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Abstract

It is shown how the infinity of differential algebras of generalized func-
tions is naturally subjected to a basic dichotomic singularity test re-
garding their significantly different abilities to deal with large classes
of singularities. In this respect, a review is presented of the way singu-
larities are dealt with in five of the infinitely many types of differential
algebras of generalized functions. These five types of algebras, in the
order they were introduced in the literature are : the nowhere dense
algebras, chains of algebras, the Colombeau algebras, space-time foam
algebras, and local algebras. And so far, the first, third and fourth of
them turned out to be the ones most frequently used in a variety of
applications. The issue of singularities is naturally not a simple one.
Consequently, there are different points of view, as well as occasional
misunderstandings. In order to set aside, and preferably, avoid such
misunderstandings, five fundamentally important issues related to sin-
gularities are pursued. And two of particular applicative importance
among them are the following : 1) how large are the sets of singular-
ity points of various functions and generalized functions, and 2) how
are such functions and generalized functions allowed to behave in the
neighbourhood of their set of singularity points. Following such a five
fold clarification on singularities, it is further pointed out that, once
one represents generalized functions - thus as well a large class of usual
singular functions - as elements of suitable differential algebras of gen-
eralized functions, one of the main advantages is the resulting freedom
to perform globally arbitrary algebraic and differential operations on
such functions, simply as if they did not have any singularities at all.
With the same freedom from singularities, one can, under suitable
conditions, perform globally operations such as limits, series, and so
on, which involve infinitely many generalized functions. The property
of a vector space or algebra of generalized functions of being a flabby
sheaf proves to be essential in being able to deal with large classes of
singularities. The first and fourth type of the mentioned differential
algebras of generalized functions are flabby sheaves, while the third
type, namely, the Colombeau algebras, fails to be so. The fifth type
has not yet been studied in this regard. Regarding chains of algebras,
their flabbiness, or otherwise, depends on the choice of their compo-
nents.
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0. Brief Overview

The following is obviously not quite a briefest review ...
And yet, given the inherent complexities of the subject, a genuine
attempt was made to avoid mentioning but those issues which could
indeed be necessary for a better understanding of what may go by
the name of the algebraic nonlinear theory of generalized functions,
as represented by a large variety of differential algebras of generalized
functions, see 46F30 in the AMS Mathematical Subject Classification.

0.1. Five Questions on Singularities

Five questions will direct the presentation that follows in this study :

First Question : Why are singularities so important in the context
of generalized functions ?

Simply because the essential aim in introducing generalized functions,
be they within a merely linear theory, or in fact within a nonlinear
one, is precisely to deal with singularities of what are considered to
be usual functions. And therefore, the larger the class of singularities
that can be dealt with by generalized functions, the better ...

Second Question : How do various spaces of generalized functions
deal with singularities ?

One of the typical ways is by the regularization of the singularities of
usual functions, a process which leads to generalized functions upon
which algebraic and differential operations can be performed globally
on the whole of their domain of definition, that is, in a singularity free
manner ...
Schematically, we have therefore

(0.1)

singularity
regularization

f function with

singularities

on Γ ⊂ Ω

- F generalized function on Ω
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where Ω ⊆ Rn is any domain of definition given by an open subset,
with a suitable subset Γ ⊂ Ω of singularity points of the usual function
f .
Here we note that the usual function is defined on Ω \ Γ, or even at
some of its singularity points in Γ.

Remark 0.1.

What is meant by a singularity of a usual function f : Ω −→ R is
a customary concept in analysis. Here we shall mostly mean a point
x ∈ Ω at which f is not defined, or it is not Cm-smooth, where in
various instances, we may have 0 ≤ m ≤ ∞.

As for the generalized functions F in (0.1), by singularities we shall
mean the singularities of the usual functions f from which they were
obtained by regularization of the singularities of the latter, or in gen-
eral, points x ∈ Ω at which F is not Cm-smooth, where again, in
various instances we may have 0 ≤ m ≤ ∞.

�

Third Question : which is the extent various spaces of generalized
functions can deal with singularities ?

The answer will be given by a basic dichotomic singularity test which,
in short, is as follows :

• spaces of generalized functions which are flabby sheaves can deal
with very large classes of singularities,

• spaces of generalized functions which are not flabby sheaves can
only deal with restricted classes of singularities.

The further Two Questions relate to the possible nature of singular-
ities of usual functions f which the generalized functions F can deal
with through the singularity regularizations that led to their construc-
tion, namely :

• what is the allowed SIZE of the sets Γ ⊂ Ω of singularity points
of usual and generalized functions, as well as
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• what is the allowed BEHAVIOUR of the usual and generalized
functions in the neighbourhood of their sets Γ ⊂ Ω of singularity
points.

Here let us point out once again the meaning of the expression that the
generalized functions F can deal with such singularities : one can per-
form upon these generalized functions all the algebraic and differential
operations on the whole of Ω, that is, globally, and do so singularity
free, that is, as if they did not have any singularities at all.
For the sake of clarity, this fact will be illustrated in sections 4 and 6,
in the simple and well known example of the Heaviside function, an
example which is typical for the above, be it in the case of the linear,
or nonlinear theories of generalized functions.

0.2. Complexity of the Algebraic Nonlinear Theory

And now, let us recall several important facts related to the study of
various generalized functions and their singularities in the nonlinear
context which is based on the algebraic approach.

In this regard it may be relevant to recall the introduction in the early
1990s of the order completion method in solving large classes of non-
linear PDEs, [8,46,58,60,67,69,72,81,101,102,104,158-164], which will
be mentioned in the sequel.

Earlier, in the 1960s, an algebraic method - reviewed here - was intro-
duced in the nonlinear theory of generalized functions.

Nowadays, with hindsight, one may say that, when compared with
the order completion method, the algebraic nonlinear theory, which
is the subject of this review, may turn out to be deeply permeated
with several important conflicts or incompatibilities between it vari-
ous aims pursued. And as a consequence, it may exhibit a pronounced
complexity.
Certainly, such may appear to be the case, when compared with the
significantly more powerful order completion method which, not sur-
prisingly in view of the relative simplicity of the concept of order, is
considerably simpler, being free from all kind of complicated internal
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conflicts or incompatibilities.

The algebraic nonlinear theory of generalized functions is indeed a
rather complex edifice as it brings together a variety of often conflicting
or incompatible ideas, concerns, aims and facts. Among them are :

• the basic, simple and purely algebraic conflict between

– singularities

– multiplication

– differentiation

• inevitable interplay between stability, generality and exactness .

Furthermore, it also makes use of mathematical disciplines beyond the
obviously involved analysis. Such disciplines are, for instance :

• algebra with its ring theory,

• topology with the theory of rings of continuous functions, Stone-
Cech compactification, and also pseudo-topologies,

• familiarity with mathematical logic, and in particular, with re-
duced power and ultrapower algebras,

• sheaf theory, with an accent on flabby sheaves, and of course,

• various PDE studies, mainly nonlinear, and possibly, of the gen-
eral, type independent kind.

It is in this way that the nonlinear theory of generalized functions can
benefit a lot from an approach which brings not only focus on vari-
ous details, an approach customary among analysts, but one which is
also able to see the big picture in which more basic ideas have to be
pursued with their interactions and within important inevitable con-
straints that may be quite new in the usual mathematical experience
of the so called ”working mathematicians”...

Consequently, a more appropriate overview of the subject can hardly
be brief, even if one may try quite hard one’s best to keep to such an
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attractive promise ...
Here, indeed, we have but one of the examples of how the nonlinear
theory of generalized functions is bound to navigate in realms with
strong conflicting, or rather incompatible tendencies ...

What has so far been a guiding, and in fact inspiring, as well as mod-
erating influence on that theory is the fact that, mostly, it has been
created and developed in view of solving large classes of PDEs.
And as is known, ever since Newton’s Calculus, PDEs have been the
most general and rigorous mathematical models for the basic laws of
Physics.
It is worth noting in this regard that during the last half a century or
so, with the exception of the Schrödinger equation in Quantum Me-
chanics, and hardly at all other equations, by far most of the PDEs of
interest have been nonlinear.

The origin of the modern linear theory of generalized functions goes
back to the 1930s, with the introduction of Sobolev spaces, and then
it reaches its full development following the introduction in the 1940s
of the Schwartz distributions.
The two obvious limitations of that linear theory, usually called the
theory of distributions, are :

• the considerable difficulties in dealing with nonlinear PDEs, with
the resulting methods based mostly on adhoc approaches, due
to the fact that, hardly without exception, the various spaces of
distributions are not algebras, but only vector spaces,

• the considerable restrictions on the singularities which can be
dealt with by various spaces of distributions, due to the fact
that hardly any of them is a flabby sheaf.

Systematic nonlinear theories of generalized functions started to emerge
in the 1960s, [16,17,22,23,3,4,6,7,38,39,43,45,47, 50,9,53-57,59,61,
70-72,97-99,105,141,143,165,172-178], by the time a considerable amount
of applications of the distribution theory had taken place in solving
linear and nonlinear PDEs. As it happened, however, those who con-
tributed in the early stages to the development of the nonlinear the-
ory of generalized functions were, with few exceptions, [3,4,6], doing
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so upon motivations, aims and ideas which were hardly at all related
to linear, let alone, nonlinear PDEs. Instead, they were of a rather
theoretical nature, trying to eliminate certain limitations of what by
then was a well developed linear theory of generalized functions, that
is, of distributions. One of such limitations which received a spe-
cial attention was the celebrated and long misunderstood 1954 result
of Schwartz, [245], claiming erroneously to prove the impossibility to
multiply distributions.

The fact remains, however, that as much due the requirements of its
own theoretical development, as due to those of its applications to the
solution of linear, and especially nonlinear PDEs, the nonlinear theory
of generalized functions is at the confluence of a variety of rather dif-
ferent motivations, aims and ideas, or for that matter, interpretations.
Also lately, that theory is no longer applied alone to solving PDEs, as
its applications have branched out into differential geometry, and in
particular, general relativity, [177], as well as other basic disciplines
of mathematics and physics, among them Lie groups, quantum grav-
ity, and so on, [53-57,70-72,167,168-170], with the consequent further
diversity of motivations, aims and ideas which contribute to its devel-
opment.

0.3. Consensus, and also Some Controversy ...

The consensus which has emerged from the beginning is that spaces of
generalized functions should be differential algebras, and not merely
vector spaces of infinitely differentiable generalized functions, such as
is the case, for instance, with the spaces of Schwartz distributions, and
in particular, the Sobolev spaces.

There is also a consensus that the differential algebras of generalized
functions should be large enough in order to contain some of the more
frequently used linear spaces of distributions.

Further, there is some less clear consensus about the need to be able
to deal with sufficiently large classes of singularities in the differential
algebras of generalized functions.
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More precisely, and rather strangely at that, there are quite different
views - even if often tacitly accepted - about what kind of singularities
are important to be dealt with, and on the other hand, what kind of
singularities may be left outside of a nonlinear theory of generalized
functions.
In this regard, it may appear that the respective lack of consensus is a
consequence of an insufficient clarity among many of those involved in
the nonlinear theory of generalized functions about the considerable
ranges and variety of singularities which can occur in mathematical
analysis and its various applications.
A possible reason for such a lack of clarity comes from the fact that
attention is focused on the rather limited classes of singularities the
Schwartz distributions and Sobolev spaces can deal with. And com-
pared to them, the emerging nonlinear theory of generalized functions
can, of course, do considerably better. That fact alone, however, need
not - and actually it does not - mean that all presently developed and
used differential algebras of generalized functions are quite equally
good at dealing with singularities. Indeed, as seen is the sequel, some
of such algebras can easily deal with surprisingly large classes of sin-
gularities, while other ones are note much better in this regard than
the usual spaces of distributions.

And the remarkable fact in this regard - seemingly not yet realized by
many - is that the respective dichotomy between various differential
algebras of generalized functions goes parallel with the dichotomy be-
tween being, or on the contrary, failing to be a flabby sheaf. Indeed,
flabbiness proves to be the very property which guarantees the ability
to deal with truly large classes of singularities.

In this regard, one may conclude that the nonlinear theory of gen-
eralized functions, in its present form of infinitely many differential
algebras of generalized functions - which correspond to the inevitable
infinite branching of multiplication above certain levels of singularities,
[4, pp. 118,119], [143], thus to infinitely many different multiplications
of generalized functions with singularities, see section 14 - is subjected
to a
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Dichotomic Sheaf Theoretic Singularity Test :

Those algebras which are flabby sheaves can handle very
large classes of singularities.

Those algebras which fail to be flabby sheaves cannot han-
dle but limited classes of singularities.

This dichotomy, however, does not disqualify the differential algebras
of generalized functions, among them the Colombeau algebras, for
instance, which fail to be flabby sheaves. Indeed, hardly without ex-
ception, the various vector spaces of distributions in the linear theory
of generalized functions also fail to be flabby sheaves. Yet their utility
is clearly unquestionable in solving various ranges of PDEs.

Nevertheless, this dichotomy comes fully to the fore - and does so even
in the linear, and not only nonlinear case - when dealing with large
classes of singularities is involved.

The present lack of a sufficient understanding of the inevitable infinite
branching of multiplication above certain levels of singularities has
had several further negative consequences. Among them is a rather
strange divergence of views which has emerged about an issue which
- within the linear theory of distributions - had for long been clearly
and definitely settled, ever since its very beginnings, that is, with the
introduction of various Sobolev spaces in the 1930s.
Namely, it is one of the remarkable and obvious features of the linear
theory of generalized functions that a large variety of vector spaces
of distributions have been developed and used, each of them with its
specific advantages, and of course, limitations as well. And as men-
tioned, that trend started from the very beginning with the natural
variety of Sobolev spaces. Later, even in the case of the very large vec-
tor spaces of Schwartz distributions, two rather different such vector
spaces proved to have fundamental importance, namely, the spaces D ′

and S ′, the first being a vector space of distributions useful in a con-
siderable variety of situations, while the second being a vector space
tailor made for the use of Fourier transforms.
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And needless to say, a further large variety of vector spaces of dis-
tributions has over the decades been considered and used, as is well
documented in the respective literature.

In this way, within the linear theory of generalized functions there
has never been an issue which particular vector space of distributions
should alone be declared canonical and of alleged universal and ex-
clusive use, and then have the whole linear theory of distributions
restricted to it.
Instead, there has always been a clear and strong awareness about the
relative advantages and disadvantages of each vector space of distri-
butions, and therefore, about the manifest convenience to develop and
use the various spaces according to their specific features.

What further makes the mentioned divergence of views strange is the
following essential, yet hardly noted fact typical for differential alge-
bras of generalized functions.
Namely, as seen in the linear theory of generalized functions, the addi-
tion of such generalized functions can easily and naturally be extended
in a well defined unique manner to considerably large vector spaces of
generalized functions.
On the other hand, and in sharp contradistinction to the case of
addition, the multiplication of generalized functions does inevitably
branches into a large number of different possibilities when it occurs
above certain levels of singularities. And the reasons for such an in-
finite branching are most simple, thus fundamental and unavoidable,
namely, of a purely algebraic, more precisely, ring theoretic nature,
see section 14.

A fundamental - and among those involved in the nonlinear theory
of generalized functions, still hardly realized, let alone understood -
consequence of this infinite branching of multiplication is that :

• while the operations of addition and scalar multiplication on
singularities of generalized functions remain the same, when-
ever they can be performed, in various spaces of distributions,
Sobolev spaces or differential algebras of generalized functions,

• on the other hand, and in sharp contradistinction, multiplica-
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tion, and in general, nonlinear operations, as well as differentia-
tion of singularities of generalized functions lead to significantly
different results, depending on the mentioned spaces or algebras
in which they are performed.

This fact alone is, therefore, sufficient to lead to the inevitability -
thus as well necessity and convenience - to consider, develop and use
a larger variety of differential algebras of generalized functions.

As for the present lack of understanding of that inevitable branching
of multiplication, some amusing aspects cannot so easily be missed.

First, and as mentioned, the reason for such an inevitable infinite
branching of multiplication is very simple, namely, purely of a ring
theoretic nature. Nevertheless, certain leading scholars in mathemat-
ics and physics still miss on realizing the very existence, let alone, the
inevitability of that branching, [240].

Added to such a state of affairs comes the fact that most of those
presently involved in the nonlinear theory of generalized functions
come from a background of mathematical analysis, with its well known
particular point of view focusing on a rather limited variety of spaces,
and pursuing their analysis to the extremes. In this regard one can
note that, unlike analysts, even functional analysts are accustomed to
a variety of rather different spaces. However, the deficiency there is
that much of functional analysis has its strength in the linear, rather
than nonlinear realms.

And needless to say, the technical complications which are inherent in
a nonlinear theory of the generalized functions can attract the atten-
tion of analysts, and do so even to the extent of seemingly preventing
a deeper awareness and understanding of important aspects of the
complex conceptual underpinning of the emerging nonlinear version
of the theory, aspects not so familiar to usual analytic thinking ...

In other words, it appears that, for many of the present practitioners
of the emerging nonlinear theory of generalized functions, it may still
be early days for a better understanding of such crucially important
aspects as
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• what are really large and important classes of singularities,

• the inevitability of infinite branching of multiplication above cer-
tain levels of singularities.

In this regard, the extent to which the nonlinear theory of generalized
functions is rather complex in its nature, being at its best an interplay
of a variety of motivations, aims, ideas, methods, applications, and so
on, which come from a number of rather different branches of mathe-
matics, and possibly physics as well, is illustrated among other by the
fact that two major branches of mathematics, typically unfamiliar to
analysts, play an obvious role in that theory, namely, model theory,
which is a modern branch of mathematical logic, and sheaf theory.
Model theory is, indeed, present in the very way the various differen-
tial algebras of generalized functions are constructed, a construction
closely related to what is called reduced powers.
As for sheaf theory, the issue of the flabbiness, or otherwise, of various
differential algebras of generalized functions turns out to be fundamen-
tally related to the extent such algebras can, or for that matter, cannot
deal with large classes of singularities. Indeed, those algebras which
are not flabby sheaves fail significantly when facing larger classes of
singularities.
These two mathematical concepts, namely, reduced powers and flabby
sheaves, let alone their deeper understanding in the context of their
own respective mathematical theories, happen to be so often quite
strange to analysts.
No wonder, therefore, that their crucial importance is not fully real-
ized within the nonlinear theory of generalized functions ...

As for the very strong and direct connection between the ability to
deal with considerably large classes of singularities and the flabbiness
of the respective differential algebras of generalized functions, this is
indeed a most fortunate mathematical fact.
Certainly, from the point of view of its strictly technical or formal
aspect, the concept of flabby sheaf is surprisingly simple.
On the other hand, the issue of singularities, let alone, of large such
classes, is notoriously difficult.
Nevertheless, in the case of certain sheaves of functions or generalized
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functions on topological spaces, and among them the differential al-
gebras of generalized functions, the concept of flabbiness turns out to
be just about the perfect one in order to characterize the mentioned
ability to deal with very large classes of singularities.

0.4. Far Too Many Differential Algebras of Generalized
Functions ?

Here in this study we shall limit the attention mostly to the issue of
singularities. And we shall present various approaches to them in the
following five types of differential algebras of generalized functions,
types considered in the order they have been introduced in the litera-
ture :

• the nowhere dense algebras, see sections 7, 8 and [22,23,3,4,6,7,38,
39,43,45,47,49,9,53-57,59,61,70,71, 97-99,105,168-170,175]

• chains of algebras, see section 15 and [3,4,6,7]

• the Colombeau algebras, see section 9 and [172,173]

• the space-time foam algebras, see section 10 and[55-57,59,61,97,
165,168-170]

• the local algebras, see section 11 and [141]

It is important to note that, in fact, the natural approach to a thorough
enough nonlinear theory of generalized functions is not by studying on
its own one or another differential algebra among the infinitely many
possible ones, a possibility resulting directly from the infinite branch-
ing of multiplication above certain levels of singularities. Indeed, a
more careful study of differentiation, see sections 12 - 14 and [4, pp.
88-97], [6, pp. 287-347], [7, pp. 1-99] in this regard, shows that whole
chains of algebras, instead of any single one, are actually the natural
framework, chains recalling the classical one C∞ ⊂ . . . ⊂ Cn ⊂ . . . ⊂
C0. And the reason for that, a most simple, basic, and purely alge-
braic one, is the inevitable presence of the three conflicting issues of,
see section 12

• singularities,
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• multiplication, and

• differentiation

which, needless to say, have to be brought together within any more
appropriate nonlinear theory of generalized functions. Therefore, in
order to help such a clarification, it is useful to recall in section 12 what
appear to be the most simple and basic facts - of a purely algebraic
nature - which happen to underlie differentiation in any algebraically
based generalized context.

Amusingly, so far, the mentioned chains of algebras of generalized
functions have not proved to be popular ...
It is, indeed, far more cozy for many to limit oneself to one single such
algebra, and then, try to develop endlessly one’s respective specializa-
tion ...
After all, in mathematics, as much as in science in general, and in fact,
in all human ventures, so many decisions, no matter how consequen-
tial they may be, are done upon rather strong and instant emotional
reasons ...
If the term ”emotional reason” may actually make any sense at all ...
But then, we have that age old French saying, according to which ”the
heart can have reasons which the mind can never comprehend” ...

Last, but not least, it should be mentioned that, in view of the in-
evitable branching of multiplication pointed out above, it was in [4] for
the first time that all possible differential algebras of generalized func-
tions were identified and constructed, see also [6,7,38,39,43,45,47,50,9,
53-57,59,61,70,97-99,105] for further details.

Consequently, the first four types of differential algebras mentioned
above, and which will be considered in the sequel with respect to their
specific ability to deal with singularities, are but particular cases of the
differential algebras of generalized functions introduced in [4]. Details
in this regard can be found in [6, pp. 300-306], [7, pp. 301-319], [177,
p.7].
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0.5. The Classical Schwartz and Lewy ”Impossibilities” ...

One cannot, however, present such an overview without mentioning
the following.

Two crucial ”impossibility” results happened to arise rather early in
the development of the linear theory of generalized functions, or in
other words, of the Schwartz distributions.

The first one, already mentioned, was the 1954 result of Schwartz,
[245], which even more than two decades later kept being misinter-
preted by leading specialists as allegedly proving the impossibility of
multiplying distributions, [215].

Soon after, in 1957, came the Hans Lewy ”impossibility” result, [229],
showing that very simple first order linear smooth - and in fact, first
degree polynomial - coefficient PDEs in three real variables do not
have any distribution solutions in any neighbourhood of any point in
R3.
And a special gravity of that impossibility result came from the fact
that the respective PDEs were not, so to say, merely invented as a
counter-example, but resulted from certain studies in functions of sev-
eral complex variables.

The reaction - over the last more than half a century - of the commu-
nity of the linear theory of generalized functions to these two ”impos-
sibility” events turned out to be rather radically different.

The first event got simply and quite instantly misinterpreted, as it
was turned into a sort of slogan : ”one cannot multiply distributions”.
After that, quite everybody returned to their usual ventures in devel-
oping and using distributions, mainly with a view to solving PDEs.
The few exceptions in research which kept up the interest in the
Schwartz impossibility turned out, as mentioned, to lead to the emer-
gence of the nonlinear theory of generalized functions ...

As for the second event, it was quickly forgotten, never to be men-
tioned again, simply as if it had never happened ...
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After all, it was far too painful and obvious a warning about the rather
dramatic insufficiency of distribution theory even in the study of lin-
ear PDEs ...
There were, fortunately, two studies which contributed to a significant
clarification of the Lewy impossibility, [215,251]. However, successive
generations of specialists using distributions turned out to be hardly
at all aware of that dramatic warning ...

After all, and for better or worse, mathematics is not quite history,
and of course, neither is history mathematics ...
But then, history is quite a lot of sociology ...
And sociology may not be mathematics ...
But on the other hand, a lot of mathematics is, as it happens, mere
sociology ...
And how about science ?
Well, it certainly has to be taken ... modulo ... sociology, and why
not, perhaps even history ...

As mentioned, the nonlinear theory of generalized functions, with the
respective variety of differential algebras, has completely clarified the
Schwartz ”impossibility”, by showing that there is absolutely no any
kind of impossibility in multiplying distributions, when done within
such algebras.

Regarding the Lewy ”impossibility”, the situation has remained less
clear within the nonlinear theory of generalized functions. Indeed,
there are results on solving large classes of linear smooth coefficient
PDEs. However, those differential algebras of generalized functions in
which such solutions are found have, so far, to be subjected to rather
complicated adhoc modifications with respect to the operation of dif-
ferentiation, [172,173].

And the morale of the story of the nonlinear theory of generalized
functions ?
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0.6. Two Powerful Nonlinear Challenges in
Dealing with Singularities

Well, for nearly two decades by now, and ever since the early 1990s,
[8], it happens that the nonlinear theory of generalized solutions -
based on various differential algebras of generalized functions - is no
longer the most powerful and general theory for solving large classes
of linear and nonlinear PDEs. A few indications in this regard are
presented next in subsection 0.7.

A second and no less powerful nonlinear method for dealing with large
classes of singularities was introduced by A Mallios also in the 1990s,
under the name of Abstract Differential Geometry, or ADG, [168-170].
Several related details can be found below in subsection 0.8.

