunch). Now, we are in the era of the 
contraction, that is, the matter is contracting all towards the centre of mass of the 
Universe, and that’s why we see the actractive force of gravity every day, but hundreds of 
billion of years ago, when the Universe was expanding, the gravity was (as a 
consequence) repulsive-like (see still App. 2, as a support of all this), from which the 
similarity between the electricity (attractive and repulsive) and the gravity (also attractive 
and repulsive); “unfortunately”, when the Earth was born, the gravity already stopped to 
be repulsive  a very long time before! 
 
Chapter 1: Preamble on Geometry. 
 
Par. 1.1: Formalism, lengths of arcs and areas of curved surfaces. 
 
the sphere and the circle: 
with reference to figure 1, we want to represent through a formula the surface of a sphere 
Σ : 
 
 
 
 
 
 
 
 
 
Fig. 1.1: The Sphere. 
In Cartesian coordinates, we just use the Pythagorean Theorem to get such a formula: 

2222 rzyx =++                                                                                                    (1.1) 
On the contrary, with the more friendly spherical coordinates, we have, very easily and 
intuitively: 

zryrxr ˆ)cos(ˆ)sinsin(ˆ)sincos( ϕϕθϕθτ ++=Σ

r
                                                                    (1.2) 

x 

max equatorial circumference 

y 

z 

φ 
 

θ 

P(r, θ, φ) 

r Σ  



where, of course, Στ
r  is the vector which describes (by moving) all the surface of the 

sphere. We see that the components are a function of two parameters (θ  e ϕ ).  
Of course, in the simpler case of a circle γ , we would have: 

yrxr ˆ)sin(ˆ)cos( θθτ γ +=
r

                                                                                        (1.3) 
and here we see that the components are a function of just one parameter (θ ), if 
r=const.  
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.2: The Circle. 
 
(1.1) and (1.2) can therefore be written in a more general form, as functions of 
respectively 2 and 1 parameters: 

zvuyvuxvu ˆ),(ˆ),(ˆ),( 321 ττττ ++=Σ

r
   ( ϕθ ,, =vu  and r=r(u,v))                                       (1.4) 

yuxu ˆ)(ˆ)( 21 τττ γ +=
r

    ( θ=u  and r=r(u))                                                                  (1.5) 

Of course, if in (1.4) and (1.5) all the iτ  don’t have the expressions they have in (1.2) and  
(1.3), but they have other ones, generic ones, then they (still (1.4) and (1.5)) can 
represent not anymore the sphere and the circle, buth other generic surfaces and curves.  
Now, if we get a bit closer to the Cartesian coordinates, (x,y)=(x,f(x)), we make in (1.5) a 
change of parameter (u  >>>  x) so that we then have: 

yxfxxyuxu ˆ)(ˆˆ)(ˆ)( 21 +=+= τττ γ
r

                                                                             (1.6) 

We will so consider (1.4) as the general expression for a surface and (1.6) that of a curve. 
length of an arc on a curve: 
 
 
 
 
 
 
 
Fig. 1.3: Length of an arc. 
With reference to figure 1.3, if )(uBτ

r
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r  , then )(uγτ
r
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r

; 

not only; it will correspond to the infinitesimal arc ld
r

on γ . We can so write that:  
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and we also see from the vectorial composition in Fig. 1.3, that )(ud γτ
r

is tangent to γ , as 

it meets it just in one point, and therefore the vector  
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t
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r
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=                                                                                                           (1.8) 

is tangent to γ . 
 
area of a curved surface: 
 
Let’s consider again (1.4), and we report it here again: zvuyvuxvu ˆ),(ˆ),(ˆ),( 321 ττττ ++=Σ

r
. 

 
 
 
 
 
 
 
 
Fig. 1.4: Small area on a curved surface.  
 
Now, with reference to Figure 1.4, we have a curved surface Σ , indeed, and a curve )(tγ  
on it. 
Of course, if I want to say that the curve )(tγ  is really on Σ , then both parameters u and 
v of Σ  must be a function of the only parameter t of )(tγ :   
Now, we know from (1.8) that the derivative of the vector γτ

r
 which represents a curve, 

over its parameter t, yields the tangent vector t
r
, to the curve. By the same token, then 

the derivative of the vector Στ
r  which represents the surface Σ  yields a vector t

r
 tangent to 

the surface itself, and if the derivative is calculated on the parameter t of the curve )(tγ  
which lies on Σ , then, of course, such a tangent vector will be also the tangent of the 
curve )(tγ . Such a relationship can be analytically shown by seeing the two parameters u 
and v as functions of the parameter t of the curve: )(tuu =  and  )(tvv = . 
Then, the tangent to the curve )(tγ  will be: 
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So, still with reference to Figure 1.4, for the (1.9) we see that the tangent vector t
r
and 

vectors 
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d Στ

r
 and 
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r
 lie on the same plane, as they are a three element composition, as 

well as in the figure, indeed. Now, as the vectorial product of two vectors (modulus = 
product of moduli by the sine of the angle between them) yields a vector again, which is 
normal to the original vectors, then, in order to obtain the vector normal to the surface Σ  

we carry out the vectorial product between 
du
d Στ

r
 and 
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d Στ
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and if, then, I also want the 

versor n̂  (unitary modulus) I will divide by the modulus of the normal vector: 
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For what the area of a surface (in general) is concerned, we know from the elementary 
geometry that the area of a trapezium is given by the product of both sides by the sine of 
the angle formed by them, and if we also remind the definition of vectorial product above 

reported, we can then say that the small area Σd  delimited by the two small vectors 
du
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(Fig. 1.4) is: 
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Par. 1.2: Base differential Geometry. 
 
 
 
 
 
 
 
 
 
Fig. 1.5: Fundamental Trihedron.  

We saw with (1.8) that the vector )('
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So, still with (1.8) we saw that the derivation operation yields a normal vector. 
Now, we derive the (1.12), so getting the normal versor )(ˆ un  : 

)(ˆ)(ˆ ut
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At last, we define the binormal versor )(ˆ ub , of course in the following way, by using the 
vectorial product: 
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We saw through (1.7) that the length of an arc is: 
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from which: )(')(' u
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dsus γτ

r
==  . 

If now, in the trihedron (1.15), we make a change of parameter (u  >>> s, with s as an 
intrinsic parameter), we’ll have: 
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and so we get the fundamental trihedron in the intrinsic parameterization:  
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Fig. 1.6: Fundamental trihedron in the intrinsic parameterization. 
 
Curvature and radius of curvature:  
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 is zero for lines, while it is 0≠  on circles etc. 
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Example on a circle (on the plane x-y): 
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the torsion: 
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Now, we notice that as )(ˆ sn  is a versor (modulus 1 constant), )(ˆ sn
ds
d  does not represent 

a variation of the modulus of )(ˆ sn , that is, along its extension as a vector, but, as a 

consequence, it is just a normal to )(ˆ sn variation, so we can say that: )(ˆ sn
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as we are talking about an orthogonal trihedron, we also have that (of course) 
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Now, there is a link between curvature and torsion and it’s expressed by the following: 
  
Frénet formulas: 

from the first two of (1.17) and from (1.18) we have the following: )(ˆ
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from which we have the Frénet formulas: 
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Curio: a body moving along a curve can have a tangential acceleration at and a centrifugal 
one ac , of course, and from physics we know it’s v2 /r. Now, let’s see if all the equations 
and all the formalism presented so far show this. We have: 
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Par. 1.3: Space differential Geometry. 
 
first fundamental form: 
 
we saw through (1.4) that a surface can be represented as follows: 
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So, let’s define the 1st fundamental form for ),( vuΣτ
r  as follows: 
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length of an arc: 
 
we have an arc on ))(),(( tvtuττ
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= ;                                                                      (1.21) 
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here, we still see the two parameters u and v, typical for surfaces, but as we pointed out 
their common dependance from one single parameter t, then (1.21) is also the expression 
for a curve (on which the arc is). About the length s between a and b, we then have, of 
course: 
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2/122 ])(2)([∫ ++=                                                                     (1.22) 

  
area A of the surface: 
 
by the (1.11), we saw that dudvdddAA

vu
vu

A
∫∫∫
−

×== ττ
rr  

Now, as the following vectorial identity holds: 
2222

bababa
rrrrrr

⋅−=× , then we have:  
22 FEGdd vu −=× ττ

rr
and so: 

 
dudvFEGdudvdddAA

vuvu
vu

A
∫∫∫∫∫
−−

−=×== 2ττ
rr                                                         (1.23) 

 
-example 1: length of a circle: 
 
we already saw through (1.2) that the sphere (Fig. 1.1) is represented by the following 
equation: 

zryrxr ˆ)cos(ˆ)sinsin(ˆ)sincos( ϕϕθϕθτ ++=
r

 . 
If now we consider the maximum equatorial circle, (see Fig. 1.1), you can get it by putting 
φ=90°, from which: 

)ˆ0.....(ˆ)sin(ˆ)cos( zyrxr ++= θθτ
r

 and then we have a ))(),(())(),(( trttvtu θτττ
rrr

== , just like 
in (1.21), from which: 

yrxr ˆ)cos(ˆ)sin( θθτθ +−=
r

 
yxr ˆsinˆcos θθτ +−=

r
 ,       

22222 cossin rrrE =+=⋅= θθττ θθ

rr
, 0sincossincos =+−=⋅= θθθθττθ rrF r

rr
, 

1sincos 22 =+=⋅= θθττ rrG rr
, and so (1.22) yields (r=const 0=→

dt
dr ): 

CrT
T

rTrdtrdt
dt
dEdt

dt
dE

dt
dt
drG

dt
dr

dt
dF

dt
dEdt

dt
dvG

dt
dv

dt
duF

dt
duEs

b

a

b

a

b

a

b

a

b

a

=======

=++=++=

∫∫∫

∫∫

π
π

ωω
θθ

θθ

22])([

])(2)([])(2)([

2/12

2/1222/122

  

that is really the length of a circle!!! 
 
-example 2: the surface of the sphere: 
 
we still consider the same sphere (Fig. 1.1), which, through (1.2), is shown by the 
following equation: 

zryrxr ˆ)cos(ˆ)sinsin(ˆ)sincos( ϕϕθϕθτ ++=
r

 , from which: 
yrxr ˆ)sincos(ˆ)sinsin( ϕθϕθτθ +−=

r
 



zryrxr ˆ)sin(ˆ)cossin(ˆ)coscos( ϕϕθϕθτϕ −+=
r

 

ϕττ θθ
22 sinrE =⋅=

rr
, 0=⋅= ϕθ ττ

rrF , 2rG =⋅= ϕϕ ττ
rr

and for the (1.23), we get: 

 

22
0

22

2242

422cos2sin

sin0sin

rrrddr

ddrddrddFEGdAA
A

ππϕπϕϕθ

ϕθϕϕθϕϕθ

π

ϕθ

ϕθϕθϕθ

=⋅=−==

==−=−==

∫∫

∫∫∫∫∫∫∫
−−−  

That is really the surface of the sphere we all know!!!  
 

---------------------------- 
 
second fundamental form: 
 
let’s write again the (1.10), which supplies a vector/versor N

r
 normal to the surface: 

vu

vuN
ττ
ττ
rr

rrr

×
×

= ; we then have, of course: 1=N
r

 and  NNdNNdd
rrrr

⋅=⋅== 2)()1(0 , from 

which: NNd
rr

⊥ .                                                                                                  (1.24) 
If it’s so, then Nd

r
lies on the surface, and so it can be expressed as follows (u,v): 

 

dvNduNdv
v
Ndu

u
NNd vu

rr
rr

r
+=

∂
∂

+
∂
∂

=                                                                         (1.25) 

Now we can define the second fundamental form II: 
 

22

22

2
)())((

NdvMdudvLdu
dvNdudvNNduNdvNduNdvduNddII vvuvvuuuvuvu

++=

=−+−−=++−=⋅−=
rrrrrrrrrrrrrr

τττττττ  

 
properties of II: 
as we have: Nvu

rrr
⊥),( ττ , then uuuuuu NNN

rrrrrr
⋅+⋅=⋅= τττ )(0 , 

vuuvvu NNN
rrrrrr

⋅+⋅=⋅= τττ )(0 , uvvuuv NNN
rrrrrr

⋅+⋅=⋅= τττ )(0 , vvvvvv NNN
rrrrrr

⋅+⋅=⋅= τττ )(0 , 

therefore: uuuu NN
rrrr

⋅−=⋅ ττ , vvvv NN
rrrr

⋅−=⋅ ττ  , vuuv NN
rrrr

⋅−=⋅ ττ  , uvvu NN
rrrr

⋅−=⋅ ττ and so: 
 

NL uu

rr
⋅= τ , NM uv

rr
⋅= τ , NN vv

rr
⋅= τ   from which:  

NddvNdudvNduNNdvMdudvLduII vvuvuu

rrrrrrrr
⋅=⋅+⋅+⋅=++= ττττ 22222 22  

 
normal curvature: 
 
if we have a surface S which contains a curve C and if P is a point on C, the (1.20-1) 
supplies the vector curvature, while we define the curvature )('ˆ st n normal to C in P the 

projection of the curvature vector )('ˆ st  on the normal N
r

(and N
r

is the versor )(ˆ sn  of 
(1.10)):   

NNstst n

rr
))('ˆ()('ˆ ⋅= and the component along N

r
 is: Nsttn

r
⋅= )('ˆ . 

Now, as Nst
r

⊥)(ˆ , we have: 



N
ds
dstNstNst

ds
d rrr

⋅+⋅==⋅ )(ˆ)('ˆ0))(ˆ( , from which: N
ds
dstNst

rr
⋅−=⋅ )(ˆ)('ˆ and so: 

I
II

ds
Ndd

ds
Nd

ds
sd

N
ds
dstNsttn =

⋅
−=−=⋅−=⋅= 2

)(
)(ˆ)('ˆ

rrrrrr
γγ ττ

, as the numerator Ndd
rr

⋅γτ  is really 

the definition of II, while 2ds can be figured out by deriving (1.22) and then squaring, and 
we’ll really have I. 
 
example: normal curvature of the sphere:   
 
we already saw with (1.2) that the sphere (Fig. 1.1) is represented by the following 
equation: 

zryrxr ˆ)cos(ˆ)sinsin(ˆ)sincos( ϕϕθϕθτ ++=
r

 , from which: 
yrxr ˆ)sincos(ˆ)sinsin( ϕθϕθτθ +−=

r
 

zryrxr ˆ)sin(ˆ)cossin(ˆ)coscos( ϕϕθϕθτϕ −+=
r

 

yrxr ˆ)sinsin(ˆ)sincos( ϕθϕθτθθ −−=
r

 
yrxr ˆ)coscos(ˆ)cossin( ϕθϕθτθϕ +−=

r
 

zryrxr ˆ)cos(ˆ)sinsin(ˆ)sincos( ϕϕθϕθτϕϕ −−−=
r

 

zryrxrN ˆ)cos(ˆ)sinsin(ˆ)sincos( ϕϕθϕθ −−−=
r

 

ϕττ θθ
22 sinrE =⋅=

rr
, 0=⋅= ϕθ ττ

rrF , 2rG =⋅= ϕϕ ττ
rr

, ϕτθθ
2sinrNL =⋅=

rr
, 0=⋅= NM

rr
θϕτ  

rNN =⋅=
rr

ϕϕτ , from which: 

rGddFdEd
NddMdLdtn

1
2
2

22

22

=
++
++

=
ϕϕθθ
ϕϕθθ  !!! 

 
curvatures and main directions: 
the two orthogonal directions where nt  has its maximum and minimum values, are known 
as main directions and the relevant normal curvatures t1 and t2 are the main curvatures. 
Theorem: t0 is main and with main direction du0,dv0 if and only if du0,dv0 and t0 satisfy the 
conditions: 

0)()( 0000 =−+− dvFtMduEtL  
0)()( 0000 =−+− dvGtNduFtM                                                                              (1.26) 

proof: 
tn is a bound if (tn=II/I) 
 

0
),( 00

=
dvdu

n

du
dt    and  0

),( 00

=
dvdu

n

dv
dt  , that is:  0

)0,0(

2 =
⋅−⋅

dvdu
I

IIIIII dudu  and: 

 

0
)0,0(

2 =
⋅−⋅

dvdu
I

IIIIII dvdv . Now, if we multiply by I, we have: 

 

0
)0,0(

=−
dvdu

dudu I
I
IIII  , and: 0

)0,0(

=−
dvdu

dvdv I
I
IIII  but: 000 ),( tdvdu

I
II

= , so: 

 

{ 



0
)0,0(

0 =−
dvdu

dudu ItII   and  0
)0,0(

0 =−
dvdu

dvdv ItII  . Now, as: 

MdvLduIIdu 22 +=   and  FdvEduIdu 22 +=  and so: 
 

0)()( 00000 =+−+ FdvEdutMdvLdu  
0)()( 00000 =+−+ GdvFdutNdvMdu  

 
that is, what we wanted to prove. 
Now, we rewrite the (1.26) in the following way: 
 

0)()( =−+− dvtFMdutEL  
0)()( =−+− dvtGNdutFM          

                             
and we multiply side to side: 

0)()2()( 222 =−+−+−− MLNtFMGLENtFEG .                                                  (1.27) 
The two solutions are the main curvatures. 
Gauss curvature and mean curvature: 
by dividing the previous equation (1.27) by )( 2FEG − , we get: 022 =+− KHtt  , where: 

)(
2
1

21 ttH +=  (mean curvature) and 21ttK =  (Gauss curvature). ( 2

2

FEG
MLNH

−
−

= ) 

Gauss-Weingarten equations: 
we saw uτ

r
, vτ

r
 , and  N

r
 are linearly independent (orthogonal) and so we can use them as 

a base to write their derivatives: 
Nbvuuu

rrrr
11

2
11

1
11 +Γ+Γ= τττ  

Nbvuuv

rrrr
12

2
12

1
12 +Γ+Γ= τττ                                                                

Nbvuvv

rrrr
22

2
22

1
22 +Γ+Γ= τττ                                                                                       (1.28) 

NN vuu

rrrr
1

2
1

1
1 γτβτβ ++=  

NN vuv

rrrr
2

2
2

1
2 γτβτβ ++=  

Where the k
ijΓ  are the 2nd kind Christoffel simbols. 

