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The general solution to Einstein’s vacuum field equations for the point-mass in all
its configurations must be determined in such a way as to provide a means by which
an infinite sequence of particular solutions can be readily constructed. It is from
such a solution that the underlying geometry of Einstein’s universe can be rightly
explored. I report here on the determination of the general solution and its consequences
for the theoretical basis of relativistic degeneracy, i. e. gravitational collapse and the
black hole.

1 Introduction

Aserious misconception prevails that the so-called “Schwarz-
schild solution” is a solution for the vacuum field. Not only
is this incorrect, it is not even Schwarzschild’s solution.
The aforesaid solution was obtained by David Hilbert [1],
a full year after Karl Schwarzschild [2] obtained his original
solution. Moreover, Hilbert’s metric is a corruption of the
solution first found by Johannes Droste [3], and subsequently
by Hermann Weyl [4] by a different method.

The orthodox concepts of gravitational collapse and the
black hole owe their existence to a confusion as to the
true nature of the r-parameter in the metric tensor for the
gravitational field.

The error in the conventional analysis of Hilbert’s solu-
tion is twofold in that two tacit and invalid assumptions are
made:

(a) r is a coordinate and radius (of some kind) in the
gravitational field;

(b) The regions 0<r<α=2m and α<r<∞ are valid.

Contrary to the conventional analysis the nature and
range or the r-parameter must be determined by rigorous
mathematical means, not by mere assumption, tacit or other-
wise. When the required mathematical rigour is applied it
is revealed that r0 =α denotes a point, not a 2-sphere,
and that 0<r<α is undefined on the Hilbert metric. The
consequence of this is that gravitational collapse, if it occurs
in Nature at all, cannot produce a relativistic black hole
under any circumstances. Since the Michell-Laplace dark
body is not a black hole either, there is no theoretical basis
for it whatsoever. Furthermore, the conventional conception
of gravitational collapse is demonstrably false.

The sought for general solution must not only result in a
means for construction of an infinite sequence of particular
solutions, it must also naturally produce the solutions due
to Schwarzschild, Droste and Weyl, and M. Brillouin [5]. To
obtain the general solution the general conditions that the

required solution must satisfy must be established. Abrams
[9] has determined these conditions. I obtain them by other
arguments, and therefrom construct the general solution,
from which the original Schwarzschild solution, the Droste/
Weyl solution, and the Brillouin solution all arise quite nat-
urally. It will be evident that the black hole is theoretically
unsound. Indeed, it never arose in the solutions of Schwarz-
schild, Droste and Weyl, and Brillouin. It comes solely from
the mathematically inadmissible assumptions conventionally
imposed upon the Hilbert metric.

I provide herein a derivation of the general solution
for the simple point-mass and briefly discuss its geometry.
Although I have obtained the complete solution up to the
rotating point-charge I reserve its derivation to a subsequent
paper and similarly a full discussion of the geometry to a
third paper. However, I include the expression for the overall
general solution as a prelude to my following papers.

2 The general solution for the simple point-mass and
its basic geometry

A general metric for the static, time-symmetric,
cento-symmetric configuration of energy or matter in quasi-
Cartesian coordinates is,

ds2 = L(r)dt2 −M(r)(dx2 + dy2 + dz2)−

− N(r)(xdx+ ydy + zdz)2,

r =
√
x2 + y2 + z2 ,

(1)

where, ∀ t, L,M,N are analytic functions such that,

L,M,N > 0 . (2)

In polar coordinates (1) becomes,

ds2 = A(r)dt2 −B(r)dr2 − C(r)(dθ2 + sin2 θdϕ2) , (3)

where analytic A,B,C > 0 owing to (2).
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Transform (3) by setting

r∗ =
√
C(r) , (4)

then
ds2 = A∗(r∗)dt2 −B∗(r∗)dr∗2−

− r∗2(dθ2 + sin2 θdϕ2) ,
(5)

from which one obtains in the usual way,

ds2 =

(
r∗ − α
r∗

)

dt2 −

(
r∗

r∗ − α

)

dr∗2−

− r∗2(dθ2 + sin2 θdϕ2) .

(6)

Substituting (4) gives

ds2 =

(√
C − α
√
C

)

dt2 −

( √
C

√
C − α

)
C ′2

4C
dr2−

−C(dθ2 + sin2 θdϕ2) .

(7)

Thus, (7) is a general metric in terms of one unknown
function C(r). The following arguments are coordinate in-
dependent since C(r) in (7) is an arbitrary function.

