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Abstract

We argue that the phenomenon of the cosmological acceleration can be
easily and naturally explained from first principles of quantum theory without
involving empty spacetime background, dark energy and other artificial notions.

The discovery of the cosmological acceleration (see e.g., [1, 2]) has ignited
a vast discussion on how this phenomenon should be interpreted. The results of the
observations are usually represented in terms of the parameter, which is called the
cosmological constant (CC) and denoted by Λ. The meaning of this quantity will be
discussed below. According to Refs. [3, 4], the observational data on the value of Λ
define it with the accuracy better than 5%. Therefore the possibilities that Λ = 0 or
Λ < 0 are practically excluded.

Before discussing the CC problem, we first consider whether the gravi-
tational constant G can be treated as a fundamental constant. The Newton law of
gravity says that the force of attraction between two bodies is proportional to their
masses, inversely proportional to the square of distance between them and the coeffi-
cient of proportionality is called the gravitational constant. Numerous experimental
data show that the Newton law works with a very high accuracy. However, this only
means that G is a good phenomenological parameter. At the level of the Newton law
we cannot prove that G is the exact constant which does not change with time, does
not depend on masses, distances etc.

From this point of view, in General Relativity (GR) the situation is anal-
ogous. Here we have two different quantities which have different dimensions: the
stress energy tensor of matter Tµν and the Ricci tensor Rµν describing the curvature
of space-time. We will not discuss the meaning of those quantities and only note that
the Einstein equations read

Rµν = (8πG/c4)Tµν (µ, ν = 0, 1, 2, 3) (1)

ThereforeG is the phenomenological coefficient of proportionality between those quan-
tities. In the formalism of GR, G can be only a constant but GR cannot calculate it
or give a theoretical explanation why this value should be as it is.
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GR is a classical (i.e. non-quantum) theory based on the minimum ac-
tion principle. The Lagrangian of GR should be invariant under coordinate trans-
formations and the simplest way to satisfy this requirement is a choice when it is
proportional to the so called tensor of scalar curvature Rc. In this case the Newton
gravitational law is recovered in the nonrelativistic approximation and the theory is
successful in explaining several well known phenomena. However, the argument that
this choice is simple and agrees with the data, cannot be treated as a fundamental
requirement. Another reason for choosing the linear case is that here equations of
motions are of the second order while in quadratic, cubic cases etc. they will be of
higher orders. However, this reason also cannot be treated as fundamental. It has
been argued in the literature that GR is a low energy approximation of a theory
where equations of motion contain higher order derivatives. In particular, a rather
popular approach is when the Lagrangian contains a function f(Rc) which should be
defined from additional considerations. In that case the constant G in the Lagrangian
is not the same as the standard gravitational constant. It is believed that the nature
of gravity will be understood in the future quantum theory of gravity but efforts to
construct this theory has not been successful yet. Therefore the above remarks show
that there are no solid reasons to treat G as an exact fundamental constant.

Special Relativity works with Minkowski space, which is also called the
space of events. The points of the space are defined by time t and coordinates (x, y, z).
For example, when we consider the motion of a body, the first event is that at the
moment of time t1 the coordinates of the body were (x1, y1, z1); the second event is
that at the moment of time t2 the coordinates were (x2, y2, z2) etc. One can define
intervals between different events. It is very important to note that Minkowski space
has a physical meaning only as a space of events for real bodies. In particular, the
notion of empty space has no physical meaning since it contradicts the physical prin-
ciple that a definition of a physical quantity is a description of how this quantity
should be measured. In particular, one can discuss how coordinates of real bodies can
be measured but there is no way to measure coordinates of the empty space which
exist only in our imagination.

Physicists consider others spaces of events, for example de Sitter (dS)
space. Below we discuss a relation between Minkowski and dS spaces but first we
consider a simpler example. Consider the surface of the Earth and assume that
this surface is a two-dimensional sphere S2 in the three-dimensional space. If RE

is the radius of the Earth and (x, y, z) are the coordinates of the three-dimensional
space then the surface of the Earth contains only points whose coordinates satisfy the
requirement x2+y2+z2 = R2

E. Since we have one restriction on three coordinates, S2

is indeed two-dimensional. For example, instead of characterizing the points of S2 by
three coordinates with one restriction, we can characterize them by polar coordinates
(θ, ϕ). With such a description we use only dimensionless quantities (angles) and
there is no need to know the value of RE and the units in which the quantities
(x, y, z) are measured.
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Suppose that the coordinates of the North pole of the Earth in the three-
dimensional space are (0, 0, RE) and consider a vicinity of the North pole consisting
of points on the Earth surface such that z is very close to RE and the values of |x|
and |y| are much less than RE. If a man lives in this vicinity and does not go to areas
where |x| and |y| are comparable to RE, he does not feel the curvature of the Earth
surface and thinks that it is flat. He can describe points in this vicinity not only by
(θ, ϕ) but also by (x, y). In the latter case the units for (x, y) depend on the units in
which RE is measured.