0.7. A Few Words on the Order Completion Method

Indeed, the order completion method, [8], and its subsequent consid-
erable improvements, [58,60,67,69,158-164], turned out to be able to
provide solutions for linear and nonlinear PDEs which in two impor-
tant respects are far beyond what certain leading PDE specialists,
[181,198], consider ever to be possible in mathematics, namely :

• Very general nonlinear systems of PDEs with possibly associated
initial and/or boundary value problems can always be solved, the
respective equations being of the form

(0.2) F (x, U(x), . . . , DpU(x), . . .) = f(x), x ∈ Ω ⊆ Rn

where F and f are arbitrary continuous functions. And in fact,
the functions F and f can have discontinuities on closed,
nowhere dense subsets, [8].

• One can always obtain solutions which are no longer general-
ized functions, but instead are usual measurable functions on Ω,
and in fact, are even more regular, being Hausdorff continuous.
Furthermore, in case smoothness conditions are satisfied by F
and f , corresponding smoothness properties are obtained for the
solutions.
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When it comes to proving the existence of solutions of nonlinear PDEs,
it is important to compare the power of this order completion method,
OCM, with that of the linear, or for that matter, nonlinear theory of
generalized functions, NTGF. In this regard, the following are already
obvious :

• The OCM proves the existence of solutions for nonlinear systems
of PDEs with possibly associated initial and/or boundary value
problems of such a generality to which NTGF cannot come any-
where near at present. In this regard OCM proves to be type
independent, that is, delivers the existence of solutions in ways
which do not depend on the particular type of the PDEs in-
volved. Such type independence is, so far, unprecedented in the
whole range of known solution methods for PDEs, except for the
method improved upon in [114], which however, is more restric-
tive.

• Furthermore, OCM gives a blanket, universal, type independent
regularity for the solutions obtained, since such solutions can
be assimilated with usual measurable functions, thus they do
no longer require the consideration of any kind of generalized
functions. Also, if certain smoothness conditions are assumed
on the PDEs, then similar smoothness conditions are obtained
for the solutions.

• The OCM proves to be able to deal with initial and/or bound-
ary value problems in the same way as it deals with the solution
of PDEs without such associated problems. This is in sharp
contradistinction with the considerable technical difficulties en-
countered in NTGF, let alone, the linear distribution theory,
when dealing with such associated problems.

• The proofs of existence of solutions for PDEs obtained so far in
NTGF are rather similarly adhoc with those in the linear theory
of distributions and Sobolev spaces. Thus they are highly type
dependent.

Needless to say, this order completion solution method, [8], was the
first - and so far, it is the only one - to overcome the Lewy impossi-
bility. And it did so with a very wide nonlinear margin.
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And the reason for such a surprising power in the order completion
solution method ?

Quite likely, the answer is in the fact that the concept of partial order
- which at first appears to be so very simple - is considerably more
powerful than it is so often credited for, when compared with algebraic
or topological methods. In this regard, it is worth recalling the 1936
Freudenthal Spectral Theorem, [232, chapter 6], which is formulated
exclusively in terms of partial order, and also proved exclusively in the
same terms, yet it has as consequences the spectral theorem of normal
operators in Hilbert spaces, the Radon-Nykodim theorem in measure
theory, and the existence of solutions of certain Poisson PDEs.

As it happens however, such theorems are hardly known nowadays ...
As if they did not even belong to mathematics or to the history of
mathematics ...
Yes indeed, the interplay between mathematics and history appears
to be far more subtle, mysterious, and also mystifying than most of
us may realize, or could even imagine ...

0.8. ADG, or the Abstract Differential Geometry of Mallios

As it happened, no less than two new general nonlinear theories deal-
ing with large classes of singularities have emerged in the 1990s. The
first one was already mentioned in subsection 0.7., while the second is
the Abstract Differential Geometry, or ADG, established by A Mallios,
see [168-170] for some of the more relevant references in this regard.

These two approaches started from significantly different points of
view, motivations and aims.

The first, as mentioned, was motivated by the limitations of both
the linear distribution theory of Schwartz, as well as of the nonlinear
theory of generalized functions as represented by various differential
algebras of generalized functions, when attempted to be applied to the
solution of the largest possible classes of nonlinear systems of PDEs.

The second aimed to eliminate the issue of singularities in usual smooth
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differential geometry, an issue which is essentially involved in the
applications of that mathematical discipline to various disciplines of
physics, among them general relativity, quantum gravity, and so on.

As it happened, however, the second nonlinear approach turned out
to be essentially based on the use of the differential algebras of gen-
eralized functions, and especially of those which are flabby sheaves,
[54,55,57,70,168-170].

Indeed, ADG is from its very first steps heavily involving sheaf theory.
And as already mentioned, and further elaborated in the sequel, the
sheaf point of view is most naturally and intimately connected with
the issue of singularities. And to add to that, flabby sheaves turn out
to be the inevitable natural setup when dealing with large classes of
singularities.

Is this considerable role played by sheaves - and specifically by flabby
sheaves - to delay for longer the involvement of analysts ?
To become sufficiently familiar, and in fact, quite proficient in the
relevant aspects of sheaf theory, it is more than enough to read the
remarkably well written first few respective chapters in [168] ...
And reading those chapters can in fact be a joy in itself, not to men-
tion that it may prove useful to the readers in studying quite a few
other branches of modern mathematics ...
In this regard, it is worth noting that more than two decades ago,
Kaneko, [219], found it appropriate to present hyperfunctions in the
context of sheaf theory. And reading that presentation, even hard
core analysts may have to wonder whether, indeed, sheaf theory can
be kept outside of their subject for longer in our times ...
Anyhow, it is quite clear by now that sheaf theoretical methods can,
and do, give a significant competitive edge to those who are brave
enough to know them, and thus, can use them ...
A shorter presentation of the required aspects of sheaf theory, one that
follows the exposition in [168], can be found in [136].
And then, why should we not have analysts as well among such ad-
vantaged competitors ?

By the way, as it happens, the order completion method also benefits
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significantly from the sheaf theoretic point of view ...
And in fact, the spaces delivered by that method, spaces within which
very large classes of nonlinear systems of PDEs, with possibly associ-
ated initial and/or boundary value problems, always have solutions,
would be rather meaningless, unless those spaces would be sheaves, as
they in fact turn out to be ...

0.9. Can Mathematics Deliver General PDE Solution
Methods ?

As for the present understanding by certain leading specialists of what
may, or for that matter, may not be possible in mathematics regarding
the solution of PDEs, the following two citations can be instructive :

The 2004 edition of the Springer Universitext book ”Lectures on PDEs”
by V I Arnold, [181], starts on page 1 with the statement :

”In contrast to ordinary differential equations, there is no
unified theory of partial differential equations. Some equa-
tions have their own theories, while others have no theory
at all. The reason for this complexity is a more compli-
cated geometry ...” (italics added)

The 1998 edition of the book ”Partial Differential Equations” by L C
Evans, [198], starts his Examples on page 3 with the statement :

”There is no general theory known concerning the solv-
ability of all partial differential equations. Such a theory
is extremely unlikely to exist, given the rich variety of phys-
ical, geometric, and probabilistic phenomena which can be
modeled by PDE. Instead, research focuses on various par-
ticular partial differential equations ...” (italics added)

So much, therefore, for the differential algebras of generalized func-
tions, or for the order completion method in solving large classes of
nonlinear PDEs ...

Last, but not least, two further issues about singularities and differ-
ential algebras of generalized functions.
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0.10. And What About the Schwartz Distributions ?

It seems that history has its heavy hand influencing for long the issue
of singularities ...
First, the instant and long ongoing misinterpretation of the 1954
Schwartz ”impossibility” entrenched the view that singularities, that
is, those dealt with by generalized functions, and specifically, by dis-
tributions, could not possibly be subjected to nonlinear operations in
a general and systematic manner, namely, within an appropriate wide
ranging nonlinear theory. Consequently, a large range of adhoc meth-
ods were introduced, specifically when solving nonlinear PDEs. As for
the application of distributions to such essentially nonlinear realms as
differential geometry, and in particular, general relativity, no attempts
worth mentioning have been developed, since the unsuitability of any
linear theory - among them of the distributions as well - proved to be
quite glaringly clear from the start ...

Nevertheless, when the nonlinear theory of generalized functions started
to emerge, there was a somewhat lingering feeling that the Schwartz
distributions should by all means be contained in the respective differ-
ential algebras of generalized functions, as a kind of guarantee for the
legitimacy, relevance, interest in, and value of the emerging nonlinear
theory ...
Thus amusingly, it seemed to be forgotten all about the severity of the
limitations on singularities which the distributions were able to deal
with ...
It seemed also to be forgotten the fact that the various Sobolev spaces
are quite far from containing all the Schwartz distributions. And in
fact, most of the usual ones do not contain even the celebrated Dirac
delta distribution ...

And of course, not much awareness was present about the inevitable
infinite branching of multiplication above certain levels of singular-
ities, branching which would, among others, lead to multiplications
rather different from those encountered in any adhoc methods devel-
oped within the linear theory of distributions ...

Remarkably in this regard, it took a mathematician of such wide and
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deep knowledge and understanding of its various disciplines like M
Hazewinkel to ask, as if rather naively and innocently, why indeed
must all the algebras of generalized functions contain all the Schwartz
distributions, [16,17,3] ?
And as it happened, very few present at the respective informal 1997
seminar at the Erwin Schrödinger Institute for Mathematical Physics
in Vienna, Austria, managed to grasp the timely relevance of that
question ...
After all, it was only about half a century since distributions had been
introduced ...
And as not seldom in science, the wheels of history can happen to
turn rather slowly ...

Now, as soon as one realizes that there is no need for such a most close
connection between the Schwartz distributions, and on the other hand,
the various differential algebras of generalized functions, the issue of
the embedding of the whole vector space D ′ of distributions into all
differential algebras of generalized functions acquires a secondary im-
portance. And then, inevitably, even more does so the issue of having
such an embedding preserve the differentiation of distributions.
In this regard one may note that, until the early 2000s, it was thought
that the Colombeau algebras were the only differential algebras of gen-
eralized functions in which the vector space D ′ of distributions could
be embedded with the preservation of the differentiation of distribu-
tions. Then it was shown in [253] that it is rather easy to construct
differential algebras of generalized functions with such a stronger em-
bedding property for distributions. And furthermore, the respective
differential algebras of generalized functions constructed in [253] allow
a supplementary large class of nonlinear operations on generalized
functions which cannot be performed in the Colombeau algebras.

Consequently, the issue of such a stronger embedding of the Schwartz
distributions, regarding differentiation, lost considerably from what
appeared to be its initial importance, and did so independently of the
above challenging, if not in fact, troubling question of M Hazewinkel,
or for that matter, of the answer one may give to that question ...

Furthermore, as mentioned in subsection 12.4.5., the basic, simple,
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and purely algebraic incompatibility between insufficient smoothness,
multiplication and differentiation leads to the inevitable fact that, by
requiring the preservation of distributional differentiation in algebras
of generalized functions, one has to pay a price. Namely, one ends
up in such algebras with multiplications which are different from the
usual ones in the case of insufficiently smooth functions in Cm \ Cm+1,
with 0 ≤ m <∞.

0.11. Again and Again that Algebraic Conflict ...

A further issue worth recalling is the basic and most elementary alge-
braic conflict which is at the root of the so called Schwartz ”impossi-
bility”, namely, the conflict between discontinuity, multiplication and
differentiation, see section 12. In this regard, it happened that from
the very beginning the formulation, as well as proof of the Schwartz
”impossibility” created the impression that it was about an issue by
no means less involved than analysis, if not in fact, functional anal-
ysis. A more careful consideration, however, clearly showed that it
was indeed about noting more than a rather simple and quite basic
algebraic conflict.

In conclusion, the emergence and development of the nonlinear theory
of generalized functions has its own history, as well as sociology ...
As often in science, emerging theories may start at the margin of some
established ones, and remain for a while longer on the margins ...
By the late 1990s, however, the nonlinear theory of generalized func-
tions got a certain recognition being listed under 46F30 in the Math-
ematical Subject Classification of the American Mathematical Society.

Yet several specific features of that theory, in conjunction with its
sociology, still seem to have a certain limiting effect on its further de-
velopment.

In this regard, as mentioned above, two factors may seem to be impor-
tant : the considerable complexity of the theory, not least due to its
essentially nonlinear nature, and the fact that most of those involved
in it at present come from a background of analysis.
In addition, as so often in science, and thus not specifically only to
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the nonlinear theory of generalized functions, come strong widespread
tendencies of getting into, and then staying for ever more in the com-
fort zone of one or another particular, and thus inevitably narrow view
of the subject ...

As for the significant challenge to the nonlinear theory of generalized
functions by the order completion method in solving large classes of
nonlinear systems of PDEs, there are mathematical disciplines where
nonlinear approaches to generalized functions can still have a signif-
icant importance. Among such disciplines are, of course, differential
geometry where the treatment of singularities through the classical
approaches is utterly inadequate. In this regard, that is, of a differen-
tial geometry which can easily deal with large classes of singularities,
remarkable recent developments have been made in [168-170], by the
earlier mentioned ADG, see also [54,55,57,70] for related further con-
tributions.

0.12. At the Constructive Core ...

The construction of the infinite variety of differential algebras of gen-
eralized functions is the result of an interplay between a number of
conflicting objectives and conditions. And as mentioned, and also seen
in the sequel, this conflict prevents to some extent the attainment of
certain landmark results, such as for instance, the complete and clear
overcoming of the Lewy impossibility.
In view of such a rather complex situation involved which leads to
an infinite variety of differential algebras of generalized functions, it
is important to point our the core constructions which should not be
lost from sight in order to attain a better understanding of the issues,
and among them, that of singularities.

The subsections 14.1. - 14.3. present that core construction, which
consists of :

• the structure of the inclusion diagrams upon which all differen-
tial algebras of generalized functions considered here are con-
structed, see subsection 14.1.,

• the necessary, thus as well inevitable nature of these inclusion
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diagrams, see subsection 14.2.,

• the off-diagonality characterization of the ideals which are in-
volved in the constructions of these algebras, see subsection 14.3.

In view of the somewhat involved nature of the inclusion diagrams
which give the construction of all differential algebras of generalized
functions considered here, it may be surprising to see the necessity,
and hence, the inevitability of dealing with such inclusion diagrams.
Further surprise come from the simple algebraic argument which high-
lights that necessary and inevitable aspect of the inclusion diagrams.

A no less surprising fact is the off-diagonality characterization of the
ideals in the inclusion diagrams, ideals which play a basic role in the
constructions of the differential algebras of generalized functions. And
again, this characterization is of a purely algebraic nature, and in ad-
dition is most simple. In fact, its necessary nature is quite trivial.
Therefore, what is impressing related to it is that it turns out to be
sufficient as well.

It was in [4] for the first time that the off-diagonality characterization
of all the differential algebras of generalized functions was presented.
And since then, all such algebras studied, including the Colombeau
algebras, have been but particular cases which are included in that
purely algebraic characterization. Details in this regard can be found
in [6, pp. 300-306], [7, pp. 301-319], [177, p.7].

Lastly we note that, in earlier versions of the general theory of dif-
ferential algebras of generalized functions, [???], the term ”neutrix
condition” was used instead of the term ”off-diagonality characteriza-
tion”.
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1. Singularities of Usual Functions

Let us start by considering some basic spaces of usual functions with
various extent of smoothness, or for that matter, lack of smoothness,
which can offer the customary set up in mathematical analysis for en-
countering singularities, and which, since the 1930s, have in fact led to
a considerable amount of diverse spaces of generalized functions, and
did so mainly in the study of solutions of linear and nonlinear PDEs.
For simplicity, we shall often consider functions and generalized func-
tions of one single real variable, and with real values. That however,
will not exclude the consideration when appropriate of functions and
generalized functions defined on arbitrary open subsets Ω ⊆ Rn.

Fortunately, most of the issues dealt with here and concerning singu-
larities of generalized functions of one real variable can quite easily be
extended to generalized functions of several real variables, and with
real or complex value, and in fact, with values in Banach algebras as
well, be they commutative or not.
It follows that the situation of singularities of generalized functions of
several real variables can, in fact, be no less simple than those pre-
sented in the sequel, and which are already considerable.

As basic spaces of usual functions we can consider the following real
valued ones, all of them defined on some open Ω ⊆ Rn, namely

(1.1) Cω $ C∞ $ . . . $ Cn $ . . . $ C0 $ Lloc

where Cω and Lloc denote as usual the real analytic, respectively, lo-
cally integrable functions.

In such a setup, let f : R −→ R be a usual function, while S is one of
the spaces in (1.1). Then f is usually considered to have a singularity
at some point a ∈ Ω, when considered in the context of S, if

(1.2) f /∈ S on Ω

however
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(1.3) f ∈ S on Ω \ {a}

A more general situation is that of a set Γ ⊆ Ω of singularity points
of f , when again

(1.4) f /∈ S on Ω

nevertheless

(1.5) f ∈ S on open subsets V ⊆ Ω \ Γ

It follows naturally that two aspects are important when considering
the singularities of functions f : R −→ R in the context of such spaces
S, namely

• SIZE : how large the singularity subsets Γ are,

• BEHAVIOUR : how the functions f behave in the neighbour-
hood of singularity points in Γ.

Let us give a few illustrations in this regard, and start with the small-
est nontrivial size of singularity sets, namely

(1.6) Γ = {a} ⊂ Ω

Example 1.1.

One best possible behaviour in the neighbourhood of singularity is in
the case of the Heaviside function

(1.7) H ∈ Lloc \ C0 on Ω = R, H ∈ Cω on Ω = R \ {0}

since we have lim x→0, x< 0H(x) = 0, lim x→0, x> 0H(x) = 1.
�

This situation has correspondents in higher cases of smoothness, as
seen in
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Example 1.2.

For n ≥ 1, we have

(1.8) xn+ ∈ Cn \ Cn+1 on Ω = R, xn+ ∈ Cω on Ω \ {0}
�

At the opposite end of behaviour in the neighbourhood of a singular-
itiy, but still for the smallest nontrivial size of singularities (1.6), we
have, even in the case of analytic functions, a rather surprising fact,
described by the Great Picard Theorem. Namely, in the neighbour-
hood of an essential singularity, an analytic function takes infinitely
many times every complex value, except perhaps for a single one.
It follows that, in general, one can expect a rather arbitrary behaviour
for functions f ∈ C∞ on Ω\{a} in the neigbourhood of their singular-
ity point a ∈ Ω. In particular, no given growth condition of any kind
may ever describe by far most of such functions.

In our case of functions of real variable in (1.1), a situation similar with
the behaviour in the Picard theorem can easily occur in the neighbour-
hood of a singularity even for C∞ smooth functions, as seen in

Example 1.3.

Let f : R \ {0} −→ R given by f(x) = (sin(1/x))/x, for x ∈ R \ {0}.
Then obviously

(1.9) f ∈ Cω on R \ {0}

And in the neighbourhood of its singularity 0 ∈ R, this function takes
- this time without even one single exception - all real values infinitely
many times.

�

The function in Example 1.3. obviously satisfies a polynomial growth
condition in the neighbourhood of 0 ∈ R. However, with rather el-
ementary means, one can construct C∞ smooth functions which do
not satisfy any such growth condition in the neighbourhood of their
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singularity, while at the same time, and again in a manner worse than
described by the Picard theorem, take all real values infinitely many
times, as seen in

Example 1.4.

Let x0 > x1 > . . . > xn > . . . > 0, with limn→∞ xn = 0. Further, let
c0, c, . . . , cn, . . .R be arbitrary given. Then there exist functions

(1.10) f ∈ C∞ on R \ {0}

such that

(1.11) f(xn) = cn, n ∈ N

Indeed, let η ∈ C∞ on R be such that, [236]

(1.12)

∗) 0 ≤ ω(x) ≤ 1, x ∈ R

∗ ∗) ω(x) = 1, x ∈ R \ (0, 1)

∗ ∗ ∗) ω(x) = 0, x ∈ [1/3, 2/3]

Then we define f : (0,∞) −→ R by

(1.13) f(x) =

c0 ω((x− x1)/(x0 − x1)) if (x0 + x1)/2 ≤ x

c1 ω((x− x2)/(x1 − x2)) if (x1 + x2)/2 ≤ x ≤ (x0 + x1)/2

c2 ω((x− x3)/(x2 − x3)) if (x2 + x3)/2 ≤ x ≤ (x1 + x2)/2
...

�

As for the case of largest possible sets of singularities, one has

Example 1.5.

Let f : R −→ R given by
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(1.14) f(x) =
1 if x ∈ R \Q

0 if x ∈ Q

in which case

(1.15) f, (1− f) ∈ Lloc \ C0 on Ω = R

and in fact f is not continuous at any point in R.

�

However, the issue of large sets of singularities of usual functions is
somewhat more involved, as seen next.

Example 1.6.

The Riemann function r : R −→ R is defined by, [220, p.112]

(1.16) r(x) =

1/q if x ∈ Q, x = p/q, p, q are relatively prime

1 if x = 0

0 if x ∈ R \Q

and r is continuous on R \Q, while it is discontinuous on Q.

�

But as it happens, due to a Baire Category argument, one has

Example 1.7.

There are no functions f : R −→ R which would be continuous on Q,
while being discontinuous on R \Q, [220, p.115].

�

Remark 1.1.
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1) The above property in Example 1.7. is a consequence of the more
general property that a function between a Baire space X and a topo-
logical space Y cannot have as continuity points a set X \ E, where
E ⊂ X is countable and dense in X, [220, p.115].

2) In view of Example 1.7., it is to be pointed out that in the space-
time foam algebras, see section 10, one can have generalized functions
on R whose set of singular points is R\Q, while the set of non-singular
points is Q.

Indeed, for the set of singularity points Γ ⊂ Ω of generalized func-
tions in such algebras given on arbitrary open sets Ω ⊆ Rn, the only
restriction is that their complementaries Ω \ Γ, that is, their set of
non-singular points, should be dense in Ω, see (10.1).
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2. The Inevitable, and still Unpopular Sheaf Point of View

As seen already in Example 1.1., namely, in such a simple instance as
that of the Heaviside function, the issue - even in such a case of the
smallest singularity set and a best kind of behaviour in its neighbour-
hood - is that :

• NO EXTESION : There are singular functions which cannot be
extended to non-singular functions on larger domains that may
contain the singularities of the initial, unextended functions.

This fundamentally important situation is simply and clearly described
in a considerable generality by the powerful concepts of sheaf and flab-
biness which we recall briefly, [8,136,219].

Let X be a topological space. Let F (U) be a set, for every open
subset U ⊆ X. Further, for pairs of open subsets U ⊆ V ⊆ X, let
ρ V, U : F (V ) −→ F (U) be mappings such that ρ U, U is the identity on
F (U), while ρ V, U ◦ρW, V = ρW, U , for open subsets U ⊆ V ⊆ W ⊆ X.
Then this structure is called a sheaf on X, iff it satisfies two more con-
ditions which relate its local and global properties.

Definition 2.1.

A sheaf is called flabby, if and only if the mappings

ρ V, U : F (V ) −→ F (U)

are surjective for all pairs of open subsets U ⊆ V ⊆ X.
�

The spaces in (1.1) are sheaves in the above sense. In the case,
for instance, of the space C0 considered on any given open subset
X = Ω ⊆ R, we define F (U), for any open subset U ⊆ X, as being
the set of C0 functions on U . And for open subsets U ⊆ V ⊆ Ω, we
define the mapping ρ V, U : F (V ) −→ F (U) as the usual restriction of
functions on V to functions on U .
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Now, it is easy to see that none of the spaces in (1.1) is a flabby sheaf,
no matter on which open subset Ω ⊆ R they are considered. This is
precisely the reason why the above NO EXTENSION property holds
for all these spaces.

By the way, most of the usual spaces of generalized functions, such
as the Schwartz distributions, or the Sobolev spaces fail to be flabby
sheaves, [219], thus they are subjected to the above NO EXTENSION
property.
The Colombeau algebras also fail to be flabby sheaves - due to the
growth conditions in their definition - thus they as well are subjected
to the above NO EXTENSION property.

On the other hand, the nowhere dense differential algebras of general-
ized functions, as well as those of space-time foam are flabby sheaves,
[54,55,57,70].
Consequently, these two types of differential algebras of generalized
functions do not suffer from the above inconvenient NO EXTENSION
property when dealing with singularities.
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3. The Natural Role of Closed, Nowhere Dense Subsets

Regarding the spaces

(3.1) C∞ $ . . . $ Cn $ . . . $ C0

it is easy to see that each of them can naturally be embedded into a
smallest flabby sheaf, [8], namely

(3.2) Cn $ Cnnd, 0 ≤ n ≤ ∞

where, for a given open subset Ω ⊆ R, we have

(3.3) Cnnd =

f : Ω −→ R
∃ Γ ⊂ Ω, Γ closed, nowhere dense :

f | Ω\Γ ∈ Cn


And obviously, similar with (3.1), we have

(3.4) C∞nd $ . . . $ Cnnd $ . . . $ C0
nd

Remark 3.1.