We saw by (1.24) that: NNd
rr

⊥  and the (1.25) tells us that Nd
r

 can be espressed in terms 
of vu NN

rr
,  , from which we have that ),( vu NNN

rrr
⊥  and, according to the Weingarten 

equations, we can write that: 
NNNNNN vuu

rrrrrrrr
⋅+⋅+⋅=⋅= 1

2
1

1
10 γτβτβ  

NNNNNN vuv

rrrrrrrr
⋅+⋅+⋅=⋅= 2

2
2

1
20 γτβτβ  

but we also know that: 0=⋅=⋅ NN vu

rrrr
ττ  and 1=⋅ NN

rr
 , from which: 021 == γγ  and so 

(1.28) get easier, as follows: 
Nbvuuu

rrrr
11

2
11

1
11 +Γ+Γ= τττ  

Nbvuuv

rrrr
12

2
12

1
12 +Γ+Γ= τττ                                                                

Nbvuvv

rrrr
22

2
22

1
22 +Γ+Γ= τττ                                                                                       (1.29) 

vuuN τβτβ
rrr

2
1

1
1 +=  

vuvN τβτβ
rrr

2
2

1
2 +=  

{ 

{ 

} { } 
Gauss 

Weingarten 

} 

} 
Gauss 

Weingarten { 



Let’s write (1.29), more simply, in a TENSOR form, more completely: 
Nbijijij

rrr
+Γ= α

αττ    (i,j=1,2)                                                                                   (1.30) 

and let’s not forget that by (1.30) we have just started to use the EINSTEIN 
CONVENTION, according to which if in a term an index is repeated, then on it we have to 
sum up. In fact, in the term α

ατ
r

ijΓ  in (1.30), α  is repeated and so this term will yield two 

values, as well as happens in the Gauss equations (1.29). 
 
THE METRIC TENSOR ijg : 

let’s review our terminology used so far, using more compendious forms: 

1uu =  ,  2uv = ,  ),( vuu ì = , ii u∂
∂

=
τ

τ
r

r
, jiij uu ∂∂

∂
=

τ
τ

r
r

2

; 

+++=⋅+⋅+⋅=⋅= 12
21

21
12

11
11

22
22

21
21

11
11 2 dudugdudugdudugdududududududdI ττττττττ

rrrrrrrr
 

ki
ik

ki

ki
ik dudugdudugdudug ==+ ∑

,

22
22 , with: Eg =11 , Fgg == 2112 , Gg =22   and: 

gFEGgggg
gg
gg

g =−=−=







= 2

22212211
2221

1211det                                                       (1.31) 

 
Moreover: 2

2
1

1 duNduNNd
rrr

+= and: 

=−−−−=⋅−= 22
22

12
12

21
21

11
11 duduNduduNduduNduduNNddII

rrrrrrrrrr
τττττ  

∑=+++=
ki

ki
ik dudubdudubdudubdudubdudub

,

22
22

12
21

21
12

11
11  

with: Lb =11 , Mbb == 2112 , Nb =22  and: bMLNbbbb
bb
bb

b =−=−=







= 2

22212211
2221

1211det . 

By scalarly multiplying Gauss equations by kτ
r

, we have: 

ijkkijkijkijkijkijkij gNb Γ=Γ=Γ=+Γ=⋅+Γ=⋅ α
α

α
α

α
α

α
α τττττττττ

rrrrrrrrrr
0     ( 2,1,, =jiα ) 

ijkΓ are the 1st kind Christoffel symbols. 

Then, remember that: j
i

j
i gg δα
α =  (by definition of jgα ), with j

iδ  which is the Kronecker’s 
Delta, and is 0 if ji ≠  and 1 if ji = ; in fact: 

j
i

j
i

j
i

j
i

j
i gg δττττττττττ α

α
α

α
α

α =⋅⋅=⋅⋅⋅=⋅⋅⋅= 1rrrrrrrrrr
, as  iτ

r   and  jτ
r  are, by definition, 

normal, if ji ≠ (definition of jτ
r

). 
From this, we have: k

ij
k

ij
k

ij
k

ij ggg Γ=Γ=Γ=Γ α
αβ

αβ
αβ

β δ and so: α
α ijkijk g Γ=Γ  and   

α
α

ij
kk

ij g Γ=Γ .                                                                                                      (1.32) 

We have: jkiikjk
ij

u
g

Γ+Γ=
∂
∂

                                                                                    (1.33) 

proof: 
we have, by definition of ijg , that: jiijg ττ

rr
⋅=  , from which: 

jkiikjjkijikk
ij

u
g

Γ+Γ=⋅+⋅=
∂
∂

ττττ
rrrr                                                                       

------------------ 

Then, we also have: )(
2
1

k
ij

j
ki

i
ik

ikj u
g

u
g

u
g

∂
∂

−
∂
∂

+
∂
∂

=Γ                                                         (1.34) 



proof: 

we have, according to (1.33), that: kijjiki
ik

u
g

Γ+Γ=
∂
∂   ,  ijkkjij

ki

u
g

Γ+Γ=
∂
∂   and  jkiikjk

ij

u
g

Γ+Γ=
∂
∂

 , 

(it’s still about (1.33), but with indexes every time different, but, all in all, indexes have 
values 1 and 2, whatever their name is), from which we have what we wanted to prove. 
 

------------------ 
It follows that: 

)(
2
1

α
ααα

u
g

u
g

u
g

g ij
j
i

i
jkk

ij ∂
∂

−
∂
∂

+
∂

∂
=Γ                                                                                                    (1.35) 

and moreover, by multiplying (1.32) α
α

ij
kk

ij g Γ=Γ  in both sides by µαg  (the reciprocal of 
αkg ) , where, by definition of reciprocal: kkgg µ

α
µα δ=  , we have: αµα

α
µαµα δ ij

k
ij

kk
ij ggg Γ=Γ=Γ , 

that is, by removing k
µδ  and provided that k=µ  , in the left side, we have: 

µ
µαα ijij g Γ=Γ  and by using the last equation, the (1.33) jkiikjk

ij

u
g

Γ+Γ=
∂
∂

  becomes: 

µ
αµ

µ
µ kiikjjkiikjk

ij gg
u
g

Γ+Γ=Γ+Γ=
∂
∂

                                                                              (1.36) 

------------------ 
By scalarly multiplying by jτ

r
, the Weingarten equations (1.29) α

ατβ
rr

iiN = , we get: 

jijijiij gNb α
α

α
α βττβτ =⋅=⋅=−

rrrr
; if now we put: j

i
j

i gbb α
α= , we have: 

j
i

j
i

j
i

j
i

j
i gggbb βδββ α

αγ
αγ

αγ
γ −=−=−== ; therefore α

ατ
rr

ii bN −= , with: 

α
α

i
jj

i bgb =  e  α
α ijij bgb =  

the symbols (tensors) of Riemann (1st and 2nd kind): 
 

kmijjmikmijk bbbbR −=   (2nd kind, rank 4 tensor)                                                        (1.37) 

ijkijk RgR α
αρρ =   (1st kind, rank 4 tensor)                                                                 (1.38) 

 
mijkR  is the covariant Riemann curvature tensor 
ρ
ijkR   is the combined Riemann curvature tensor 

 
Of course: ρρ

αα
αρ

α
αρρ

kijjikkijjikijkijk bbbbbbbbgRgR −=−== )(                                         (1.39) 

According to (1.37), we have: mijkimjk RR −=   ,   mijkmikj RR −=  ; moreover 0=mijkR  if the first 

two indexes or the last two are the same; therefore, just four components are not zero, 
and are: 

bMLNbbbbRR =−=−== 2
2112112221211212   and  bMLNbbbbRR −=−−=−== )( 2

1122211221121221  
 

We notice that: )(1212
2

2

GaussK
g

R
g
b

FEG
MLN

===
−
−  .                                                   (1.40) 

------------------ 
 
We have: α

β
βα

β
βααα

kijjikkijjikijkR ΓΓ−ΓΓ+Γ−Γ= )()(                                                           (1.41) 

 



proof: 
Nbijijij

rrr
+Γ= α

αττ    >>> 

++ΓΓ+Γ=++Γ+Γ==
∂
∂

)()()()( NbNbNb
u kkijkijkijkijkijkijijkk

ij rrrrrrrr
r

αβ
β

α
α

α
α

α
α

α
α τττττ

τ
 

NbbbbbbNb kijkijkijkijkijkijkij

rrrr
])([])[()()( +Γ+−ΓΓ+Γ=−++ α

α
α

αα
β

βα
α

α ττ  

where we used the Weingarten equation α
ατ
rr

ii bN −= . 

Similarly: Nbbbb jikjikjikjikjikikj

rrr
])([])[( +Γ+−ΓΓ+Γ= α

α
α

αα
β

βα ττ  

Now, the third order derivatives are not depending on the order of derivation if and only 
if: 

ikjijk ττ
rr

= , that is:  

0])()([])()[( =−Γ−+Γ++−ΓΓ−ΓΓ+Γ−Γ=− Nbbbbbbbb jikjikkijkijjikkijjikkijjikkijikjijk

rrrr
α

α
α

α
α

ααα
β

βα
β

βαα τττ  

and as 1τ
r

,  2τ
r

 and N
r

 are linearly independent, the last equation means that: 
0])()[( =+−ΓΓ−ΓΓ+Γ−Γ ααα

β
βα

β
βαα

jikkijjikkijjikkij bbbb                                                         (1.42) 

0])()([ =−Γ−+Γ jikjikkijkij bbbb α
α

α
α  

The (1.42), through the (1.39), yields: α
β

βα
β

βααα
kijjikkijjikijkR ΓΓ−ΓΓ+Γ−Γ= )()(  , that is what we 

wanted to show. 
 
Chapter 2: The main quantities in the Theory of General Relativity. 
 
Par. 2.1: Introductory concepts on General Relativity. 
 
First of all, please read again the Introduction on page 2.  
Moreover, we know from STR (in App. 1) that the Lorentz contraction happens just in the 
direction of the movement, so, if we have a rotating system or a point which rotates, for 
instance, around a circle, the movement will be sometimes along x, then along x and y, 
then also along z; therefore, the Lorentz contraction is not acting still on just one 
coordinate and so, the run circle will appear as squashed, when seen by a rotating 
reference system, therefore, not inertial somehow, and therefore geometrically modified. 
As a matter of fact, if:   

222222 dzdydxdtcd −−−=τ ,  ( ki
ik ddd ξξητ −=2 ,see after)                                         (2.1) 

then, in another system I’ which is accelerating along x with respect to the former one, 
we’ll have: 
 

   2

2
1' atxx +=  

   'yy =                       

   'zz =                                                                                                                   
   'tt =                         and:                                                        
 
 
   ''' dtatdxdx +=  
   'dydy =                       

   'dzdz =                                                                                                                   

   'dtdt =                  from which:                                                          
 

{ 
{ 



222222 '')''(' dzdyatdxdtcd −−+−=τ        or                                                                  (2.2) 
 

22222222 ''''''2')'( dzdydxdtdxatdttacd −−−−−−=τ                                                         (2.3) 
 
If, then, we also have another system I’ whose plane x-y is rotating (with angular velocity 
ω ) with respect to that of the former system, as we then have the following 
transformation system: 
 

tytxx ωω sin'cos' −=  
tytxy ωω cos'sin' +=  

 
 
 
 
  
 
 
 
 
 
 
Fig. 2.1: Two reference systems, one rotating with respect to the other. 
 
and remembering that, easily, for instance, dtttd ⋅= ωωω cos)(sin  etc, we have for 2τd : 
 

222222222 ''''''2'''2)]''([ dzdydxdtdyxdtdxydtyxcd −−−−++−= ωωωτ                                   (2.4) 
 
and we can see that in no cases ((2.2), (2.3), and (2.4), which are of the kind 

νµ
µντ dxdxgd −=2 ; see after) we can reduce 2τd , by means of time transformations, to the 

algebraic summation of the squares of the differentials of the four coordinates, as in (2.1) 
and as would be, on the contrary, for another inertial reference system. 
Therefore, the presence of linear accelerations of reference systems (that can cancel 
gravitational fields) and also centrifugal/centripetal ones, that is, central ones, such as for 
the gravity (for instance, after rotations), introduce combined terms which change the 
metric, and so the geometry of the space-time. From this comes the need to formulate a 
relativistic theory for gravitation (GTR). 
  
Par. 2.2: On the metric tensor and other main quantities. 
 
When we have dealt with the Gauss-Weingarten equations, just before, we saw that uτ

r
, 

vτ
r

 , and  N
r

 are linearly independent (orthogonal) and so they really are a reference 
system, but curvilinear, and local, as they lie on a point of a surface, and when we move 
on it, such a tern moves and they also change their direction. That’s a valid example of a 
curvilinear reference system, in the opinion of the writer, of course. 
In all the equations introduced in the last chapter on geometry, indexes i, j, k etc changed 
from 1 to 2 or also 3. Now, getting a bit deeper in the Universe, and so in the General 
Relativity, we first of all notice that our Universe looks tridimensional, therefore, on 

{ 

x’ 

x 

y 
y’ 

tωθ =  

ω  



indexes, we’ll have a variability which reaches at least three, and then, as also shown in 
App. 1 on Special Relativity, there exists a mathematically four-dimensional Universe (for 
the standard physics it’s also really four-dimensional; to me, it’s not!), in which there is 
covariance, and so conservation, when passing from an inertial system to another, then, 
with Einstein, we start once and for all to consider the Universe on a four-dimensional 
basis and that’s it; therefore, the indexes of all the geometrical equations introduced in 
the last chapter, will have, from now on, all indexes with a variability on four values and 
the fourth value is the time one (ct). Then, the Einstein’s convention will hold, according 
to which if in a term of an equation an index is present twice, then the summation over it 
is understood. 
We report here the mains, which will be needed by us: 
 

α
αττ
rr

ijij Γ=    (Gauss’ equations in a more compendious form; all in α
ijΓ ) (i,j=1,2,3,4)     (2.5) 

(this gives us also the derivative of a versor) 
 

ki
ik dudugd −=2τ (i,j=1,2,3,4)   (metric tensor ikg /de-square four-distance 2τd )          (2.6) 
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−
∂
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+
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∂
=Γ   (i,j=1,2,3,4)  (1st kind Christoffel symbol)                   (2.7) 

 
α
β

βα
β

βααα
kijjikkijjikijkR ΓΓ−ΓΓ+Γ−Γ= )()( (i,j=1,2,3,4) (Riemann combined curvature tensor)        (2.8) 

 
The metric tensor ikg , in case we are dealing with Euclidean spaces, reduces to 
Minkowski’s tensor ikη (it’s 1 for i=k=1,2,3 and it’s -1 for i=k=4; it’s 0 when i is different 
from k) and without combined terms, that is, if i,k are not the same, then ηik=0; in fact, 
we should then have ( ctzyxu i ,,,= ):  
 

22222 )(ctzyxddd ki
ik +−−−=−= ξξητ , just like in Special Relativity (App. 1) and the iξ  

would represent  the Euclidean coordinate system. Then, when passing to curvilinear 
systems ( idξ >>>> idx ), we’ll have: 

νµ
µν

νµ
νµ

ξξ
ηξξητ dxdxgdxdx
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ki

ik −=
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∂
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−=−=2 , with                                          (2.9) 

νµµν
ξξ

η
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g
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ik ∂
∂

∂
∂

=                                                                                                 (2.10) 

 
which is the link equation from one system to another. 
 
In the future we’ll keep for the indexes the letters of the common alphabete (i,j,k etc) in 
case of Euclidean spaces ( ikη ) and those of the Greek alphabete ( νµ,  etc) for curvilinear 
spaces µνg , with strong gravity. 

------------------ 
 
We saw with (1.1) and (1.2) that a sphere can be represented through an equation in 
which there are the three classic Cartesian coordinates (x,y,z) or also by fixing a radius 
and making two angles change ( ϕθ ,,r ):  



2222 rzyx =++                                                       (x,y,z)                                  
zryrxr ˆ)cos(ˆ)sinsin(ˆ)sincos( ϕϕθϕθτ ++=Σ

r
                  ( ϕθ ,,r )     

Now, in case we make a change of coordinate system (x,y,z) >>>>  (x’,y’,z’) where the 
latter is, for instance, shifted and rotated with respect to the former, there will be classic 
equations to go from one system to another, but both system will still have the same 
graphical representation by axes stretching from the origin to infinite, in positive as well as 
in negative. 

2222 ''' rzyx =++                                                       (x’,y’,z’)                                  
but all this in the Euclidean geometry, or non curvilinear, if we like.  
 
 
 
 
 
 
 
 
 
 
Fig. 2.2: Two different “Euclidean” reference systems. 
 
If now we suppose to go from a system as that in Fig. 2.2 to another in which the space 
is, for any reason, curved, for instance by the gravity of matter and energy, as supposed 
in the General Relativity, then the Euclidean geometry isn’t enough anymore and the 
curvilinear one, the non Euclidean Riemann-like is more helpful. In fact, in the opinion of 
the writer, when passing from a standard system to a curvilinear one, you cannot have the 
representation of Fig. 2.2, but the curvilinear one will look like a tern of straight Cartesian 
axes only in the infinitesimal range (“d” = de), as per Fig. 2.3; in fact, as it’s curved, as 
long as you get farther from the origin “0”, every single axis bends and loses any linearity 
and proportionality. 
  
 
 
 
 
 
 
 
Fig. 2.3: Case of curvilinear coordinate systems. 
Therefore, we’ll have a system of link equations from an Euclidean system ( iξ ) to a 
curvilinear one ( ix ), in the infinitesimal range, for all what just said so far, and that will 
be, in general, like this: 
 

),,,( 432111 xxxxξξ =  

),,,( 432122 xxxxξξ =                                                                                                                    (2.11) 
),,,( 432133 xxxxξξ =  

),,,( 432144 xxxxξξ =  
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dx 
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dz dz’ 
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0 0 



and vice versa: 
 

),,,( 432111 ξξξξxx =  

),,,( 432122 ξξξξxx =                                                                                                                   (2.12) 
),,,( 432133 ξξξξxx =  

),,,( 432144 ξξξξxx =  
 
and for the conversion equations for the expressions for the surfaces and for geometrical 
object (τ

r ), we obviously have ( ),,,(ˆˆˆˆ 43214321 ξξξξξξξξτ =+++= tkjir  and  
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and moreover, of course: 
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and so: ===+++= ),,,(),,,(ˆˆˆˆ 432143214321 dxdxdxdxddddtdkdjdidd ξξξξξξξξτ
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and therefore ( 4321 ,,, dxdxdxdx ) are the components of τ
r in the curvilinear base 

( 4321 ,,, ττττ
rrrr

). 