dS space is a set of points characterizing by five coordinates (t, x, y, z, u)
which satisfy the restriction t2 − x2 − y2 − z2 − u2 = −R2 where R is some param-
eter and we assume that time t has the same dimension as the spacial coordinates
(x, y, z, u). Therefore dS space is four-dimensional. By analogy with the example
with the Earth, one can describe points on dS space by four dimensionless analogs
of angular coordinates and those coordinates do not depend on R at all. Consider
a vicinity of the North pole of dS space assuming that the pole has the coordinates
(0, 0, 0, 0, R). If we consider only such points of dS space that u is close to R and all
the values of (t, x, y, z) are much less than R then in this vicinity, geometry is very
close to that of Minkowski space. The dimension of the quantities (t, x, y, z) in this
vicinity depends on the dimension in which R is measured. For historical reasons,
the curvature of dS space is discussed not in terms of R but in terms of the CC
Λ = 3/R2. Then the experimental results [1-3] say that R is of order 1026m. One
might say that the greater the value of R is, the bigger vicinity of the North pole is
similar to Minkowski space. This discussion shows that in dS theory Λ is not present
at all; it appears only when one wishes to parametrize dS space by dimensionful coor-
dinates. Hence the question of why Λ is as it is, is not fundamental since the answer
is: because we want to measure distances in meters.

When the Lagrangian is linear in Rc, the most general Einstein equations
are not (1) but

Rµν + Λgµν = (8πG/c4)Tµν (2)

where gµν is the space-time metric. As follows from this expression, in GR the cur-
vature and the metric depend on the presence of matter. In the formal limit, when
matter disappears, solutions of Eq. (2) are Minkowski space when Λ = 0, dS space
when Λ > 0 and anti de Sitter (AdS) space when Λ < 0. In this connection the
following extremely important question arises. As discussed above, these spaces have
a physical meaning only as spaces of events for real bodies. At the same time, in GR
those spaces arise as solutions of the Einstein equations when matter is absent. In
other words, those spaces arise only as empty spaces. Of course, in mathematics one
can consider different spaces without thinking about the physical meaning of empty
space. But in physics the notion of empty space has no meaning. We believe that
these remarks show that the formal limit of GR when matter disappears is unphysical.

The history of the appearance of Λ in Eq. (2) is well known. Einstein
originally wrote his equations without Λ, i.e. in the form (1). Then, as it has been
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shown by Fridman, the Universe is not stationary. For this reason Einstein introduced
Λ in his equations. However, when Hubble discovered that the Universe was not
stationary, Einstein said that introducing Λ was the greatest blunder of his life. In
textbooks on gravity written before 1998 (when the cosmological acceleration was
discovered) it is often claimed that Λ is not needed since its presence contradics the
philosophy of GR: matter creates curvature of space-time, so in the absence of matter
space-time should be flat (i.e. Minkowski) while empty dS space is not flat.

As noted above, such a philosophy has no physical meaning since the
notion of empty space is unphysical. That’s why the discovery of the fact that Λ 6= 0
has ignited many discussions. The most popular approach is as follows. One can
move the term with Λ in Eq. (2) from the left-hand side to the right-hand one:

Rµν = (8πG/c4)Tµν − Λgµν (3)

Then the term with Λ is treated as the stress-energy tensor of a hidden matter which
is called dark energy: (8πG/c4)TDEµν = −Λgµν . With the observed value of Λ this dark
energy contains approximately 75% of the energy of the Universe. In this approach G
is treated as a fundamental constant and one might try to express Λ in terms ofG. The
existing quantum theory of gravity cannot perform this calculation unambiguously
since the theory contains strong divergences. With a reasonable cutoff parameter, the
result for Λ is such that in units where h̄ = c = 1, GΛ is of order unity. This result
is expected from dimensional considerations since in these units, the dimension of G
is length2 while the dimension of Λ is 1/length2. However, such value of Λ is greater
than the observed one by 122 orders of magnitude. This problem is called the CC
problem or dark energy problem.

Several authors criticized this approach from the following considerations.
GR without the contribution of Λ has been confirmed with a good accuracy in ex-
periments in the Solar system. If Λ is as small as it has been observed then it can
have a significant effect only at cosmological distances while for experiments in the
Solar system the role of such a small value is negligible. The authors of Ref. [5]
entitled ”Why All These Prejudices Against a Constant?”, note that even in a special
case f(Rc) = Rc, the most general form of the Einstein equations is as in Eq. (2)
and so it is not clear why we should think that only a special case (1) is allowed.
If we accept the theory containing a constant G which cannot be calculated and is
taken from the outside then why can’t we accept a theory containing two independent
(phenomenological) constants?