It is important to point out that the closed, nowhere dense sets turn
out to play a fundamental role also in the order completion method
for solving large classes of nonlinear systems of PDEs, with possibly
associated initial and/or boundary value problems, [8].

As is well known, [238], such closed, nowhere dense subsets in Eu-
clidean spaces are ”small” from topological point of view, since their
complementaries are open and dense. However, from measure point of
view they can be arbitrary ”large”. Namely, if Ω ⊆ Rn is open, then
for every ε > 0, one can find Γ ⊂ Ω closed, nowhere dense, such that
the Lebesgue measure of Ω \ Γ is less than ε.

Also, it should be recalled that closed, nowhere dense subsets play a
basic role in the Baire Category argument, since sets of Baire Category
I are precisely countable unions of such closed, nowhere dense sets.
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4. Singularity Free and Global Algebraic and Differential
Operations

One can note that the inclusions (3.2) and the flabbiness of their right
hand terms do not help much in dealing with singularities, even if
the spaces in (3.4) are in fact algebras, while C∞nd are also differential
algebras.
Indeed, let be given an open subset Ω ⊆ R. The problem with the
spaces in (3.4) is that each function f in them has its own closed,
nowhere dense set Γf ⊂ Ω of singularities, and none of these functions
is defined globally on the whole of Ω, unless we are in the particular
case of a function f with Γf = φ.

Thus in none of the spaces in (3.4) can one perform singularity free
and globally the usual algebraic and differential operations, without
having all the time to keep track of and take into account the singu-
larity sets of the functions involved in such operations.
Furthermore, a major obstacle appears with limits, series, and other
such operations which involve infinitely many functions. Namely,
countable, and in general, infinite unions of closed, nowhere dense
sets need no longer be closed, nowhere dense. Thus when performing
such operations on functions with closed, nowhere dense singularities,
one can easily fall outside of the spaces in (3.4).

These two difficulties are among the reasons various spaces of general-
ized functions have been introduced, spaces in which one can operate
globally on their elements, that is, the generalized functions, and do
so singularity free, simply as if they did not have any singularities at
all.

Remark 4.1.

Amusingly, and as seen for instance in the Appendix, the above is not
yet quite well understood by some of those involved in the nonlinear
theory of generalized functions.

�

One classical instance in the case of Schwartz distributions illustrates
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the above quite clearly. Let us, indeed, return to the Heaviside func-
tion in (1.7). This function belongs to the space of distribution D ′(R),
through the well known embedding

(4.1) Lloc(R) 3 f 7−→ Tf ∈ D ′(R)

where

(4.2) D(R) 3 ϕ 7−→ Tf (ϕ) =
∫

R f(x)ϕ(x)dx ∈ R

Thus we obtain TH ∈ D ′(R), and since D ′(R) is a vector space over
R, as well as a module over C∞(R), and furthermore, its elements
are infinitely differentiable generalized functions, it follows that all
the respective algebraic and differential operations can singularity free
and globally be performed upon TH , without any concern whatsoever
about the singularities in the sense of the usual context of (1.1), or for
that matter, (3.4), which may happen to be involved due possibly to
other distributions in the respective operations, including the singu-
larity at 0 ∈ R of H itself, of course.

Let us recapitulate, in order to avoid possible misunderstandings. We
note that we obviously have

(4.3) H ∈ C∞nd(R) =
⋃

Γ⊂R, closed, nowhere dense C∞(R \ Γ)

(4.4) TH ∈ D ′(R)

(4.5) C∞nd(R) * D ′(R)

with the last relation being a consequence of the fact that, unlike
C∞nd(R), the space D ′(R) of Schwartz distributions is not a flabby sheaf.

And then, the rather immediate, albeit quite naive question may per-
haps arise :

• Why should the Heaviside functionH be considered in the rather
involved distributional manner of TH in (4.4), instead of being
dealt with in its easy, direct and natural setup in (4.3) ?
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After all, C∞nd(R) in (4.3) is a differential algebra, while D ′(R) in
(4.4) is not ?

The answer is obvious :

• Although C∞nd(R) in (4.3) is a differential algebra, the usual alge-
braic and differential operations cannot be performed singularity
free and globally on the functions which are its elements without
having all the time to keep track of and take into account the sin-
gularity sets of the functions involved. Furthermore, operations
such as limits, series, and other ones which involve infinitely
many functions may easily fall outside of C∞nd(R).

• On the other hand, even if D ′(R) in (4.4) is not an algebra,
all linear algebraic and differential operations can globally and
singularity free be performed, without any regard to the singu-
larities of the generalized functions involved. Furthermore, a
large amount of operations, such as limits, series, and so on, can
also be performed globally and singularity free, even if infinitely
many generalized functions happen to be involved.

In conclusion

• the essential difference in (4.4) between dealing with the frame-
work of usual functions in C∞nd(R), or on the contrary, with the
framework of distributions in D ′(R), is that in the latter, one
can perform the algebraic and differential operations globally and
singularity free.

The deficiency with the framework in (4.4), however, is nevertheless
twofold, namely :

• D ′(R) is only a vector space, and not an algebra as well, thus it
is severely restricted with respect to nonlinear operations,

• D ′(R) is not a flabby sheaf, thus it is severely restricted with
respect to the singularities it can deal with.

And so it comes to pass that :
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5. We Need Differential Algebras of Generalized Functions,
and They Can Easily Be Constructed ...

With hindsight, it may be said that it was quite a puzzling oversight
that the first spaces of generalized functions, namely, those of Sobolev
in the 1930s, and of Schwartz in 1940s, ended up being only vector
spaces, and not as well algebras. Indeed, let us recall the case of the
space D ′(Ω) of Schwartz distributions, where Ω ⊆ Rn is any open
subset. One of the first basic structural results about that space was
the quotient vector space representation

(5.1) D ′(Ω) = S∞(Ω)/V∞(Ω)

where

(5.2) V∞(Ω) ⊂ S∞(Ω) ⊂ (C∞(Ω))N

with S∞(Ω) being the vector space of sequences of smooth functions
s = (sν)ν∈N ∈ (C∞(Ω))N which converge weakly distributionally - and
thus also strongly strongly distributionally - to some distribution in
D ′(Ω), while V∞(Ω) is its vector subspace of those sequences which
converge distributionally to zero.

Now clearly, (C∞(Ω))N in (5.2) is a differential algebra with the term-
wise operations on sequences of smooth functions. Thus instead of
(5.2), one could have from the beginning considered

(5.3) I∞(Ω) ⊂ A∞(Ω) ⊆ (C∞(Ω))N

where A∞(Ω) is a subalgebra in (C∞(Ω))N, while I∞(Ω) is an ideal in
A∞(Ω), in which case, instead of the vector space of generalized func-
tions in (5.1), one would obtain an algebra of generalized functions

(5.4) A(Ω) = A∞(Ω)/I∞(Ω)

And by requesting that A∞(Ω) and I∞(Ω) in (5.3) be invariant un-
der differentiation, one would so simply and easily obtain in (5.4) a
differential algebra of generalized functions !
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An immediate result relating to the fact that the algebras (5.4) are in-
deed algebras of generalized functions, that is, they contain the usual
smooth functions, is in the following fact, [3,4,6,7,9] :

The necessary and sufficient condition for the existence of the embed-
ding of differential algebras

(5.6) C∞(Ω) ⊂ A(Ω)

through the mapping

(5.7) C∞(Ω) 3 f 7−→ u(f) = (f, f, f, . . .) + I∞(Ω) ∈ A(Ω)

is the off-diagonality condition

(5.8) I∞(Ω)
⋂
U∞(Ω) = {0}

where we denoted by U∞(Ω) the diagonal in (C∞(Ω))N, that is, the
subalgebra of all sequences of smooth functions u(f) = (f, f, f, . . .),
with f ∈ C∞(Ω).

What is further remarkable is that the off-diagonality condition (5.8)
is also sufficient for the embedding of the Schwartz distributions in
the algebras (5.4), namely, [3,4,6,7,9]

(5.9) D′(Ω) ⊂ A(Ω)

Remark 5.1.

Amusingly, and quite unknown to most of those in linear distribution
theory, or for that matter, to many in the nonlinear theory of gener-
alized functions, the constructions in (5.1) - (5.4) above are all closely
related to what are called reduced powers in model theory, which is a
modern branch of mathematical logic.
And similar constructions occur in important other branches of math-
ematics. For instance, such are the Cauchy-Bolzano constructions of
R from Q, or more generally, the completion of a matric space, and in
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fact, the completion of an uniform topological space.
�

A fundamental result related to the ability of various differential al-
gebras of generalized functions to deal with singularities is presented
in, [8]

Theorem 5.1. Basic Dichotomic Singularity Test

Given a differential algebra of generalized functions, see (5.4)

(5.10) A(Ω) = A∞(Ω)/I∞(Ω)

Then the necessary and sufficient condition for the existence of the
embedding of differential algebras

(5.11) C∞nd(Ω) ⊂ A(Ω)

is that A(Ω) be a flabby sheaf.

Remark 5.2.

Amusingly, many in the nonlinear theory of generalized functions dis-
regard the above basic dichotomic singularity test and prefer to work
in algebras which fail to be flabby sheaves, thus having to give up
dealing with large classes of singularities.
Two of the mentioned important problems which cannot even be for-
mulated, let alone solved, in algebras which fail the above basic di-
chotomic singularity test are :

• the global Cauchy-Kovalevskaia theorem,

• arbitrary global Lie group actions on solutions of PDEs.

A typical case in this regard is that of the Colombeau algebras.

Once again, however, it is worth pointing out that each and every
differential algebra of generalized functions may present advantages in
certain regards. And in view of the inevitable infinite branching of
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multiplication above certain levels of singularities, it is useful not to
disregard any such algebra, be it flabby sheaf, or not.
What, nevertheless, should be avoided is to chase for certain results
in the wrong algebras.
And to expect that large enough classes of singularities can be dealt
with in algebras which fail to be flabby sheaves is but to fail to un-
derstand the mathematical structure underlying the above basic di-
chotomic singularity test.
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6. Keep in Mind the Regularizations of Singularities !

Before going further, let us see what happens to the representation TH
in (4.4) of the Heaviside function H, when the representation (5.1) is
used for the Schwartz distributions.

Well, the story is quite simple, indeed. Namely, one regularizes the
singularity at 0 ∈ R of the Heaviside function H, as follows.

One takes any smooth function χ ∈ C∞(R) with the property, [236]

(6.1) χ = 0 on (−∞,−1], χ = 1 on [1,∞)

and defines a regularization of singularity at 0 ∈ R of the Heaviside
function H as being given by the sequence of smooth functions

(6.2) h = (hν)ν∈N ∈ (C∞(R))N

where

(6.3) hν(x) = χ(nx), ν ∈ R, n ∈ N

and thus, one obtains

(6.4) h = (hν)ν∈N ∈ S∞(R)

as well as

(6.5) TH = h+ V∞(R) ∈ S∞(R)/V∞(R) = D ′(R)

Remark 6.1.

The usual Heaviside function

(6.6) H ∈ C∞nd(R)

has therefore no less than two representations as a Schwartz distribu-
tion, namely
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(6.7) TH in (4.1), (4.2)

and on the other hand, through the regularization in (6.1) - (6.5)

(6.8) TH in (6.5)

and clearly, the representation in (6.7) does not much seem to be
amenable for a nonlinear theory of generalized functions, while on
the other hand, as seen in (6.1) - (6.4), and in view of section 5, the
representation (6.8) is naturally part of an approach to generalized
functions which are elements of differential algebras.

And once again, in order to avoid possible misunderstandings, it should
be noted that no one can claim that the representations (6.7), or (6.8)
do not bring in anything new, and that they are in fact nothing else
but the original form of the Heaviside function in (4.3).

Indeed, whenever one performs algebraic or differential operations
with the latter form of the Heaviside function, one has to keep track
of and take into account its singularity at x = 0 ∈ R. Thus such
operations are not singularity free and hence global.

On the other hand, with the representations (6.7), or (6.8) of the Heav-
iside function, one can in a singularity free manner perform algebraic
and differential operations, and do so globally on R, as if no singulari-
ties would exist at all. Furthermore, one can similarly singularity free
and globally perform operations such as limits, series, and so on, in
which infinitely many functions are involved.

In short, the essential difference between the Heaviside function in
(4.3), and on the other hand, that in (6.5), (6.8) is precisely that
in the latter a regularization of singularities was performed, and as a
consequence, one can globally and in a singularity free manner perform
all the algebraic and differential operations on that latter form of the
Heaviside function.
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7. Nowhere Dense Differential Algebras of Generalized
Functions

These algebras are of the form, [4,6,7,9]

(7.1) And(Ω) = (C∞(Ω))N/I∞nd(Ω)

where Ω ⊆ Rn are open, while I∞nd(Ω) is the ideal in (C∞(Ω))N con-
sisting of all the sequences of smooth functions w = (wν)ν∈N which
satisfy the asymptotic vanishing condition

(7.2)

∃ Γ ⊂ Ω, Γ closed, nowehre dense :

∀ x ∈ Ω \ Γ :

∃ V ⊆ Ω \ Γ, V neighbourhood of x, µ ∈ N :

wν = 0 on V, ν ∈ N, ν ≥ µ

We note that these ideals have the off-diagonality property

(7.3) I∞nd(Ω)
⋂
U∞(Ω) = {0}

where, we recall, we denoted by U∞(Ω) the diagonal in (C∞(Ω))N,
that is, the subalgebra of all sequences of smooth functions u(f) =
(f, f, f, . . .), with f ∈ C∞(Ω).

We note that the ideal I∞nd(Ω) is invariant under term-wise derivation,
thus

(7.4) And(Ω) is a differential algebra

Furthermore, in view of the off-diagonality characterization in (5.8),
(5.9) of all such algebras, [3,4,6,7,9], it contains the Schwartz distri-
butions, namely

(7.5) D ′(Ω) ⊂ And(Ω)
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Owing to (7.3), we also have the embedding of differential algebras

(7.6) C∞(Ω) 3 f 7−→ u(f) + I∞nd(Ω) ∈ And(Ω)

An essential property of the nowhere dense algebras (7.1) is that they
are flabby sheaves, [54].

Remark 7.1.

1) The essential feature of the nowhere dense differential algebras of
generalized functions And(Ω) in (7.1) is due to the respective ideals
I∞nd(Ω). And on their turn, the essential features of these ideals are
the following :

• The sequences in these ideals have an extreme dichotomic prop-
erty. Namely, outside of the respective singularity sets Γ they
vanish asymptotically, while in the neighbourhood of the singu-
larity sets Γ they can be arbitrary. Otherwise, the functions in
these sequences must be smooth on the whole of the respective
domains Ω.

• The conditions which define these ideals are purely in terms of
the topology of Euclidean spaces, as they are induced on the
respective domains of definition Ω.

Thus the nowhere dense differential algebras of generalized functions
are defined exclusively through terms which are algebraic, more pre-
cisely, ring theoretic, and Euclidean topological.

2) The nowhere dense differential algebras of generalized functions
can be defined in more general settings, namely, by taking I∞nd(Ω) as
ideals algebras (C∞(Ω))Λ, where Λ are arbitrary given infinite index
sets which are right directed, [7].
However, as seen in [4,6,7,9], even the particular case when Λ = N is
useful enough in order to lead to the solution of a number of important
problems.
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8. Again : Keep in Mind the Regularizations of Singularities !

As a consequence of the fact that the nowhere dense algebras (7.1) are
flabby sheaves, as well as of (3.2), we have the embedding of differen-
tial algebras

(8.1) C∞nd(Ω) ⊂ And(Ω)

which are obtained according to a regularization of singularities which
in its essence is identical to that of the Heaviside function H in (6.1)
- (6.5).

Namely, let η : R −→ [0, 1] be C∞-smooth, such that, [236]

(8.2) η(x) =
0 for |x | ≤ a

1 for |x | ≥ b

for some 0 < a < b <∞.

Given now f ∈ C∞nd(Ω), let Γ ⊂ Ω be closed and nowhere dense, such
that f ∈ C∞(Ω \ Γ). Then there exists γ : R −→ R and C∞-smooth,
such that, [236]

(8.3) Γ = {x ∈ Ω | γ(x) = 0 }

We define now a regularization of singularities of the function f as
being given by the sequence of smooth functions

(8.4) ψ = (ψν)ν∈N ∈ (C∞(Ω))N

where, for ν ∈ N, we have

(8.5) ψν(x) =
η((ν + 1)γ(x)f(x)) for x ∈ Ω \ Γ

0 for x ∈ Γ

And now, the embedding (8.1) of differential algebras is obtained
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through

(8.6) C∞nd(Ω) 3 f 7−→ ψ + I∞nd(Ω) ∈ And(Ω)

where we note the independence of this mapping from the particular
functions η in (8.2) and γ in (8.3), [4,6,7,9].

Remark 8.1.

1) As seen in the sequel, differential algebras of generalized functions
A which are not flabby sheaves, among them the Colombeau algebras,
do not allow embeddings C∞nd ⊂ A, this fact having the negative con-
sequences mentioned, for instance, in Remark 5.2. above.

An elementary an immediate test in this regard is to check whether
algebras which fail to be flabby sheaves may contain such singular
functions as those in Example 1.4., suggested by the Great Picard
Theorem.

Certainly, and as seen below, the Colombeau algebras are not able to
contain such functions.

On the other hand, the functions in Example 1.4. belong obviously to
C∞nd(R), thus in view of (8.1), they also belong to And(R).

2) It is important to note that in the inclusion (8.1), the nowhere dense
differential algebras of generalized functions And(Ω) are considerably
larger than the differential algebras of singular functions C∞nd(Ω). This
means, of course, that the former contain generalized functions with
far worse singularities than those of the singular functions in the latter.
To give a generic example in this regard, one obviously has generalized
functions

(8.7) F = (fν)ν∈N + I∞nd(Ω) ∈ And(Ω)

where the sequence of smooth functions (fν)ν∈N ∈ (C∞(Ω))N can be
arbitrary.
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Such a case, therefore, may be seen to correspond to the situation of
maximum size of the set of singularity points, namely, the whole of Ω,
of the set of singular points of the respective generalized functions F ,
as well as to the most arbitrary behaviour of such generalized func-
tions in the neighbourhood of their singularities.

3) It should also be noted that, upon the usefulness of eliminating
such extreme forms of singularities, one can easily consider appropri-
ate differential subalgebras of And(Ω), as follows. Let B(Ω) be any
subalgebra in (C∞(Ω))N which is invariant under differentiation, and
it is such that

(8.8) I∞nd(Ω) + U∞(Ω) ⊂ B(Ω)

Then obviously

(8.9) Bnd(Ω) = B(Ω)/I∞nd(Ω)

will be a differential algebra of generalized functions which is a subal-
gebra of And(Ω).

8.1. Global Solutions in the Cauchy-Kovalevskaia Theorem

Let us briefly review the way the nowhere dense differential alge-
bras of generalized functions And(Ω) allow not only a formulation
of the Global Cauchy-Kovalevskaia Theorem, but also its solution,
[6,7,39,61,99].

We consider the general nonlinear analytic partial differential operator

(8.10) T (x,D)U(x) = Dm
t U(t, y)−G(t, y, ..., Dp

tD
q
yU(t, y), ...)

where U : Ω −→ C is the unknown function, while x = (t, y) ∈ Ω, t ∈
R, y ∈ Rn−1, p ∈ N, 0 ≤ p < m, q ∈ Nn−1, p + |q| ≤ m, and G is
arbitrary analytic in all of its variables.

Together with the analytic nonlinear PDE
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(8.11) T (x,D)U(x) = 0, x ∈ Ω

we consider the non-characteristic analytic hypersurface

(8.12) S = { x = (t, y) ∈ Ω | t = t0 }

for any given t0 ∈ R, and on it, we consider the analytic initial value
problem

(8.13) Dp
tU(t0, y) = gp(y), 0 ≤ p < m, (t0, y) ∈ S

Obviously, the analytic nonlinear partial differential operator T (x,D)
in (8.10) generates a mapping

(8.14) T (x,D) : C∞(Ω) −→ C∞(Ω)

and in view of (7.2), also a mapping, [6,7,39,61,99]

(8.15) T (x,D) : And(Ω) −→ And(Ω)

And then, within this setup, we obtain the global existence result in
the nowhere dense differential algebras of generalized functions, given
by

Theorem 8.1.

The analytic nonlinear PDE in (8.11), with the analytic non-characteristic
initial value problem (8.12), (8.13) has global generalized solutions

(8.16) U ∈ And(Ω)

defined on the whole of Ω. These solutions U are analytic functions

(8.17) ψ : Ω \ Σ −→ C

when restricted to the open dense subsets Ω\Σ, where the singularity
subsets
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(8.18) Σ ⊂ Ω, Σ closed, nowhere dense in Ω

can be suitably chosen. Furthermore, one can choose Σ to have zero
Lebesgue measure, namely

(8.19) mes Σ = 0

Remark 8.2.

1) The proof of this theorem, [6,7,39,61,99], is in two steps :

• first, an analytic solution ψ, which in general is not unique, is
constructed on Ω\Σ, thus we have for such solution ψ ∈ C∞nd(Ω),

• then, as the second step, ψ is subjected to a regularization of
singularities according to (8.2) - (8.6), obtaining thus on the
whole of Ω, the global generalized solution U ∈ And(Ω).

2) The mentioned singularity regularization process in step two above,
see beginning of section 0, namely

(8.20) C∞nd(Ω) 3 ψ 7−→ U ∈ And(Ω)

gives a global solution precisely in the same way as the singularity reg-
ularizations for the Heaviside function H in (6.7), or for that matter,
in (6.8), give within the vector space of Schwartz distributions D ′(R)
a global solution to the linear first order ODE in H, namely

(8.21) DH = δ

where δ is the Dirac distribution.

And such singularity regularizations are, as mentioned, precisely some
of the main reasons for constructing spaces of generalized functions,
be they merely vector spaces or algebras.

Consequently, the global solutions obtained in the above Cauchy-
Kovalevskaia theorem happen to have the same legitimacy, interest
and relevance with, for instance, the solution H of the linear ODE in
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(8.21), or for that matter, with the known distribution solutions of
any PDE.

3) As can be seen even in the simple case of analytic ODEs with finite
time blow up in solutions, the respective solutions will always belong
to C∞(R\Σ), for suitable closed, nowhere dense subsets Σ ⊂ R. Thus
in view of (8.1), they will always belong to the nowhere dense differ-
ential algebra of generalized functions And(R).

On the other hand, such solutions may often fail to belong to vari-
ous spaces of distributions, Sobolev spaces, or differential algebras of
generalized functions which happen not to be flabby sheaves, as for
instance is the case with the Colombeau algebras.
In view of the above, in Colombeau algebras, as much as in other
differential algebras of generalized functions, or vector spaces of dis-
tributions and Sobolev spaces which fail to be flabby sheaves, it is not
even possible to formulate a global version of the classical Cauchy-
Kovalevskaia theorem.

8.2. Arbitrary Global Lie Group Actions, and a
Complete Solution to Hilbert’s Fifth Problem

The utility of the fact that the nowhere dense differential algebras of
generalized functions are flabby sheaves was shown also in obtaining
the following two results, both of them for the first time in the litera-
ture, [9]

• the construction of global action of arbitrary Lie groups on
C∞(Ω), with Ω ⊆ Rn open,

• the complete solution of Hilbert’s Fifth Problem.

And once again, these problems cannot even be formulated, let alone
the respective results obtained, in vector spaces of distributions, Sobolev
spaces, or differential algebras of generalized functions which fail to
be flabby sheaves, among them, the Colombeau algebras.
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8.3. General Nonlinear Operations on Nowhere Dense
Algebras

Since the nowhere dense differential algebras of generalized functions
And(Ω) are in particular algebras, clearly, all polynomial nonlinear op-
erations with coefficients in C∞(Ω) can be performed in these algebras.

Furthermore, in view of (8.1), all polynomial operations with discon-
tinuous coefficients in C∞nd(Ω) can also be performed in these algebras.

And one can even go beyond polynomial nonlinear operations. Namely,
let F : Rm −→ R be an arbitrary C∞-smooth function. Further, for
1 ≤ i ≤ m, let be given the generalized function

(8.22) fi = (fi, ν)ν∈N + I∞nd(Ω) ∈ And(Ω)

then one can define the generalized function

(8.23) F (f1, . . . , fm) ∈ And(Ω)

by

(8.24) F (f1, . . . , fm) = (fν)ν∈N + I∞nd(Ω)

where

(8.25) fν(x) = F (f1, ν(x), . . . , fm, ν(x)), ν ∈ N, x ∈ Ω

and in view of (7.2), F (f1, . . . , fm) in (8.23) does not depend on the
representations of f1, . . . , fm in (8.22).
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9. The Colombeau Algebras

We shall only deal with the most general version of these algebras,
as introduced in [172]. As pointed out in [6,7], these algebras have a
natural character from several important points of view.

However, dealing with the largest possible families of singularities
turned out, in fact, not be an aim systematically enough pursued in
their construction. Or even if it happened that it was, it was actually
not achieved anywhere near to satisfaction, when sets of singularity
points are considered from the two relevant points of view, namely,
how large they are, and how freely can generalized functions behave
in their neighbourhood.