The general metric for Special Relativity is,

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 dϕ2

)
, (8)

and the radial distance (the proper distance) between two
points is,

d =

∫ r

r0

dr = r − r0 . (9)

Let a test particle be located at each of the points r0 and
r > r0 (owing to the isotropy of space there is no loss of
generality in taking r > r0 > 0). Then by (9) the distance
between them is given by

d = r − r0 ,

and if r0 =0, d ≡ r in which case the distance from r0 =0
is the same as the radius (the curvature radius) of a great
circle, the circumference χ of which is from (8),

χ = 2π
√
r2 = 2πr . (10)

In other words, the curvature radius and the proper radius
are identical, owing to the pseudo-Euclidean nature of (8).
Furthermore, d gives the radius of a sphere centred at the
point r0 . Let the test particle at r0 acquire mass. This pro-
duces a gravitational field centred at the point r0 > 0. The
geometrical relations between the components of the metric
tensor of General Relativity must be precisely the same
in the metric of Special Relativity. Therefore the distance
between r0 and r > r0 is no longer given by (9) and the
curvature radius no longer by (10). Indeed, the proper radius

Rp, in keeping with the geometrical relations on (8), is
now given by,

Rp =

∫ r

r0

√
−g11dr , (11)

where from (7),

−g11 =

(

1−
α

√
C(r)

)−1
[C ′(r)]2

4C(r)
. (12)

Equation (11) with (12) gives the mapping of d from the
flat spacetime of Special Relativity into the curved spacetime
of General Relativity, thus,

Rp(r) =

∫ √ √
C

√
C − α

C ′

2
√
C
dr =

=

√
√
C(r)

(√
C(r)− α

)
+

+ α ln

∣
∣
∣
∣
∣
∣

√√
C(r) +

√√
C(r)− α

K

∣
∣
∣
∣
∣
∣
,

K = const .

(13)

The relationship between r and Rp is

r → r0⇒Rp → 0 ,

so from (13) it follows,

r → r0 ⇒ C(r0) = α
2, K =

√
α .

So (13) becomes,

Rp(r) =

√
√
C(r)

(√
C(r)− α

)
+

+ α ln

∣
∣
∣
∣
∣
∣

√√
C(r) +

√√
C(r)− α

√
α

∣
∣
∣
∣
∣
∣
.

(14)

Therefore (7) is singular only at r= r0 , where C(r0)=
=α2 and g00=0 ∀ r0 , irrespective of the value of r0 .
C(r0)=α

2 emphasizes the true meaning of α, viz., α is
a scalar invariant which fixes the spacetime for the point-
mass from an infinite number of mathematically possible
forms, as pointed out by Abrams. Moreover, α embodies
the effective gravitational mass of the source of the field,
and fixes a boundary to an otherwise incomplete spacetime.
Furthermore, one can see from (13) and (14) that r0 is
arbitrary, i. e. the point-mass can be located at any point
and its location has no intrinsic meaning. Furthermore, the
condition g00=0 is clearly equivalent to the boundary con-
dition r→ r0⇒Rp→ 0, from which it follows that g00=0
is the end result of gravitational collapse. There exists no
value of r making g11=0.
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If C ′=0 for r > r0 the structure of (7) is destroyed:
g11=0 for r > r0⇒B(r)= 0 for r > r0 in violation of (3).
Therefore C ′ 6=0. For (7) to be spatially asymptotically flat,

lim
r→∞

C(r)
(
r − r0

)2 = 1 . (15)

Since C(r) must behave like (r − ro)
2 and make (7)

singular only at r= r0 ,C(r)must be a strictly monotonically
increasing function. Then by virtue of (15) and the fact that
C ′ 6=0, it follows that C ′> 0 for r > r0 . Thus the necessary
conditions that must be imposed upon C(r) to render a
solution to (3) are:

1. C ′(r)> 0 for r > r0;

2. lim
r→∞

C(r)
(
r − r0

)2 =1;

3. C(r0)=α
2.

I call the foregoing the Metric Conditions of Abrams for
the point-mass (MCA) since when r0 =0 they are precisely
the conditions he determined by his use of (3) and the field
equations. In addition to MCA any admissible function C(r)
must reduce (7) to the metric of Special Relativity when
α=2m=0.