There exist a reciprocal set of four numbers ( 4321 ,,, ττττ
rrrr

) that, by definition:  
j

i
j

i δττ =⋅
rr

.  
Now, if we go back for a while to the (2.15), where we plainly used the Einstein’s 
convention, we have: i

idxd ττ
rr

=  

If now we want to make a change of curvilinear base, with coordinates from idx to ldx' , 
we will obviously write: l

l
i

i dxdx '' ττ
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=  and, by multiplying both sides by iτ
r

, we’ll have: 
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{ 
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                                                                                                        (2.16) 

and (2.16) is the equation for the base change. 
 
Law of transformation for the components of a 4-vector: 
 
let i

iVV τ
rr

=  be a generic vector expressed by curvilinear coordinates in the base iτ
r

; in 

another base l'τ
r  , we will have: l

lVV '' τ
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=  and, according to the (2.16): 
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which is the transformation equation for the components of a 4-vector after a base 

change. Very simply, its inverse is: l

i
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x
xVV

∂
∂

=
''  

------------------ 
 
Law of transformation for the components of a 4-tensor: 
 
in App. 1  on Special Relativity we said that we can get a tensor T with rank n when we 
multiply the components of n vectors. So, if we have two vectors V and S: (where we are 
simultaneously reminding how their components transformate) 
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components of a rank 2 tensor transformate. Then, you can proceed similarly for higher 
rank tensors. 
  
Derivation of a 4-vector: 
 
we have a 4-vector: µ

µτ
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VV =  ; let’s derive it: 
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Indexes changes from one term to another, as they change on four values and must not 
necessarily be simultaneously the same in all terms.  
Now, multiply the right side of (2.18) by the unitary (=1) quantity µ

µ ττ
rr

⋅  : 
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derivative and is a tensor, for all that has been said so far: 
µ

νσ
σ

µ

µ
µ

ν
σσ

µ

µ
µ
ν τ

τ
Γ+=+= V

dx
dV

dx
dV

dx
dVV r

r

;    (covariant derivative)                                    (2.19) 

 
where  µ

νσΓ  are said the Christoffel’s symbols (affine connection) and already introduced by 
(1.30). 
Moreover, for the system (2.13), we could write, in a more compendious vectorial form: 
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written in a simpler way, without the unitary coefficients η:  
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                                                                                               (2.20) 

Then, already in App. 1 on Special Relativity, we reminded that such a derivative (of a 
vector) gives a tensor. We also notice that such a derivative is a tensor (rank 2) just 
because the terms which make it, have two indexes, just like a tensor 2. 
Moreover, (1.30) in the last chapter on Geometry is an example of a derivative of a vector 
(versor) which looks like a tensor 2, indeed. 
 
derivation of a tensor: 
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Par. 2.3: On the Lorentz Transformation in the General Relativity. 
 
Let’s go back to (2.9), and we know from App. 1 on Special Relativity that 2τd  is Lorentz 
invariant: 
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Let’s differentiate (2.22) on εx : 
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 ; now, we sum to this the same, but with γ  and ε  

swapped and then we subtract the same equation, but with ε  and δ  swapped, so getting: 
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α axx +Λ='     (Lorentz Transformation)                                                           (2.23) 

This one, together with (2.22), yields: β
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Moreover, (2.23) in a differential form is: γα
γ

α dxdx Λ='  .                                         (2.24) 

Let’s figure out the elements of the Lorentz matrix (or of the Lorentz tensor) α
βΛ  : 

from the Lorentz Transformations (A1.8) in App. 1, we have that (// and ⊥  refers to the 
direction of the movement): 
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While, for (2.24), we have: β
β dxdx ii Λ=' , from which, using the common letters (i,j etc) for 

the three spatial components, 0 as the fourth time coefficient and the Greek letters for all 
of them: 
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(here, the last term has got a + and not a – because cdtdx −=0 ) 
 
By comparing (2.26) and (2.27), we have: 
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where the product Vxd

rr
⋅  in (2.27) yielded just the component j

jVdx  in (2.26), as in (2.26) 

there was just jdx . 
If the direct Lorentz T. is given by (2.24): γα

γ
α dxdx Λ=' , then, the inverse one will be 

represented as follows: αλ
α

γ '' dxdx Λ= . 
Therefore, as also seen in App. 1 on Special Relativity, not only the spatial components (x) 
and temporal (ct) can be Lorentz transformed, but also 4-vectors and 4-tensors can: 
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γ
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γ
αβ TT ΛΛΛ='  (remembering that the components of a tensor are obtained by 

multiplying those of vectors) 
 
Par. 2.4: The 4-vector Momentum-Energy and the Tensor Momentum-Energy. 
 
Preamble on the Delta of Dirac: 
By definition, the Delta of Dirac must satisfy the following equation: 

xdyxxfyf 33 )()()( ∫ −=
rrrr

δ  

In practice, if you put it in the integral (which is a summation) it yields the same 
integrated function f, but of a different variable. See some good books on the Fourier 
Transform to have useful versions of the Delta of Dirac. 
 
Preamble on currents and densities (of matter/energy): 
if in various points )(txn

r  we have energy (and so also matter) with a volume density 
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  and, of course: ε=0J   and  cttxn =)(0 . 

Now, this summation is over the points n; in order to have the total value, one must 
integrate also over the time: 
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will have the 4-divergence (see also App.1): 
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Moreover, ),()()( 303 txxdxJxdenergmatQ r
ε∫∫ ⋅==−  

------------------ 
 
the 4-vector momentum-energy: 
 
we already dealt with it in Special Relativity (App. 1).  
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from which, for the tridimensional component and for the temporal one:  
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Of course, for Lorentz: βα
β

α pp Λ=' . 

(*): In reality, we will consider the mass m as a mass referred to the unity of volume 
[kg/m3] 
 
the TENSOR momentum-energy: 
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The first one is a moment (p), actually, and the second is an energy, indeed (p x v). As 
before, we summed over the particles n.   
 
(Then, by summing also over the time, we’d have, here too, after having multiplied 
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Now, (2.32), through (2.30), becomes: 



∑ −=
n

n
n

nn txx
cE

ppxT ))((
)/(

)( 3
2

rr
δ

βα
αβ  

We notice the simmetry )()( xTxT βααβ = ; moreover, )(xT αβ  is a tensor and, being so, 
according to Lorentz, transforms, as follows:   
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Moreover, just like previously done to get (2.28), through the 4-divergence, we have:  
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 !!! 

 
Par. 2.5: Relativistic Hydrodynamics. 
 
Now, it’s very important to find a form for the tensor momentum-energy αβT , as we’ll see 
that in the Newtonian limit of the relativistic gravitation, a component of it appears )( 00T , 
so suggesting to involve, once we are out of the limit situation, all αβT indeed. Out of 
simplicity, now we consider that c=1 (normalization). 
Now we see that βααβαβ ρη UUppT )( ++=     and for fields of any intensity:  

νµµνµν ρ UUppgT )( ++=      (c=1)                                                                       (2.34) 
 
proof: 
let’s put the symbol ~ over the quantities which refer to a system at rest; moreover, from 
(2.32), we have that, in the right side, there is a product of a moment [(kg/m3)(m/s)] by a 
velocity [(m/s)] (remind the note (*) on page 26) and so:  
 
mass x velocity x velocity (=J) divided by m3, that is a pressure p.                          (2.35) 
 
Then, when the quantity dx/dt=d(ct)/dt=c is that which corresponds to the index zero, as 
per (2.31), then we’ll have on the right side the product p0 (mc, see (2.29)) by c, but 
according to the note (*) on page 26, m is a ρ and so we have ρc2. Let’s sum up: 

ijij pT δ=~ ][Pa   , 0~~ 00 == ii TT  , ρ=00~T , that is: ( 2cρ  with c=1  ][Pa )                      (2.36) 



As T is a tensor, let’s transform it according to Lorentz, as per (2.33), to get its values for 
a generic system, that is, not at rest: 
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On the contrary, for the calculation of ijT , let’s split this in two cases: 
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Totally:  

2)( γρδ jiijij VVppT ++=   (for the spatial components) 
βααβαβ ρη UUppT )( ++=   (for all 4 components, but in weak fields ( αβη )) 

where ì
ii

i V
dt
dx

d
dxU γγ

τ
===   e  cU γ=0 . 

At last, for any gravitational fields  ( αβη  >>>> αβg ): 
νµµνµν ρ UUppgT )( ++=    (c=1) . 

 
Par. 2.6: The geodetic Equation. 
 
A free falling parachutist does not have any floor over which his body can rest; therefore, 
he does not detect any gravitational acceleration and he feels as if floating in the vacuum. 
He realizes he is falling only if he looks at the moving objects around. Therefore, for a free 
falling particle, there is a reference system in which 0=ar , that is: 
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     (free falling in Euclidean coordinates)                                                 (2.37) 

with ki
ik ddd ξξητ −=2 . 

But we can see (2.37) in the following way: 
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xd  (free falling in curvilinear coordinates)                                  (2.38) 

(equation of the geodetic, where geodetic, on the Earth, is the shortest path between two 
places) 
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Par. 2.7: The relation between µνg and λ

µνΓ . 

We already got such a relation in a context all geometric (see (1.35)). Now we get the 
same relation starting from a direct calculation:  
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Similarly, we also calculate µ
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which is exactly what we got in a purely geometrical context in Chapter 1. 
  
Par. 2.8: The Newtonian limit. 
 
We know that in the Newtonian limit (V<<c): 2222222222 dtcdtVdtcxddtcd ≅−=−=

rr
τ  

This is to say that cdtctddtdxddxddxdtdxV iiì ==∝<<∝= /)(//// 00 ττ , that is, 
indeed: ττ ddxddxi // 0<< . 

So, (2.38) becomes: 0)( 2
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xd  (with the convention c=1); moreover, as, in this 

limit, the field is stationary, µνg  tends to µνη (const)  and so the temporal derivatives of 

µνg  are zero, and so, according to (2.40): 
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Now, we know from Newton’s gravitation that: r
r

mMGam ˆ2−=
r  , from which: r

r
GMa ˆ2−=

r
 , 

but: φ∇=−∇= )(ˆ2 r
GMr

r
GM  (con 

r
GM

−=φ ) and so: φ−∇== 2
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and from both this one 

and (2.41), we have: consth +−= φ200  ; as at infinite: 000 == φh  , then const=0 and:   
 

)21(21000000 φφη +−=−−=+= hg                                                                          (2.42) 



Poisson’s equation: 
now, we define, with simplicity, the flux of the acceleration vector ar : 
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Now, as we know from mathematics that 2
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r
, then: ar−=∇φ  and so: 

ρπφφ G42 =∇=∆   (Poisson’s Equation)                                                                 (2.43) 
 
Par. 2.9: The Riemann-Christoffel Curvature Tensor. 

At Par. 2.7 we proved that )(
2
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=Γ , that is, exactly what we got at 

Chapter 1, through (1.35), in a purely geometrical basis. Now, it could be possible, but a 
bit boring, to deduct the form of the Riemamm-Christoffel curvature tensor through direct 
calculations, purely mathematical, exactly like in Par. 2.7, but we would get exactly what 
already obtained at Chapter. 1 with (1.41), here reported again, and obtained in a more 
suitable geomertical basis and where we will use Greek letters for the indexes, to show 
that here we are talking about gravitational fields with any intensity and also reminding 
here that those indexes have four values each (space-time), three for space and one for 
time: 
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and also kk RgR λµν
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Now, we know that ρ
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where we have made a small rearranging of indexes, which have (those indexes) generic 
values, that is, we don’t care if we use j or k; what’s important is that they can have all 
four values, as we already know, and that their repetition is consistent. 
 
If we go back to (2.44), it becomes, through (2.45): 
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As already made at the end of Par. 1.3, we deduce three properties of the tensor kRλµν , 

which are directly verifiable: 
-Simmetry λµνλµν kk RR =  

-Antisimmetry νµλνλµµλνλµν kkkk RRRR =−=−=   

-Cyclicity  0=++ µλνµνλλµν kkk RRR   

 
The Ricci Tensor: 
 

kk RgR λµν
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µ =      ( µµ kk RR = )                                                                                 (2.47) 

and one can directly verify that : νµλ
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µ kkkk RgRgRgR +=−=−=    

It’s then clear the strong relationship of such a tensor with the Gauss curvature (see  
(1.40), bidimensional), from which its name curvature tensor, indeed.  
 
The Bianchi’s Identity: 
 
if we put ourselves in a locally inertial reference system (not strong gravitational field) all  

c
abΓ  are zero; in fact, the difference between the geodetic equation of an Euclidean space 

(2.37) and that of a space strongly curved up by gravity, that is, the (2.38), is really the 
presence of a c

abΓ . In a locally inertial coordinate system, therefore, (2.46) yields 
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and so, by direct verification, we have: 
 

0;;; =++ νηλµλµηνηλµν kkk RRR                                                                                     

By contracting (by multiplying with), in the above equation, νλ,  with λνg , we have: 
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νηµµηηµ kkk RRR  and by contracting again: 
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Chapter 3: The Einstein’s Equations of the Gravitational Field. 
 
Par. 3.1: The ten Einstein’s Equations of the Gravitational Field. 
 
They are 16 equations, actually, as they contain rank 2 tensors, that is, with two indexes 
each, and everyone of them can have 4 values, and so 4x4=16, but such equations are 
not all linearly independent among them, that is, there are doubles, and the independent 
ones are ten, indeed. 
 
We know from (2.42) that )21(00 φ+−=g  (contact point with Newton’s theory and starting 

base), while from (2.36) we know that, for non relativistic matter: ρρ == 2
00 cT  (with 

normalization c=1); we also have that: 
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2 8 GTg π−=∇  ; so we can suppose, out of extension, that the following equality holds: 

αβαβ πGTG 8−=   and for gravitational fields of any intensity: 
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Let’s deduce, now, five peculiarities µνG  must have: 

A)by definition, µνG  is a tensor, as the momentum-energy tensor µνT  is  

B) µνG  is consisting of terms with second derivatives of the metric tensor (just look at 

00
2g∇ ) 

C) µνG  is symmetric, as well as µνT   

D)as µνT  is conserved ( 0; =µµνT ), then µνG  and similars are, as well ( 0; =µ
µνG ) 

E)for weak stationary fields, non relativistic ones, we have 00
2gG ∇=µν  

 
A and B say that µνG  is proportional to the curvature tensor (2.46), or better to (2.48), 

clearly made of second derivatives of the metric tensor. 
Moreover, the symmetry of indexes wants that the curvature tensor is represented by the 
Ricci tensor µµ kk RR =  and by the symmetric, as well, µ

µRR =  (see the paragraph on the 

Ricci tensor): 
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µ
µ

µν
µν

µ
µ πGTRCCRCggCG 8)4()( 2121 −=+=+=  , and so, if ν

ν xRR ∂∂=;  becomes zero, the 

same must happen to νµ
µ xT ∂∂ , but now we aren’t yet in the case of non relativistic 

matter. 



Therefore: )
2
1(1 RgRCG µνµνµν −=                                                                                             (3.2) 

Now, because of the peculiarity E, we figure out C1: for non relativistic systems, we always 
have:   

00TTij <<  , that is: 00GGij << , from which, for the above (3.2): RgR ijij 2
1

≅ ; moreover, 

αβαβ η≅g  (Minkowski’s tensor) and so: RRkk 2
3

≅   and   
200
RR ≅  .  

(3.2) with 0==νµ  ( 0000 η≅g ) yields: 

0010000100 2)2)1(
2
1( RCRRCG =−−=  ; moreover, in case of weak fields, we can say (see 

(2.46) with c
abΓ =0 or directly (2.48)): 
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µ η= ; being the field static, the 

temporal derivatives are zero: 
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== ηηηη λν
λν

νλ
λν , from which: 
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12 gCgCG ∇=∇= , from which ( 11 =C )   RgRG µνµνµν 2

1
−=  and so: 

µνµνµν πGTRgR 8
2
1

−=−                                                                                          (3.3) 

which are the Einstein’s equations of the gravitational field, and we rewrite them: 
 

µνµνµν πGTRgR 8
2
1

−=−
 

which tell us that the curvature ( RR ,µν∝ ) of the space-time is equal to the presence of 

matter-energy ( µνT∝ ) in it!!!  

Now, by contracting with µνg , we have: µ
µπGTRR 82 −=−  , that is: µ

µπGTR 8=  and so: 

)
2
1(8 λ

λµνµνµν π TgTGR −−=  (another form for the Einstein’s equations). 

In the vacuum, f(T)=0 and so 0=µνR . 

 
Chapter 4: Classic tests of Einstein’s theory. 
 
Par. 4.1: The metric. 
 
We still have c=1, as a simplifying convention. Now, we define a general metric tensor 
through which a gravitational field is static and isotropic; static means that the metric 
tensor does not depend on time, about its form and its characteristics, with a clear 
reference to its coefficients. Isotropic means that there is a dependance from the 
irrotational invariants; in fact, we know that the norm of a vector  and the scalar product 
between two vectors are invariant for rotations: 



22 xx rr
= , 2)( xdr

, xdx rr
⋅  

All this for orthogonal coordinates almost Minkowskian (almost αβη ) 
νµ

µντ dxdxgd −=2 , 2222 )())(()(2)( dxrCdxxrDdxdtxrEdtrFd −⋅−⋅−=τ                         (4.1) 
2/1)( xxr rr

⋅=  and in spherical coordinates: 
 
 
 

ϕθ cossin1 rx =  
ϕθ sinsin2 rx =  

θcos3 rx =  
 

)sin)(())(()(2)( 2222222222 ϕθθτ drdrdrrCdrrDrdtdrrrEdtrFd ++−−−=  
Now, we define the linear application )(' rtt φ+=  and get rid of the non diagonal elements  
(combined) by putting: 

)(
)(

rF
rrE

dr
d

−=
φ

; there exists a linear rototranslation/application which reduces to a canonical 

form the above quadratic form: 
)sin)(()(')( 222222222 ϕθθτ drdrdrrCdrrGdtrFd ++−−= , with: 

)
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)()(()(

2
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rF
rErDrrG +=  

Let’s define 22 )(' rrCr = ; then, we get the standard form: 
)sin('')'(')'( 2222222 ϕθθτ ddrdrrAdtrBd +−−=                                                            (4.2) 

with )()'( rFrB =  2))(
)(2

1)(
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)(1()'( −++=

dr
rdC
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r
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We are now interested in the standard form (4.2): 
)sin()()( 2222222 ϕθθτ ddrdrrAdtrBd +−−=  and through a comparison with the general 

expression of the metric (2.9), we get: )(rAgrr =   ,  2rg =θθ  ,  θϕϕ
22 sinrg =   ,  )(rBgtt −=  

and as µνg  is orthogonal, we have that: )(1 rAg rr −=   ,  2−= rgθθ  ,  θϕϕ 22 sin −−= rg   ,  

)(1 rBg tt −−=  . 