Indeed, when it comes to the second criterion, the Colombeau algebras
show a significant deficiency, since they are not flabby sheaves.

In this regard one has to note that the essential aim in introducing
generalized functions, be they within a merely linear theory, or in fact
within a nonlinear one, is precisely to deal with singularities of usual
functions. And therefore, the larger the class of singularities that can
be dealt with by generalized functions, the better ...
It is in this way rather strange that the flabbiness of spaces of gen-
eralized functions - so clearly and strongly related to their ability to
deal with large classes of singularities - has not yet been sufficiently
realized in wide enough circles ...

Let us now present briefly the respective facts about the Colombeau
algebras, [172].

For m ≥ 1, one denotes

(9.1) Φm =

 φ ∈ D(Rn)
∗)

∫
Rn φ(x)dx = 1

∗ ∗)
∫

Rn x
pφ(x)dx = 0, p ∈ Nn, 1 ≤ | p | ≤ m


and takes as index set
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(9.2) Φ = Φ1

Further, one takes

(9.3) I(Rn) ⊂ A(Rn) ⊂ (C∞(Rn))Φ

Here A(Rn) is the subalgebra in (C∞(Rn))Φ of elements f = (fφ)φ∈Φ

for which

(9.4)

∀ K ⊂ Rn, K compact, p ∈ Nn :

∃ m ∈ N, m ≥ 1 :

∀ φ ∈ Φm :

∃ η, c > 0 :

∀ x ∈ K, ε ∈ (0, η) :

|Dpfφε(x) | ≤ c/εm

where φε(x) = φ(x/ε)/εn.

Further, I(Rn) is the ideal in A(Rn) of elements g = (gφ)φ∈Φ for which

(9.5)

∀ K ⊂ Rn, K compact, p ∈ Nn :

∃ k ∈ N, k ≥ 1, β ∈ B :

∀ m ∈ N, m ≥ k, φ ∈ Φm :

∃ η, c > 0 :

∀ x ∈ K, ε ∈ (0, η) :

|Dpgφε(x) | ≤ c εβ(m)−k

where
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(9.6) B =

 β : N −→ (0,∞)
∗) β increasing

∗∗) limm→∞ β(m) =∞


Finally, the Colombeau differential algebra of generalized functions is
given by

(9.7) G(Rn) = A(Rn)/I(Rn)

9.1. The Restrictive Effects of Growth Conditions

The growth conditions (9.4), (9.5) are a characteristic of the Colombeau
algebras. And they have multiple restrictive consequences.

One of the first and most obvious ones is that, unlike for instance in
the case of the nowhere dense differential algebras of generalized func-
tions, see subsection 8.3. above, one cannot perform arbitrary smooth
nonlinear operations on Colombeau generalized functions given by C∞-
smooth functions F : Rm −→ R. Instead, such functions F must be
limited to slowly increasing ones, namely, those that satisfy the con-
dition

(9.8)

∀ p ∈ Nm :

∃ a, c > 0 :

∀ y ∈ Rm :

|DpF (y) | ≤ c( 1 + | y | )a

Regarding the restrictions on the class of singularities the Colombeau
algebras can deal with, one obviously has

(9.9) C∞nd(Rn) * G(Rn)

contrary to (8.1), in the case of the nowhere dense differential algebras
of generalized functions.
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In particular, the functions in Example 1.4. typically do not belong
to the Colombeau Algebras.

Also, (9.9) has the effect that polynomial operations with discontin-
uous coefficients, such as for instance in C∞nd, cannot in general be
performed in Colombeau algebras, unlike it happens in the case of the
nowhere dense differential algebras of generalized functions, see sub-
section 8.3.

Furthermore, and as mentioned, neither the problem of the global ver-
sion of the Cauchy-Kovalevskaia theorem, nor that of the global action
of Lie groups on smooth functions can even be formulated, let alone
solved, in Colombeau algebras.

Amusingly, analysts find it rather irresistible to get involved in math-
ematical structures which start with the assumption of certain more
elaborate conditions, and then keep developing their various conse-
quences for evermore ...
In the case of Colombeau algebras, for instance, the quite compli-
cated polynomial type growth conditions obviously offer such possibil-
ities. Not to mention that they recall the first contact which analysts
have with Calculus, namely, elaborate manipulations with their much
beloved ε ...
How fortunate that the hate of that ”Calculus ε” is not shared by
absolutely all of humankind ...
No, not at all !
After all, analysts do indeed love ε, and in fact, love it quite ... un-
conditionally ...
Even if ε only appears - and can in fact only appear - within the for-
mulation of certain conditions ...
Such as for instance the growth conditions defining the Colombeua
algebras ...

And then, in addition to the mentioned restrictive effect of the growth
conditions upon the ranges of possible applications of Colombeau al-
gebras, come also the technical ”ε-chasing” complications in the situ-
ations when such algebras can be applied.
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One example, for instance, is when defining differential algebras of
generalized functions on manifolds, a necessity imposed by the need
to deal with singularities in general relativity.
In such a situation, the complications involved by the use of Colombeau
algebras can be seen, for instance, in [177].

On the other hand, as seen for instance in [54,55,57,59,97], the defini-
tion of nowhere dense, as well as space-time foam differential algebras
of generalized functions on manifolds is rather immediate.

So much for the passion of chasing ε-s ...
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10. The Space-Time Foam Algebras

We shall consider various families of singularities in a given open sub-
set Ω ⊆ Rn, each such family being given by a corresponding set S of
subsets Σ ⊂ Ω, with each such subset Σ describing a possible set of
singularities of a certain given generalized function.

The largest family of singularities Σ ⊂ Ω which we can consider is
given by

(10.1) SD(Ω) = { Σ ⊂ Ω | Ω \ Σ is dense in Ω }

In this way, the various families S of singularities Σ ⊂ Ω which we
shall deal with, will each satisfy the condition S ⊆ SD(Ω).

Among other ones, two such families which will be of interest are the
family of singularity sets

(10.2) Snd(Ω) = { Σ ⊂ Ω | Σ is closed and nowhere dense in Ω }

which was already studied related to the nowhere dense differential
algebras of generalized functions, see sections 7 and 8, as well as the
considerably larger family of singularity sets

(10.3) SBaire I(Ω) = { Σ ⊂ Ω | Σ is of first Baire category in Ω }

Obviously

(10.4) Snd(Ω) ⊂ SBaire I(Ω) ⊂ SD(Ω)

10.1. Families of Singularities and
Asymptotically Vanishing Ideals

Let us now recall shortly the idea of the construction of the respective
ideals introduced in [55-57,59,61,70,71,97,99,105,143,165]. There are
two basic ingredients involved.

First, we take any family S of singularity sets Σ ⊂ Ω, family which
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satisfies the following two conditions

(10.5) ∀ Σ ∈ S : Ω \ Σ is dense in Ω

and

(10.6) ∀ Σ,Σ ′ ∈ S : ∃ Σ ′′ ∈ S : Σ ∪ Σ ′ ⊆ Σ ′′

Clearly, both families Snd and SBaire I satisfy the conditions (10.5) and
(10.6).

Remark 10.1.

As seen below, given any family S of singularity sets Σ ⊂ Ω that sat-
isfies the conditions (10.5), (10.6), the respective differential algebra
of generalized functions will be able to deal with generalized functions
having their sets of singularity points any such Σ ⊂ Ω.

Here, therefore, it is instructive to recall Example 1.7. and Remark
1.1. Namely, it is not possible on Euclidean spaces to have functions
whose continuity points are countable and dense.

On the other hand, in view of condition (10.5), in the space-time
foam differential algebras of generalized functions defined below, it is
possible to have generalized functions whose nonsingular points are
merely countable and dense in their domains of definition.

�

Now, as the second ingredient, and so far independently of S above,
we take any right directed partial order L = (Λ,≤) on an infinite set Λ.

Although we shall only be interested in singularity sets Σ ∈ SD(Ω),
the following ideal can be defined for any Σ ⊆ Ω. Indeed, let us denote
by

(10.7) JL,Σ(Ω)

the ideal in (C∞(Ω))Λ of all the sequences of smooth functions indexed
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by λ ∈ Λ, namely, w = (wλ)λ∈Λ ∈ (C∞(Ω))Λ, sequences which outside
of the singularity set Σ will satisfy the asymptotic vanishing condition

(10.8)

∀ x ∈ Ω \ Σ :

∃ λ ∈ Λ :

∀ µ ∈ Λ, µ ≥ λ :

∀ p ∈ Nn :

Dpwµ(x) = 0

This means that the sequences of smooth functions w = (wλ)λ∈Λ in
the ideal JL,Σ(Ω) may in a way cover with their support the singu-
larity set Σ, and at the same time, they vanish asymptotically outside
of it, together with all their partial derivatives.
In this way, the ideal JL,Σ(Ω) carries in an algebraic manner the in-
formation on the singularity set Σ. Therefore, a quotient in which the
factorization is made with such ideals may in certain ways do away
with singularities, and do so through purely algebraic means, as see
below.

We note that the assumption about L = (Λ,≤) being right directed is
used in proving that JL,Σ(Ω) is indeed an ideal, more precisely that,
for w,w ′ ∈ JL,Σ(Ω), we have w + w ′ ∈ JL,Σ(Ω).

Now, it is easy to see that for Σ,Σ ′ ⊆ Ω, we have

(10.9) Σ ⊆ Σ ′ =⇒ JL,Σ(Ω) ⊆ JL,Σ ′(Ω)

in this way, in view of (10.6), it follows that

(10.10) JL,S(Ω) =
⋃

Σ∈S JL,Σ(Ω)

is also an ideal in (C∞(Ω))Λ.
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10.2. Foam Algebras

In view of the above, for Σ ⊆ Ω, we can define the algebra

(10.11) BL,Σ(Ω) = (C∞(Ω))Λ/JL,Σ(Ω)

However, we shall only be interested in singularity sets Σ ∈ SD(Ω),
that is, for which Ω \ Σ is dense in Ω. And in such a case the corre-
sponding algebra BL,Σ(Ω) will be called a foam algebra.

10.3 Multi-Foam Algebras

With the given family S of singularities, and based on (10.10), we can
now associate the multi-foam algebra

(10.12) BL,S(Ω) = (C∞(Ω))Λ/JL,S(Ω)

10.4 Space-Time Foam Algebras

The foam algebras and the multi-foam algebras introduced above will
for the sake of simplicity be called together space-time foam algebras.

Clearly, if the family S of singularities consists of one single singularity
set Σ ∈ SD(Ω), that is, S = {Σ }, then conditions (10.5), (10.6)) are
satisfied, and in this particular case the concepts of foam and multi-
foam algebras are identical, in other words, BL, {Σ }(Ω) = BL, Sigma(Ω).
This means that the concept of multi-foam algebra is more general
than that of foam algebra.

It is obvious from their quotient construction that the space-time foam
algebras are associative and commutative. However, the above con-
structions can easily be extended to the case when, instead of real
valued smooth functions, we use smooth functions with values in an
arbitrary normed algebra. In such a case the resulting space-time foam
algebras will still be associative, but in general they may be noncom-
mutative.

69



10.5 Space-Time Foam Algebras as Algebras of Generalized
Functions

The reason why we restrict ourself to singularity sets Σ ∈ SD(Ω), that
is, to subsets Σ ⊂ Ω for which Ω\Σ is dense in Ω, is due to the following
essential implication, see further details in [55-57,59,61,70,71,97,99,105,143,165],
and for a full argument [4, chap. 3, pp. 65-119]

(10.13) Ω \ Σ is dense in Ω =⇒ JL,Σ(Ω) ∩ U∞Λ (Ω) = { 0 }

where U∞Λ (Ω) denotes the diagonal of the power (C∞(Ω))Λ, namely, it
is the set of all u(ψ) = (ψλ |λ ∈ Λ), where ψλ = ψ, for λ ∈ Λ, while
ψ ranges over C∞(Ω). In this way, we have the algebra isomorphism
C∞(Ω) 3 ψ 7−→ u(ψ) ∈ U∞Λ (Ω).

This implication (10.13) follows immediately from the asymptotic van-
ishing condition (10.8). Indeed, if ψ ∈ C∞(Ω) and u(ψ) ∈ JL,Σ(Ω),
then (1.8) implies that ψ = 0 on Ω \ Σ, thus we must have ψ = 0 on
Ω, since Ω \ Σ was assumed to be dense in Ω. It follows, therefore,
that the ideal JL,Σ(Ω) is off diagonal.

The importance of (10.13) is that, for Σ ∈ SD(Ω), it gives the follow-
ing algebra embedding of the smooth functions into foam algebras

(10.14) C∞(Ω) 3 ψ 7−→ u(ψ) + JL,Σ(Ω) ∈ BL,Σ(Ω)

Now in view of (10.10), it is easy to see that (10.13) will as well yield
the off diagonality property

(10.15) JL,S(Ω) ∩ U∞Λ (Ω) = { 0 }

and thus similar with (10.14), we obtain the algebra embedding of
smooth functions into multi-foam algebras

(10.16) C∞(Ω) 3 ψ 7−→ u(ψ) + JL,S(Ω) ∈ BL,S(Ω)

The algebra embeddings (10.14), (10.16) mean that the foam and
multi-foam algebras are in fact algebras of generalized functions. Also
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they mean that the foam and multi-foam algebras are unital, with the
respective unit elements u(1) + JL,Σ(Ω), u(1) + JL,S(Ω).

Further, the asymptotic vanishing condition (10.8) also implies quite
obviously that, for Σ ⊆ Ω, we have

(10.17) Dp JL,Σ(Ω) ⊆ JL,Σ(Ω), for p ∈ Nn

where Dp denotes the termwise p-th order partial derivation of se-
quences of smooth functions, applied to each such sequence in the
ideal JL,Σ(Ω).

Then again, in view of (10.10), we obtain

(10.18) Dp JL,S(Ω) ⊆ JL,S(Ω), for p ∈ Nn

Now (10.17), (10.18) mean that the the foam and multi-foam algebras
are in fact differential algebras, namely

(10.19) DpBL,Σ(Ω) ⊆ BL,Σ(Ω), for p ∈ Nn

where Σ ∈ SD(Ω), and furthermore we also have

(10.20) DpBL,S(Ω) ⊆ BL,S(Ω), for p ∈ Nn

In this way we obtain that the foam and multi-foam algebras are dif-
ferential algebras of generalized functions.

Also, the foam and multi-foam algebras contain the Schwartz distri-
butions, that is, we have the linear embeddings which respect the
arbitrary partial derivation of smooth functions

(10.21) D ′(Ω) ⊂ BL,Σ(Ω), for Σ ∈ SD(Ω)

(10.22) D ′(Ω) ⊂ BL,S(Ω)

Indeed, let us recall the wide ranging purely algebraic characterization
of all those quotient type algebras of generalized functions in which
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one can embed linearly the Schwartz distributions, a characterization
first given in 1978, see [3, pp. 1-32], as well as [4, pp. 75-88], [6, pp.
306-315], [7, pp. 234-244].
According to that characterization - which also contains the Colombeau
algebras as a particular case - the necessary and sufficient condition
for the existence of the linear embedding (10.21) is precisely the off di-
agonality condition in (10.13). Similarly, the necessary and sufficient
condition for the existence of the linear embedding (10.22) is exactly
the off diagonality condition (10.15).

One more property of the foam and multi-foam algebras will prove
to be useful. Namely, in view of (10.10), it is clear that, for every
Σ ∈ S, we have the inclusion JL,Σ(Ω) ⊆ JL,S , and thus we obtain the
surjective algebra homomorphism

(10.23) BL,Σ(Ω) 3 w + JL,Σ(Ω) 7−→ w + JL,S(Ω) ∈ BL,S(Ω)

The general form of that property is the following one. Given families
of singularities

(10.24) S ⊆ S ′ ⊆ SD(Ω)

such that S,S ′ satisfy (10.5), (10.6). Then in view of (10.10), we have
the surjective algebra homomorphism

(10.25) αS, S ′ : BL,S(Ω) −→ BL,S ′(Ω)

with

(10.26) αS, S ′(w + JL,S(Ω)) = w + JL,S ′(Ω)

Furthermore, in view of (10.18), we also have

(10.27) αS, S ′(D
pF ) = DpαS, S ′(F ), F ∈ BL,S(Ω), p ∈ Nn

And as we shall see in the next subsection, (10.23) can naturally
be interpreted as meaning that the typical generalized functions in
BL,S ′(Ω) are more regular than those in BL,SΩ.
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10.6. Regularity of Generalized Functions

One natural way to interpret (10.23) in the given context of generalized
functions is the following. Given two spaces of generalized functions
E and F , such as for instance

(10.28) C∞(Ω) ⊂ E ⊂ F

then the larger the space F the less regular its typical element can
appear to be, when compared with those of E. By the same token,
the it smaller the space E , the more regular, compared with those of
F , one can consider its typical elements.

Similarly, given a surjective mapping

(10.29) E −→ F

one can again consider that the typical elements of F are at least as
regular as those of E.

In this way, in view of (10.23), we can consider that, owing to the
given surjective algebra homomorphism, the typical elements of the
multi-foam algebra BL,S(Ω) can be seen as being more regular than
the typical elements of the foam algebra BL,Σ(Ω).

Furthermore, the algebra BL,S(Ω) is obtained by factoring the same
(C∞(Ω))Λ as in the case of the algebra BL,Σ(Ω), this time however
by the significantly larger ideal JL,SL

(Ω), an ideal which, unlike any
of the individual ideals JL,Σ(Ω), can simultaneously deal with all the
singularity sets Σ ∈ SL, some, or in fact, many of which can be dense
in Ω.

Further details related to the connection between regularization in the
above sense, and on the other hand, properties of stability, generality
and exactness of generalized functions and solutions can be found in
[4, pp. 12-18], [6, pp.195-230], [7, pp. 47-56].
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This kind of interpretation can be used related to the global Cauchy-
Kovalevskaia theorem in subsection 8.1. Indeed, in view of (8.16),
(10.2), we have for the respective global solution of the Cauchy-Kovalevskaia
theorem

(10.30) U ∈ BN,Snd
(Ω)

therefore, if we take any family S of singularities which satisfies con-
ditions (10.5), (10.6), and such that

(10.31) Snd(Ω) ⊆ S ⊆ SD(Ω)

then (10.24) gives

(10.32) V = αSnd, S(U) ∈ BN,S(Ω)

and it is easy to see that V will again be a global solution of the
Cauchy-Kovalevskaia theorem, this time in the algebra BN,S(Ω).

Thus V will be at least as regular a solution as is U .

10.7. A Singularity-Stability Property of Nowhere Dense
Algebras

Recently, [165], it was shown that we have

(10.33) BN,Snd(Ω)(Ω) = BN,SBaire I(Ω)(Ω)

This is a rather surprising property, since the family of set of singu-
larities Snd(Ω) is considerably smaller than SBaire I(Ω).

One way to see (10.33) is as a stability property of the nowhere dense
algebras. And what it says, among others, is that - within the dif-
ferential algebras of generalized functions - it is sufficient to take care
of closed, nowhere dense singularities, in order to take in fact care of
the far larger class of First Baire Category singularities as well. in
this way, the perturbation of the family of closed, nowhere dense sin-
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gularities by the considerably larger family of First Baire Category
singularities still can be done within the nowhere dense algebras.

(10.34) And(Ω) = BN,Snd(Ω)(Ω)

with respect to the massive addition of singularity sets, namely, those
in SBaire I(Ω).

Needless to say, beyond the family of singularity sets in SBaire I(Ω),
and still within those in SD(Ω), there are plenty of larger families of
singularities than SBaire I(Ω). In other words, among the families of
singularity sets S which satisfy (10.5), (10.6), as well as

(10.35) Snd(Ω) ⊆ S ⊆ SD(Ω)

there are many which are considerably larger than SBaire I(Ω).

In this regard, we can formulate the following

Open Problem

To what extent are the space-time foam algebras BN,S(Ω), with S
satisfying (10.5), (10.6), (10.35), singularity-stable in the sense exem-
plified by (10.34) ?

Remark 10.2.

One can easily note that the family of singularity sets SD(Ω) does not
satisfy condition (10.6). Therefore, there is no largest family of singu-
larities S for which (10.5), (10.6), as well as (10.35) hold.

It follows, than one can only have maximal families of singularity sets
SD(Ω) which satisfy (10.5), (10.6) and (10.35).

This fact obviously makes the above Open Problem less easy to solve.
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10.8. Constrained Maximal Ideals Mean Largest Classes
of Singularities

As seen in [98] and sections 7, 8, as well as earlier in the present sec-
tion, the reduced power algebras (5.4) with the largest ideals I∞(Ω)
which satisfy the constraint of the off-diagonality condition (5.8), lead
to those differential algebras of generalized functions which can deal
with the largest classes of singularities.

In this regard, we still have the

Open Problem

Find the structure of the ideals

(10.36) I∞(Ω) ⊂ (C∞(Ω))Λ

which are maximal under the constraint of the off-diagonality condition

(10.37) I∞(Ω)
⋂
U∞(Ω) = {0}

where Λ is an infinite set.

Of course, it may help to first solve the following

Open Problem

Find the structure of the ideals

(10.38) I0(Ω) ⊂ (C0(Ω))Λ

which are maximal under the constraint of the off-diagonality condition

(10.39) I0(Ω)
⋂
U0(Ω) = {0}

One can note that the ideals (10.10) give in view of (10.15) already
rather large ones which may help in solving the open problem (10.36),
(10.37).
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11. The Local Algebras

One can note from the above that there is a significant interest in
enlarging evermore the classes of singularities that can be dealt with
by differential algebras of generalized functions.
In this regard, an obvious limitation present in all the algebras men-
tioned so far is the use as building blocks of globally defined C∞-
smooth functions f : Ω −→ R, that is, defined on the whole domain
Ω ⊆ Rn of the respective generalized functions, as seen in (5.3), (5.4).

Here, therefore, we replace the use of such globally defined C∞-smooth
functions in (5.3), (5.4), with the use of a far larger class of functions
which are only assumed to be locally smooth on the respective domains
Ω.

Needless to say, the classes of singularities which can be dealt with by
the resulting differential algebras of generalized functions will not be
reduced in any way.

11.1. Basic Definitions

For the sake of generality, we shall start with functions defined locally
on arbitrary sets X, instead of open subsets Ω ⊆ Rn. Also, the values
of the local functions defined will be in arbitrary sets E. Typically, E
can be a Banach algebra, either commutative, or not.

11.1.1. A Single Singularity Set

Let X be a nonvoid set and Σ ⊂ X which will play the role of the
subset of singular points of certain functions defined locally on X.

Definition 11.1.

A Σ-local function on X is every family

(11.1) f = (fx, Ux | x ∈ X \ Σ)

where x ∈ Ux ⊆ X, while fx, Ux : Ux −→ E, and the following compat-
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ibility condition holds

(11.2) ∀ x, y ∈ X\Σ : x ∈ Uy, y ∈ Ux =⇒ fx, Ux = fy, Uy on Ux∩Uy

Remark 11.1.

1) The sets X need not be topological spaces, and the subsets Ux need
not be neighbourhoods of x, as they can be arbitrary, with the only
restriction mentioned above, namely that x ∈ Ux ⊆ X.

2) We note that condition (11.2) is considerably weaker than condition

(11.3) ∀ x, y ∈ X \Σ : Ux∩Uy 6= φ =⇒ fx, Ux = fy, Uy on Ux∩Uy

as seen in 2) in the following

Examples 11.1.

1) Let f : X −→ R, then (f |Ux | x ∈ X \ Σ) is a Σ-local function on
X, whenever Ux ⊆ X are a neighbourhoods of x ∈ X.

2) Let X = R, Σ = R\Q, where as usual, Q denotes the set of rational
numbers. We assume X \ Σ = {x0, x1, x2, . . .} and take

Ux0 = (x0 − r0, x0 + r0) with r0 > 0

Ux1 = (x1 − r1, x1 + r1) with r1 > 0, such that x0 /∈ Ux1

Ux2 = (x2 − r2, x2 + r2) with r2 > 0, such that x0, x1 /∈ Ux2

Ux3 = (x3 − r3, x3 + r3) with r3 > 0, such that x0, x1, x2 /∈ Ux3

...

Given now c0, c1, c2, . . . ∈ R, we define fxn, Uxn
= cn, for n ∈ N. Then

(11.4) f = (fx, Ux | x ∈ X \ Σ) is a Σ-local function on X
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Indeed, let n < m. Then x0, x1, . . . , xm−1 /∈ Uxm , hence xn /∈ Uxm ,
therefore (11.2) is satisfied by default.

Clearly, for n ∈ N, there are infinitely many m ∈ N, such that

(11.5) Uxn ∩ Uxm 6= φ

therefore, condition (11.3) is in general not satisfied.

3) The interest in the class of examples of local functions in (11.4) is
in the following five facts :

• the set X \ Σ is dense in X,

• the values c0, c1, c2, . . . ∈ R can be arbitrary,

• the sum
∑

n∈N rn can be arbitrary small, thus so can be the
measure of

⋃
n∈N Uxn ,

• the sets Uxx are open neighbourhoods of the respective x, and

• the component functions fxn, Uxn
are highly smooth or regular,

being in fact constant.