The invalid conventional assumptions that 0<r<α and
that r is a radius of sorts in the gravitational field lead
to the incorrect conclusion that r=α is a 2-sphere in the
gravitational field of the point-mass. The quantity r=α does
not describe a 2-sphere; it does not yield a Schwarzschild
sphere; it is actually a point. Stavroulakis [10, 8, 9] has also
remarked upon the true nature of the r-parameter (coordinate
radius). Since MCA must be satisfied, admissible systems of
coordinates are restricted to a particular (infinite) class. To
satisfy MCA, and therefore (3), and (7), the form that C(r)
can take must be restricted to,

Cn(r) =
[
(r − r0)

n + αn
] 2
n , (16)

r0 ∈ (<− <
−), n ∈ <+,

where n and r0 are arbitrary. I call equations (16) Schwarz-
schild forms. The value of n in (16) fixes a set of coordinates,
and the infinitude of such reflects the fact that no set of
coordinates is privileged in General Relativity.

The general solution for the simple point-mass is there-
fore,

ds2 =

(√
Cn−α√
Cn

)

dt2−

( √
Cn√

Cn−α

)
C ′n

2

4Cn
dr2−

−Cn(dθ2 + sin
2 θdϕ2) ,

(17)

Cn(r) =
[
(r − r0)

n + αn
] 2
n , n ∈ <+,

r0 ∈ (<− <
−) ,

r0 < r <∞ ,

where n and r0 are arbitrary. Therefore with r0 arbitrary, (17)
reduces to the metric of Special Relativity when α=2m=0.

From (17), with r0 =0 and n taking integer values, the
following infinite sequence obtains:

C1(r) = (r + α)
2 (Brillouin’s solution)

C2(r) = (r
2 + α2)

C3(r) = (r
3 + α3)

2
3 (Schwarzschild’s solution)

C4(r) = (r
4 + α4)

1
2 , etc.

Hilbert’s solution is rightly obtained when r0 =α, i. e.
when r0 =α and the values of n take integers, the infinite
sequence of particular solutions is then given by,

C1(r) = r
2 [Droste/Weyl/(Hilbert) solution]

C2(r) = (r − α)2 + α2,

C3(r) =
[
(r − α)3 + α3

] 2
3 ,

C4(r) =
[
(r − α)4 + α4

] 1
2 , etc.

The curvature f =RijkmRijkm is finite everywhere, in-
cluding r= r0 . Indeed, for metric (17) the Kretschmann
scalar is,

f =
12α2

C3n
=

12α2

[(
r − r0

)n
+ αn

] 6
n

. (18)

Gravitational collapse does not produce a curvature sin-
gularity in the gravitational field of the point-mass. The scalar
invariance of f(r0)=

12
α4 is evident from (18).

All the particular solutions of (17) are inextendible, since
the singularity when r= r0 is quasiregular, irrespective of the
values of n and r0 . Indeed, the circumference χ of a great
circle becomes,

χ = 2π
√
C(r). (19)

Then the ratio

lim
r→r0

χ

Rp
→∞, (20)

shows that Rp(r0)≡ 0 is a quasiregular singularity and can-
not be extended.

Equation (19) shows that χ=2πα is also a scalar invar-
iant for the point-mass.

It is plain from the foregoing that the Kruskal-Szekeres
extension is meaningless, that the “Schwarzschild radius” is
meaningless, that the orthodox conception of gravitational
collapse is incorrect, and that the black hole is not consistent
at all with General Relativity. All arise wholely from a
bungled analysis of Hilbert’s solution.

3 Implications for gravitational collapse

As is well known the gravitational potential Φ for an arbitrary
metric is

g00 = (1− Φ)
2
, (21)
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from which it is concluded that gravitational collapse occurs
at Φ=1. Physically, the conventional process of collapse
involves Newtonian gravitation down to the so-called “grav-
itational radius”. Far from the source, the alleged weak field
potential is,

Φ =
m

r
,

and so
g00 = 1−

α

r
, (22)

α = 2m.

The scalar α is conventionally called the “gravitational
radius”, or the “Schwarzschild radius”, or the “event hori-
zon”. However, as I have shown, neither α nor the coordinate
radius r are radii in the gravitational field. In the case of the
Hilbert metric, r0 =α is a point, not a 2-sphere. It is the
location of the point-mass. In consequence of this g00=0 is
the end result of gravitational collapse. It therefore follows
that in the vacuum field,

0 < g00 < 1 , 1 < |g11| <∞ ,

α <
√
C(r) .