Then, as we know that according to (2.40): )(
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Now, we calculate the Ricci tensor ( νλ =  in  λ
µνkR  of the (2.43)): 
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µλ  is symmetric over µ  and k , 

also by a direct verification; therefore, we totally have: 
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 Par. 4.2: The Schwarschild’s Solution. 
 
We already know that: 22222222 sin)()( ϕθθτ drdrdrrAdtrBd −−−=  
Moreover, in the vacuum 0=µνR , so: 

0=== ttrr RRR θθ ;                                                                                                (4.3) 
moreover, we notice that: 
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A
R ttrr +−=+  and for the (4.3), we have:

B
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A
A ''

−= , that is:  

 
constrBrA =)()( .                                                                                                 (4.4) 

 
Then, for ∞→r , the metric tensor µνg  must get close to the Minkowski’s tensor µνη  in 

spherical coordinates, that is: 1)(lim)(lim == ∞→∞→ rBrA rr  , from which, for the (4.4): 
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rA =  and by using this one in the expressions for θθR  and rrR , we have: 
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GMrA  and so, finally: 
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r

GMd −−−−−= −                                            (4.5) 

(Schwarschild’s solution) 
 
Par. 4.3: The general equations of motion. 
 
We know that 22222222 sin)()( ϕθθτ drdrdrrAdtrBd −−−=  and we also consider the 

geodetic equation (2.38): 02
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  (in p generic, for the moment): we have, 

by making µ  change: 
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Now, as the field is isotropic, we put 2πθ =  and so the last two equations, (4.8) and 
(4.9), becomes: 

0]ln[ln 2 =+ r
dp
d

dp
d ϕ   and  0]ln[ln =+ B

dp
dt

dp
d  , from which:  

J
dp
dr =
ϕ2  (constant)                                                                                          (4.10) 
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dp
dt

=    (=1, by choice)                                                                             (4.11) 

from which:  
Bdp

dt 1
=  . Now, by putting (4.10), (4.11) and the condition ( 2πθ = ) used 

before, in the (4.6), we’ll have:  
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2
2   (constant)                                                                 (4.12) 

If now we make a system with the equations ( 2πθ = ) just used, then the (4.10), (4.11) 
and (4.12), we get: 

22 Edpd =τ                                                                                                         (4.13) 
We know that E=0 for photons and E>0 for material particles. 
As A(r) is always positive, we have that the particle can reach r only if (see (4.12)): 

)(
1

2

2

rB
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−≤+ . Then, by using (4.11) in (4.10), (4.12) and (4.13), we get: 
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and 222 )( dtrEBd =τ                                                                                            (4.16) 

Now we know that, for weak fields: φ21 =−B   →   J
dt
dr =
ϕ2    and    
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as:  )21()(
21

1
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1
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+
−=− forTaylor

rB
  

(4.17) has got a similar correspondance in Newton’s classic mechanics. 



For general orbits,  r=r(φ); then, we know that: 
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 ,                                 (4.18) 

whose solution is:  
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drrA
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Par. 4.4: The deflection of light by the Sun. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.1: The deflection of light by the Sun.  
 

SunS RR = ; b is the collision parameter. At the infinite, )()sin( ∞∞ −≅−= ϕϕϕϕ rrb  and: 

dt
drr

dt
dV ≅−=− ∞ )cos( ϕϕ ; V is the motion speed (constant). As at the infinite A=B=1, if 

we put these two equations in (4.14) and (4.15), we have:   
 

bVJ = and                                                                                                        (4.20) 
21 VE −=                                                                                                          (4.21) 

(4.21) is trivial; in order to get the (4.20), we see that: 

)( ∞−≅ ϕϕrb , from which: ϕϕϕ rddr +−= ∞ )(0  , and so: JbVr
dt
dr

dt
dr ==−−= ∞ )(2 ϕϕ
ϕ

 

For 0rr =  we have that  0/ =ϕddr  and (4.18) then becomes: 2/12

0
0 )1
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1( V
rB

rJ +−=  and 

(4.19) becomes, after an easy calculation: 
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The total variation of φ is: ∞− ϕϕ )(2 0r , while, if the ray of light walked unperturbed, we 

would have a variation of π , so, with reference to Fig. 4.1, we have: πϕϕϕ −−=∆ ∞)(2 0r ; 

for a photon, 12 =V  and (4.22) yields: 
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Now, by using the (Taylor’s) developments due to Robertson: 
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The last equality can be directly verified. 
(4.23) becomes, for Taylor: 

(in order to solve the first two integrals, put x
r
r cos0 = , while for the third, put t
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=0  and 
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t
t

+
−

1
1 ) 

dr
rrr

GMr
r

GM
r
r

r
rAr

r
....]

)(
1[]1)[(1)()()(

00

2
1

2

0

2/1 +
+

++−=∞−
−

∞

∫ϕϕ   that is: 

 
 
 

...])(111[)(sin)()(
0

020

0

01 +
+
−

−−−++=∞− −

rr
rr

r
r

r
GM

r
rr ϕϕ  and so: 
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=∆ϕ  , and if we remind our normalization (c=1), we finally have: 2

0

4
cr

GM
=∆ϕ ; with 

mRr S
8

0 1095,6 ⋅==  and kgM S
301097,1 ⋅= , we have: 

''75,1=∆ϕ , in perfect agreement with experimental results. In reality, when in 1919 the 
deflection of star light by the Sun was measured in Brazil, during an eclipse, the accuracy 
of the measurement was as big as the measure itself. 
  
Par. 4.5: An alternative calculation of the deflection, with profiles of antagonism to 
GTR. 
This method (Firk) is based on the variation of velocity the light undergoes when it 
approaches a mass; for this reason I see profiles of antagonism to pure GTR. Then, there 
exsist also other methods, more or less similar, based on such a supposition (for instance 
Wåhlin) and it seems that, if we take into account the smallest cyphers after the point, 
those results are even more similar to experimental values.  
First of all, we remind that, according to Schwarzschild (see, for instance, (4.5)):  

1st 
Int. 

2nd 
Int. 

3rd 
Int. 



22222222 sin)()( ϕθθτ drdrdrrAdtrBd −−−= ;                                                         (4.24) 
Then, we know that, in general: 2222 )()( xddtcd r

−=τ  and as, for a photon, 222 )()( dtcxd =
r

, 
we have: 02 =τd , from which, for the (4.24): 

2222222 sin)()(0 ϕθθ drdrdrrAdtrB −−−= ; moreover, if we consider light radially travelling 
towards the Sun, we can get rid of the components in θd  and ϕd : 

22 )()(0 drrAdtrB −=  ;                                                                                        (4.25) 
The speed of light is dtdrc =  far from the mass of the Sun, while, close to it, the (4.25) 
holds, from which we get:  

crArBcdtdrV ≠== 2/1))()((  ;  
From Par. 4.2, we have the values for A(r)  and B(r), in which, during calculations, we do 
not forget that now c=1 does not hold anymore; therefore: 
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GM , we easily have that:   
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Fig. 4.2: The velocities of the wavefronts.   
 
With reference to Figure 4.2, the part of wavefront wich is farther from the mass M has 
speed c, while the closer one has speed cV < .  
 
 
 
 
 
 
 
 
 
 
Fig. 4.3: Drawing for calculations.  
 
Now, with reference to Figure 4.3, we have:   

222 )( xRyr ++= (eq. of a circle);                                                                         (4.26) 
now, we apply the operator y∂∂  to (4.26), so having: 

)(2)(2 Ryyrr +=∂∂  , from which:  rRyyr /)( +=∂∂  and on the surface of the mass M: 
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Now, we calculate the difference between the paths dx and dx’ of wavefronts at a vertical 
distance y and y+dy, at which light has got velocities V and V’ respectively: 
 
dx’=V’dt and dx=Vdt, from which:  
dx’- dx =V’dt-Vdt=dt(V’-V) ;                                                                                (4.27) 
moreover, we have, for Taylor: dyyVVV )(' ∂∂+=  , that is:  dyyVVV )(' ∂∂=−  and (4.27) 
becomes: 
 

dydtyVdxdx )(' ∂∂=−                                                                                           (4.28) 
Then, still from Figure 4.3 and from (4.28), we have: 

VdxyVdtyVdydxdxd )()()'( ∂∂=∂∂=−=α . 
The total deflection α∆  from ∞−  and  ∞+  is, by considering that, in such a range, V is 
almost always equal to c (except for when it’s right close to M): 
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α  , right what we got in Par. 4.4!!! 

 
Par. 4.6: The precession of the perihelion of planets. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.4: The precession of the perihelion of Mercury.  
 
For planets, and in particular for Mercury, through centuries, we notice that the perihelion 
moves.  
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In +r  e −r  , we have that 0=
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. Then, we already know that (see (4.18)): 
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The total variation of φ is: )()(2 −+ −=∆ rr ϕϕϕ . If we did not have any precession, we 

would have:   
ππ 22 = . The precession of the orbit is: πϕϕϕ 2)()(2 −−=∆ −+ rr . 

We remind the Robertson’s developments on pag. 39: 
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Through such developments, the root in (4.30) can reduce to a quadratic form in 
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anyway, we can notice that such a quantity cancels for ±= rr , therefore: 
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C can be calculated by executing the ∞→rlim : 
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we get: ( 2π−=Ψ→= −rr ); moreover, we just get dr as a function of Ψd  in (56.1) and 
make a replacement in the integral in dr: 
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For the (4.31), at the aphelion, 2π=Ψ  , so: )6(2)()(2
L
MGrr π

πϕϕϕ =−−=∆ −+   [rad/rev] 

where )11(
2
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rr

L  (straight semiside). 

Now, as we know that aer )1( ±=±  and aeL )1( 2−=  (see note (**) below), we have: 

)6(
L
MGπ

ϕ =∆  and, if we do not forget our initial normalization (c=1), we have: 

)6( 2Lc
MGπ

ϕ =∆ ; for Mercury, mL 9103,55 ⋅= , from which ''1038,0=∆ϕ . Now, as in a century 

Mercury makes 415 revolutions, we have ''03,43=∆ centuryϕ  , in perfect agreement with 

experimental measurements, as the very first measurements on Mercury started in 1765, 
and Clemence, in 1943, calculated: 

''45,0''11,43 ±=∆ϕ .  
---------------------------- 

(**): some considerations on the ellipse: 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.5: The Ellipse. 
 
we have, by the definition of ellipse, that: d(P,F)=ed(P,d), where  e is the eccentricity and 
d is the directrix. Therefore: 2222)( xeypx =+− , from which 02)1( 2222 =+−+− ppxyxe ; 
through easy calculations, we get that, for 0<e<1,  
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a
x , with )1/( 2epea −=  and  21 eab −= , but we also know that 22 cab −= (by 

the definition of ellipse), so, by comparison: cea =⋅ . 
 
Then, if we also take into consideration the other focus, we have: d(P,F)+ 
d(P,F’)=const=2a; in fact: d(P,F)=ed(P,d) and d(P,F’)=ed(P,d’)  and  d(P,F)+ 
d(P,F’)=e[d(P,d)+ d(P,d’)]=constant, of course (by simmetry).  

---------------------------- 
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App.1-Introduction: 
 
Time is just the name which has been assigned to a mathematical ratio relation between two different spaces; when I 
say that in order to go from home to my job place it takes half an hour, I just say that the space from home to my job 
place corresponds to the space of half a clock circumference run by the hand of minutes. In my own opinion, no 
mysterious or spatially four-dimensional stuff, as proposed by the STR (Special Theory of Relativity). On the contrary, on 
a mathematical basis, time can be considered as the fourth dimension, as well as temperature can be the fifth and so 
on. The speed of light (c=299.792,458 km/s) is an upper speed limit, but neither by an unexplainable mystery, nor by a 
principle, as asserted in the STR and also by Einstein himself, but rather because (and still in my opinion) a body cannot 
move randomly in the Universe where it’s free falling with speed c, as it’s linked to all the Universe around, as if the 
Universe were a spider’s web that when the trapped fly tries to move, the web affects that movement and as much as 
those movements are wide (v~c), that is, just to stick to the web example, if the trapped fly just wants to move a wing, 
it can do that almost  freely (v<<c), while, on the contrary, if it really wants to fly widely from one side to the other on 
the web (v~c), the spider’s web resistance becomes high (mass which tends to infinite etc). On this purpose, see 
Appendix 2.  
 



Anyway, Einstein’s theory is formally founded on two principles: 
-Principle of  di Relativity: laws of phisics have the same form in all inertial systems (i.e. at relative movement with a 
constant speed); as it doesn’t make any sense an absolute movement with respect to a standing ether which does not 
exist (see Par. 3.7) all reference systems are equal laboratories to verify in all laws of physics; so there aren’t any 
privileged reference sysyems (except for, in my opinion, that of the center of mass of the Universe). 
Anyway, the Michelson and Morley experiment (App.1-Par. 3.7) represented the end of the ether and opened the doors 
to STR.  
-Principle of Constancy of the Speed of Light: the speed of light in vacuum has always the same value c=300.000 km/s. 
Therefore, no matter if you chase it at 299.000 km/s of if you run away from it still with that speed; light in vacuum will 
run away or chase you still at 300.000 km/s! (c=299.792,458 km/s) 
In the opinion of the writer, there is something like a contradiction in the STR; the speed of light seems to be an 
“absolute” object, indeed, and not “relative”, as we are here talking about “relativity”. The point here is that speeds 
among objects in the Universe are relative with respect to themselves, but there is an absolute (or almost) speed  c with 
which all objects in the Universe fall towards the centre of mass of it; from this the absolute essence of c. And here 
there is also an explanation of the reason why objects at rest have energy m0c2 (App.1-Par. 2.4), energy given to matter 
at rest  by Einstein, unfortunately without telling us that such a matter is never at rest, as it’s free falling with speed c 
towards the center of mass of the Universe, as chance would have it. On this purpose, see my complete personal 
opinion in Appendix 2. 
If a common man hears the speed of light is the same everywhere and for everybody (all inertial observers), even when 
they have relative movements at constant speed, nothing happens. On the contrary, if it’s heard by a particular man like 
Einstein, what he can understand from that can be surprising. The following simple experiment, made by a light clock on 
a space ship, shows that the fact that the speed of light is c for “everybody” implies that time is relative, from which the 
Twin Paradox comes (App.1-Par. 1.4) etc: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A1: Light clock not moving.                         Fig. A2: Light clock moving at speed V. 
 
As you can see in Fig. A1, every time light (blue arrows) goes from source to mirror and back, the light clock says, for 
instance, one second, or a certain time t’. The path in blue shown in Fig. A1 is seen by those who are not moving with 
respect to the clock, i.e. by who is on the space ship with the clock itself. On the contrary, those who are on the Earth 
and see the clock moving on the ship, will see the light travelling diagonally longer paths, as shown in Fig. A2, as the 
mirror moves while the light goes downwards, and the source moves, too, when the light goes back upwards. Now, as 
we are talking about light, the behaviour of it during its going downwards is not like that of a suitcase falling from the 
luggage compartment of a railway wagon, which is seen to fall vertically by the passenger on it and by a parabolic 
trajectory by the observers not moving, on the platform at the station, so taking the same time for both of them, as in 
the latter case (parabolic) the falling speed is higher; we are here talking about light, therefore its speed must be the 
same for all, and c; but if it’s so, then those who see the longer diagonal path must say that time taken by light to go 
down and up must be longer. Therefore, despite we’re talking about just one clock and one event, those two observers 
come to different results, so to the relativity of time and to all its implications. 
Using the Pithagorean Theorem on the triangle in Fig. A2, we have: 
 

222222 ' tVtctc +=  , from which:  2

2

1'
c
Vtt −=  and so, in general: tt <'  and t’ tends to zero when V tends to c!  

I remind you that t’ is the time of the astronaut who is travelling with the clock, while t is the time elapsed on the Earth. 
If all this is true for the fastest thing (light), then it’s also true for standard hands clocks and also for the biologic ones 
(living beings)! In the seventies, by using very sensitive atomic clocks, they proved the time dilation on the Earth, 
between two atomic clocks which were synchronized, at the beginning, after that one of them flew on a plane, 
underwenting a slight, but well felt, time dilation. 
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App.1-Chapter 1: Fundamental introductory concepts. 
 
App.1-Par. 1.1: Galilean transformations. 
 
They simply give the relations between spatial coordinates (and time), for two reference systems in relative motion, but 
in classic physics, where the speed of light is not an upper limit. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A1.1: Reference systems in relative motion. 
 
We obviously have: 

tVrrr
rrrr

+=+= ''00' ,                                                                                                                                  (A1.1) 
from which, for the components (t=t’): 
 

'' Vtxx +=  
'yy =                       

'zz =                                                                                                                                                         (A1.2) 
'tt =  

 
and for the reverse ones, we obviously have: 
 

Vtxx −='  
yy ='                       

zz ='                                                                                                                                                         (A1.3) 
tt ='  

 
(A1.2) and (A1.3) are the Galilean Transformations. 

By deriving (A1.1), we have: Vvv
rrr

+= ' which can be held as the theorem of summation of velocities in classic physics. 
 
App.1-Par. 1.2: The (Relativistic) Lorentz Transformations. 
 
We know that the Lorentz transformations were born before the Theory of Relativity (which is founded on them) and on 
an electromagnetic basis. 
They correspond to the Galilean ones, but on a relativistic basis and they are in force as long as we say that the speed 
of light is an upper limit in the Universe and it’s c for (~)every observer. 
 