�

We denote by

(11.6) Blc,Σ(X,E)

the set of all Σ-local functions on X with values in the Banach al-
gebra E. Clearly, Blc,Σ(X,E) is a commutative, respectively, non-
commutative unital algebra on R, according to E being commutative
or not.

Further, we define the algebra embedding

(11.7) EX 3 f −→ lc(f) = (fx,X | x ∈ X \ Σ) ∈ Blc,Σ(X,E)
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where fx,X = f . Also, we denote by

(11.8) Vlc,Σ(X,E)

the subalgebra in Blc,Σ(X,E) which is the range of the above algebra
embedding (11.7).

Thus we have the algebra isomorphism

(11.9) EX 3 f −→ lc(f) = (fx,X | x ∈ X \ Σ) ∈ Vlc,Σ(X,E)

Given Z ⊆ X, with Z \ Σ 6= φ, we denote by

(11.10) Jlc,Σ, Z(X,E)

the set of all f = (fx, Ux | x ∈ X \ Σ) ∈ Blc,Σ(X,E), such that

(11.11) ∀ x ∈ Z \ Σ : fx, Ux(x) = 0

Obviously, Jlc,Σ, Z(X,E) is an ideal in Blc,Σ(X,E).

Given now Σ ⊆ Σ′ ⊂ X, we can define the mapping

(11.12) jΣ,Σ′ : Blc,Σ(X,E) −→ Blc,Σ ′(X,E)

by

(11.13) jΣ,Σ′(fx, Ux | x ∈ X \ Σ) = (fx, Ux | x ∈ X \ Σ′)

And these mappings are surjective algebra homomorphisms which have
the properties

(11.14) jΣ,Σ = idBlc, Σ(X,E), for Σ ⊂ X

(11.15) jΣ′,Σ′′ ◦ jΣ,Σ′ = jΣ,Σ′′ , for Σ ⊆ Σ′ ⊆ Σ′′ ⊂ X

11.1.2. Families of Singularity Sets
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Let us now turn to the case when instead of one single subset Σ ⊂ X
of singularities, we have a whole family S ⊆ P(X) of such singularity
subsets Σ ∈ S. In this regard, we shall suppose in the sequel that

(11.16) X /∈ S

(11.17) ∀ Σ,Σ′ ∈ S : ∃ Σ′′ ∈ S : Σ ∪ Σ′ ⊆ Σ′′

Obviously, (11.16) is equivalent with Σ ⊂ X, for Σ ∈ S.

In view of (11.17), it follows that (S,⊆) is a directed partially ordered
set.

Clearly, in the particular case when S = {Σ}, that is, when we have
one single subset Σ ⊂ X of singularities, then the conditions (11.16),
(11.17) are satisfied.

We consider now in the general case of (11.16), (11.17), the set

(11.18) Blc,S(X,E) =
⋃

Σ∈S Blc,Σ(X,E)

as well as

(11.19) Vlc,S(X,E) =
⋃

Σ∈S Vlc,Σ(X,E)

which is obviously a subset of Blc,S(X,E).

Further, let Z ⊆ X, such that

(11.20) ∀ Σ ∈ S : Z \ Σ 6= φ

Then we define

(11.21) Jlc,S, Z(X,E) =
⋃

Σ∈S Jlc,Σ, Z(X,E)

which is obviously a subset of Blc,S(X,E).
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Now we consider the direct limit

(11.22) A lc,S(X,E) = lim−→Σ∈S Blc,Σ(X,E)

It follows that

(11.23) A lc,S(X,E) = Blc,S(X,E)/ ≈S

where the equivalence relation≈S on Blc,S(X,E) is defined for (fx, Ux | x ∈
X \ Σ) ∈ Blc,Σ(X,E), (gy, Vy | y ∈ X \ Σ′) ∈ Blc,Σ ′(X,E), with
Σ,Σ′ ∈ S, by

(11.24) (fx, Ux | x ∈ X \ Σ) ≈S (gy, Vy | y ∈ X \ Σ′)

if and only if there exist Σ′′ ∈ S, with Σ ∪ Σ′ ⊆ Σ′′, as well as
(hz,Wz | z ∈ X \ Σ′′) ∈ Blc,Σ′′(X,E), such that jΣ,Σ′′(fx, Ux | x ∈
X \ Σ) = jΣ′,Σ′′(gy, Vy | y ∈ X \ Σ′) = (hz,Wz | z ∈ X \ Σ′′).

Similarly, one defines the direct limit

(11.25) U lc,S(X,E) = lim−→Σ∈S Vlc,Σ(X,E)

and obtains

(11.26) U lc,S(X,E) = V lc,S(X,E))/ ≈S

Clearly, we have the injective mapping

(11.27) EX 3 f −→ (lc(f))≈S ∈ A lc,S(X,E)

where (g)≈S denotes the ≈S equivalence class of the element g ∈
B lc,S(X,E).

We note that, if S = {Σ}, thenA lc,S(X,E) = A lc,Σ(X,E) = B lc,Σ(X,E)
and U lc,S(X,E) = U lc,Σ(X,E) = V lc,Σ(X,E).

Lastly, given Z ⊆ X for which (11.20) holds, one defines the direct
limit
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(11.28) I lc,S, Z(X,E) = lim−→Σ∈S Jlc,Σ, Z(X,E)

and obtains

(11.29) I lc,S, Z(X,E) = J lc,S, Z(X,E))/ ≈S

Obviously, in view of (11.21), we have

(11.30) I lc,S, Z(X,E) ⊆ A lc,S(X,E)

We can also note that, if S = {Σ}, then I lc,S, Z(X,E) = I lc,Σ, Z(X,E) =
J lc,Σ, Z(X,E)

Let us summarize. Given Σ ∈ S as above, and Z ⊆ X as in (11.20),
we have the commutative diagram of mappings

(11.31)

EX ∗−→ Vlc,Σ(X,E) −→ Blc,Σ(X,E)←− J lc,Σ, Z(X,E)
↓ ↓ ↓
Vlc,S(X,E) −→ Blc,S(X,E)←− J lc,S, Z(X,E)
↓ ∗ ↓ ∗ ↓ ∗

EX ∗−→ Ulc,S(X,E) −→ Alc,S(X,E)←− I lc,S, Z(X,E)

where all the mappings are injective, except for the three mappings
”↓ ∗” which are surjective, while the two mappings ”

∗−→” are in fact
bijective.

11.2. Properties

The following result can be obtained by direct, even if a somewhat
elaborate verification :

Theorem 11.1.

A lc,S(X,E) is a unital algebra, and U lc,S(X,E) is a subalgebra in it,
and it is the range of the mapping (11.27) which is an algebra embed-
ding, namely, we have the algebra isomorphism
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(11.32) EX 3 f −→ (lc(f))≈S ∈ U lc,S(X,E) ⊂ A lc,S(X,E)

The algebra A lc,S(X,E) is commutative, if and only if the Banach
algebra E is commutative.

Furthermore, given Z ⊆ X for which (11.20) holds, then I lc,S, Z(X,E)
is an ideal in the algebra A lc,S(X,E).

�

For 0 ≤ l ≤ ∞, we denote by, see (11.22), (11.23)

(11.33) Allc,S(X,E)

the set of all (f)≈S where f = (fx, Ux | x ∈ X \ Σ) ∈ B lc,Σ(X,E), for
some Σ ∈ S, such that

(11.34) fx, Ux ∈ Cl(Ux), for x ∈ X \ Σ

Further, we denote

(11.35) U l
lc,S(X,E) = U lc,S(X,E)

⋂
Allc,S(X,E)

(11.36) I llc,S, Z(X,E) = I lc,S, Z(X,E)
⋂
Allc,S(X,E)

Theorem 11.2.

Suppose that

(11.37) ∀ Σ ∈ S : X \ Σ is dense in X

Then, for 0 ≤ l ≤ ∞, the ideal I llc,S(X,E) in the algebra Allc,S(X,E)
satisfies the off-diagonality condition

(11.38) I lc,S(X,E)
⋂
U lc,S(X,E) = {0}
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Proof

It follows from the density condition (11.37) and the continuity of the
functions involved. Indeed, let, see (11.29)

(11.39) (f)≈S ∈ I lc,S(X,E)

where for some Σ ∈ S, we have f = (fx, Ux | x ∈ X \Σ) ∈ Blc,Σ(X,E).
Then (f)≈S ∈ U lc,S(X,E) implies in view of (11.26) that, see (11.8)

(11.40) f = (fx, Ux | x ∈ X \ Σ) ∈ Vlc,Σ(X,E)

Now (11.40), (11.8) give

(11.41) fx, Ux = f, x ∈ X

for some f ∈ C0(X,E).

On the other hand, (11.39), (11.11), (11.40) give

f(x) = fx, Ux(x) = 0, x ∈ X

thus indeed f = 0.

11.3. Differential Algebras with Dense Singularities

In [55-57,59,61,70,71,97,99], large classes of differential algebras of gen-
eralized functions which allow their elements to have singularities on
dense subsets of their domain of definition, and without any restric-
tions on the respective generalized functions in the neighbourhood of
their singularities, have been introduced, and these algebras have been
applied to solving large classes of systems of nonlinear PDEs, as well
as in highly singular problems in Lie group theory, differential geom-
etry, and with respective applications in modern physics, including
general relativity and quantum gravity, [168-170].

The algebras are of the form (0.1), (0.2), thus are built upon C∞-
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smooth functions, namely, their elements are classes of equivalence
modulo the respective ideals I.

These ideals play a fundamental role in dealing with dense singulari-
ties, and so without any restrictions on the respective generalized func-
tions in the neighbourhood of their singularities. Indeed, the power
of the method consists precisely in the fact that the singularities, al-
though possibly so many as to constitute dense subsets in the domain
of definition of generalized functions, are dealt with exclusively alge-
braic, that is, ring theoretic means.
And here it should be mentioned that the singularities can forms sets
which have a larger cardinal then the set of regular, that is, non-
singular points. For instance, if the generalized functions are defined
on X = R, then the set of singularities can be given by all irrational
numbers, thus the set of regular, non-singular points can be reduced
to the set of rational numbers.

As argued in section 0, there is a major interest in extending such alge-
bras by replacing the C∞-smooth functions upon which they are built
with considerably larger classes of functions, and specifically in this
study, with functions which are locally smooth, see (11.22), (11.23).

When proceeding with such an extension, the main issue is to extend
in appropriate ways the definition of the large class of ideals I in such
a way that they still can handle dense singularities, and do so without
any restrictions on the respective generalized functions in the neigh-
bourhood of their singularities.

Let us, therefore, recall for convenience the definition of the large class
of ideals I, see section 10, in the case when, as supposed, X is a do-
main in and Euclidean space Rn.

First we recall that we supposed a directed partial order ≤ on the
infinite set of indices Λ. Further, let, as in (11.16), (11.17), S ⊆ P(X)
be a family of singularity subsets Σ ⊂ X.

Now for given Σ ∈ S, we considered, see section 10, the ideal
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(11.42) IΣ(X)

in (C∞(X))Λ, given by all the sequences of smooth functions w =
(wλ | λ ∈ Λ) ∈ (C∞(X))Λ, such that

(11.43)

∀ x ∈ X \ Σ :
∃ λ ∈ Λ :
∀ µ ∈ Λ, µ ≥ λ :
∀ p ∈ Nn :

Dpwµ(x) = 0

Further, we defined the ideal in (C∞(X))Λ, given by

(11.44) IS(X) =
⋃

Σ∈S IΣ(X)

which played the role of the ideals I in (0.1), (0.2).

In order to extend these ideals to the case of locally smooth functions,
first we extend (11.43) according to (11.1) - (11.7). Namely, we denote
by

(11.45) Nlc,S(X,E)

the set of all the sequences w̃, where for a suitable Σ ∈ S, we have
w̃ = ((wλ)≈S | λ ∈ Λ) ∈ (B∞lc,Σ(X,E))Λ, such that

(11.46)

∀ x ∈ X \ Σ :
∃ λ ∈ Λ :
∀ µ ∈ Λ, µ ≥ λ :
∀ p ∈ Nn :

Dpwµ(x) = 0

Theorem 11.3.

Nlc,S(X,E) is an ideal in (A∞lc,S(X,E))Λ.

Proof.
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It follows by direct verification, based on (11.33), (11.34) and (11.45),
(11.46).

�

At last, we can now arrive at the main construction in this study,
namely, the reduced power algebras

(11.47) Alc,S(X,E) = (A∞lc,S(X,E))Λ/Nlc,S(X,E)

which are in fact differential algebras of generalized functions. Further-
more, they contain all the earlier differential algebras of generalized
functions, and in particular, those with closed, nowhere dense, or even
dense singularities, as well as the Colombeau algebras, and therefore,
also the linear vector spaces of Schwartz distributions.

Indeed, it follows from a direct, albeit elaborate verification that the
algebras (11.47) satisfy the corresponding conditions (11.48) - (11.51)
next.

We recall, see section 5, that the structure of all the differential al-
gebras of generalized functions is of the same form of reduced powers,
namely

(11.48) A = A/I

where

(11.49) I ⊂ A ⊆ (C∞(X,E))Λ

with Λ a suitable infinite set of indices with a directed partial order,
while A is a subalgebra in (C∞(X,E))Λ, and I is an ideal in A.

The fact that the algebras (0.1) are differential algebras results easily,
since as seen in sections 7-10, the following two conditions can be sat-
isfied in a large variety of situations

(11.48) DpA ⊆ A, p ∈ Nn
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(11.49) DpI ⊆ I, p ∈ Nn

in which case the partial derivative operators on the algebras (0.1) can
of course be defined by

(11.50) A 3 F = f + I 7−→ DpF = Dpf + I ∈ A, p ∈ Nn

where f = (fλ | λ ∈ Λ) ∈ (C∞(X,E))Λ, while Dpf = (Dpfλ | λ ∈
Λ) ∈ (C∞(X,E))Λ.

The fact that the corresponding differential algebras contain the Schwartz
distributions, thus are algebras of generalized functions follows from
the easy choice of their ideals I required to satisfy the off-diagonality
condition, see sections 5, 7-10

(11.51) I
⋂
UΛ = {0}

where UΛ is the diagonal in (C∞(X,E))Λ, that is, the subalgebra
of all constant sequences f = (fλ | λ ∈ Λ) ∈ (C∞(X,E))Λ, where
fλ = f ∈ C∞(X,E), for λ ∈ Λ.

11.4. Comments

1) The model theoretic, [186], construction of reduced power, although
hardly known as such among so called working mathematicians, hap-
pens nevertheless to appear in quite a number of important places in
mathematics at large. For a sample of them, one can note the fol-
lowing. The Cauchy-Bolzano construction of the field R of usual real
numbers is in fact a reduced power of the rational numbers Q. More
generally, the completion of any metric space is a reduced power of
that space. Furthermore, this is but a particular case of the fact that
the completion of any uniform topological space is a reduced power
of that space. Also, in a rather different direction, the field ∗R of
nonstandard real numbers can be obtained as a reduced power of the
usual field R of real numbers.

In view of the above, the use of reduced powers in the construction
of differential algebras of generalized functions should not be seen as
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much else but a further application of that basic construction in model
theory, this time to the study of large classes of singularities.

As for dealing with singularities, there is a strongly entrenched trend
to approach them with nothing else but methods of analysis, functional
analysis, topology, complex functions. And this trend is particularly
manifest in various theories of generalized functions.

On the other hand, as seen in the previous sections, the issue of sin-
gularities of generalized functions boils down to a rather simple and
basic algebraic conflict. Consequently, the study of singularities of
generalized functions through methods which are primarily of analy-
sis, functional analysis, topology, or complex functions has the double
disadvantage of

• unnecessarily complicating the situation,

• missing the root of the problem.

The Colombeau algebras do to a good extent fall under the above
double disadvantage, and as result, mentioned in sections 0, 9, they
can only deal with a rather limited class of singularities of generalized
functions.

2) An important property of many reduced powers is the presence of
infinitesimals, [186,138]. This fact, as it happens, has not yet been
given its due consideration in the study of differential algebras of gen-
eralized functions.

3) A large class of scalars which most likely may have a considerable
relevance in physics is given by reduced power algebras built upon the
field R of usual real numbers. Indications in this regard can be found
in [63,80,87,108,110,113,116,120,121,127,131-133,136,140,144].
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12. Conflict between Singularities, Multiplication and
Differentiation

As it can happen in mathematics, the true message of the so called
1954 Schwartz impossibility, [245], message long disregarded, and in
fact, misunderstood, [215], is that there is a most basic, simple, and
purely algebraic conflict between

• singularities, in particular, discontinuities,

• multiplication, and in general, nonlinear operations, and

• differentiation.

12.1. Is the Dirac δ Distribution Identically Zero ?

Indeed, this conflict is so basic and simple that it can already be seen
in its purely algebraic nature with the Heaviside functionH : R −→ R.

Clearly, with the usual multiplication of functions, we have

(12.1) Hm = H, m ∈ N, m ≥ 1

Now the usual derivation

(12.2) D : C1(R) −→ C0(R)

is a linear operator which satisfies the Leibnitz rule of product deriva-
tive, namely

(12.3) D(fg) = (Df)g + f(Dg), f, g ∈ C1(R)

And if we want to extend D to H /∈ C1(R) with the preservation of its
linearity and Leibnitz rule, then for m ∈ N, m ≥ 2, we have

(12.4)
D(Hm) = D(HHm−1) = (DH)Hm−1 +H(D(Hm−1)) =

= (DH)H + (D(Hm−1))H
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assuming the commutativity of multiplication, wherever the range of
the extended D would be. Repeating the above, we eventually obtain

(12.5) D(Hm) = m(DH)H

thus in view of (12.1), it follows that

(12.6) DH = m(DH)H, m ∈ N, m ≥ 2

and therefore, if we suppose that the range of the extended D is a
module over Q, then

(12.7) (1/m ′ − 1/m)DH = 0, m,m ′ ∈ N, m,m ′ ≥ 2

Assuming further that for elements F in the range of the extended D
we have the simplification property

(12.8) kF = 0 =⇒ F = 0

for any given k ∈ Q, k 6= 0, the relation (12.7) yields

(12.9) DH = 0

Here, however, we recall that in various applicative instance, one de-
sires the relation

(12.10) DH = δ

where δ is the Dirac distribution. Thus (12.9) becomes

(12.11) δ = 0

which, again, is not desirable in a variety of applications of the Dirac
distribution.

Remark 12.1.
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And why the Heaviside function ?

Simple indeed : the equation

(12.12) ξm = ξ, m ∈ N, m ≥ 2

has in R the solutions

(12.13) ξ = 0 and ξ = 1

which are precisely the only two values of the Heaviside function

(12.14) H = χ[0,∞)

where for any sets A ⊆ X, we denote by χA the characteristic function
of A.

And a discontinuous function on R has to have at least two different
values. Thus the Heaviside function H is a simplest such discontin-
uous function since it has only one discontinuity, namely at x = 0 ∈ R.

12.2. The Algebra of Universal Differentiation

Algebra turns out to be a natural setup for a Universal Differentiation.
Indeed, a rather general, thus basic and simple, purely algebraic setup
for differentiation is as follows, see Lang S : Algebra (Third Edition).
Addison-Wesley, New York, 1993, pp. 746-749.

Let R be a commutative ring, A a commutative R-algebra, and M an
A-module. A mapping

(12.15) D : A −→M

is called an R-differentiation, if and only if

(12.16) D is R-linear

and satisfies the Leibniz rule of product derivative, namely
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(12.17) D(ab) = a(Db) + (Da)b, a, b ∈ A

Clearly

(12.18) D(R) = 0

We also note that the set

(12.19) DerR(A,M)

of such differentiations is an A-module, with the multiplication

(12.20) A×DerR(A,M) 3 (a,D) 7−→ aD ∈ DerR(A,M)

where

(12.21) (aD)(b) = a(Db), b ∈ A

Definition 12.1.

Let R be a commutative ring, A a commutative R-algebra. A univer-
sal R-differentiation over A is any R-differentiation ∆ on A, namely

(12.22) ∆ : A −→ Ω

where Ω is an A-module, such that for every R-differentiation D :
A −→ M , there exists a unique A-homomorphism f : Ω −→ M , that
gives the commutative diagram

(12.23)

A ∆ - Ω

@
@

@
@

@@R

�
�

�
�

��	
M

D f

�
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And as with universal properties, it follows easily that a universal
R-differentiation ∆ on A is uniquely determined, up to a respective
unique isomorphism. Thus, in terms of category theory, we have the
functorial isomorphism

(12.24) DerR(A,M) ≈ HomA(Ω,M)

Theorem 12.1.

Let R be a commutative ring, A a commutative R-algebra. Then

(12.25) ∆ : A −→ Ω = J/J2

is a universal differentiation on A, where

(12.26) J = kermA

for the multiplication homomorphims

(12.27) ma : A
⊗

A 3 a
⊗

b 7−→ ab ∈ A

while

(12.28) ∆ : A 3 a 7−→ 1
⊗

a− a
⊗

1 ∈ J/J2

Consequently, (12.24) becomes

(12.29) DerR(A,M) ≈ HomA(J/J2,M)

�

It is worth noting that the above universal differentiation further leads
to a de Rham complex, as well as other applications, see Lange.

12.3. The Natural Setup for Differentiation

A conclusion of fundamental importance for the nonlinear theory of
generalized functions based on differential algebras of generalized func-
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tions, see 46F30, is that the natural set up is not within any single
such algebra A with a respective differentiation

(12.30) D : A −→ A

but rather with the differentiation acting between different algebras

(12.31) D : A −→ Ã

Indeed, as seen in more detail in section 15, the simplifying assump-
tion (12.30) does in fact lead to the tacit and very strong requirement
that the elements such algebras are no less than infinitely differen-
tiable, thus they are in certain ways similar to the C∞ functions. On
the other hand, what is actually the natural setup, namely in (12.31)
leads to algebras which only allow a finite differentiation of their el-
ements, thus they are similar to the various spaces of functions Cm,
with 0 ≤ m <∞.

And clearly, the natural setup (12.31) leads inevitably to chains of
algebras of generalized functions, instead of one or another single such
algebra, as seen in section 15.

Now the essential difference between the strongly restrictive setup
(12.30), and on the other hand, the natural setup (12.31) is that the
former can only allow certain variants of multiplication of functions
and generalized functions with singularities, as detailed in section 15.

In this way, it may be considered that the more true message of the
1954 Schwartz impossibility result is the need to deal with singular-
ities - and even more so in a nonlinear context - within what proves
to be the natural framework for differentiation, namely, (12.31), and
thus, indeed within chains of algebras of generalized functions.

As it happens however, due to various reasons, mainly as it appears the
present preponderance of analysts among those involved in the non-
linear theory of generalized functions, the above essential difference
between the setups in (12.30), and on the other hand, the natural one
on (12.31), is hardly at all understood, with the exclusive focus still
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being on the particular and strongly restrictive setup in (12.30).

12.4. Examples of Multiplication of Singularities

We shall illustrate the considerably different ways the above frame-
works (12.30) and (12.31) can operate by presenting a few correspond-
ing results on the multiplication of generalized functions with singu-
larities, see [7, pp. 1-20].

It is convenient to consider the mentioned purely algebraic conflict
within the somewhat larger context of

• insufficient smoothness

• multiplication

• differentiation

and note that the mentioned conflict can be seen as a limitation upon
compatibility between the algebraic and differential structures, when
they are considered beyond the classical framework of smooth func-
tions, thus are supposed to contain entities that are in certain sense
generalized functions.

Let us start with the continuous functions

(12.32) x+, x− ∈ C0(R) \ C1(R)

given by

(12.33) x+ =
x if x ≥ 0

0 if x < 0
x− =

x if x ≤ 0

0 if x > 0

Then within the algebra C0(R), we have the relation

(12.34) x+ + x− = x = idR
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and in particular, the multiplication

(12.35) xx+ = (x+)2, xx− = (x−)2

Now obviously

(12.36) (x+)2, (x−)2 ∈ C1(R) \ C2(R)

and with the usual differentiation, we have

(12.37) Dx = 1, D((x+)2) = 2x+, D((x−)2) = 2x−

On the other hand, with the distributional differentiation in D ′(R),
we have

(12.38) Dx+ = H, D2x+ = DH = δ

12.4.1. An Algebra of Continuous Functions

We shall consider a rather simple and small algebra which need contain
only a few continuous functions, yet on which, within the restrictive
framework of (12.30), there is already an incompatibility between lack
of enough smoothness, multiplication and differentiation. It follows
that discontinuities are, in fact, not necessary to lead to such an in-
compatibility.

Let us, indeed, consider any commutative unital algebra A on R which
has the following properties

(12.39) 1, x, x+, x− ∈ A

(12.40) 1 is the unit element in A and
the relations (12.34), (12.35) hold in A

furthermore, there is a differentiation on A, see (12.30)

(12.41) D : A −→ A
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thus D is linear and satisfies the Leibniz rule of product derivative.