In the case of the Hilbert metric, C(r)= r2, so

0 < g00 < 1, 1 < |g11| <∞ ,

α < r .

In the case of Schwarzschild’s metric we have C(r)=

=
(
r3+α3

) 2
3 , so

0 < g00 < 1, 1 < |g11| <∞ ,

0 < r .

It is unreasonable to expect the weak field potential
function to be strictly Newtonian. Only in the infinitely
far field is Newton’s potential function to be recovered.
Consequently, the conventional weak field expression (22)
cannot be admitted with the conventional interpretation there-
of. The correct potential function must contain the arbitrary
location of the point-mass. From (21),

Φ = 1−
√
g00 = 1−

√

1−
α

√
C(r)

,

so in the weak far field,

Φ ≈ 1−

(

1−
α

2
√
C

)

=
m
√
C
,

and so

g00 = 1−
α

√
C(r)

= 1−
α

[
(r − r0)n + αn

] 1
n

, (23)

r0 ∈ (<− <
−), n ∈ <+ .

Then
as r →∞, g00 → 1−

α

r − r0
,

and Newton is recovered at infinity.
According to (23), at r= r0 , g00=0 and Φ= 1

2 . The
weak field potential approaches a finite maximum of 1

2
(i. e. 1

2c
2), in contrast to Newton’s potential. The conven-

tional concept of gravitational collapse at rs=α is therefore
meaningless.

Similarly, it is unreasonable to expect Kepler’s 3rd Law
to be unaffected by general relativity, contrary to the con-
ventional analysis. Consider the Lagrangian,

L =
1

2

[(

1−
α
√
Cn

)(
dt

dτ

)2]

−

−
1

2

[(

1−
α
√
Cn

)−1(
d
√
Cn
dτ

)2]

−

−
1

2

[

Cn

((
dθ

dτ

)2
+ sin2 θ

(
dϕ

dτ

)2)]

,

Cn(r) =
[(
r − r0

)n
+ αn

] 2
n

, n ∈ <+ ,

r0 ∈ (<− <
−), r0 < r <∞ ,

(24)

where τ is the proper time.
Restricting motion, without loss of generality, to the

equatorial plane, θ= π
2 , the Euler-Lagrange equations for

(24) are,

(

1−
α
√
Cn

)−1
d2
√
Cn

dτ 2
+

α

2Cn

(
dt

dτ

)2
−

−

(

1−
α
√
Cn

)−2
α

2Cn

(
d
√
Cn
dτ

)2
−
√
Cn

(
dϕ

dτ

)2
=0 ,

(25)

(

1−
α
√
Cn

)
dt

dτ
= const = k , (26)

Cn
dϕ

dτ
= const = h , (27)

and ds2= gμνdxμdxν becomes,

(

1−
α
√
Cn

)(
dt

dτ

)2
−

−

(

1−
α
√
Cn

)−1(
d
√
Cn
dτ

)2
− Cn

(
dϕ

dτ

)2
= 1 .

(28)

Using the foregoing equations it readily follows that the
angular velocity is,

ω =

√
α

2C
3
2
n

. (29)
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Then,

lim
r→r0

ω =
1

α
√
2

(30)

is a scalar invariant which shows that the angular velocity
approaches a finite limit, in contrast to Newton’s theory
where it becomes unbounded. Schwarzschild obtained this
result for his particular solution. Equation (29) is the General
Relativistic modification of Kepler’s 3rd Law.

For a falling particle in a true Schwarzschild field,

dτ =
√
g00 dt =

√

1−
α

√
C(r)

dt .

Therefore, as a neutral test particle approaches the field
source at r0 along a radial geodesic, dτ→ 0. Thus, according
to an external observer, it takes an infinite amount of coor-
dinate time for a test particle to reach the source. Time stops
at the Schwarzschild point-mass. The conventional concepts
of the Schwarzschild sphere and its interior are meaningless.

Doughty [10] has shown that the acceleration of a test
particle approaching the point-mass along a radial geodesic
is given by,

a =

√
−g11

(
−g11

)
|g00,1|

2g00
. (31)

By (17),

a =
α

2C
3
4

(√
C − α

) 1
2

.