-FIRST PROOF: 
 
if we suppose a relative motion along x, we correct the x components of the Galilean Transformations through a 
coefficient k, as follows: 
 

)(' Vtxkx −=                                                                                                                                            (A1.4) 

)''( Vtxkx +=                                                                                                                                           (A1.5) 
Now, for a photon, we obviously have: 
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tVckct )(' −=    and   tVckct )( += , as light has the same speed c in both reference systems, from which, by 
mutual multiplication of the corresponding sides: 
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Moreover, from (A1.5) we have: )'(1' x
k
x

V
t −= and using (A1.4) in it, we have: 
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as, for (A1.6), we have: 2

2

2 )11(
c
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k
=− . 

By the same way which led us to (A1.7), we also get the expression for t. 
Finally, here are the Lorentz Transformations: 
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-SECOND PROOF: 
We know that c=const in all inertial reference systems. Now, with reference to Fig. A1.1, when 0=0’ and t=t’, from the 
origin light is emitted through spherical waves and isotropically and so we can write that: 

0)( 22222 =++− zyxtc    and   0)'''(' 22222 =++− zyxtc  
as light has the same speed c in both reference systems. Therefore: 

)'''(')( 2222222222 zyxtczyxtc ++−=++−  and for rays along x (y=y’ and z=z’): 
222222 '' xtcxtc −=−  . Now we say ( 1−=i ):  ξ=ix , '' ξ=ix , η=ct  and '' η=ct ; we have: 

2222 '' ηξηξ +=+ , whose solution is:  
 

θηθξξ sincos' −=  

θηθξη cossin' +=                                                                                                                              (A1.10) 
 
and in a differential form: 
 

θηθξξ sincos' ddd −=  

θηθξη cossin' ddd +=                                                                                                                       (A1.11) 
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Now we notice that with respect to the origin “0”, 0=
dt
dx

, as the reference system (0,x,y,z) is not moving with respect 

to itself. On the contrary, V
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dx

−=
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, as the system (0’,x’,y’,z’) moves with speed V with respect to “0” and, as a 
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and so (A1.8) again. By the same way, we also get (A1.9). 
 
App.1-Par. 1.3: The contraction of length, or of Lorentz. 
 
Moving objects with speeds close to that of ligth are shorter to not moving observers. If those observers make 
measurements to get the length of the running body, the best way is to use light sources (the fastest thing), by 
illuminating the bow and the stern of that body, in order to see the corresponding positions, moment by moment. But 
that light has a constant speed, and limited, too, and the result will be that of a shorted body. Reality or measuring 
appearance? Convince yourself immidiately that (observed) reality and the measuring appearence are the same thing, 
and it must be so!  
Let l be the length of a segment in the O system: 
 

lxx AB =−  . In O’, according to Lorentz Transformations: 
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   , as in system O the measurement of  

 
the segment makes sense if both ends are detected “simultaneously” (tA=tB). 
When v tends to c,  cv=β  will tend to 1 and the radical will tend to zero, as well as l! 
Therefore, the length l measured in O will be that measured in O’ by a value less than 1, that is, the observer at rest (O) 
will detect a shorter object. 
 
 
 
 

{ 



App.1-Par. 1.4: Time dilation (Twin Paradox). 
 
It sounds strange, but time, too, can be, and is, relative. Of course, every observer, in himself, sees time going by still in 
the same way; if you move with a speed close to that of light, you will not hear your heart beating slower. The 
comparison between those two observers which were in relative motion will show the difference on how those two times 
went by. 
So, according to Lorentz Transformation, in O’ (moving system):  AB ttt ''' −=∆ , whilst in O (system at rest): 

21
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−−+
=−=∆

cxtcxtttt AABB
AB , but, by assumption, BA xx '' = , as in the system O’ (O’,x’,y’,z’) the 

clock is at rest, as it’s travelling with the system O’ itself; therefore:  
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'
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∆
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tt  

 
When v tends to c,  cv=β  will tend to 1 and the radical will tend to zero, as well as 't∆ ! 
Two twins separate as one leaves for a spatial travel one month long and at speeds close to that of ligth; once back to 
the Earth, he sees the other twin thirty years older! (Twin Paradox) 
At a speed of 260.000 km/s you have the halving, so the radical will be ½ and those two times will go by one a half of 
the other. 
See also the proof of the time dilation by the ligth clock (in the Introduction) and also that on a Doppler Effect basis 
(App.1-Par. 3.6). 
 
App.1-Par. 1.5: The four-vector position. 
 
Instead of writing the position vectors with the three classic components x, y and z, let’s write them in a mathematically 
four-dimensional form, by adding time; this will be very useful. In the (justified) opinion of the writer, our Universe is 
three-dimensional and the adding of a fourth dimension is a purely mathematical operation; in fact, I defy you to show 
me the fourth dimension of a whatsoever object which is held four-dimensional. In the nowadays’ STR, a real four 
dimension is believed! 
 
Well, so: ),,,( 4321 xxxxx = , which is the same as: (x,y,z,ct). 

By this new terminology, the Lorentz Transformations become:  
 

411' xxx βγγ −=                                             411 '' xxx βγγ +=  

22' xx =                                                          22 'xx =  

33' xx =                                                          33 'xx =                                                                              (A1.12) 

414' xxx γβγ +−=                                           414 '' xxx γβγ +=  
        

where cV=β  e 
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You can prove the space-time distance between two points is invariant for Lorentz Transformations, i.e. it is the same in 
all inertial reference systems: 
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(This expression is a kind of Pitagorean Theorem in four dimensions). 
In order to prove that, use the Lorentz transformations in (A1.13), where there are Δxi in place of xi, and you check the 
equality. 
In other words, three dimension length and time are relative, while their four-dimensional composition is absolute. That’s 
why we said the definition of physical quantities by four components would have been useful. 
We can then use the Lorentz transformations on all four-vectors, in the form of (A1.12). 

------------- 
If we use matrixes, Lorentz Transformations can be written in the following way: 
 
(remember the matrix product, with the components of the row of the first matrix which are multiplied by the 
corresponding components of the column of the second matrix, then summing up those products to get the component 
of the product matrix, indeed)   
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while, for the  tensor form:  
(use the Einstein convention, according to which, if in a term an index is repeated, the summation on that index is 
understood) 

k
k
ii xx α='   (i,k=1,2,3,4) on the right side, k is repeated, so you make the summation on it                             (A1.16) 

i
i
kk xx ''α=  (i,k=1,2,3,4)                                                                                                                          (A1.17) 

 
App.1-Par. 1.6: Relativistic Law of Transformation of Velocities. 
 
If I’m walking with a speed of 5 km/h in a railway train car which is travelling with a speed of 100 km/h with respect to 
the platform, I’ll have, with respect to the platform, a total speed of 105 km/h. This is classic physics. On the contrary, 
when those two speeds get close to that of light, the simple composition by algebraic summation cannot be used 
anymore, as it would show us a speed higher than that of light c, which must be impossible. 
Therefore, we have, by definition:  

dt
dxvx =                                   '

'' dt
dxv x =  

dt
dyvy =                                   '

'' dt
dyv y =  

dt
dzvz =                                   '

'' dt
dzv z =  

Now, by differentiating the Lorentz Transformations, we have:   
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If now we divide numerator and denominator of last equations by dt’, we have: 
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When 1<<c
V   and  1<<c

vx  we are in the classic case (galileian) of algebraic sum. 

If we use again the example of the railway train car, where a guy walks inside, if we say ),0,0,'(' cvv x=   and  

),0,0,( cvv x= , from (A1.18) we have:  
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and if cVv x ==' , then  cvx = , and not 2c! Therefore, if the train moves with a speed c and I run inside at c, as 

well, with respect to the platform, I’ll have a resulting speed equal to c and not 2c! 
(1.19) represents the Relativistic Theorem of Addition of Velocities. 
As an example: two rockets travel each with speed c/2 and meet; at which velocity xv  do they meet? 
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App.1-Par. 1.7: The Proper Time τd  of a particle. 
 
If a particle is at rest in (O’,x’,y’,z’), i.e. if it moves in O’, indeed, i.e. if O’ is its “proper” reference system, then: dx’= 
dy’= dz’=0 and: 
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c
ds

). 

 
Therefore, when you make calculations on a particle, you are led to use for it its proper time, indeed: 
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App.1-Chapter 2: The relativity of energies. 
 
App.1-Par. 2.1: The momentum-energy four-vector (or linear momentum). 
 
We know from classic physics that the linear momentum is given by the product of the mass by the velocity. Now, in the 
relativistic case, for what has been said so far, we will define a four-vector and then the velocity as dx/dt will have the 

{ {



proper time τd  instead of dt, which is typical of the particle, indeed, for which we are going to define the four-vector: 
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where vr  is the (three-dimension) velocity vector, pr is the three-dimension linear momentum,  

dt
dxmmc 4=  is the 4-dimension component, 

γ
τ

dtd =   is the proper time and 0
0

1
mmm γ

γ
==  is the dynamic mass, 

which is the rest mass only if v=0. 
We have just begun to introduce the concept of relative mass, which is increasing with speed, and becoming infinite 
when v=c. 
 
As already said before, the modules of 4-vectors are “absolute”, i.e. they are invariant for Lorentz T.; in fact: 
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= constant, i.e. it’s not 

depending on v. 
In Relativity there exist a Universe (mathematically 4-dimensional) described by 4-vectors, where quantities are not 
changing so arbitrarily with speed and where laws of nature preserve some consistency, no matter what the state of 
motion is. 
 
App.1-Par. 2.2: The velocity four-vector. 

We obviously define it as follows: 
τd
xdv =  , where we use the proper time τd  for reasons already shown. Numerator 

and denominator are both invariant, so also v  is. 
We have: 
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and so, as a module for such a 4-vector: 222222 ccvv −=−= γγ  (constant!).                                              (A2.1) 

 
Par. 2.3: The four-force. 
 
As in classic physics, force is the derivative of the linear momentum with respect to time, in relativity we define the 4-
force as the derivative of the momentum-energy 4-vector with respect to time (proper time):  
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so we have: Ffvm
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d rrr

=⋅= γγγ )( 0 ,                                                                                                       (A2.3)  
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and then, about the fourth component: 40 )( Fcm
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and so: )()(
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Now, we differentiate (A2.1), that is, the following equation: 
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If now we go back to (A2.2), we finally have the 4-force, or Minkowski force: 
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To have the transformation equations for such a 4-force, please see Subappendix 1.4. 
 
Par. 2.4: E0=m0c2. 

According to (A2.5), we have: 40 )( Fcm
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=γγ  , whilst for (A2.7) we have:   )(4 vf
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(A2.9) is exactly the expression for the energy in classic physics, if 1=γ ; the integration of (2.9) with integration 
constant equal to zero yields: 
 

2
0cmE γ=                                                                                                                                                                                   (A2.10) 

   
In reality (A2.10) holds only for gained energies (as in particle accelerators), while for lost energies (collapsing Universe 
or Atomic Physics of electrons going down in energy levels) the following must be used, and I assume it as mine: 
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(see also Appendix 2; for a convincing proof of it, please contact me: leonrubino@yahoo.it ). 
Therefore, a particle whose mass is m0 has got a total energy: 
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and “at rest”( 0=v   and so 1=γ ) it has a “rest” energy: 
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App.1-Par. 2.5: Relativistic kinetic energy. 
 
The difference between (A2.11) and (A2.12) obviously yields the pure kinetic energy of a particle: 
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If now ve develop, according to Taylor, the expression for 
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vcmcmEK ==−= γ     (v<<c)  which is the well known classic expression (Newton’s) for the 

kinetic energy! 
In order to have a proof of the (A2.13) starting from a collapsing Universe characteristics, please see into Appendix 2.  
 
App.1-Chapter 3: Relativistic phenomena. 
 
App.1-Par. 3.1: Time and gravity: gravity slows down the time! 
 
Also gravity slows down the time! On a mountain time elapses faster than down in the valley. Of course, on the Earth, 
the difference is imperceptible, but on a neutron star or in a black hole, that effect is very strong.  
                                                                                                              gHmE 0=∆  (delta energy from the level difference)    

                                                                                              ν∆=∆ hE  (delta energy due to the freq. decrease of                 

                                                                                         the photon). From them: hgHm0=∆ν .    

                                                                                         For a photon, νhE = , but in relativity: 2
0cmE = ,   

                                                                                         from which, for a photon: 2
0 chm ν= and so,  

                                                                                         for ν∆ : 2cgHνν =∆ and as time is the reciprocal of  

                                                                                         the frequency, we have: tt∆=∆ νν  and so:  

                                                                                                              t
c
gHt 2=∆ . Therefore, over a time t, we have a slow          

Fig. A3.1: Mountain, gravity and time.                                     down Δt due to gravity! 

We know that the escape velocity of a celestial body whose mass is M and radius R is: RGMV 2=  . If on that 

body an object is cast vertically with the escape velocity, it will quit the gravitational field of that celestial body and will 
go towards the infinite, without falling down anymore.  
A black hole is a body so compressed (big M and small R) that the escape velocity on its surface reaches the speed of 
light and so not even the light can escape, from which the name of black hole; moreover, for what above said, we can 
say that in a black hole time is approximately stopped!  
 
App.1-Par. 3.2: Volume of moving solids. 
Moving solids appear rotated. 
 
 
 
 
 
                                                                                           
 
 
 
 
 
  Fig. A3.2: Body seen at rest.                                                                                      Fig. A3.3: Body seen moving. 
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zyxV ∆∆∆= (volume of the solid for an observer integral with it) 

22 11'''' ββ −=∆∆−∆=∆∆∆= VzyxzyxV (volume of the solid for an observer who sees that solid in 

movement with speed V, along x). 
Of course, for Lorentz Transformations, as the movement is along x, only Δx is contracted. On the other hand, the 
observer at rest sees point B with a delay with respect to A, and this delay is L/c, obviously. As a further consequence, B 
appears as moved back about a stretch which is (L/c)V=βL. 
We have: Lsin φ= βL, from which:  sin φ= β   and   φ=arcsin β.  
Finally, that body appears rotated! And a sphere goes on appearing as a sphere. 
 
App.1-Par. 3.3: The equation of waves, or of D’Alembert, holds in every inertial reference system.  
 
Electromagnetic waves in vacuum, an so the light, too, propagates, as well known, respecting the wave equation: 
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Now, we preliminarily notice that, according to the Lorentz Transformations, we have (by deriving them): 
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According to mathematical analysis, we have, in 0’: )','( trrφφ = , and so: 
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 from which, by substitution in the wave equation, we have: 
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  that is what we wanted to prove. 

 
App.1-Par. 3.4: The Fizeau experiment. 
 
In 1849, a long time before the formulation of the Special Theory of Relativity by Einstein (1905), the French physicist 
A.H.L. Fizeau carried out studies on the speed of light in water and in moving fluids. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                              Fig. A3.4: Fizeau’s experiment. 
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In water at rest, light has velocity skmsm
n
cv /000.225

33,1
/103 8

≅
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== , where n=1,33 is the refractive index of 

water. If now water, or the fluid, in which we are going to measure the speed of light, flows with speed V, then, 
according to Fizeau’s results, the total velocity of light in the flowing fluid is: 
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n
cv −+= ,                                                                                                                                  (A3.1) 

in total disagreement with classic physics, according to which we should more simply have: V
n
cv += . 

Years later, STR has given a theorethical explanation of (A3.1). In fact, for the Theorem of Addition of Velocities given 
by (A1.19), we can write that: 
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the denominator are both negligible (<<1) with respect to the other terms and can be neglected indeed, from which the 

assertion: )11( 2n
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App.1-Par. 3.5: Relativistic Doppler Effect (longitudinal). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A3.5: Longitudinal Doppler Effect (example of a source S getting farther from R with speed V   (β)). 
 
The source aerial sends electromagnetic signals to the receiving one, and the periods is TS;   
Because of the time dilation, the receiving aerial will receive them with a period T’S , so that: 
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and we rewrite it here: 
)1(
)1(

β
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−
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= SR TT ; (S and R getting farther)                                                            (A3.2) 

The same holds if the receiver is the one who gets farther. If, then, S and R are getting closer, through the same 
reasonings which led us so far, the following holds:  
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= SR TT  (S and R getting closer).                                                                                                 (A3.3) 

For a more general treatment of this subject, see Subappendix 1.2.  
 
App.1-Par. 3.6: The Twin Paradox explained by the Relativistic Doppler Effect!  
 
Say a twin leaves for a space flight with a velocity equal to 3/5 c=180.000 km/s, getting far away from the Earth for 25 
min (measured on the Earth) and then he comes back towards the Earth with the same velocity, so taking another 25 
min. Out of simplicity, we neglect the acceleration and deceleration phases. 
Now, in order to prove that the time dilation acts also on the cardiac (heart) rhythm of the travelling twin (but still in the 
opinion of the twin at rest on the Earth, and when the twins meet on the Earth, at the end of the flight), say, out of 
simplicity, both twins have one heartbeat per second and say the twin on the Earth transmits a radio pulse (whose 
speed is c) every second, i.e. every heartbeat, towards the space ship, in order to inform his travelling twin brother on 
his own cardiac rhythm. Now, remember that in the opinion of the “older” twin at rest on the Earth, the flight lasts, by 
supposition, 25+25=50 min (3000 heartbeats), while, if the time dilation is true, for the “younger” travelling twin it lasts 
(V=3/5 c, that is: β=3/5): 
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VTTT oldoldyoung −=−=−= β =40min  (=2400 heartbeats) 

Moreover, under a Doppler analysis of the phenomenon, we can say that for equation (A3.2), the twin on the Earth (old) 
transmits his heartbeats every second, but the flying twin will receive them, during the first “to” step of the flight, every 
two seconds; in fact: 
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, so, in the “to” step, the flying twin, whose “to” flight time is 

20 min=1200s=1200 heartbeats, has received one heartbeat every 2s from his brother on the Earth, that is just 600 
heartbeats.  
Therefore, the flying twin, during his 20 min(=1200s) “to” flight, has counted on himself 1200 heartbeats, but has 
received only 600 from his brother on the Earth. 
After 20 min of the flying twin, the direction of the flight is inverted and the return to the Earth starts, for another 20 
min (still according to the time measured by the flying twin). During those further 20 min’s return flight (“from”), on the 
contrary, the twin on the Earth still transmits every second, but the flying one now receives every half a second; in fact, 
for equation (A3.3): 
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, so, during those further flyer’s 20 min=1200s= 

=1200 heartbeats counted on himself, the flyer receives 2400 heartbeats from his brother on the Earth.  
Therefore, the flying twin, during his further 20 min(=1200s) return flight, has obviously counted on himself another 
1200 hearthbeats and has received 2400 (!) from his brother from the Earth. 
 