Then the following relations hold in A

(12.42) xDx+ = x+, xDx− = x−

(12.43) x+Dx+ = x+, x−Dx− = x−

(12.44) x+Dx− = x−Dx+ = 0

(12.45) xD2x+ = xD2x− = 0

(12.46) (Dx+)(Dx−) = x+D
2x− = x−D

2x+ =

= x+D
2x+ = x−D

2x− = 0

(12.47) (Dx+)2 = Dx+, (Dx−)2 = Dx−

(12.48) D2x+ = D2x− = 0

Remark 12.2.

1) The interest in the above multiplication results is that they are
conflicting already with the differentiation of Schwartz distributions.
Indeed, in the latter, we have D2x+ = DH = δ 6= 0, while (12.48)
contradicts that relation.

2) The above algebra need not contain less smooth functions than
continuous ones.

12.4.2. An Algebra with a Singular Function

Let us now allow a singular generalized function to belong to the alge-
bra A. More precisely, we suppose that a generalized function having
some of the well known properties of the Dirac δ distribution belongs
to A. For convenience, we shall denote that generalized function again
by δ, and we shall suppose about it only that
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(12.49) δ ∈ A, δ 6= 0 ∈ A

as well as, see (12.51) below

(12.50) xδ = 0 ∈ A

Further, about A, let us suppose that

(12.51) xm ∈ A, m ∈ N

(12.52) the multiplication in A induces
on the monomials (12.51) the usual multiplication

(12.53) 1 is the unit element in the algebra A

(12.54) D applied to the monomials (12.51)
is the usual derivative

Then the following relations hold in A

(12.55) xpDqδ = 0 ∈ A, p, q ∈ N, p > q

(12.56) (p+ 1)Dpδ + xp+1δ = 0 ∈ A

(12.57) xp(Dpδ)q = 0 ∈ A

(12.58) (δ)2 = δDδ = 0 ∈ A

Remark 12.3.

The degeneracy result (12.58) is in conflict with many adhoc distri-
bution multiplications used among others in physics, [175], as well as
with the multiplication in Colombeau algebras, according to which
(δ)2 6= 0.

12.4.3. Another Algebra with a Singular Function

Let us relax the conditions required on the algebra A in the previ-
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ous subsection, but still keeping the singular generalized function δ in
the algebra. Namely, we suppose that (12.49), (12.51), (12.53) and
(12.54) hold. Therefore, we are still within the restrictive framework
of (12.30).

If we now suppose that, contrary to (12.58), we have

(12.59) δ, δ2, δ3, . . . 6= 0 ∈ A

then

(12.60) xmδ 6= 0 ∈ A, m ∈ N

Remark 12.4.

The relevance of (12.60) above is as follows.

Within the Schwartz distributions, the Dirac δ distribution is known
to have the property, see (12.50)

(12.61) xδ = 0 ∈ D ′(R)

This clearly means that the singularity of δ at x = 0 ∈ R is less than
that of the function f(x) = 1/x, x ∈ R, x 6= 0.

On the other hand, (12.60) implies that in the respective algebras A,
the singularity of δ at x = 0 ∈ R is in fact higher than that of all the
functions fm(x) = 1/(xm), x ∈ R, x 6= 0, with m ∈ N.

12.4.4. Differentiations of the type D : A −→ Ã

The above differentiations in subsections 12.4.1. - 12.4.3. were within
the restrictive framework of (12.30), where the differentiation operates
within the same single algebra, namely, D : A −→ A.

Here instead, we briefly consider the natural framework (12.31) where
differentiation may operate between two different algebras, namely,
D : A −→ Ã.
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Once again, it is worth pointing out that a differentiation D : A −→ A
renders the elements of the algebra A infinitely differentiable, and does
so either we like it or not. And the inevitable effect is that it leads
to particular case of multiplication in the case of generalized functions
with singularities.

On the other hand, as seen in subsection 12.2., the natural, and in
fact, universal setup for differentiation in algebras is of differentia-
tions D : A −→ Ã between possibly different algebras. And as the
related universality property shows it, such a differentiation does not
introduce any restrictions on multiplication, and in particular, on the
multiplication of generalized functions with singularities, since in the
commutative diagrams (12.23), the differentiations D : A −→ M can
not only be arbitrary, but furthermore, M can be modules over A,
and not only algebras.

Nevertheless, as seen in the sequel, even within such an unrestricted
and natural framework (12.30), one cannot so easily reproduce the
multiplication of functions in Cm \ Cm+1, with 0 ≤ m < ∞, unless
one conflicts with some of the most simple and customary products
allowed within the Schwartz distributions and involving the Dirac δ
distribution.

Let, indeed, be given three algebras on R, namely

(12.62) A2, A1, A0

together with linear operators called differentiations

(12.63) A2 D−→ A1 D−→ A0

which satisfy the following weaker version of the Leibniz rule of prod-
uct derivative

(12.64) D(fg) = (Df)g + f(Dg), f, g ∈ Ai+1 ∩ Ai, 0 ≤ i ≤ 1

We shall suppose that
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(12.65) x, x(ln|x | − 1), x2(ln|x | − 1) ∈ A2

(12.66) 1, x, x(ln|x | − 1) ∈ A1

(12.67) 1, x ∈ A0

We note that x(ln|x | − 1) ∈ C0(R) \ C1(R), while x2(ln|x | − 1) ∈
C1(R) \ C2(R).

Further, the multiplication in A2 is such that

(12.68) (x(ln|x | − 1))(x) = x2(ln|x | − 1)

The differentiation D : A2 −→ A1 is the same with the usual one for
the functions

(12.69) x, x2(ln|x | − 1)

The differentiation D : A1 −→ A0 is the same with the usual one for
the function

(12.70) x

(12.71) 1 is the unit element in the algebras A1 and A0

(12.72) A0 is associative

Then, [4, p. 111], [6, p. 31], [7, p.268], there cannot exist δ ∈ A0, δ 6=
0, such that in A0 we have

(12.73) xδ = 0 ∈ A0

12.4.5. Conclusions on Incompatibility

The result in (12.73) is in fact stronger than the similar result in the
1954 Schwartz impossibility, since the above requirements for the for-
mer are weaker, see [4, pp. 289-292], [6, pp. 27-30], [7, pp. 7-9]. In
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particular, the algebras A2, A1, A0 need not relate to one another by
any inclusion relation. Further, none of these algebras is supposed
to be associative or commutative. And last, only the algebra A0 is
supposed to be associative.

The results in subsections 12.4.1 - 12.4.4 related to multiplications
that involve generalized functions with singularities show a further
limitation of the interest in the particular kind of embedding of the
D ′ distributions into algebras of generalized functions, embeddings
which preserve the distributional derivatives, [253]. Indeed, as seen
above, there is an inevitable price to pay for such embeddings, namely,
one has to accept multiplications for insufficiently smooth functions in
Cm \ Cm+1, with 0 ≤ m <∞, which are quite different from the usual
multiplication of such functions.

Consequently, one simply cannot avoid the most basic and purely alge-
braic incompatibility between the algebra structure, and on the other
hand, the differentiation, when it comes to insufficiently smooth func-
tions in Cm \ Cm+1, with 0 ≤ m <∞. And all one may be able to do
is to require more on one of the two sides of that incompatibility, and
then inevitably, pay the prize on the other side.

The embeddings in [253] are in a way maximal with respect to the
properties of differentiation, and thus they lose a lot with respect to
the multiplication of insufficiently smooth functions in Cm\Cm+1, with
0 ≤ m <∞.

It is therefore a mere matter of preference how one may decide to deal
with the mentioned incompatibility. And needless to say, such a pref-
erence can be influenced by features of the specific applications of the
algebraic nonlinear theory of generalized functions.

12.5. Open Problem : Do We Need the Leibniz Rule ?

The above incompatibility, with its inevitable trade-off between pre-
serving differentiation, or on the contrary, multiplication for insuffi-
ciently smooth functions, and other functions or generalized functions
with singularities, may raise the question whether one should consider
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differentiations which do no longer satisfy the Leibniz rule of product
derivative, and instead, may satisfy a modified or weaker form of it ?
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13. Stability, Generality and Exactness

The reduced power structure of differential algebras of generalized
functions leads naturally to the following three basic concepts, and
thus to the corresponding inevitable interplay between them, as well
as a range of properties related to them, [4, pp. 13-16], [6, pp. 224-
229], [7, pp. 50-54], namely

• stability

• generality

• exactness

And the respective concepts arise already in a more general context
as seen next. Let Ω ⊆ Rn be any nonvoid open set, and a partial
differential operator act according to

(13.1) T (x,D) : E = S/V −→ A = A/I

where

(13.2) V ⊂ S ⊆ (C∞(Rn))N

are vector spaces, while

(13.3) I ⊂ A ⊆ (C∞(Rn))N

with A a subalgebra, while I is an ideal in A.

Now, in the above setup, any solution U ∈ E of the PDE

(13.4) T (x,D)U = 0

has the form

(13.5) U = s+ V ∈ S/V = E
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for suitable s ∈ S.

Let us now consider the relationship between U and s above. Clearly,
the same U may correspond to different s ∈ S. More precisely, instead
of s, we can take any t ∈ S for which t− s ∈ V .

It follows that the maximal stability of U in the above setup means

(13.6) maximal V

Further, since we may typically deal with generalized solutions U ,
when it comes to the issue of existence of such solutions, it is useful
at that stage to have the space E large, which obviously means

(13.7) large S and small V

Lastly, the PDE in (13.4) is satisfied in A = A/I. That is, the equal-
ity in the PDE in (13.4) takes place in A = A/I. And under rather
general conditions, [3,4,6,7], we have

(13.8) T (x,D)U = T (x,D)(s+ V) = w + I ∈ A/I = A

with w ∈ A. And then (13.4) is equivalent with

(13.9) w ∈ I

and since I is an ideal in A, it is further equivalent with

(13.10) wA ⊆ I

which we call the exactness property of the solution U . And then
clearly, a better exactness means

(13.11) large A and small I

Here it is important to note that the above three conditions of sta-
bility, generality and exactness are in general conflicting. Therefore,
in various specific instances of PDEs, one has to decide according to
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the corresponding interests about the particular ways of interplay be-
tween these three conditions, in order to satisfy them simultaneously
to some extent.

We can also note that both stability and generality refer exclusively to
the space E = S/V , and as such, do not involve the partial differential
operator T (x,D), or any solution of the corresponding PDE.

On the other hand, the exactness involves both spaces and the partial
differential operator in (13.1). However, it still does not involve any
solution of the corresponding PDE.
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14. The Inevitable Infinite Branching of Multiplication

Let us briefly review several relevant facts. Singularities appear in
numerous important mathematical models used in physics. And in
most of such cases singularities are involved in essentially nonlinear
contexts. As mentioned, for more than four decades by now, a general
enough nonlinear theory of singularities has been developed through
the introduction of a large variety of differential algebras of general-
ized functions.

A critically important related feature is that, above certain levels of
singularities, the operation of multiplication, and in general, nonlin-
ear operations on such singularities, do inevitably branch in infinitely
many ways, without the possibility for the existence of some unique,
natural or canonical way such nonlinear operations may be performed.
Consequently, the choice in such branchings has to come from extra-
neous considerations.

Singularities have been present in mathematics ever since the simple
and natural looking issue of dividing by zero. And with the math-
ematization of modern physics, they are causing major difficulties in
quite a number of disciplines of that field of science. Needless to
say, various branches of engineering, as well as other fields of science
and technology encounter similar difficulties due to singularities in the
mathematical models employed.

Here, as before, we shall consider singularities of functions f : Ω −→
R, where Ω is some Euclidean domain. In this way, and as mentioned,
the following two fundamental features of singularities will be of con-
cern, namely

• SIZE : the extent of the set of singularities as a subset in the
domain of definition of functions or generalized functions,

• BEHAVIOUR : the behaviour of functions or generalized func-
tions in the neighbourhood of singularities.

The main conclusion obtained will be as follows :
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• In case no limitations are imposed on the above two features of
singularities, as soon as multiplication, and in general, nonlin-
ear operations are effectuated with generalized functions, there
is an inevitable infinite branching in the way such operations
can be defined. In other words, there is no canonical, natural
or unique way multiplication, and in general, nonlinear opera-
tions can be defined for generalized functions. Consequently, the
specific choice of the result of multiplication, and in general, of
nonlinear operations on generalized functions has to be made
based on extraneous considerations.

A first systematic and far reaching mathematical approach to singu-
larities was given in the 19th century by the theory of functions of one
complex variable. That was the time which led, among others and
not necessarily in a manner related to singularities, to the celebrated
and yet unsolved Riemann Hypothesis, which shows the depth of the
respective theory.
As for singularities in the context of functions of one complex variable,
one should not forget the Great Picard Theorem, according to which
an analytic function in the neighbourhood of an isolated singularity
point that is an essential singularity will take on all possible complex
values infinitely often, with at most a single exception.

Consequently, in the neighbourhood even of one single and isolated
singularity, one can expect a rather arbitrary behaviour, when one
deals with more general functions than analytic ones. Not to mention
the situation when the singularity points form a considerably larger
subset in the domain of definition of a function. Therefore, the con-
sideration of the above two aspects related to singularities is indeed
appropriate, and in fact, necessary in the case of a deeper going and
more wide ranging approach.

Beyond the confines of analytic functions, it was first the linear theory
of Sobolev spaces, and then, in a more clear and systematic manner,the
linear theory of Schwartz distributions which, starting with the mid
20th century, gave in certain respects a considerably more powerful
and general treatment of singularities.
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The major limitation of the Schwartz approach is in its essential con-
finement to linear situations, and its consequent inability to deal with
singularities in a nonlinear context, and do so in a convenient, general
and systematic manner, without the recourse to what often are merely
adhoc approaches. This linear limitation has over the years become
quite clear in view of the inability of the distributions to deal with
singularities in nonlinear contexts such as those of general relativity,
or more widely, differential geometry.
Such a state of affairs contrast sharply with the remarkable natural
ease and clarity the earlier complex function theory was applicable
within a nonlinear context, restricting itself, as it did naturally, to
singularities that occur in analytic situations.
Furthermore, as a rather unfortunate event, the more notorious than
celebrated 1954 paper of Schwartz [245] claimed to prove that a non-
linear theory of distributions would altogether be undesirable, if not
in fact, impossible ...
Amusingly, this claim has attained a wider acceptance, [215], and con-
sequently has for long distorted the perception of the situation con-
cerning singularities within a general enough nonlinear context ...

History, nevertheless, still seems to hang somewhat uneasily upon the
issue of singularities ...
Indeed, due to the remarkable generality, clarity and power of the
Schwartz linear distributional approach, the issue of algebraic oper-
ations on singularities has naturally and inevitably been restricted
to addition alone, without a similarly general consideration of the
operation of multiplication, an operation which ended up being in
fact implicitly excommunicated form any possible suitable and gen-
eral enough theory of singularities, in view of the mentioned 1954
Schwartz paper and its long ongoing misinterpretations.

And the surprising and hardly yet noted fact here is as follows. Al-
though multiplication is closely related to addition, being in certain
ways but a repeated addition, when it nevertheless comes to singular-
ities, an essential difference appears between these two basic algebraic
operations. Namely

• addition can be extended from usual functions, be they regular
or with singularities, to all sort of generalized functions, and such
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an extension appears to be naturally done in a unique, canonical
manner,

while on the other hand

• due to most simple algebraic, more precisely, ring theoretic rea-
sons, the extension of multiplication from usual functions, be
they regular or with singularities, to generalized functions does
no longer have such a naturally unique canonical way.

Here is, therefore, the root of what is in fact no less than an infinite
branching of the ways multiplications can naturally be defined for gen-
eralized functions.
And no wonder, this root has so far been mostly missed due to the
mentioned implicit omission to consider multiplication of singularities
within a general enough, and not merely adhoc, context ...

Within the general nonlinear treatment of singularities in 46F30, so
far three classes of differential algebras of generalized functions have
been used in a variety of problems, mainly for the solution of large
classes of nonlinear systems of partial differential equations.
It is instructive to recall the way these three classes of algebras relate
to the above two fundamental features of singularities.
In this regard, all these algebras are able to deal with the singularities
the Schwartz linear theory of distributions can, since each of these
algebras contains all the Schwartz distributions.

The issue, therefore, is to what extent these algebras are able to deal
with additional singularities. Let us then consider these algebras de-
fined on any given Euclidean open set Ω ⊆ Rn. Consequently, the
generalized functions will extend various classes of usual functions
f : Ω −→ R.

Here it should be pointed out again that the class of admissible sin-
gularities is large in no less than two significantly useful ways :

• First, the singularities of the functions f : Ω −→ R considered
can be given by arbitrary subsets Σ ⊂ Ω, subject to the only
condition that their complementary Ω \ Σ, that is, the set of
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regular, or in other words, non-singular points, be dense in Ω.
For instance, if Ω = Rn is an Euclidean space, then the set Σ ⊂ Ω
of singularities can be the set of all points with at least one
irrational coordinate. Indeed, in this case the set Ω \ Σ of non-
singular, or regular points is the set of points with all coordinates
rational numbers, thus it is dense in Ω. A relevant and rather
remarkable fact to note in this case is that the cardinal of the
singularity set Σ is strictly larger than the cardinal of the set of
non-singular points, namely, Ω \ Σ.

• Second, there is no restriction on the behaviour of functions
f : Ω −→ R in the neighbourhood of points in their singularity
sets Σ ⊂ Ω.

Related to this second freedom in dealing with singularities, one should
not forget its significant importance in applications. Indeed, as stated
in the mentioned Picard Great Theorem, an analytic function in the
neighbourhood of an isolated singularity point which is an essential
singularity takes on all possible complex values infinitely often, with
at most a single exception.
Consequently, in the neighbourhood of a singularity, one can expect
a rather arbitrary behaviour when one deals with more general func-
tions than analytic ones.

The first class of algebras of generalized functions was aimed to deal
with singularities within a systematic and as widely applicable as pos-
sible nonlinear theory, [16,17,22,23,3,4,6,7,39,43,45,47,50,53-57,59,61,
70,71,98,99, 105,143,165]. This class contains as particular cases all
the subsequent classes of differential algebras of generalized functions
constructed so far.

Within this largest class, a special subclass - of so called nowhere
dense algebras - was developed from the beginning, class which is able
to deal with arbitrary closed nowhere dense subsets Γ ⊂ Ω of singular-
ities, while no restrictions whatsoever are imposed on the behaviour
of generalized functions in the neigbourhood of singularities.

The second class of algebras, [172-178], requires polynomial growth
conditions on generalized functions in the neigbourhood of singulari-
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ties.
In this regard, and as mentioned, these algebras of generalized func-
tions - which are but a particular case of the infinite variety of all
possible differential algebras of generalized functions introduced in
[16,17,3,4] - suffer from a severe limitation. Namely, in the neigh-
bourhood of singularities of their generalized functions, these algebras
require a polynomial type growth condition, thus they cannot deal
even with isolated singularities such as essential singularities of ana-
lytic functions.

The third class of algebras, [3,4,6,7,9,55-57,59,61,70,71], is much more
powerful than the class of so called nowhere dense ones, since these
algebras are able to deal with arbitrary subsets Σ ⊂ Ω of singulari-
ties, subject to the mild condition that the respective complementary
subsets Ω \ Σ be dense in Ω, while again, no restrictions whatsoever
are imposed on the behaviour of generalized functions in the neigbour-
hood of singularities in Σ.
An important fact to note here is that the subsets Σ of singularities
can have a cardinal larger than that of the subsets Ω\Σ of nonsingular
or regular points, since the condition that Ω \Σ be dense in Ω can be
satisfied even when Ω \ Σ is merely a dense countable subset of Ω, in
which case Σ must of course be uncountable.

As for the nonlinear operations on singularities, the nowhere dense
algebras and those in the third class allow arbitrary smooth such op-
erations, while in the second class only smooth operations with poly-
nomial growth are possible.

As a consequence of its restriction upon singularities, as well as upon
operations on singularities, the second class of algebras cannot deal
with a number of important problems which are easily treated within
the nowhere dense algebras, or those in the third class. Among such
problems are the following.

The global version of the classical Cauchy-Kovalevskaia theorem for
solutions of analytic systems of nonlinear partial differential equations
cannot even be formulated, let alone solved, within the second class
of algebras.
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On the other hand, the first class of algebras is already able to produce
such a global version on the existence of solutions, [6,7,39].

Arbitrary Lie group actions, which are of major importance in the
solution of partial differential equations cannot be defined within the
second class of algebras.
Here again, the nowhere dense algebras are already enough to define
globally arbitrary Lie group actions.
And as one of the consequences, one can for the first time obtain the
complete solution of Hilbert’s Fifth Problem, [9].

This problem, again, cannot even be formulated, let alone solved,
within the second class of algebras due to the polynomial mentioned
type growth conditions which they require.

Also, when defining differential algebras of generalized functions in
the case of domains Ω which are arbitrary finite dimensional smooth
manifolds, the algebras in the first and third classes allow for consid-
erably simpler constructions than those in the second class.

At a deeper analysis, however, one that is done in terms of sheaf the-
ory, the essential difference between the nowhere dense algebras or
those in the third class, and on the other hand, the algebras in the
second class, is that the former are flabby sheaves, while the latter fail
to be so, as mentioned earlier. And as is known, [219], the lack of the
flabbiness property in the case of spaces of functions or generalized
functions is an essential indicator of their limitations in dealing with
singularities.

Lastly, it should be noted that, in [141], the study of a fourth class
which is far larger then the above third class of algebras has been ini-
tiated.

The next three subsections, namely, 14.1. - 14,3., present what can
be seen as the core construction of the infinite variety of differential
algebras of generalized functions. This infinite variety includes as par-
ticular cases all the algebras presented here, except the local one, and
among them it includes the nowhere dense algebras, the chains of
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algebras, the Colombeau algebras, and the space-time foam algebras,
[6, pp. 300-306], [7, pp. 301-319], [54,55,57,59,61,97,99,165], [177, p.7].

14.1. Inclusion Diagrams and Reduced Power Algebras
with the corresponding Ideals

It is an elementary property of the linear vector spaceD′(Ω) of Schwartz
distributions that it can be represented as the quotient vector space

(14.1) D′(Ω) = S∞(Ω)/V∞(Ω)

of the vector subspaces

(14.2) V∞(Ω) −→ S∞(Ω) −→ (C∞(Ω))N

with the arrows ”−→” representing usual inclusions ”⊆”, and

(14.3) S∞(Ω) = { s = (ψν)ν∈N ∈ (C∞(Ω))N | s converges weakly inD′(Ω) }

(14.4) V∞(Ω) = { v = (χν)ν∈N ∈ S∞(Ω) | v converges weakly to 0 inD′(Ω) }

The remarkable fact, which has always been there in (14.1) - (14.4), is
that in the right hand term of (14.2) we have the differential algebra
(C∞(Ω))N, yet in (14.2) one uses only vector subspaces of it. Indeed,
it takes little imagination to try to replace (14.2) with

(14.5) I(Ω) −→ A(Ω) −→ (C∞(Ω))N

where A(Ω) is a subalgebra in (C∞(Ω))N, while I(Ω) is an ideal in
A(Ω), and thus instead of the quotient vector space in (14.1), obtain
the quotient algebra

(14.6) A(Ω) = A(Ω)/I(Ω)

which may allow a nonlinear theory of generalized functions, thus of
singularities as well.

Indeed, for that purpose, it may be convenient to have the inclusion,
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that is, linear embedding

(14.7) D′(Ω) −→ A(Ω)

and of course, also suitable partial derivations on A(Ω), which in some
convenient manner may extend the distributional partial derivations
on D′(Ω). Clearly, such partial derivations can easily be obtained on
A(Ω), in case A(Ω) and I(Ω) are invariant under the natural term-
wise partial derivations

(14.8) (C∞(Ω))N 3 s = (ψν)ν∈N 7−→ Dps = (Dpψν)ν∈N ∈ (C∞(Ω))N

with p ∈ Nn. Namely, if one has

(14.9) DpI(Ω) ⊆ I(Ω), DpA(Ω) ⊆ A(Ω), p ∈ Nn

then one can simply define for p ∈ Nn, the corresponding partial
derivation

(14.10) A(Ω) 3 s+ I(Ω) 7−→ Dps+ I(Ω) ∈ A(Ω)

Let us for the moment, however, deal only with the algebraic aspects
of (14.5) - (14.7). An obvious immediate and simple way to obtain
(14.5) - (14.7) would be to construct inclusion diagrams of the form,
[16,17,22,23,3,4,6,7,9,39,43,45,47,50,53-57,59,61,70,71,97-99,105,165]

I(Ω) - A(Ω) - (C∞(Ω))N

6 6

V∞(Ω) - S∞(Ω)

(14.11)

which satisfy the condition

(14.12) I(Ω)
⋂
S∞(Ω) = V∞(Ω)
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a condition which is both necessary and sufficient for the existence of
the linear embedding

(14.13) S∞(Ω)/V∞(Ω) 3 s+ V∞(Ω) 7−→ s+ I(Ω) ∈ A(Ω)/I(Ω)

thus equivalently, for (14.7).