Clearly, as r→ r0 , a→∞, independently of the value of
r0 . In the case of C(r)= r2, where r0 =α,

a =
α

2r
3
2

√
r − α

, (32)

so a→∞ as r→ r0 =α.
Applying (31) to the Kruskal-Szekeres extension gives

rise to the absurdity of an infinite acceleration at r=α
where it is conventionally claimed that there is no matter
and no singularity. It is plainly evident that gravitational
collapse terminates at a Schwarzschild simple point-mass,
not in a black hole. Also, one can readily see that the alleged
interchange of the spatial and time coordinates “inside” the
“Schwarzschild sphere” is nonsensical. To amplify this, in
(17), suppose

√
C(r)<α, then

ds2 = −

(
α
√
C
−1

)

dt2 +

(
α
√
C
−1

)−1
C ′2

4C
dr2−

−C
(
dθ2 + sin2 dϕ2

)
.

(33)

Let r= t̃ and t= r̃, then

ds2 =

(
α−

√
C

√
C

)−1
Ċ2

4C
dt̃2−

(
α−

√
C

√
C

)

dr̃2−

−C(t̃)
(
dθ2 + sin2 dϕ2

)
.

(34)

This is a time dependent metric which does not have any
relationship to the original static problem. It does not extend
(17) at all, as also noted by Brillouin in the particular solution
given by him. Equation (34) is meaningless.

It is noteworthy that Hagihara [11] has shown that all
geodesics that do not run into the Hilbert boundary at r0 =α
are complete. His result is easily extended to any r0 > 0
in (17).

The correct conclusion is that gravitational collapse ter-
minates at the point-mass without the formation of a black
hole in all general relativistic circumstances.

4 Generalization of the vacuum solution for charge and
angular momentum

The foregoing analysis can be readily extended to include the
charged and rotating point-mass. In similar fashion it follows
that the Reissner-Nordstrom, Carter, Graves-Brill, Kerr, and
Kerr-Newman black holes are all inconsistent with General
Relativity.

In a subsequent paper I shall derive the following overall
general solution for the point-mass when Λ=0,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
Cn + a

2
)
dϕ− adt

]2
−
ρ2

Δ

C ′n
2

4Cn
dr2 − ρ2dθ2 ,

Cn(r) =
[(
r − r0

)n
+ βn

] 2
n

, r0 ∈ (<− <
−) ,

n ∈ <+, a =
L

m
, ρ2 = Cn + a

2 cos2 θ ,

Δ = Cn − α
√
Cn + q

2 + a2 ,

β = m+
√
m2 − q2 − a2 cos2 θ, a2 + q2 < m2,

r0 < r <∞ .

The different configurations for the point-mass are easily
extracted from this set of equations by the setting of the
values of the parameters in the obvious way.

Dedication

I dedicate this paper to the memory of Dr. Leonard S.
Abrams: (27 Nov. 1924 — 28 Dec. 2001).

Epilogue

My interest in the problem of the black hole was aroused by
coming across the papers of the American physicist Leonard
S. Abrams, and subsequently to the original papers of
Schwarzschild, Droste, Weyl, Hilbert, and Brillouin. I was
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drawn to the logic of Abrams’ approach in his determination
of the required metric in terms of a single generalised func-
tion and the conditions that this function must satisfy to
render a solution for the point-mass. It was not until I read
Abrams that I became aware of the startling facts that the
“Schwarzschild solution” is not due to Schwarzschild, that
Schwarzschild did not predict the black hole and made none
of the claims about black holes that are invariably attributed
to him in the textbooks and almost invariably in the literature.
These facts alone give cause for disquiet and reading of the
original papers gives cause for serious concern about how
modern science is reported.

Dr. Leonard S. Abrams was born in Chicago in 1924
and died on December 28, 2001, in Los Angeles at the
age of 77. He received a B. S. in Mathematics from the
California Institute of Technology and a Ph. D. in physics
from the University of California at Los Angeles at the
age of 45. He spent almost all of his career working in the
private sector, although he taught at a variety of institutions
including California State University at Dominguez Hills and
at the University of Southern California. He was a pioneer
in applying game theory to business problems and was an
expert in noise theory, but his first love always was general
relativity. His principle theoretical contributions focused on
non-black hole solutions to Einstein’s equations and on the
inextendability of the “Schwarzschild” solution. Dr. Abrams
is survived by his wife and two children.

Dr. Abrams encountered great resistance to publication
of his work on General Relativity. Nonetheless he continued
with his work and managed to publish several important
papers despite the obstacles placed in his way by the main-
stream authorities.

I extend my thanks to Diana Abrams for providing me
with information about her late husband.
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