Sum up of the counts:   
Totally, during the whole space flight, of 20+20=40 min, the flying twin has obviously counted 1200+1200=2400 
hearthbeats  on himself and (a piece of!) 600+2400=3000 hearthbeats from his twin brother on the Earth.  
He must feel younger!!! 
 
 
 
 
 
 
 
 
 
 
 



App.1-Par. 3.7: The Michelson and Morley experiment.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
Fig. A3.6: Michelson’s device (interferometer). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A3.7: Luminous paths and relevant velocities. 
 
Before Einstein, they thought that electromagnetic waves, and so the light, had to propagate in a mean, as well as for 
sounds in the air. They supposed that the space was filled with an invisible and very light gas, the ether. The Earth 
rotates around the Sun with a speed V around 30 km/s, so it should move through the ether with such a speed and light 
emitted by a light source which is on the Earth itself should have, in general, a speed different from c (c±V along the 
direction of rotation of the Earth and 22 Vc −  transversally). 
In 1886 they started to prepare the experiment which should have proved the movement of the Earth through the ether. 
In Cleveland they stopped the street traffic during the experiment in order not to have vibrations; the device was put on 
a floating stone slab in a well of mercury, to easily rotate it of 90° without vibrations. 
Now, if you put l1 along the direction of rotation of the Earth, about the - to and fro - light path, we have:  

)1(
12

22
111

1 cVc
l

Vc
l

Vc
lt

−
=

−
+

+
=  and for the transversal path along l2: 

S 

S1 

S2 

Interferometer and binocular 

L – Light source 
r1 

r2 

S – semireflective mirror 
S1, S2 - mirrors 
 

S2 

S 

S 

l2 

2
2tV ⋅  

S 

S1 

l1 

c+V 

c-V 

22 Vc −  

V V 
c c 

22 Vc −  



)1(
122

22
2

22
2

2
cVc

l
Vc

lt
−

=
−

=  

If you make both rays enter an interferometer to make them interfere, indeed, they should arrive with a Δt: 
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as we have 410−≅cV , 822 10−≅cV  and kxx k +≅+ 1)1( . 

The wavelenght of the used light was m7105,5 −⋅=λ and we know that λ corresponds to the full angle π2 ; 
therefore, we can write the following proportion, which involves the phase difference δ between the two rays and the 
path difference cΔt: 
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By fixing the one arm length and adjust the other arm one by a micrometric screw, you can make cΔt of the same size 
of λ, so making the desired interference phenomenon.  
Now, without bringing any change to the geometry of the device, rotate it of 90°; the roles of l1 and l2 are so swapped 
and we’ll have:  
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, that is, through the 

rotation of the interferometer, you should see a shift of the fringes of interference of 0,4 times the distance λ between 
two subsequent maxima.  

In reality, none of all that was observed, despite the accuracy of the devices was as good as to detect a 01,0
2

=
∆
π
δ

!  

Michelson declared himself to be disappointed by that experiment, as he couldn’t prove the movement of the Earth 
through the ether. 
The question was solved in 1905 by an employee of the Patent Office of Berne, Albert Einstein, who suggested to cease 
searching for a proof of the movement of the Earth through the ether, for the simple reason that the ether is not 
existing! 
I add that the nowadays’ dark matter will soon end up like it. 
 
App.1-Chapter 4: Relativistic Electrodynamics.  
 
App.1-Par. 4.1: Magnetic force is simply a Coulomb’s electric force(!). 
 
Concerning this, let’s examine the following situation, where we have a wire, of course made of positive nuclei and 
electrons, and also a cathode ray (of electrons) flowing parallel to the wire:  
 
 
 
 
  
 
 
 
 
 
 
 
 
Fig. A4.1: Wire not flown by any current, seen from the cathode ray steady ref. system I’ (x’, y’, z’).  
 
We know from magnetism that the cathode ray will not be bent towards the wire, as there isn’t any current in it. This is 
the interpretation of the phenomenon on a magnetic basis; on an electric basis, we can say that every single electron in 
the ray is rejected away from the electrons in the wire, through a force F- identical to that F+ through which it’s attracted 
from positive nuclei in the wire.  
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Now, let’s examine the situation in which we have a current in the wire (e-
 with speed u) 

 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. A4.2: Wire flown by a current (with e- speed=u), seen from the cathode ray steady ref. system I’ (x’, y’, z’).  
 
In this case we know from magnetism that the cathode ray must bend towards the wire, as we are in the well known 
case of parallel currents in the same direction, which must attract each other. 
This is the interpretation of this phenomenon on a magnetic basis; on an electric basis, we can say that as the electrons 
in the wire follow those in the ray, they will have a speed lower than that of the positive nuclei, in the system I’, as such 
nuclei are still in the wire. As a consequence of that, spaces among the electrons in the wire will undergo a lighter 
relativistic Lorentz contraction, if compared to that of the nuclei’s, so there will be a lower negative charge density, if 
compared to the positive one, so electrons in the ray will be electrically attracted by the wire.  
This is the interpretation of the magnetic field on an electric basis. Now, although the speed of electrons in an electric 
current is very low (centimeters per second), if compared to the relativistic speed of light, we must also acknowledge 
that the electrons are billions and billions…., so a small Lorentz contraction on so many spaces among charges, makes a 
substantial magnetic force to appear.  
But now let’s see if mathematics can prove we’re quantitatively right on what asserted so far, by showing that the 
magnetic force is an electric one itself, but seen on a relativistic basis.  
On the basis of that, let’s consider a simplified situation in which an electron e- , whose charge is q, moves with speed v 
and parallel to a nuclei current whose charge is Q+ each (and speed u):  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A4.3: Current of positive charge (speed u) and an electron whose speed is v, in the reader’s steady system I. 
 
a) Evaluation of F on an electromagnetic basis, in the system I : 
First of all, we remind ourselves of the fact that if we have N charges Q in line and d spaced (as per Fig. A4.3), then the 
linear charge density λ will be:  
 

dQdNQN =⋅⋅=λ   .  
 
Now, still with reference to Fig. A3.3, in the system I, for the electromagnetics the electron will undergo the Lorentz 
force )( BvEqFl ×+=  which is made of an originally electrical  component and of a magnetic one:  
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Direction of the current I, 
whose e- speed is u  
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where the negative sign tells us the magnetic force is repulsive, in that case, because of the real directions of those 
currents, and where the steady distance d0 is contracted to d, according to Lorentz, in the system I where charges Q 

have got speed u ( 22
0 1 cudd −= ). 

 
b) Evaluation of F on an electric base, in the steady system I’ of q: 
 
in the system I’ the charge q is still and so it doesn’t represent any electric current, and so there will be only a Coulomb 
electric force towards charges Q:  
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where u’ is the speed of the charge distribution Q in the system I’, which is due to u and v by means of the well known 
relativistic theorem of composition of speeds:  

)1()(' 2cuvvuu −−=  ,                                                                                                                         (A4.3) 

and d0, this time, is contracted indeed according to u’:  22
0 '1' cudd −=  . 

We now note that, through some algebraic calculations, the following equality holds (see (A4.3)): 
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We now want to compare (4.1) with (4.4), but we still cannot, as one is about I and the other is about I’; so, let’s scale 

elF '  in (A4.4), to I, too, and in order to do that, we see that, by definition of the force itself, in I’: 
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=   , where II pp ∆=∆ ' , as p∆  extends along y, and not 

along the direction of the relative motion, so, according to the Lorentz transformations, it doesn’t change, while t∆ , of 
course, does.  So: 
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Now we can compare (4.1) with (A4.5), as now both are related to the I system.  
Let’s write them one over another: 
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Therefore we can state that these two equations are identical if the following identity holds: 001 µε=c  , and this 

identity is known since 1856. As these two equations are identical, the magnetic force has been traced back to the 
Coulomb’s electric force, so the unification of electric and magnetic fields has been accomplished!! 
 
 



App.1-Par. 4.2: The Current Density four-vector. 
 
We obviously have the following equations on charge density: 

0
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Moreover, notice that the following equation holds; it shows the invariance of the electric charge: 
τρρ ddt =00 . 

Moreover, we know from physics that the current density is: 

vj rr
ρ= . 

So, we are led to define the current density 4-vector in the following way: 
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== ; note the similarity with the momentum-energy 4-vector: 
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 and moreover, as we can apply the Lorentz Transformations to a 4-vector, as said at App.1-

Par. 1.5 – eq. (A1.12), we have: 
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 where cV=β  e 
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1
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γ
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Now, in order to show by 4-vectors and in a more compact way what shown in App.1-Par. 4.2, we consider a wire flown 
by a stationary current I in a reference system k and let I be directed along x; if, in such a system, we put a charge q 
whose speed is v along x, we’ll have a movement of q by the only field B, as E=0, because, on an average, we have in a 
conductor as many positive charges as the negative ones are. On the contrary, if we place ourselves in a k’ reference 
system which is moving with speed V=v with respect to k, in k’ q is at rest and theoretically the magnetic force should 
disappear; but this is unacceptable for the Principle of Relativity (see the Introduction). An electric field must so appear 
in k’; in fact:  
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  [n]=[number of q involved/m3] and 

),(),( nqcvnqcjj −−== −−−

rr
ρ   , the first term is negative as the direction of v is opposite to the conventional one 

for I (as, here q<0) and the second one is still negative, as well, still because here, q<0. 
 
For the Lorentz Transformations (A1.12) we so have (v=V): 
 
 nqVj x γ−=+'                                           )(' nqVnqvj x +−=− γ                  

 nqγρ =+'                                                )(' 2c
vVnqnq +−=− γρ  

and as now −+ −≠ '' ρρ , an electric field must appear. 
 
App.1-Par. 4.3: The Electromagnetic Field Tensor. 
 
Preamble on tensors:  
 
A vector is a tensor of rank 1. 
For us it’s enough to say that we get a rank 2 tensor when we make the product of the components of two vectors c and 
b: 

),,,()( 4321 cccccc i =  , ),,,()( 4321 bbbbbb k =     →     kiik bcA =      
Through (A1.16) and (A1.17) we have seen how to express the Lorentz Transformations: 
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which is the transformation law for a rank 2 tensor.                                    
 
Then, we also notice that we get a rank 2 tensor also when we derive the components of a vector b with respect to the 
x coordinate: 
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ααα  ; therefore, such a derivative transforms as the components 

of a rank 2 tensor and so it’s a rank 2 tensor, as well. 
 
Preamble on electromagnetism:  
 
We know from the electromagnetism that electric and magnetic fields (induction vector B) can be expressed as a 
function of electrodynamic potentials φ and A: 
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and also the Continuity Equation: 0=
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Still from electromagnetism, we also know that:  

=−=
∂
∂

−∆
ε
ρϕ

ϕ 2

2

2
1

tc
    φ      and                                                                                                          (A4.12) 

=−=
∂
∂

−∆ j
t
A

c
A

r
r

r
µ2

2

2
1

   A
r

                                                                                                                     (A4.13) 

and we remind ourselves that we already defined the current density 4-vector j: 
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------------------ 

 
Now, we feel led to define the Potential Four-vector or Four-Potential Φ : 
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we easily get: 
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 for the Continuity Equation (A4.11) and 04 =Φ∇
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 for the Lorentz Condition (A4.10).  

------------------ 
Now, from (A4.8) and (A4.9), we have:  
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 etc; therefore, E and B 

cannot be espressed through two 4-vectors, but through a rank 2 four-tensor, as we proved the derivative of a vector is 
a 2-tensor: 
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Notice that Fik is antisymmetric, that is: Fik=-Fki. 
 
Then, of course: 
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If now we remind ourselves that on the right side of (A4.14) the summation over l and m is understood, as they are 
repeated there, and if we develop such an equation, we get the transformation of the electromagnetic field: 
  

xx EE '=                                                           xx BB '=  
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and also its inverse: 
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SUBAPPENDIXES:  
 
Subapp. 1: Lorentz Transformations in succession. 
 
k   >>>  V  >>>  k’  >>> W  >>>  k’’ 
We have three reference systems k, k’ and k’’ and V and W are the relevant relative velocities. 
 

Through the following terminology: 
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Now, we see that: 
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( 1γ ,V   and  2γ ,W), you just make one, but usingγ  and U.                                                               
 
Subapp. 2: Transversal (relativistic) Doppler Effect.  
 
If we represent an electromagnetic wave propagating, through its electric field E: 
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rktI rr
⋅−= ω  is evidently an invariant, but it can also be expressed as the product of two 4-vectors (invariants): 

(position 4-vector and wave 4-vector) ),(),( ckkctrrI ω
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We know, now, that for (A.2.1), 
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 and let’s take a light wave propagating in a system k’(V) over the plane x’, y’ 

and forming an angle θ’ with x’; the components of 'k
r

will be:  
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For the Lorentz T. , we have, on the contrary, in a system k: 
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propagates on x,y; so, we have: 
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while from the transformation of k’1 , we have: )''cos'(cos
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Then, we notice that the transformation of k’2 and (A.2.2) yield: 
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and from (A.2.3) and (A.2.4) we also have: 
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and with (-β) in place of β; all this, for the relativity of the movement.    
------------------------ 

Now, suppose a source ω’ is at rest in a system k’(θ’); then, from (A.2.3) we have: 
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Here ω’ is the ω of the moving source and ωω ≠' . Therefore, if in the system k you see the radiation under an angle 

πθ = , this means that the radiation comes from right, from the system k’ which is getting farther along the x axis, and 
so we can talk about a Longitudinal Doppler Effect (Par. 3.5) and, in this case, 1coscos −== πθ  and from (A.2.5) 

with the source getting farther ( πθ = ), we have: 
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= TT , just like in App.1-Par. 3.5. 

    
Curio: by a series development on β (<<1), (A.2.6) and (A.2.7) give: )1(' βωω −≅  and )1(' βωω +≅  so: 
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 ; this formula is very used in astrophysics and cosmology for the red shift (remember that  

πνω 2=  and c=λν ). 
In order to go from the case of the moving emitter to that of the moving observer and vice versa, you just swap β with  
– β (V with –V) and ω’ with ω. In any case, when there is an approaching (or a getting farther) situation, formulae for 
the Longitudinal Relativistic Doppler Effect are the same, no matter who is approaching. 
If, on the contraty, system k sees the radiation coming under 2πθ = , from the top, then we can talk about a 
TRANSVERSAL Relativistic Doppler Effect; in this case you don’t have either a getting farther or an approaching 
situation, but the only Doppler kind effect is just due to the time dilation; in fact, also from (A.2.5), with 2πθ = , we 

have: )1(' 2βωω −=  . By developing, with β<<1, we have: )
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1('
2β

ωω −≅  (second degree in β, so, a lighter 

effect, with respect to the longitudinal one). Such an effect was first observed by Ives in 1938 and this plainly proved 
the theory. Moreover, the diversity between θ’ and θ also confirms the phenomenon of the light ABERRATION, according 
to which, if you are moving, you see light coming to you under a different angle, something like when you are driving a 
car in a rainy day and you see the rain falling askew on the windscreen. And from (A.2.3) and (A.2.4), we have: 
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Subapp. 3: The Transformations of the four-velocity. 
 
We have defined the velocity 4-vector in App.1-Par. 2.2: 
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By applying the Lorentz T. , we have: )(' 411 uuu β−Γ= , 22' uu =  ,  33' uu =  , )(' 144 uuu β−Γ= ; 

now, you can see that Γ  is defined by the V of the moving system 0’ (and β=V/c), while γ  is referred to the velocity v 

had by a particle in 0, and 'γ  is to v’ had by a particle in 0’. Now, by replacing the u by the relevant values:  

)('' Vvv xx γγγ −Γ= , yy vv γγ =''  ,  zz vv γγ =''  , )(' xvcc γβγγ −Γ= ; 

from the last one, we have: 
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and if you put it in the first three ones: 
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For the case of the inverse transformations, in place of the (A.3.1), we’ll have: )1(
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. 

It follows from (A.3.1) that if the particle is at rest in 0 (v=0 >> 1=γ ), then Γ='γ , from which v’=-V , that is, in 0’ 
the particle has a velocity –V (of course). 
 
Subapp. 4: The transformations of the four-force. 

At App.1-Par. 2.3 we have introduced the Minkowski Force, or 4-force: ),,,())(,( 4321 FFFFvf
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According to the Lorentz T.: )(' 411 FFF β−Γ= , 22' FF =  ,  33' FF =  , )(' 144 FFF β−Γ=  . 
If now we introduce in such equations the components of the Minkowski Force, we have: 
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which are the transformation equations of the 4-force. 
 
Subapp. 5: The acceleration four-vector and the transformations of the acceleration. 
  
Of course, the 4-vector acceleration can be defined as follows: 
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For the first three (spatial) components, we have: ( 3,2,1=α )  
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4 =a , that is, the spatial part of a  is equal to the common 

three-dimensional one. Moreover: 022
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2a is an invariant, the inequality is always true and so a  is 

space-type. 
In order to get the transformation equations for the acceleration, know that:  
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Then, from them, we have:  
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if now we divide these equations by the following well known equation (of the Lorentz T.) )''( dx
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have: 
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which are the equations for the transformation of the accelerations, indeed. 
At last, we notice those equations have got the velocity inside; therefore, if the three-dimension acceleration is constant, 
in an inertial reference system, it will change with time in all others! 
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App. 2-Chapter 1: A new Universe, 100 times bigger, more massive and older.                                        
 
App. 2-Par. 1.1: No dark matter! 
 
ON DISCREPANCIES BETWEEN CALCULATED AND OBSERVED DENSITIES  ρUniv : 
The search for 99% of matter in the Universe, after that it has been held invisible sounds somewhat strange. And it’s a 
lot of matter, as dark matter should be much more than the visible one (from 10 to 100 times more).  
 