Unfortunately however, inclusion diagrams (14.11) cannot be con-
structed in view of the simple fact that, [16,17,3,4]

(14.14) ( V∞(Ω) . V∞(Ω) )
⋂
S∞(Ω) " V∞(Ω)

as simple counterexamples can show it. Indeed, it is easy to con-
struct sequences v = (χν)ν∈N ∈ V∞(Ω), such that v2 ∈ S∞(Ω), yet
v2 /∈ V∞(Ω). For instance, when Ω = R, one can take χν(x) = cos(νx),
and obtain indeed that v ∈ V∞(Ω), v2 ∈ S∞(Ω), and furthermore v2

converges weakly to 1/2 in D′(Ω), thus clearly v2 /∈ V∞(Ω).

Consequently, one can turn to the immediately more involved inclu-
sion diagrams, [16,17,3,4]

I(Ω) - A(Ω) - (C∞(Ω))N

6 6

V - S

? ?

V∞(Ω) - S∞(Ω)

(14.15)

where V and S are vector subspaces, such that the following three
conditions hold

(14.16) I(Ω)
⋂
S = V
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(14.17) V∞(Ω)
⋂
S = V

(14.18) V∞(Ω) + S = S∞(Ω)

which, as it is easy to see, are both necessary and sufficient for the
existence of the linear embeddings

(14.19) D′(Ω)S 7−→ s+ V∞(Ω) ∈ S∞(Ω)/V∞(Ω)

(14.20) S/V 3 s+ V 7−→ s+ V∞(Ω) ∈ S∞(Ω)/V∞(Ω)

(14.21) S/V 3 s+ V 7−→ s+ I(Ω) ∈ A(Ω) = A(Ω)/I(Ω)

where the mappings (14.19), (14.20) are in fact vector space isomor-
phisms.

Now clearly, (14.19) - (14.21) give the desired linear embedding (14.7)
of the Schwartz distributions into algebras of generalized functions,
namely

(14.22) D′(Ω) −→ A(Ω) = A(Ω)/I(Ω)

In view of (14.5), (14.6), the algebras of generalized functions A(Ω)
in (14.7), (14.22) are nothing else but reduced powers of the algebra
C∞(Ω) of smooth functions on Ω.

The general model theoretic, [186], construction of reduced powers,
although hardly known as such among so called working mathemati-
cians, happens nevertheless to appear in quite a number of important
places in Mathematics at large. For a sample of them, one can note
the following. The Cauchy-Bolzano construction of the field R of usual
real numbers is in fact a reduced power of the rational numbers Q.
More generally, the completion of any metric space is a reduced power
of that space. Furthermore, this is but a particular case of the fact
that the completion of any uniform topological space is a reduced
power of that space. Also, in a rather different direction, the field ∗R
of nonstandard real numbers can be obtained as a reduced power of
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the usual field R of real numbers.

In view of the above, the use of reduced powers in the construction
of algebras of generalized functions should not be seen as much else
but a further application of that basic construction in Model Theory,
this time to the study of large classes of singularities, and as such, to
the solution of rather general nonlinear systems of partial differential
equations, among others.

As seen in the sequel, the ideals I(Ω) in (14.22) play the essential
role in the inevitable infinite branching which occurs when multiply-
ing generalized functions that have singularities above a certain level.

14.2. The Necessary Nature of Inclusion Diagrams

It is particularly important to note the necessary, thus as well in-
evitable nature of what may appear as somewhat involved inclusion
diagrams (14.15) - (14.18), diagrams which are the foundation of the
differential algebras of generalized functions. Furthermore, as seen
next, this necessary and inevitable aspect is but a simple and purely
algebraic fact, see [4, pp. 67,68], [6, p. 292], [7, p. 226,227].

Let us, indeed, consider any algebra (5.4), (14.6)

(14.23) A = A/I

where

(14.24) I ⊆ A ⊆ (C∞(Ω))N

with A being a subalgebra, while I is an ideal in A.

Further, let us consider the representation of the Schwartz distribu-
tion given by, see (5.1)

(14.25) D ′(Ω) = S∞(Ω)/V∞(Ω)

and suppose that we have the commutative diagram
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S 3 s
sur

- < s, . >∈ D ′(Ω)

?

inj(14.26)

H
HHH

HHH
HHH

HHH
HHHj s+ I ∈ A

for a suitable vector subspace

(14.27) S ⊆ A
⋂
S∞(Ω)

Then it is easy to see that by taking

(14.28) V = I
⋂
S

we obtain an inclusion diagram (14.15) - (14.18).

14.3. Off-Diagonality Characterization

A fundamental result in the nonlinear algebraic theory of generalized
functions, see 46F30, is the simple and purely algebraic characteri-
zation of the algebras of generalized functions (14.7) which are con-
structed upon inclusion diagrams (14.15) - (14.21). In this regard, first
we note that these inclusion diagrams can be simplified as follows. In
the inclusion diagrams (14.15) there are four spaces to be chosen,
namely I(Ω),A(Ω),V and S. However, it is easy to see, [3,4,6,7], that
such inclusion diagrams can be reduced to the simpler form depending
only on two spaces (V ,S ′), namely
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I(V ,S ′) - A(V ,S ′) - (C∞(Ω))N

6 6

V - V ⊕ S ′ � U∞(Ω)

? ?

V∞(Ω) - S∞(Ω)

(14.29)

where V ,S ′ are vector subspaces in S∞(Ω), while

(14.30) U∞(Ω) = { uψ = (ψ, ψ, ψ, . . .) | ψ ∈ C∞(Ω) } ⊂ S∞(Ω)

is the diagonal in the Cartesian product (C∞(Ω))N.

As for the conditions (1-16) - (14.18), they now become

(14.31) V
⋂
S ′ = {0}

(14.32) I(V ,S ′)
⋂
S ′ = {0}

(14.33) V∞(Ω)⊕ S ′ = S∞(Ω)

The mentioned fundamental result regarding the characterization of
algebras of generalized functions (14.7) constructed upon inclusion
diagrams (14.15) - (14.21) as simplified in (14.29) - (14.33) is the fol-
lowing :

Theorem 14.1. [12-29]

Within a large class of inclusion diagrams (14.29) - (14.33), the condi-
tions (14.31) - (14.33) are equivalent with the following off-diagonality
one
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(14.34) I(V ,S ′)
⋂
U∞(Ω) = {0}

Remark 14.1.

It is both theoretically and practically important to note that, as seen
in [12-29], there are infinitely many different inclusion diagrams (14.29)
- (14.33). Moreover, they give infinitely many different corresponding
algebras of generalized functions

(14.35) A = A(V ,S ′)/I(V ,S ′)

which, see (14.22), contain the vector space D′(Ω) of Schwartz distri-
butions.

14.4. Inevitable Infinite Branching in the
Multiplication of Singularities

And now, we can come to the main issue in this section, namely, to
indicate the reason for the inevitable infinite possibilities in defining
multiplication of generalized functions in case their singularities are
above certain levels.

The remarkable fact in this regard is that the respective reason is of
a simple algebraic nature, namely, it is a direct consequence of the
off-diagonality characterization in Theorem 14.1. above of the alge-
bras of generalized functions (14.35) constructed through the method
of reduced powers.
This fact, as mentioned, was first elaborated upon in [4, pp. 118,119].

Indeed, for a given pair V ,S ′ and a corresponding subalgebraA(V ,S ′) ⊆
(C∞(Ω))N in an inclusion diagram (14.29) - (14.33), let us denote by

(14.36) ID(Ω,V ,S ′,A(V ,S ′))

the set of all ideals I in A(V ,S ′) which can occur in such inclusion
diagrams (14.29) - (14.33). This means, therefore, that for every such
ideal I ∈ ID(Ω,V ,S ′,A(V ,S ′)), there exists a corresponding algebra
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of generalized functions

(14.37) A = A(V ,S ′)/I

which, in view of (14.22), contains the vector space D′(Ω) of Schwartz
distributions.

Now, the essential point regarding the multiplication of singularities
is that, in view of the inclusion

(14.38) V ⊕ S ′ ⊃ U∞(Ω)

in (14.29), it follows easily that the multiplication in each of the alge-
bras of generalized functions A in (14.37) preserves the usual multi-
plication of smooth functions in C∞(Ω).

On the other hand, regarding the multiplication of generalized func-
tions that are not smooth - therefore, are elements in A\C∞(Ω) - it is
well known that in general they do no longer preserve even the usual
multiplication of continuous functions, this being one of the immedi-
ate implications of the 1954 so called Schwartz impossibility result,
[3,4,6,7].

Furthermore, in view of Remark 14.1. above, there are infinitely many
ways according to which multiplication ends up being done, ways cor-
responding to the various algebras A of generalized functions. And the
possibility of this infinite branching of multiplication is manifested as
soon as the generalized functions which are the factors in multiplica-
tion belong to A\C∞(Ω), and as such, are farther and farther removed
from C∞(Ω), or even form C0(Ω), that is, have higher levels of singu-
larity.

Let us illustrate the above with a simple example. For that pur-
pose, let us fix the pair V ,S ′ and take as a corresponding subalgebra
A(V ,S ′) = (C∞(Ω))N in the inclusion diagram (14.29) - (14.33).
In such a case, one may expect a natural or canonical multiplication,
if one would be able to single out in a suitable manner a certain ideal
I ∈ ID(Ω,V ,S ′, (C∞(Ω))N), and thus obtain the corresponding alge-
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bra of generalized functions A in (14.37).

Here however, the off-diagonality condition (14.34) interferes, leading
to a rather involved structure for the set of ideals which satisfy that
condition, as seen in

Proposition 14.1. [4, p. 118]

There is no largest ideal in the set

(14.39) ID(Ω)

of ideals I in (C∞(Ω))N which satisfy the off-diagonality condition

(14.40) I
⋂
U∞(Ω) = {0}

Proof.

Let us again take Ω = R, together with v ′ = (χ ′
ν)ν∈N, v

′′ = (χ ′′
ν)ν∈N ∈

(C∞(Ω))N, where

χ ′
ν(x) = 1 + sin(νx), χ ′′

ν(x) = 1 + cos(νx), ν ∈ N, x ∈ Ω

Then it follows easily that

I ′ = v ′(C∞(Ω))N, I ′′ = v ′′(C∞(Ω))N ∈ ID(Ω)

However

I = I ′ + I ′′

is an ideal in (C∞(Ω))N which fails to satisfy the off-diagonality con-
dition (14.40), therefore

(14.41) I /∈ ID(Ω)

Indeed
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v = v ′ + v ′′ ∈ I

and v = (ψν)ν∈N, where

ψν(x) = 2 + sin(νx) + cos(νx) > 0, ν ∈ N, x ∈ Ω

Consequently

I = (C∞(Ω))N

thus it is not a proper ideal in (C∞(Ω))N, and in particular, it does
not satisfy condition (14.40).

It follows that ID(Ω) does not contain ideals which may contain both
ideals I ′ and I ′′.

�

In view of the above, it is obvious that there are infinitely many ideals
in ID(Ω), and in fact, also in I ∈ ID(Ω,V ,S ′, (C∞(Ω))N). Further-
more, various ideals in these sets clearly lead to significantly different
multiplications in the corresponding algebras of generalized functions
(14.37).

Let us however, consider in some more detail this issue in the next
subsection.

14.5. Which Are the Maximal Off-Diagonal Ideals ?

Let us consider the better known case of ideals in rings of continu-
ous functions, [204], instead of ideals in rings of C∞-smooth functions.
And for further convenience, let us suppose that Ω = Rn.

We shall be interested, therefore, in the largest possible ideals I in the
algebra (C(Rn))Λ, where Λ is any given infinite set.

The ideals I of interest will have to satisfy both the off diagonality
condition
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(14.42) I
⋂
UΛ(Rn) = { 0 }

as well as the following group invariance one

(14.43) I is invariant under the transformations

(14.44) Rn 3 x 7−→ ax+ b ∈ Rn, a ∈ R, a 6= 0, b ∈ Rn

Let us clarify the above notation, as well as the meaning of conditions
(14.43), (14.44).

First, C(Rn) is the set of all real valued continuous functions on Rn,
while Λ is the mentioned arbitrary given infinite set. Consequently,
(C(Rn))Λ is the Cartesian product of Λ copies of C(Rn), thus it can be
identified with C(Λ×Rn), that is, with the set of real valued continu-
ous functions on Λ×Rn, where Λ is taken with the discrete topology.
Clearly, (C(Rn))Λ is a commutative unital algebra over R, and we have
the algebra embedding

(14.45) C(Rn) 3 ψ 7−→ u(ψ) ∈ (C(Rn))Λ

where u(ψ) = ( ψλ | λ ∈ Λ ), with ψλ = ψ, for λ ∈ Λ. In this way,
the unit element in (C(Rn))Λ is u(1), where 1 ∈ C(Rn) denotes the
constant function with value 1 defined on Rn.

Further, UΛ(Rn) denotes the image of C(Rn) in (C(Rn))Λ through the
algebra embedding (14.45), thus

(14.46) UΛ(Rn) = { u(ψ) | ψ ∈ C(Rn) }

is a subalgebra in (C(Rn))Λ, and through (14.45), it is isomorphic with
C(Rn).
With the above, the meaning of (14.42) becomes clear, recalling that
{ 0 } in its right hand term denotes the trivial zero ideal in (C(Rn))Λ.

In this way UΛ(Rn) is in fact the diagonal in the Cartesian product
(C(Rn))Λ. Thus (14.42) is indeed an off diagonality condition on the
respective ideals I in (C(Rn))Λ.
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As seen in section 5, the interest in maximal ideals satisfying the off
diagonality condition (14.42) comes from the fact that such ideals lead
to the effective construction of differential algebras of generalized func-
tions which can handle the largest classes of singularities.

Before going further, let us briefly point to the mathematical nontriv-
iality of the problem in (14.42). Indeed, as mentioned, (C(Rn))Λ can
be identified with C(Λ×Rn), thus as is well known, [204], the problem
of the structure of maximal ideals I in (C(Rn))Λ is closely related to
the Stone-Čech compactification β(Λ×Rn) of Λ×Rn, which in itself is
a rather involved problem even in the simplest case of interest above,
namely, when Λ = N. One of the reasons which makes β(Λ × Rn)
not easy to deal with is that, in general, for two completely regular
topological spaces X and Y , the spaces β(X × Y ) and βX × βY are
different. Furthermore, the space βN alone is known to be highly non-
trivial.

On the other hand, in (14.42) - (14.44) one asks the yet more difficult
problem of finding the maximal ideals I in (C(Rn))Λ which satisfy the
respective additional condition, thus they can no longer be maximal in
(C(Rn))Λ. Therefore, their structure is quite likely still more complex,
[204].

Lastly, by the group invariance property (14.43), (14.44) we mean
that, for w = (wλ)λ∈Λ ∈ I and a ∈ R, a 6= 0, b ∈ Rn, we have

(14.47) w ◦ τa, b ∈ I

where

(14.48) w ◦ τa, b = (wλ ◦ τa, b)λ∈Λ

while

(14.49) Rn 3 x 7−→ τa, b(x) = ax+ b ∈ Rn

Remark 14.2.
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1) The transformations (14.49), with a ∈ R, a 6= 0, b ∈ Rn, obviously
form a non-commutative group.

2) The meaning of the group invariance conditions (14.43), (14.44) is
obvious. Namely, the corresponding algebra of generalized functions

(14.50) A = (C(Rn))Λ/I

will have the group invariance property

(14.51) A 3 F 7−→ τa, b(F ) ∈ A, a ∈ R, a 6= 0, b ∈ Rn

where for

(14.52) F = (fλ)λ∈Λ + I ∈ A

we have

(14.53) F ◦ τa, b = ((fλ)λ∈Λ) ◦ τa, b + I = (fλ ◦ τa, b)λ∈Λ + I
�

We can obtain an idea about how large can be the ideals I in (C(Rn))Λ

which satisfy (14.42) - (14.44), from the following

Example 14.1.

Let L = (Λ,≤) be a directed partial order on the infinite set Λ. We
shall consider the following continuous version of the ideals in (10.10).
Namely, let S be any family of singularity sets Σ ⊂ Rn which satisfies
conditions (10.5), (10.6), with Ω = Rn. Then we define

(14.54) IL,S

as the set of all sequences of continuous functions w = (wλ)λ∈Λ ∈
(C(Rn))Λ, which satisfy the condition
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(14.55)

∃ Σ ∈ S :

∀ x ∈ Rn :

∃ λ ∈ Λ :

∀ µ ∈ Λ, µ ≥ λ :

wµ(x) = 0

It is easy to see that the ideals IL,S in (C(Rn))Λ do indeed satisfy the
conditions (14.42) - (14.44), provided that the family S of singularities
is such that

(14.56) S 3 Σ 7−→ τa, b(Σ) ∈ S, a ∈ R, a 6= 0, b ∈ Rn

And clearly, the families of singularities (10.2) and (10.3), for instance,
satisfy (14.56).

Remark 14.3.

In fact, the ideals IL,S in (14.54), have a far stronger semigroup in-
variance property. Namely, let

(14.57) τ : Rn −→ Rn

any continuous mapping, such that

(14.58)

∀ Σ ∈ S :

∃ Σ ′ ∈ S :

τ(Rn \ Σ) ⊆ Rn \ Σ ′

then

(14.59) IL,S 3 w 7−→ w ◦ τ ∈ IL,S

Clearly, if τ is injective, and is such that
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(14.60) S 3 Σ 7−→ τ(Σ) ∈ S

then it satisfies (14.58).

14.6. On Isomorphisms of Algebras

Let us consider the issue to what extent can different reduced power
algebras (5.4) be isomorphic. And for simplicity, we shall address that
issue in the following more general case.

14.6.1. A More General Setup

Let E be a unital commutative algebra over R, while Λ is an infinite
set. We consider two algebras

(14.61) A = A/I, B = B/J

where

(14.62) I ⊆ A ⊆ EΛ, J ⊆ B ⊆ EΛ

with A,B being subalgebras, while I,J are ideals in the respective
subalgebras.

Let us define the algebra embedding

(14.63) E 3 a 7−→ u(a) ∈ EΛ

where

(14.64) u(a) : Λ 3 λ 7−→ a ∈ E

We denote by

(14.65) U

the image in EΛ of the algebra embedding (14.63). Thus we have the
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algebra isomorphism

(14.66) E ≈ U

As for the off-diagonality condition (5.8) which is typical for the dif-
ferential algebras of generalized functions, we shall assume that the
ideals I,J satisfy the condition

(14.67) I
⋂
U = J

⋂
U = {0}

Finally, we shall assume that

(14.68) U ⊆ A
⋂
B

which means that we have the algebra embeddings

(14.69)
E 3 a 7−→ u(a) + I ∈ A/I = A

E 3 a 7−→ u(a) + J ∈ B/J = B

Regarding now the possible isomorphism of the algebras (14.61), namely

(14.70) A ≈ B

there are the following two situations of interest :

14.6.2. A Simple Case

First, we can have

(14.71) I ⊆ J , A ⊆ B

In this case, we obviously have the algebra homomorphism

(14.72) A 3 s+ I 7−→ s+ J ∈ B

and in view of (14.69), the commutative diagram follows
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(14.73)

A 3 s+ I - s+ J ∈ B

E -

idE
E

6 6

Clearly, in this case the mapping (14.72) is an algebra isomorphism,
thus (14.70) holds, if and only if

(14.74) I = J , A = B

14.6.3. The General Case

And now, we consider the second case, namely, the general situation in
(14.61) - (14.69). We note that we have the inclusion diagram where
each arrow −→ means an inclusion ⊆, namely

(14.75) I
⋂
J �

���
��* I A-

H
HHH

HHj J B-

Here, we can apply the Second and Third Isomorphism Theorems, and
obtain

(14.76)
A ≈ [A/(I

⋂
J )]/[I/(I

⋂
J )] ≈ [A/(I

⋂
J )]/[(I + J )/J ]

B ≈ [B/(I
⋂
J )]/[J /(I

⋂
J )] ≈ [B/(I

⋂
J )]/[(I + J )/I]

The algebra isomorphisms of interest between A and B are supposed
to have again the diagram (14.73) commute. Thus among others, we
have the following three possibilities for an algebra isomorphism

(14.77) A = A/I 3 s+ I 7−→ s+ J ∈ B/J = B

(14.78) A 3 (s+ (I
⋂
J )) + (v + (I

⋂
J )) 7−→
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7−→ (s+ (I
⋂
J )) + (w + (I

⋂
J )) ∈ B

and

(14.79) A 3 (s+ (I
⋂
J )) + (v + w + J ) 7−→

7−→ (s+ (I
⋂
J )) + (v + w + I) ∈ B

where s ∈ A, v ∈ I, w ∈ J .

Now the bijectivity of (14.77) implies that

(14.80) B ⊆ A+ J , A ⊆ B + I

Similarly, the bijectivity of (14.78) and (14.79) imply (14.80).

And from (14.80), it follows that

(14.81)

B = B/J ⊆ (A+ J )/J ≈ A/(J
⋂
A) ≈

A/(I
⋂
J ) ≈ I/(I

⋂
J )

A = A/I ⊆ (B + I)/I ≈ B/(I
⋂
B) ≈

B/(I
⋂
J ) ≈ J /(I

⋂
J )

In this way, one obtains

(14.82) I/(I
⋂
J ) ≈ J /(I

⋂
J )

which can be seen as the bijection

(14.83) I/(I
⋂
J ) 3 v + (I

⋂
J ) 7−→ v + (I

⋂
J ) ∈ J /(I

⋂
J )

that obviously leads to

(14.84) I = J
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and thus as well to

(14.85) A = B

In this way, the assumption that the algebras A and B are isomorphic
may under the condition (14.73) lead to their equality.

Clearly, in the general case of (14.61) - (14.69), the above is rather a
heuristic sketch of the implication

(14.86) A ≈ B =⇒ A = B

whose more detailed study can further be pursued.

However, as seen next, for our purpose, namely, to show the existence
of infinitely many different differential algebras of generalized func-
tions, such a detailed study is not necessary.

14.6.4. The Case of Space-Time Foam Algebras

Indeed, let us only consider the case of the space-time foam differen-
tial algebras of generalized functions, see section 10. Then we can take

(14.87) E = C∞(Ω), Λ = N

Further, let S, T be two families of singularity sets on Ω which satisfy
(10.5), (10.6). Then the corresponding space-time foam differential al-
gebras of generalized functions are, see (10.12)

(14.88) A = (C∞(Ω))N/JL,S(Ω), B = (C∞(Ω))N/JL, T (Ω)

thus

(14.89) I = JL,S(Ω), J = JL, T (Ω), A = B = (C∞(Ω))N

Now obviously, if one has
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(14.90) S ⊆ T

then in view of (10.8), (10.10), it follows that

(14.91) I ⊆ J

therefore, we are in the situation (14.71), which means that

(14.92) A ≈ B ⇐⇒ A = B ⇐⇒ S = T

And as seen in the example next, there are infinitely many different
families S, T which satisfy (10.5), (10.6) and (14.90), thus in view of
(14.92), give different space-time foam differential algebras of general-
ized functions.

Example 14.2.

Let Ω ⊆ Rn nonvoid open, and L = (Λ,≤) a directed partial order
on the infinite set Λ. Further, let X = { x0, x1, x2, . . . , xm, . . .} ⊂ Ω
which is dense in Ω. Then we define

(14.93)

S0 = { Σ ⊂ Ω | X ⊆ Ω \ Σ }

S1 = { Σ ⊂ Ω | ( X \ { x0 } ) ⊆ Ω \ Σ }

S2 = { Σ ⊂ Ω | ( X \ { x0, x1 } ) ⊆ Ω \ Σ }

S3 = { Σ ⊂ Ω | ( X \ { x0, x1, x2 } ) ⊆ Ω \ Σ }
...
Sm+1 = { Σ ⊂ Ω | ( X \ { x0, x1, x3, . . . , xm } ) ⊆ Ω \ Σ }
...

Clearly

(14.94) S0 $ S1 $ S2 $ S3 $ . . . $ Sm $ . . .

and each of them satisfies the conditions (10.5), (10.6). Consequently,
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in view of (10.12), we have the space-time foam differential algebras
of generalized functions

(14.95) Am = (C∞(Ω))Λ/JL,S m(Ω), m ∈ N

with the respective commutative diagrams of algebra embeddings

(14.96)

Am 3 s+ JL,Sm(Ω) -
ιm

s+ JL,Sm+1(Ω) ∈ Am+1

C∞(Ω) -

idC∞(Ω)

C∞(Ω)

6 6

and clearly, the algebra embeddings ιm are not isomorphisms.

Remark 14.4.

In order to find infinitely many non-isomorphic differential algebras
of generalized functions one can, of course, make use not only of the
particular situation in (14.71), as illustrated in Example 14.2. above,
but also of the general situation (14.61) - (14.69). However, as seen
next, that is not necessary.