In our approach one can easily and naturally explain the cosmological ac-
celeration proceeding only from basic principles of quantum theory without involving
space-time background, dark energy etc. In our Refs. [6, 7] it has been explained in de-
tail that symmetry on quantum level is defined by commutation relations between the
operators belonging to the symmetry algebra. In particular, by definition, relativistic
(Poincare) symmetry on quantum level means that the four-momentum P µ operator
and the operators of Lorentz angular momenta Mµν (µ, ν = 0, 1, 2, 3, Mµν = −Mνµ)
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satisfy the commutation relations

[P µ, P ν ] = 0 [P µ,Mνρ] = −i(ηµρP ν − ηµνP ρ)

[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (4)

where ηµν is the diagonal metric tensor such that η00 = −η11 = −η22 = −η33 = 1.
dS or AdS symmetries on quantum level are defined such that that the operators
describing a quantum system under consideration, satisfy the commutation relations

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (5)

where a, b = 0, 1, 2, 3, 4, Mab = −M ba and ηab is the diagonal metric tensor such that
η00 = −η11 = −η22 = −η33 = 1, η44 = ∓1 for the dS and AdS cases, respectively.

It is usually said that Eqs. (4) and (5) are written in units c = h̄ = 1.
However, as we note in Ref. [6], in relativistic quantum theory the quantities c
and h̄ should not be present at all; they arise only if one wishes to express physical
quantities in this theory in terms of standard units (kg,m, sec). Therefore in the case
of dS and AdS symmetries, all the operators Mab are dimensionless while in the case
of Poincare symmetry only the operators of the Lorentz algebra are dimensionless
while the momentum operators have the dimension 1/length. Eq. (4) is a special
case of Eq. (5) obtained as follows. If R is a parameter with the dimension length
and the operators P µ are defined as P µ = M4µ/R then in the formal limit R → ∞
one gets Eq. (4) from Eq. (5). This contraction procedure is well known. Hence from
the point of view of symmetry on quantum level, dS and AdS symmetries are more
natural and general than Poincare symmetry. It is also clear that on quantum level
dS and AdS theories can be constructed without parameters having the dimension of
length. Such parameters may be used if one wishes to interpret the results in classical
approximation or in Poincare limit but they are not fundamental. In particular,
neither Λ nor G can be fundamental.

The next step in our construction is a definition of an elementary particle.
This problem has a long history. In Refs. [6, 7] we argue that a general definition,
not depending on the choice of the classical background and on whether we consider a
local or nonlocal theory, is that a particle is elementary if the set of its wave functions
is the space of an irreducible representation (IR) of the symmetry algebra in the
given theory. This is in the spirit of Wigner’s approach to Poincare symmetry. The
construction of IRs is needed not only for describing elementary particles but even
for describing the motion of a macroscopic body as a whole. For example, when
we consider the interaction between two macroscopic bodies such that the distance
between them is much greater than their sizes, it suffices to describe each body as a
whole by using the IR with the corresponding mass.

The above notions are fully sufficient to describe systems of free bodies in
Poincare, dS or AdS theories. In particular, we don’t need Minkowski, dS or AdS
spaces at all.
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A standard quantum-mechanical calculation, which is described in detail
in our Ref. [6], shows that in the approximation when classical mechanics works with a
good accuracy (so called semiclassical approximation in quantum theory), the relative
acceleration a of two free bodies is zero only in Poincare-invariant theory while in dS
and AdS cases, a = Λc2r/3 where r is the vector of the relative distance between
the particles. The result is not zero (as one would expect from the first Newton law)
but in the formal limit Λ → 0 the first Newton law is recovered since a becomes
zero. The result depends on Λ only because we wish to express the acceleration in
terms of standard time and coordinates (see the above discussion about the relation
between Minkowski and dS spaces). From the formal point of view, the result is the
same as in GR on dS or AdS spaces, where Λ > 0 in the dS case and Λ < 0 in the
AdS one. However, our result has been obtained by using only standard quantum-
mechanical notions while dS or AdS spaces, their metric, connection etc. have not
been involved at all. In view of this approach, the data of Refs. [1-3] that Λ > 0
should be interpreted not such that the spacetime background is dS space but that
the dS algebra is more pertinent than the Poincare or AdS ones. As shown in our
papers (see e.g. Ref. [7] and references therein), this opens a radically new approach
to gravity where the quantity G is not taken from the outside but (in principle) can
be calculated. We believe that our result is a strong indication that the results of GR
can be recovered from semiclassical approximation in quantum theory without using
spacetime background and differential geometry at all.

The above discussion shows that the phenomenon of cosmological accel-
eration can be naturally explained from first principles of quantum theory without
involving spacetime background, dark energy or other artificial notions.
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