Astrophysicists measure a ρ value of visible Universe which is around: 330 /102 mkg−⋅≅ρ . 
Prevailing cosmology nowadays gives the following value of ρ: (see also (A1.6)): 

3262 /102)
3
4/( mkgGH localWrong

−⋅≅= πρ  (too high!)  .                                                                            (A1.1) 

Let’s use the following plausible value for Hlocal (local Hubble’s constant – see (A1.7) below):  
 

])([10338,2)/(75 18 m
s
mMpcskmH local

−⋅≅⋅≅                                                                                    (A1.2) 

confirmed by many measurements on Coma cluster, for instance, (see (A1.7) below) and this also confirms that the 
farthest objects ever observed are travelling away with a speed close to that of light: 
 

OldUniverselocal RcH −≈ /  , from which: yearlightMpcHcR localOldUniv _105,134000/ 9⋅≈≈≈−              (A1.3)                              

 
Moreover, one can easily calculate the speed of a “gravitating” mass m at the edge of the visible Universe, by the 
following equality between centrifugal and gravitational forces: 
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from which, also considering (A1.3), we have:  
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and so:  
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i.e. (A1.1) indeed (too high value!)   
Good…, sorry, bad; this value is ten thousand times higher than the observed density value, which has been measured 
by astrophysicists. Moreover, galaxies are too “light” to spin so fast (see further on). As a consequence, they decided to 
take up searching for dark matter, and a lot of, as it should be much more than the visible one (from 10 to 100 times 
more).  

On the contrary, astrophysicists detect a value for ρ around: 330 /102 mkg−⋅≅ρ . 
Let’s try to understand which arbitrary choices, through decades, led to this discrepancy. From Hubble’s observations on, 
we understood far galaxies and clusters got farther with speeds determined by measurements of the red shift. Not only; 
the farthest ones have got higher speeds and it quite rightly seems there’s a law between the distance from us of such 
objects and the speeds by which they get farther from us.  
Fig. A1.1 below is a picture of the Coma cluster, about which hundreds of measurements are available; well, we know 
the following data about it: 
  
distance   Δx=100 Mpc = 3,26 108 l.y. = 3,09 1024 m  
 
speed   Δv=6870 km/s=6,87 106 m/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A1.1: Coma cluster. 
 
If we use data on Coma cluster to figure out the Hubble’s constant Hlocal, we get: 

])([1022,2 18 m
s
mxvH local

−⋅≅∆∆= ,                                                                                                 (A1.7) 

That is a good value for “local” Hubble’s constant. 
 
App. 2-Par. 1.2: The cosmic acceleration aUniv. 
As a confirmation of all we just said, we also got the same Hlocal value from (A1.3) when we used data on the visible 

Universe of 13,5 910  l.y. radius and ~c speed, instead of data on Coma cluster. By the same reasonings which led us so 
far to get the Hlocal constant definition, we can also state that if galaxies increase their own speeds with going farther, 
then they are accelerating with an acceleration we call aUniv , and, from physics, we know that: 
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acceleration aUniv , yields: 
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after that we used data on Coma cluster. 
This is the acceleration by which all our visible Universe is accelerating towards the center of mass of the whole 
Universe. 
Now, we say the Universe is 100 times bigger and heavier:  

mRR UnivNewUniv
281017908,1100 ⋅≅≅−                                                                                                     (A1.9) 

kgMM UnivNewUniv
551059486,1100 ⋅≅≅−                                                                                               (A1.10) 

 
This value of radius is 100 times the one previously calculated in (A1.3) and it should represent the radius between the 
center of mass of the Universe and the place where we are now, place in which the speed of light is c. 

((as we are not exactly on the edge of such a Universe, we can demonstrate the whole radius is larger by a factor 2 , 
that is RUniv=1,667 1028m.)) 
 
Anyway, we are dealing with linear dimensions 100 times those supported in the prevailing cosmology nowadays. We 
can say that there is invisible matter, but it is beyond the range of our largest telescopes and not inside galaxies or 
among them; the dark matter should upset laws of gravitations, but they hold very well.  
 
By these new bigger values, we also realize that:  
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By the assumptions in the (A1.9) and (A1.10), we get: 
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which is the right measured density! 
                                                                                                            
And we also see that:  
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−− ⋅=⋅=     (from the Newton’s Universal Law of Gravitation) 

 
 
The new density in the (A1.12) is very very close to that observed and measured by astrophysicists and already reported 
at page 69.  
Nature fortunately sends encouraging and convincing signs on the pursuit of a way, when confirmations on what one 
has understood are coming from branches of physics very far from that in which one is investigating. 
On the basis of that, let’s remind ourselves of the classic radius of an electron (“stable” and base particle in our 
Universe!), which is defined by the equality of its energy E=mec2 ant its electrostatic one, imagined on its surface ( in a 
classic sense): 

e
e r

ecm
2

0

2

4
1
πε

=⋅  , so:  

m
cm

er
e

e
15

2

2

0

108179,2
4

1 −⋅≅
⋅

=
πε

                                                                                                      (A1.13) 



Now, still in a classic sense, if we imagine, for instance, to figure out the gravitational acceleration on an electron, as if it 

were a small planet, we must easily conclude that: 2
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that is the very value obtained in (A1.8) through different reasonings, macroscopic, and not microscopic, as it was for 
(A1.14). All in all, why should gravitational behaviours of the Universe and of electrons (making it) be different? 
 
App. 2-Par. 1.4: Further considerations on the meaning of aUniv. 
Well, we have to admit that if matter shows mutual attraction as gravitation, then we are in a harmonic and oscillating 
Universe in contraction towards a common point, that is the center of mass of all the Universe. As a matter of fact, the 
acceleration towards the center of mass of the Universe and the gravitational attractive properties are two faces of the 
same medal. Moreover, all the matter around us shows it want to collapse: if I have a pen in my hand and I leave it, it 
drops, so showing me it wants to collapse; then, the Moon wants to collapse into the Earth, the Earth wants to collapse 
into the Sun, the Sun into the centre of the Milky Way, the Milky Way into the centre of the cluster and so on; therefore, 
all the Universe is collapsing. Isn’t it?  
So why do we see far matter around us getting farther and not closer? Easy. If three parachutists jump in succession 
from a certain altitude, all of them are falling towards the center of the Earth, where they would ideally meet, but if 
parachutist n. 2, that is the middle one, looks ahead, he sees n. 1 getting farther, as he jumped earlier and so he has a 
higher speed, and if he looks back at n. 3, he still sees him getting farther as n. 2, who is making observations, jumped 
before n. 3 and so he has a higher speed. Therefore, although all the three are accelerating towards a common point, 
they see each other getting farther. Hubble was somehow like parachutist n. 2 who is making observations here, but he 
didn’t realize of the background acceleration g (aUniv). 
At last, I remind you of the fact that recent measurements on Ia type supernovae in far galaxies, used as standard 
candles, have shown an accelerating Universe; this fact is against the theory of our supposed current post Big Bang 
expansion, as, after that an explosion has ceased its effect, chips spread out in expansion, ok, but they must obviously 
do that without accelerating. 

Moreover, on abundances of 235U and 238U we see now (trans-CNO elements created during the explosion of the 
primary supernova, we see that (maybe) the Earth and the solar system are just (approximately) five or six billion years 
old, but all this is not against all what just said on the real age of the Universe, as there could have been sub-cycles 
from which galaxies and solar systems originated, whose duration is likely less than the age of the whole Universe. 
About TUniv of the Universe, we know from physics that: v=ωR   and    T/2πω =  , and, for the whole Universe: 

c=ωRUniv and  UnivT/2πω =  , from which: 
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             (7.840 billion years)                                                                     (A1.15) 

About the angular frequency: sradRc NewUniversoUniv /1054,2/ 20−
− ⋅=≅ω , and it is a right  parameter for a 

reinterpretation of the global Hubble’s constant globalH , whose value is localH  only in the portion of Universe visible by 

us ( GlobalUniv H=ω ). 

 
App. 2-Par. 1.5: Further confirmations and encouragements from other branches of physics. 
 
1) Stephan-Boltzmann’s law: 

4Tσε = [W/m2],   where   )(1067,5 428 KmW−⋅=σ  
It’s very interesting to notice that if we imagine an electron (“stable” and base particle in our Universe!) irradiating all 
energy it’s made of in time TUniv , we get a power which is exactly ½ of Planck’s constants, expressed in watt! 
In fact:  
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(One must not be surprised by the coefficient ½; in fact, at fundamental energy levels, it’s always present, such as, for 
instance, on the first orbit of the hydrogen atom, where the circumference of the orbit of the electron (2πr) really is 

DeBroglieλ
2
1 of the electron. The photon, too, can be represented as if it were contained in a small cube whose side is 

photonλ
2
1 ). 



2) Moreover, we notice that an electron and the Universe have got the same luminosity-mass ratio: 
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consider that both an “electron” and the Universe have got the same temperature, the cosmic microwave background 
one: 
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   !!! 

And all this is no more true if we use data from the prevailing cosmology! 
3) The Heisenberg Uncertainty Principle as a consequence of the essence of the macroscopic and Univa  accelerating 

Universe: 
according to this principle, the product Δx Δp must keep above 2/h , and with the equal sign, when Δx is at a 
maximum, Δp must be at a minimum, and vice versa: 

2/h≥∆⋅∆ xp     and    2/minmax h=∆⋅∆ xp    ( π2/h=h ) 

Now, as  maxp∆
 we take, for the electron (“stable” and base particle in our Universe!),  
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  and as  

minx∆   for the electron, as it is a harmonic of the Universe in which it is (just like a sound can be considered as made of 

its harmonics), we have:  2
min )2( πUnivax =∆ ,   as a direct consequence of the characteristics of the Universe in 

which it is; in fact, from (A1.15),  2
UnivUnivUniv aR ω= , as we know from physics that Ra 2ω= , and then 

UnivUnivUniv T πνπω 22 ==  , and as eω  of the electron (which is a harmonic of the Universe) we therefore take the 

“ Univν –th” part of Univω  , that is: 

UnivUnive νωω =  like if the electron of the electron-positron pairs can make oscillations similar to those of the 

Universe, but through a speed-amplitude ratio which is not the (global) Hubble Constant, but through HGlobal divided by 

Univν , and so, if for the whole Universe: 2
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really  2/h   !! 
 
4) As we previously did, let’s remind ourselves of the classic radius of an electron (“stable” and base particle in our 
Universe!), which is defined by the equality of its energy E=mec2 ant its electrostatic one, imagined on its surface ( in a 
classic sense): 
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Now, still in a classic sense, if we imagine, for instance, to figure out the gravitational acceleration on an electron, as if it 

were a small planet, we must easily conclude that: 2
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5) We know that 
137

1
=α  is the value of the Fine structure Constant and the following formula νh
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the same value only if ν  is the one of the Universe we just described, that is:   Univ
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6) If I suppose, out of simplicity, that the Universe is made of just harmonics, as electrons −e  (and/or positrons +e ), 

their number will be: 851075,1 ⋅≅=
e

Univ

m
MN (~Eddington); the square root of such a number is: 421013,4 ⋅≅N  

(~Weyl). 

Now, we are surprised to notice that mrN e
281018,1 ⋅≅   (!), that is, the very UnivR  value we had in (A1.9) 

( mrNR eUniv
281018,1 ⋅≅= ) !!! 

--------------------------------------------- 
 
App. 2-Par. 1.6: On discrepancies between calculated and observed rotation speeds of galaxies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A1.2: Andromeda galaxy (M31). 
 
By balancing centrifugal and gravitational forces for a star at the edge of a galaxy: 
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On the contrary, if we also consider the tidal contribution due to aUniv , i.e. the one due to all the Universe around, we 
get: 
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GMv +=  ; let’s figure out, for instance, in M31, how many RGal (how many k times) far away from 

the center of the galaxy the contribution from aUniv can save us from supposing the existence of dark matter: 
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MMGk , therefore, at 4RGal far away, the 

existence of aUniv makes us obtain the same high speeds observed, without any dark matter. Moreover, at 4RGal far 
away, the contribution due to aUniv is dominant.  
At last, we notice that aUniv has no significant effect on objects as small as the solar system; in fact:  
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Andromeda galaxy (M31): 
 
Distance: 740 kpc;   RGal=30 kpc;  
Visible Mass MGal = 3 1011MSun;  
Suspect Mass (+Dark) M+Dark = 1,23 1012MSun; 
MSun=2  1030 kg; 1 pc= 3,086 1016 m; 
 



All these considerations on the link between aUniv and the rotation speed of galaxies are widely open to further 
speculations and the equation through which one can take into account the tidal effects of Univa  in the galaxies can 

have a somewhat different and more difficult look, with respect to the above one, but the fact that practically all galaxies 
have dimensions in a somewhat narrow range (3 – 4 RMilky Way or not so much more) doesn’t seem to be like that just by 
chance, and, in any case, none of them have radii as big as tents or hundreds of RMilky Way , but rather by just some 
times. In fact, the part due to the cosmic acceleration, by zeroing the centripetal acceleration in some phases of the 
revolution of galaxies, would fringe the galaxies themselves, and, for instance, in M31, it equals the gravitational part at 
a radius equal to:    
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a
GMR ≅=− ; in fact, maximum radii ever observed in 

galaxies are roughly this size.  
 

--------------------------------------------- 
 
App. 2-Chapter 2: The unification of electromagnetic and gravitational forces (Rubino). 
 
App. 2-Par. 2.1: The effects of MUniv on particles. 

We remind you that from the definition of er  in (A1.13): 2
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 and from the (A1.11): 
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(~Eddington), we get: 
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As an alternative, we know that the Fine structure Constant is 1 divided by 137 and it’s given by the following equation: 
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137

1
 is given by the following equation, which can be 

considered suitable, as well, as the Fine structure Constant: 
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=ν  . MinBoxE _ is the smallest box of energy in the Universe (the 

electron), while EmanableE  is the smallest emanable energy, as Univν  is the smallest frequency. 

Besides, α  is also given by the speed of an electron in a hydrogen atom and the speed of light ratio: 

hcecv Hine 0
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__ 2εα ==  , or also as the ratio between Compton wavelenght of the electron (which is the 

minimum λ of e- when it’s free and has the speed of light c) and the wavelength of e- indeed, on the first orbit of H: 

)()( __1 HineeeHCompton vmhcmh== −λλα . Moreover, 0are=α , where 529,00 =a Å is the Bohr’s radius.   

So, we could set the following equation and deduce the relevant consequences (Rubino): 
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after that (A1.15) has been used. 
 

Therefore, we can write: 
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 (and this intermediate equation, too, shows a deep relationship 

between electromagnetism and gravitation, but let’s go on…) 
 



Now, if we temporarily imagine, out of simplicity, that the mass of the Universe is made of  N electrons −e  and 

positrons +e , we could write: 
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If now we suppose that eUniv rNR =  (see also (A4.2)), or, by the same token, 
NRr Unive =

, then (A2.2)  

becomes: 
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    !!      (Rubino)  that is (A2.1) again.                                                                        

 

Now, first of all we see that the supposition eUniv rNR =  is very right, as from the definition of N above given 

(A1.10), we have:  
 

851075,1 ⋅≅=
e

Univ

m
MN (~Eddington), from which: 421013,4 ⋅≅N  (~Weyl) and 

mrNR eUniv
281018,1 ⋅≅= , that is the very UnivR  value obtained in (A1.9). 

 
App. 2-Par. 2.2: The discovery of the common essence of gravity and electromagnetism. 
 
Now, (A2.1) is of a paramount importance and has got a very clear meaning (Rubino) as it tells us that the electrostatic 

energy of an electron in an electron-positron pair ( −+ee  adjacent) is exactly the gravitational energy given to this pair 

by the whole Universe UnivM   at  an UnivR
 distance! (and vice versa) 

Therefore, an electron gravitationally cast by an enormous mass UnivM   for a very long time UnivT  and through a long 

travel UnivR
, gains a gravitationally originated kinetic energy  so that, if later it has to release it all together, in a short 

time, through a collision, for instance, and so through an oscillation of the −+ee pair - spring, it must transfer a so huge 
gravitational energy indeed, stored in billion of years that if this energy were to be due just to the gravitational potential 
energy of the so small mass of the electron itself, it should fall short by many orders of size. Therefore, the effect due to 

the immediate release of a big stored energy, by −e , which is known to be 
Univ

eUniv

R
mGM

, makes the electron “appear”,  

in the very moment, and in a narrow range ( er ), to be able to release energies coming from forces stronger than the 

gravitational one, or like if it were able to exert a special gravitational force, through a special Gravitational Universal 
Constant G’, much bigger than G: 
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; it’s only that during the sudden release of energy by the electron, there is a 

run taking effect due to its eternal free (gravitational) falling in the Universe. And, at the same time, gravitation is an 
effect coming from the composition of many small electric forces. 

I also remark here, that the energy represented by (A2.1), as chance would have it, is really 2cme  !!!, that is a sort of 

run taking kinetic energy, had by the free falling electron-positron pair , and that Einstein assigned to the rest matter, 
unfortunately without  telling us that such a matter is never at rest with respect to the center of mass of the Universe,  
as we all are inexorably free falling, even though we see one another at rest; from which is its essence of gravitationally 

originated kinetic energy 2cme : 
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App. 2-Par. 2.3: The oscillatory essence of the whole Universe and of its particles. 
 
We’re talking about oscillations as this is the way the energy is transferred, and also in collisions, such as those among 
billiards balls, where there do are oscillations in the contact point, and how, even though we cannot directly see them 
(those of peripheral electrons, of molecules, of atoms etc, in the contact point). 
So, we’re properly talking about oscillations also because, for instance, a Sun/planet system or a single hydrogen atom, 

or a −+ee pair, which are ruled by laws of electromagnetism, behave as real springs: in fact, in polar coordinates, for an 
electron orbiting around a proton, there is a balancing between the electrostatic attraction and the centrifugal force:  
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Let’s figure out the corresponding energy by integrating such a force over the space:  
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                                                                                   Fig. A2.1: Graph of the energy. 
 
 
 
 
 
The point of minimum in (r0,U0) is a balance and stability point (Fr=0) and can be calculated by zeroing the first 
derivative of (A2.3) (i.e. setting Fr=0 indeed). 
Moreover, around r0, the curve for U is visibly replaceable by a parabola UParab, so, in that neighbourhood, we can write: 

0
2

0 )( UrrkUParab +−=  , and the relevant force is:  )(2 0rrkrUF Parabr −−=∂∂−=  

 
Which is, as chance would have it, an elastic force ( kxF −=   -  Hooke’s Law). 
 
Moreover, the gravitational law which is followed by the Universe is a force which changes with the square value of the 
distance, just like the electric one, so the gravitational force, too, leads to the Hooke’s law for the Universe. 
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By means of (A2.1) and of its interpretation, we have turned the essence of the electric force into that of the 
gravitational one; now we do the same between the electric and magnetic force, so accomplishing the unification of 
electromagnetic and gravitational fields. At last, all these fields are traced back to aUniv , as gravitation does. 
 
App. 2-Chapter 3: The unification of magnetic and electric forces. 
 
App. 6-Par. 3.1: Magnetic force is simply a Coulomb’s electric force(!). 
Concerning this, let’s examine the following situation, where we have a wire, of course made of positive nuclei and 
electrons, and also a cathode ray (of electrons) flowing parallel to the wire:  
 
 
 
 
  
 
 
 
 
 
 
 
 
Fig. A3.1: Wire not flown by any current, seen from the cathode ray steady ref. system I’ (x’, y’, z’).  
 
We know from magnetism that the cathode ray will not be bent towards the wire, as there isn’t any current in it. This is 
the interpretation of the phenomenon on a magnetic basis; on an electric basis, we can say that every single electron in 
the ray is rejected away from the electrons in the wire, through a force F- identical to that F+ through which it’s attracted 
from positive nuclei in the wire.  
Now, let’s examine the situation in which we have a current in the wire (e-

 with speed u) 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. A3.2: Wire flown by a current (with e- speed=u), seen from the cathode ray steady ref. system I’ (x’, y’, z’).  
 
In this case we know from magnetism that the cathode ray must bend towards the wire, as we are in the well known 
case of parallel currents in the same direction, which must attract each other. 
This is the interpretation of this phenomenon on a magnetic basis; on an electric basis, we can say that as the electrons 
in the wire follow those in the ray, they will have a speed lower than that of the positive nuclei, in the system I’, as such 
nuclei are still in the wire. As a consequence of that, spaces among the electrons in the wire will undergo a lighter 
relativistic Lorentz contraction, if compared to that of the nuclei’s, so there will be a lower negative charge density, if 
compared to the positive one, so electrons in the ray will be electrically attracted by the wire.  
This is the interpretation of the magnetic field on an electric basis. Now, although the speed of electrons in an electric 
current is very low (centimeters per second), if compared to the relativistic speed of light, we must also acknowledge 
that the electrons are billions and billions…., so a small Lorentz contraction on so many spaces among charges, makes a 
substantial magnetic force to appear.  
But now let’s see if mathematics can prove we’re quantitatively right on what asserted so far, by showing that the 
magnetic force is an electric one itself, but seen on a relativistic basis.  
On the basis of that, let’s consider a simplified situation in which an electron e- , whose charge is q, moves with speed v 
and parallel to a nuclei current whose charge is Q+ each (and speed u):  
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Fig. A3.3: Current of positive charge (speed u) and an electron whose speed is v, in the reader’s steady system I. 
 
a) Evaluation of F on an electromagnetic basis, in the system I : 
First of all, we remind ourselves of the fact that if we have N charges Q in line and d spaced (as per Fig. A3.3), then the 
linear charge density λ will be:  
 

dQdNQN =⋅⋅=λ   .  
 
Now, still with reference to Fig. A3.3, in the system I, for the electromagnetics the electron will undergo the Lorentz 
force )( BvEqFl ×+=  which is made of an originally electrical  component and of a magnetic one:  
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where the negative sign tells us the magnetic force is repulsive, in that case, because of the real directions of those 
currents, and where the steady distance d0 is contracted to d, according to Lorentz, in the system I where charges Q 

have got speed u ( 22
0 1 cudd −= ). 

 
b) Evaluation of F on an electric base, in the steady system I’ of q: 
 
in the system I’ the charge q is still and so it doesn’t represent any electric current, and so there will be only a Coulomb 
electric force towards charges Q:  
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where u’ is the speed of the charge distribution Q in the system I’, which is due to u and v by means of the well known 
relativistic theorem of composition of speeds:  

)1()(' 2cuvvuu −−=  ,                                                                                                                         (A3.3) 

and d0, this time, is contracted indeed, according to u’:  22
0 '1' cudd −=  . 

We now note that, through some algebraic calculations, the following equality holds (see (A3.3)): 
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We now want to compare (A3.1) with (A3.4), but we still cannot, as one is about I and the other is about I’; so, let’s 
scale elF '  in (A3.4), to I, too, and in order to do that, we see that, by definition of the force itself, in I’: 
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along the direction of the relative motion, so, according to the Lorentz transformations, it doesn’t change, while t∆ , of 
course, does.  So: 
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Now we can compare (A3.1) with (A3.5), as now both are related to the I system.  
Let’s write them one over another: 
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Therefore we can state that these two equations are identical if the following identity holds: 001 µε=c  , and this 

identity is known since 1856. As these two equations are identical, the magnetic force has been traced back to the 
Coulomb’s electric force, so the unification of electric and magnetic fields has been accomplished!! 

--------------------------------------------- 

App. 2-Chapter 4: Justification of the equation eUniv rNR =
 previously used for the unification of electric 

and gravitational forces (Rubino).   

App. 2-Par. 4.1: The equation eUniv rNR =  (!). 

First of all, we have already checked the validity of the equation eUniv rNR = , used in (A2.2), as it has proved to be 

numerically correct. And it’s also justified on an oscillatory basis and now we see how; such an equation tells us the 
radius of the Universe is equal to the classic radius of the electron multiplied by the square root of the number of 
electrons (and positrons) N in which the Universe can be thought as made of. (We know that in reality almost all the 
matter in the Universe is not made of e+e- pairs, but rather of p+e- pairs of hydrogen atoms H, but we are now 
interested in considering the Universe as made of basic bricks, or in fundamental harmonics, if you like, and we know 
that electrons and positrons are basic bricks, as they are stable, while the proton doesn’t seem so, and then it’s neither a 
fundamental harmonic, and so nor a basic brick). Suppose that every pair e+e- (or, for the moment, also p+e- (H), if you 
like) is a small spring (this fact has been already supported by reasonings made around (A2.3)), and that the Universe is 
a big oscillating spring (now contracting towards its center of mass) with an oscillation amplitude obviously equal to RUniv 
which is made of all microoscillations of e+e-

 pairs. And, at last, we confirm that those micro springs are all randomly 
spread out in the Universe, as it must be; therefore, one is oscillating to the right, another to the left, another one 
upwards and another downwards, and so on. Moreover e+ and e- components of each pair are not fixed, so we will not 
consider N/2 pairs oscillating with an amplitude 2re, but N electrons/positrons oscillating with an amplitude re. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. A4.1: The Universe represented as a set of many (N) small springs, oscillating on random directions, or as a single 
big oscillating spring. 
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Now, as those micro oscillations are randomly oriented, their random composition can be shown as in Fig. A4.2.  
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
 

Fig. A4.2: Composition of N micro oscillations er
r

 randomly spread out, so forming the global oscillation RUniv. 

We can obviously write that: e
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can be oriented randomly over 360° (or over π4 sr, if you like), so a vector averaging 

with it, as in the previous equation, yields zero. 

We so rewrite (A4.1): 2212 )()( e
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Univ rRR += −  and proceeding, on it, by induction:  

(by replacing N with N-1 and so on): 
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eUniv rNR ⋅=    !!!      (Rubino)                                                                                                                 (A4.2) 

 
Anyway, it’s well known that, in physics, for instance, the walk R made over N successive steps r, and taken in random 
directions, is really the square root of N by r (see, for instance, studies on Brownian movement).  

--------------------------------------------- 
 
App. 2-Chapter 5: “aUniv“as absolute responsible of all forces.   
 
App. 2-Par. 5.1: Everything from “aUniv“. 
Still in agreement with what has been said so far, the cosmic acceleration itself aUniv is responsible for gravity all, and so 
for the terrestrial one, too. In fact, just because the Earth is dense enough, it’s got a gravitational acceleration on its 
surface g=9,81 m/s2, while if today we could consider it as composed of electrons randomly spread, just like in Fig. A4.1 

for the Universe, then it would have a radius eEarthe
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⋅=⋅ , and the gravitational acceleration on its 
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Therefore, once again we can say that the gravitational force is due to the collapsing of the Universe by aUniv, and all 
gravitational accelerations we meet, time after time, for every celestial object, are different from aUniv according to how 
much such objects are compressed. 

--------------------------------------------- 
 
App. 2-Par. 5.2: Summarizing table of forces. 
 
 
 
 
 
 
 
 
   
 
 
 
Fig. A5.1: Summarizing table of forces. 
 
App. 2-Par. 5.3: Further considerations on composition of the Universe in pairs +/-. 
The full releasing of every single small spring which stands for the electron-positron pair, is nothing but the annihilation, 
with turning into photons of those two particles. In such a way, that pair wouldn’t be represented anymore by a pointed 
wave, pointed in certain place and time, (for instance )()sin( vtxvtx −− , or the similar )( vtx −δ of Dirac), where 

the pointed part would stand for the charge of the spring, but it will be represented by a function like )sin( ctx − , 
omogeneous along all its trajectory, and this is what a photon is. This will happen when the collapsing of the Universe in 
its center of mass will be accomplished.  
Moreover, the essence of the pairs e+e-, or, in this era, of e-p+, is necessary in order not to violate Principle of 
Conservation of Energy. In fact, the Universe seems to vanish towards a singularity, after its collapsing, or taking place 
from nothing, during its inverse Big Bang-like process, and so doing, it would be a violation of such a conservation 
principle, if not supported by the Indetermination Principle, according to which an energy ΔE is legitimated to appear 
anyhow, unless it lasts less than Δt, in such a way that 2h≤∆⋅∆ tE ; in other words, it can appear provided that the 
observer doesn’t have enough time, in comparison to his means of measure, to figure it out, so coming to the 
ascertainment of a violation. And, by the same token, the whole Universe, which is made of pairs +/-, has this property. 
And the appearing of a ΔE made of a pair of particles, shows the particles to reject each other first, so showing the same 
charge, while the successive annihilation after Δt shows a successive attraction, showing now opposite charges. So, the 
appearing and the annihilation correspond to the expansion and collapsing of the Universe. Therefore, if we were in an 
expanding Universe, we wouldn’t have any gravitational force, or it were opposite to how it is now, and it’s not true that 
just the electric force can be repulsive, but the gravitational force, too, can be so (in an expanding Universe); now it’s 
not so, but it was! 
The most immediate philosophical consideration which could be made, in such a scenario, is that, how to say, anything 
can be born (can appear), provided that it dies, and quick enough; so the violation is avoided, or better, it’s not 
proved/provable, and the Principle of Conservation of Energy is so preserved, and the contradiction due to the appearing 
of energy from nothing is gone around, or better, it is contradicted it itself. 
The proton, then, plays the role of a positron, with respect to the electron and it’s heavier than it because of the 
possibility to exist that the fate couldn’t deny to it, around the Anthropical Cosmological Principle, as such a proton 
brings to atoms and cells for life which investigates over it.  
When the collapse of the Universe will happen, the proton will irradiate all its mass and become a positron, ready to 
annihilate with the electron. And through all this, we also answer the question on the unexplained prevailing of matter 
over the antimatter: in fact, that’s not true; if we consider the proton, that is a future and ex positron, as the antimatter 
of the electron, and vice versa, the balance is perfect.   
 
App. 2-Par. 5.4: The Theory of Relativity is just an interpretation of the oscillating Universe just described, 
contracting with speed c and acceleration auniv. 
On composition of speeds: 
 
1) Case of a body whose mass is m. If in our reference system I, where we (the observers) are at rest, there is a body 
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jump to speed v2, so that, obviously:  2
22 2

1 mvE =  and its delta energy of GAINED energy E↑∆  (delta up) is:   
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Now, we’ve obtained a v∆  which is simply 12 vv −  , but this is a PARTICULAR situation and it’s true only when it starts 
from rest, that is, when v1 = 0. 

On the contrary: 22
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2 vvvV −=∆  ; therefore, we can say that, apart from the particular case when we start from rest (v1 = 0), if we 

are still moving, we won’t have a simple delta, but a vectorial one; this is simple base physics. 
 
2) Case of the Earth. In our reference system I, in which we (the observers) are at rest, the Earth (E-Earth) rotates 
around the Sun with a total energy: 
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EEK vmE =  . If now we give the Earth a delta up 

E↑∆  of kinetic energy in order to make it jump from its orbit to that of Mars (M-Mars), then, just like in the previous 

point 1, we have: 
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MEV vvv −=∆  , and so also here the 

speed deltas are vectorial-like ( V∆ ).  
 
3) Case of the Universe. In our reference system I, where we (the observers) are at rest, if we want to make a body, 
whose mass is m0 and originally at rest, get speed V, we have to give it a delta v indeed, but for all what has been said 
so far, as we are already moving in the Universe, (and with speed c), as for above points 1 and 2, such a delta v must 
withstand the following (vectorial) equality: 
 

)( 22
SpeedUnivAbsNewV vcvV −−−−=∆= ,                                                                                                     (A5.1) 

where SpeedUnivAbsNewv −−−  is the new absolute speed the body (m0) looks to have, not with respect to us, but with 

respect to the Universe and its center of mass.  
As a matter of fact, a body is inexorably linked to the Universe where it is, in which, as chance would have it, it already 

moves with speed c and therefore has got an intrinsic energy 2
0cm . 

In more details, as we want to give the body (m0) a kinetic energy Ek , in order to make it gain speed V (with respect to 
us), and considering that, for instance, in a spring which has a mass on one of its ends, for the harmonic motion law, 
the speed follows a harmonic law like: 

ααω sinsin)( MaxMax VXv ==    ( αsincv SpeedUnivAbsNew =−−− , in our case),  

and for the harmonic energy we have a harmonic law like: 
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we get αsin from the two previous equations and equal them, so getting:  
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now we put this expression for SpeedUnivAbsNewv −−−  in (A5.1) and get: 
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If now we get EK from (A5.2), we have: 
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cmEK   !!!  which is exactly the Einstein’s relativistic kinetic energy! 

If now we add to EK such an intrinsic kinetic energy of m0 (which also stands  “at rest” – rest with respect to us, not with 
respect to the center of mass of the Universe), we get the total energy: 
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2
0cmE ⋅= γ    (of the Special Theory of Relativity).                                                                                        (A5.3) 

All this after that we supposed to bring kinetic energy to a body at rest (with respect to us). Equation (A5.3) works wery 
well on particle accelerators, where particles gain energy, but there are cases (collapsing Universe and Atomic Physics) 
where masses lose energy and radiate, instead of gaining it, and in such cases (A5.3) is completely inapplicable, as it’s in 
charge for added energies, not for lost ones. 
 
App. 2-Par. 5.5: On “Relativity” of lost energies. 
 
In case of lost energies (further phase of the harmonic motion), the following one must be used: 

2
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1 cmE ⋅=
γ

     (Rubino)                                                                                                                           (A5.4) 

which is intuitive just for the simple reason that, with the increase of the speed, the coefficient γ1   lowers m0 in favour 
of the radiation, that is of the lost of energy; unfortunately, this is not provided for by the Theory of Relativity, like in 
(A5.4). 
For a convincing proof of (A5.4) and of some of its implications, I have further files about. 
By using (A5.4) in Atomic Physics in order to figure out the ionization energies ZE↓∆  of atoms with just one electron, 

but with a generic Z, we come to the following equation, for instance, which matches very well the experimental data: 
 

])
2

(11[ 2

0

2
2

hc
ZecmE eZ ε

−−=∆↓                                                                                                             (A5.5) 

and for atoms with a generic quantum number n and generic orbits:  
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Orbit (n) Energy (J) Orbit (n) Energy (J) 

1 2,1787 10-18 5 8,7147 10-20 
2 5,4467 10-19 6 6,0518 10-20 
3 2,4207 10-19 7 4,4462 10-20 
4 1,3616 10-19 8 3,4041 10-20 

Tab. A5.1: Energy levels in the hydrogen atom H (Z=1), as per  (A5.6). 
 
On the contrary, the use of the here unsuitable (A5.3) doesn’t match the experimental data, but brings to complex 
corrections and correction equations (Fock-Dirac etc), which tries to “correct”, indeed, an unsuitable use.  
 
Again, in order to have clear proofs of (A5.5) and (A5.6), I have further files about. 
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App. 2-SUBAPPENDIXES. 
 
App. 2-Subppendix 1: Physical constants.  
 

Boltzmann’s Constant k:   KJ /1038,1 23−⋅  

Cosmic Acceleration aUniv:   
212 /1062,7 sm−⋅  

Distance Earth-Sun AU:   m1110496,1 ⋅  

Mass of the Earth MEarth:   kg241096,5 ⋅  

Radius of the Earth REarth:   m610371,6 ⋅  

Charge of the electron e:   C19106,1 −⋅−  

Number of electrons equivalent of the Universe N:   851075,1 ⋅  

Classic radius of the electron re:   m1510818,2 −⋅  

Mass of the electron me:   kg31101,9 −⋅  

Fine structure Constant )1371(≅α  :   31030,7 −⋅  

Frequency of the Universe Univν :   Hz211005,4 −⋅  

Pulsation of the Universe )( globalUniv H=ω :   srad201054,2 −⋅  

Universal Gravitational Constant G:   2211 /1067,6 kgNm−⋅  

Period of the Universe UnivT :   s201047,2 ⋅  

Light Year l.y.:   m151046,9 ⋅  

Parsec pc:   mla 161008,3.._26,3 ⋅=  

Density of the Universe ρUniv:   
330 /1032,2 mkg−⋅  

Microwave Cosmic Radiation Background Temp. T:   K73,2  

Magnetic Permeability of vacuum μ0:   mH /1026,1 6−⋅  

Electric Permittivity of vacuum ε0:   mF /1085,8 12−⋅  

Planck’s Constant h:   sJ ⋅⋅ −3410625,6  

Mass of the proton mp:   kg271067,1 −⋅  

Mass of the Sun MSun:   kg3010989,1 ⋅  

Radius of the Sun RSun:   m81096,6 ⋅  

Speed of light in vacuum c:   sm /1099792458,2 8⋅  

Stephan-Boltzmann’s Constant σ:   428 /1067,5 KmW−⋅  

Radius of the Universe (from the centre to us) RUniv:   m281018,1 ⋅  

Mass of the Universe (within RUniv) MUniv:   kg551059,1 ⋅  
 
 
Thank you for your attention. 
Leonardo RUBINO 
leonrubino@yahoo.it 
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