14.6.5. How About Other Algebra Isomorphisms ?

Let us recall the simple case of (14.71). Clearly, in addition to the
algebra homomorphism (14.72), one may have more general algebra
homomorphisms of the form

(14.97) F : A = A/I 3 s+ I 7−→ F (s+ I) = t+ J ∈ B/J = B

Indeed, let

(14.98) g : E −→ E

be any algebra homomorphism, then we obtain the algebra homomor-
phism
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(14.99) gΛ : EΛ 3 s 7−→ g ◦ s ∈ EΛ

Hence we have the algebra homomorphism

(14.100) G : A = A/I 3 s+ I 7−→ gΛ(s) + J ∈ B/J = B

assuming that gΛ(A) ⊆ B, which certainly holds when, for instance,
B = EΛ.

The next example shows that, in the case of (14.71), and under condi-
tions specific to differential algebras of generalized functions, algebra
isomorphisms (14.97), other than that in (14.72), cannot exist.

Example 14.3.

Let us return to the space-time foam differential algebras of gener-
alized functions, and show that algebra isomorphisms (14.97) cannot
exist when

(14.101) I ⊆ J ⊆ A = B = EΛ

and the hereditary isomorphism property (14.118) below hold.

Indeed, let Ω = R and L = (Λ,≤) = N. Further, let S = φ and
T = { ∆ = { 0 } } be two families of sets of singularities in Ω. Thus
the first family actually does no contain any set of singularities, while
the second one has only one singularity set which consists of one point,
namely, 0 ∈ R.

We shall assume that there exists an algebra isomorphism A ≈ B,
given by

(14.102) A = (C∞(Ω))Λ/JL,S(Ω)
ρ−→ (C∞(Ω))Λ/JL, T (Ω) = B

and obtain a contradiction.

For that purpose, first we note that, according to (10.8), we have
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(14.103) JL,S(Ω) $ JL, T (Ω)

therefore, the surjective, non-injective algebra homomorphism results

(14.104) A = (C∞(Ω))Λ/JL,S(Ω) 3 s+ JL,S(Ω)
τ7−→

τ7−→ s+ JL, T (Ω) ∈ (C∞(Ω))Λ/JL, T (Ω) = B

Further, let us recall the regularization in (6.1) - (6.5) of the Heaviside
function H, from which it follows easily that

(14.105) H = h+ JL, T (Ω) ∈ B

Thus, according to the assumed algebra isomorphism (14.102), H cor-
responds to a certain unique

(14.106) ρ−1(H) = S = s+ JL,S(Ω) ∈ A

Now the assumed algebra isomorphism (14.102) gives

(14.107) ρ−1(Hm) = (ρ−1(H))m, m ∈ N, m ≥ 2

However, in the algebra B, we have the relations

(14.108) Hm = H, m ∈ N, m ≥ 2

which in view of (14.105) results in

(14.109) H = hm + JL, T (Ω) ∈ B, m ∈ N, m ≥ 2

and then (14.105) - (14.109) give

(14.110) ρ−1(H) = Sm = sm + JL,S(Ω) ∈ A, m ∈ N, m ≥ 2

In this way (14.106) and (14.110) lead to
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(14.111) sm − s ∈ JL,S(Ω), m ∈ N, m ≥ 2

On the other hand, according to (10.8), for v ∈ JL,S , we obtain

(14.112)

∀ x ∈ R :

∃ λ ∈ N :

∀ µ ∈ N, µ ≥ λ, p ∈ N :

Dpvµ(x) = 0

and then, in view of [4, Proposition 3, p.21], [6, Proposition 6, p. 251],
[7, (2.2.5), p. 106], the stronger property follows

(14.113)

∀ K ⊂ R, K compact :

∃ λ ∈ N :

∀ µ ∈ N, µ ≥ λ :

vµ = 0 on K

Thus in view of (14.111), we obtain

(14.114)

∀ −∞ < a < b <∞ :

∃ λ ∈ N :

∀ µ ∈ N, µ ≥ λ :

(sµ)
m = sµ on [a, b], m ∈ N, m ≥ 2

However, the equations

(14.115) (sµ)
m = sµ on [a, b], m ∈ N, m ≥ 2

and the continuity of sµ imply
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(14.116)

∀ −∞ < a < b <∞ :

∃ λ ∈ N :

∀ µ ∈ N, µ ≥ λ :

either sµ = 0 on [a, b]

or sµ = 1 on [a, b]

Regarding now (14.105), in view of (10.8), and (6.1) - (6.5), we have

(14.117)

∀ K ⊂ R \ { 0 }, K compact :

∃ λ ∈ N :

∀ µ ∈ N, µ ≥ λ :

hµ =
0 on K if K ⊂ (−∞, 0)

1 on K if K ⊂ (0,∞)

Let us now suppose that the assumed algebra isomorphism (14.102)
satisfies the following hereditary property. For every nonvoid open
U ⊆ Ω, we have the algebra isomorphism

(14.118) A| U = ((C∞(Ω))Λ)| U/JL,S|U (Ω)| U
ρ|U−→

ρ|U−→ ((C∞(Ω))Λ)| U/JL, T |U (Ω)| U = B| U

where for E ⊆ (C∞(Ω))Λ, we denote

(14.119) E| U = { s| U | s ∈ E }

while

141



(14.120) ρ| U(s| U) = (ρ(s))| U , s ∈ (C∞(Ω))Λ

and

(14.121) S| U = { Σ ∩ U | Σ ∈ S }, T | U = { ∆ ∩ U | ∆ ∈ T }

Let us now take any −∞ < a < b < 0. Then in view of (14.116),
(14.117), there exists λ ∈ N, such that for every µ ∈ N, µ ≥ λ, we
have either

(14.122) sµ = 0, hµ = 0 on (a, b)

or

(14.123) sµ = 1, hµ = 0 on (a, b)

And similarly, for every 0 < a < b <∞, there exists λ ∈ N, such that
for every µ ∈ N, µ ≥ λ, we have either

(14.124) sµ = 0, hµ = 1 on (a, b)

or

(14.125) sµ = 1, hµ = 1 on (a, b)

But (14.123) and (14.124) obviously contradict (14.118). Therefore,
we can only have (14.122) and (14.125). In this case, however, the
continuity of sµ is contradicted.

14.6.6. Heaviside Type Functions

The lack of algebra isomorphisms shown above between certain differ-
ential algebras of generalized functions is a wider phenomenon than
may appear so far. Here we shall present an indication in this regard,
with the help of what we shall call Heaviside type functions.

Let be given any nonvoid open subset Ω ⊆ R. Then, as is well known,
one has a unique decomposition
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(14.126) Ω =
⋃
i∈I (ai, bi)

where I is finite or countable, while the nonvoid open intervals (ai, bi)
are pairwise disjoint.

We say that a decomposition (14.126) is separated, if and only if the
following property does not hold

(14.127) ∃ i, j ∈ I : bi = aj

We also say that the nonvoid open subset Ω is separated, if and only
if its unique decomposition (14.126) is separated.

Obviously, the open set

Ω = (−∞, 0) ∪ (1/2, 1) ∪ (1/4, 1/3) ∪ (1/6, 1/5) ∪ . . .

is separated.

Less trivially, we note that the complementary in [0, 1] of the Cantor
set C is also separated, since it is⋃

1≤p<∞
⋃

0≤q<2p−1((3q + 1)/3p, (3q + 2)/3p)

Definition 14.1.

A Heaviside type function is any characteristic function of the form

(14.128) χΩ

where Ω is separated.

�

Clearly, for the usual Heaviside function we have H = χ(0,∞), thus it
is a Heaviside type function.
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Further, we denote

(14.129) Sep (Ω) = { ∆ =
⋃
j∈J (aj, bj) | J ⊆ I, ∆ is separated }

and correspondingly, we denote by

(14.130) Heav (Ω) = { χ∆ | ∆ ∈ Sep (Ω) }

the set of all Heaviside type functions associated with Ω.

Obviously, if Ω is separated, then so it is every open subset ∆ ⊆ Ω,
thus

(14.131)
Sep (Ω) = { ∆ ⊆ Ω | ∆ open }

Heav (Ω) = { χ∆ | ∆ ⊆ Ω open }

Regarding the converse, let ∆i ∈ Sep (Ω), with i ∈ I, totally ordered
by inclusion. Then it is easy to see that ∆ =

⋃
i∈I ∆i ∈ Sep (Ω).

Consequently, in view of Zorn’s Lemma, we obtain the nonvoid set

(14.132) MSep (Ω)

of maximal separated open subsets of Ω. Correspondingly, we have
the nonvoid set

(14.133) MHeav (Ω) = { χ∆ | ∆ ∈MSep (Ω) }

of maximal Heaviside type functions associated with of Ω.

Clearly, if Ω is separated, then

(14.134) MSep (Ω) = { Ω }, MHeav (Ω) = { χΩ }

Let us suppose now that the separated open set
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(14.135) Ω =
⋃
i∈I (ai, bi)

is also dense in R. We note that the complementary in R of the Cantor
set is an example of such a set.

Then for each interval (ai, bi), with i ∈ I, we take a sequence of C∞-
smooth functions (γi, ν)ν∈N on R, such that, [236]

(14.136) γi, ν(x) =
0 if x ∈ (−∞, ai] ∪ [bi,∞)

1 if x ∈ [ai + 1/ν, bi − 1/ν]

and define the sequence of C∞-smooth functions (γν)ν∈N on R, by

(14.137) γν = Σ i∈ I γi, ν

which is well defined in view of the fact that the intervals (ai, bi) in
(14.135) are supposed to be pairwise disjoint.

Let us denote by

(14.138) Σ = R \ Ω

which is a closed, nowhere dense subset of R. Then similar with
(14.106), we obtain the regularization of the Heaviside type function
χΩ given by the generalized function, see (7.1)

(14.139) TχΩ
= (γν)ν∈N + I∞nd(R) ∈ And(R)

or alternatively, see (10.11)

(14.140) TχΩ
= (γν)ν∈N + JN,Σ(R) ∈ BN,Σ(R)

Clearly, in both above differential algebras of generalized functions we
have the relations

(14.141) (TχΩ
)m = TχΩ

, m ∈ N, m ≥ 2
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Let us now take any separated open subset ∆ ⊆ R, such that Ω $ ∆,
in which case ∆ itself will be dense in R, hence Γ = R \∆ is closed,
nowhere dense in R, and Γ $ Σ.

We note that such a ∆ can easily be chosen as follows. Let i, j ∈ I in
(14.135), such that bi < aj. Then we define

(14.142) ∆ = (ai, bj) ∪
( ⋃

k∈K(ak, bk)
)

where

(14.143) K = { k ∈ I | bk < ai or ak > bj }

Now, and argument similar with the one in subsection 14.5.5. will
show that there cannot be an algebra isomorphism

(14.144) BN,∆(R) ≈ BN,Σ(R)

between the respective differential algebras of generalized functions.
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15. Chains of Algebras of Generalized Functions

Let us start by summarizing the most relevant features involved in the
ways singularities can be dealt with by the algebraic nonlinear theory
of generalized functions, that is, by the respective infinite variety of
differential algebras of generalized functions.

In this regard, we have seen

• the inevitable infinite branching of multiplication above certain
levels of singularities

This phenomenon, still not sufficiently in the awareness of many in-
volved in nonlinear aspects of generalized functions, is closely con-
nected with

• the conflict between discontinuity, multiplication and differenti-
ation

or in more general terms

• the incompatibility between insufficient smoothness, nonlinear
operations and differentiation

Further, we have also seen the connection with

• the conflict between stability, generality and exactness

And as so often, a better way to deal with such conflicts or incom-
patibilities, let alone multiple ones, is not by simply choosing one or
another fixed position and thereafter confine oneself to it for evermore,
but rather, by engaging in the interplay which naturally opens up in
such situations between the aspects in conflict, or which are incom-
patible.

In the case of differential algebras of generalized functions, this comes
down to no less than two departures from what may appear as normal
practice to many presently involved, namely

• one has not only to explore a large variety of different differential
algebras of generalized functions,
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• but even more, when dealing with PDEs, for instance, the respec-
tive partial differential operators should not always be confined
to acting only within one and the same algebra,

• and instead, they could also be considered to act between differ-
ent such algebras.

In short, the basic entities in the algebraic nonlinear theory of gener-
alized functions are not so much one or another such algebra among
the infinitely many possible ones. After all, and as is well known, that
is not the case even in the linear theory based on Sobolev spaces or
on the Schwartz distributions. Instead, as it turns out, in the case of
the infinite variety of differential algebras of generalized functions, the
basic entities are chains of such algebras, with the respective algebra
homomorphisms

(15.1) A∞ −→ . . . −→ Am −→ . . . −→ A1 −→ A0

chains which recall the classical situation with the spaces

(15.2) C∞ ⊂ . . . ⊂ Cm ⊂ . . . ⊂ C1 ⊂ C0

And the main reason for dealing with such chains is that, except for
the leftmost A∞, and thus in a way smallest, among them, they do
not assume the infinite differentiability of their elements, therefore,
they can allow multiplications of insufficiently smooth functions to be
nearer to their usual multiplication.

Here it is important to note that the lack of infinite differentiability
need not in fact be a problem, as long as the PDEs considered are of
finite order. Indeed, the linear or nonlinear partial differential opera-
tors associated with the PDEs can act according to

(15.3) T (x,D) : Ah −→ Ak, 0 ≤ k ≤ h ≤ ∞, m ≤ h− k

where m is the order of T (x,D). And of course, they can act in the
particular situation of
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(15.4) T (x,D) : A∞ −→ A∞

Let us recall one more time that in the linear theory of generalized
functions, that is, of Sobolev spaces or Schwartz distributions, there
is no systematic approach to the multiplication of distributions, let
alone to large classes of nonlinear operations on them. Consequently,
there does not arise the issue of the inevitable infinite branching of
multiplication, or for that matter, of the possibility of no branching.
Nor does arise the issue of the conflict between multiplication and dif-
ferentiation in the context of singularities.

Also, one should note that the issue of the conflict between stability,
generality and exactness of generalized solutions of PDEs has never
been explicitly brought up and dealt with systematically in its full
range within the linear theory of generalized functions. And such a
study has been introduced and pursued starting with [4,6,7].

In this regard, as seen in [4,6,7], a proper study of the above group
of issues which conflict with one another requires the consideration of
chains of algebras of generalized functions. Indeed, it is in such chains
of algebras that one can explore the various alternative instances of the
respective multiple conflicts. And among them, one can explore the
interplay between the conflicting requirements to have multiplication
preserve as much as possible that of usual insufficiently smooth func-
tions f ∈ Cm \C∞, and at the same time, preserve as much as possible
the differentiation of distributions which are not C∞-smooth functions.

And now, to some of the details, with the more full picture being pre-
sented in [4,6,7].

First, let us mention again that the following simply cannot be over-
emphasized in the context of the nonlinear theory of generalized func-
tions :

• the natural basic algebraic setup of differentiation, see subsec-
tions 12.2., 12.4.4., is not of the type D : A −→ A, that is, with
the differentiation acting within the same algebra, thus forcing
the elements of such an algebra to be infinitely differentiable,
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• but instead, the natural setup is of the type D : A −→ Ã, in
which differentiation may act between different algebras, thus
allowing the elements of such algebras not to be infinitely differ-
entiable,

• and as long as one deals with PDEs of finite order, which has ever
since Newton’s Calculus has been the case, the lack of infinite
differentiability of elements in the mentioned algebras need not
pose an insurmountable problem.

Now, as mentioned earlier, the constructive core of the nonlinear the-
ory of generalized functions was briefly recalled in subsections 14.1.
- 14.3., where differential algebras of generalized functions were con-
structed upon inclusion diagrams (14.29), namely

I(V ,S ′) - A(V ,S ′) - (C∞(Ω))N

6 6

V - V ⊕ S ′ � U∞(Ω)

? ?

V∞(Ω) - S∞(Ω)

(15.6)

which are supposed to satisfy the conditions (14.30) - (14.33), thus
giving the differential algebras of generalized functions, see (14.35)

(15.7) A = A(V ,S ′)/I(V ,S ′)

It is however easy to see that the above construction in (15.6), (15.7)
need not be restricted to vector subspaces, subalgebras and ideals
in the infinitely differentiable algebra (C∞(Ω))N. Indeed, the above
construction can easily be reproduced in the more large setup of the
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finitely differentiable algebras (Cm(Ω))N, with 0 ≤ m <∞.

The advantage in doing so is that, similar with the classical situation
in (15.2), one obtains the following natural extensions of the differen-
tiation of usual functions

Ak
Dp

- Ah(15.8)

for 0 ≤ h ≤ k ≤ ∞ and p ∈ Nn, | p | ≤ h− k.

Furthermore, one obtains natural algebra homomorphisms

Ak
αk, h - Ah

αh, l - Al

αk, l

?
(15.9)

where 0 ≤ l ≤ h ≤ k ≤ ∞.

And lastly, the differentiations (15.8) and the algebra homomorphisms
(15.9) commute with the algebra embeddings

(15.10) Ch(Ω) ⊂ Ah

An additional interest in such chains of algebras of generalized func-
tions comes from the fact that the differentiations (15.8) coincide with
the usual differentiation of functions, when restricted to Ch(Ω).

Here, therefore, there is a way to recover a lot from the usual multi-
plication of functions in (15.1), and do so at the expense of losing on
preserving the differentiation of a number of distributions, see [4,6,7]
for details.

Such a phenomenon is, of course, inevitable in view of the mentioned
variety of conflicts and incompatibilities at the very core of the non-
linear theory of generalized functions, as seen in section 12 above.
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Remark 15.1

As seen in [7, pp. 221-261], all the above constructions can easily be
reproduced in any differential algebra (C∞(Ω))Λ, where Λ is an arbi-
trary infinite set.
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16. A Latest Surprise

In recent work of Jan Harm van der Walt, it turns out rather sur-
prisingly that there is a close connection between certain differential
algebras of generalized functions, and on the other hand, the order
completion method.

The respective differential algebras happen to be of yet another type
than those mentioned above, and thus used so far in the literature.

The interest of this latest development is that the respective strengths
of the two methods, namely of differential algebras of generalized func-
tions and of the order completion method, can now be transferred from
one method to the other.
In this regard, what is so far the unprecedented power of the order
completion method to deliver the existence of solutions to very large
classes on nonlinear systems of PDEs with possibly associated ini-
tial and/or boundary value problems, and guarantee the Hausdorff
continuity of those solutions, may benefit the method of differential
algebras of generalized functions. Conversely, the algebra and differ-
ential structure of differential algebras of generalized functions may
further enrich the order completion method.

Results related to the above are to be presented elsewhere.
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17. Appendix

The still persisting and rather frequent misinterpretations related to
singularities among some of those involved in the algebraic nonlinear
theory of generalized functions are illustrated by the recent example
of a review of a paper submitted by one of my young colleagues.
As it happens, the paper was eventually accepted for publication.
However, the sort of arguments of the referee are not quite a singular
event ...
Therefore, the interest in the following ...

17.1. Review of a recent Paper

Here are briefly presented in their essence the points in some of the
objections and comments of the anonymous referee :

1) The paper shows that the nowhere dense algebras are the same with
the space-time foam ones which correspond to Baire category I singu-
larities. This is mathematically nontrivial and it shows an obstruction
in the algebras introduced by Rosinger which are general almost to the
absurd.

2) The nowhere dense algebras and the space-time foam algebras do
not give a deep understanding of singularities, or of the structures in
quantum gravity.

3) The Global Cauchy-Kovaleveskaia Theorem is not deep, since it
only gives in fact local solutions. Thus it is not intellectually honest
to call them global solutions. Indeed, the differential algebra

AΩ =
⋃

Γ⊂Ω, Γ closed, nowhere dense C
∞(Ω \ Γ)/ ∼

where ∼ is the equivalence relation defined by u ∼ v, iff there exists
some closed and nowhere dense Γ ⊂ Ω, such that u = v on Ω \ Γ, is
almost a direct mathematical translation of the nowhere dense alge-
bra, since one simply considers smooth functions off a closed nowhere
dense set and ask by definition that equality in the algebra, the so-
called global equality, is equality off a closed nowhere dense set.
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4) The algebra AΩ satisfies nearly all the properties of the nowhere
dense algebras.

5) The paper seems to consider the statement ”an algebra of gener-
alized functions can deal with large singularities” as equivalent with
”the algebra neglects large singularity sets”.

6) The generalized function in the Colombeau algebra with represen-
tative (sin(x/ε))/ε is everywhere singular.

7) Among the other similar requests for revision of the paper, the
referee asks that the paper should not call solutions in the nowhere
dense algebra or the space-time foam algebras as being global solu-
tions, and also not state that other algebras of generalized functions,
among them the Colombeau algebras, cannot deal with large singu-
larity sets.

17.2. Comments on the above Review

1) There are inevitably infinitely many different differential algebras of
generalized functions due to the inevitable infinite branching of mul-
tiplication above certain levels of singularities, as mentioned several
times in this study.
Consequently, there is nothing untoward, let alone absurd in exploring
more of these algebras. After all, we shall never be able to explore all
of them.
In short, no one has to introduce any of those algebras, since they
are already there due to the mentioned inevitable infinite branching
of multiplication.

Also, it is worth recalling that in the usual linear theory of distribu-
tions no one calls superfluous the large variety of Sobolev spaces, for
instance.

Neither is anyone complaining that most of the very same Sobolev
spaces do not contain the Dirac δ distribution ...
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One may, however, emphasize somewhat with those who, due to vari-
ous subjective reasons, may find it rather unsettling to have new and
new differential algebras of generalized functions come to be studied
before the earlier ones could have been sufficiently exhausted by those
who have limited their attention to them ...
Certainly, new algebras do bring in different multiplications, all of
which may make some feel less than comfortable ...

However, these new algebras may allow the treatment of larger classes
of singularities ...
And such singularities can be far more general than that exhibited by
the reviewer’s example (sin(x/ε))/ε in one of the Colombeau algebras.
Indeed, as seen in (7.1) in the case of nowhere dense algebras, a
generalized function F belonging to them can be of the form F =
(fν)ν∈N + I∞nd, where fν are arbitrary C∞-smooth functions. Thus in-
deed, there is hardly any limit on the possible singularities of F .

It is precisely due to such a possibility that the singularities consid-
ered are specified by two clearly formulated criteria, namely, what is
the allowed SIZE of the sets of points of singularity, and what is the
BEHAVIOUR of the generalized functions in the neigbourhood of sin-
gularities.

On the other hand, and as mentioned, the various vector spaces of
distributions or Sobolev spaces always brought in the very same ad-
dition, and fortunately for those less than comfortable with algebras,
did not bring in any, let alone, ever new multiplications ...
Anyhow, since the early 1990s, there is an alternative to all such alge-
bras, an alternative which is so much more simple and also powerful in
solving large classes of nonlinear PDEs, namely, the order completion
method ...

2) The result in the paper of my young colleague under review is in-
deed of interest. However, it does not show any obstruction related
to the infinitely many possible different differential algebras of gener-
alized functions, since that inevitable infinity of different differential
algebras of generalized functions remains an essential - even if rather
elementary ring theoretic - fact, see sections 0, 12-15 above.
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What that paper does show instead is what could possibly be seen as
a certain kind of singularity-stability property of nowhere dense alge-
bras, see subsection 10.7. above.

3) No one has yet defined precisely enough what does ”deep” mean in
mathematics.
And before anyone may venture to do so, the following could be useful
to consider carefully enough :
In the time of D’Alembert, for instance, the result that every algebraic
equation of degree n has n roots was considered to be the fundamental
theorem of algebra, and it was ”deep” among others due to its long
proof. Not much later, functions of one complex variable were consid-
ered. And in that context, the mentioned theorem is a trivial case of
the Rouché Lemma. In general, it is a theorem of mathematical logic
that in a given axiomatic system, one can choose equivalent axioms
in such a way that the proof of any given theorem becomes arbitrary
long, or on the contrary, arbitrary short, [129]. Does that mean that
theorems with long proofs are ”deep” ? Or rather it means that the
respective theory was not developed properly from the point of view
of the proof of that given theorem ?
Most likely, it simply means that one is pursuing what is not the best
theory in obtaining the respective result ...
Here, it may be useful to recall the saying that ”old theorems never
die, they just become definitions” ...
Indeed, appropriate definitions can make an immense difference in
turning formerly ”deep” theorems into rather trivial ones, as it hap-
pened to what once used to be the fundamental theorem of algebra ...
Consequently, to talk about ”deep” in mathematics recalls talking
about beauty which, as is well known, is in the eyes of the beholder ...
And not seldom of a beholder with a rather narrow view ...

4) The global Cauchy-Kovalevskaia theorem can only be formulated,
let alone be obtained, in differential algebras of generalized functions
which are flabby sheaves, as mentioned in sections 0 - 3, and seen in
sections 7, 8 and 10. And the nowhere dense, or the space-time foam
differential algebras of generalized functions are flabby sheaves, [54,55].
Therefore, the global Cauchy-Kovalevskaia theorem can not only be
formulated, but it can also be proved in the nowhere dense, as well as
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the space-time foam differential algebras of generalized functions, as
seen in sections 7, 8 and 10, with the resulting global solutions.

On the other hand, the Colombeau algebras, as well as various vector
spaces of distributions fail to be flabby sheaves. Thus it happens that
the global Cauchy-Kovalevskaia theorem can not even be formulated,
let alone proved in the Colombeau algebras or in various spaces of
distributions which are not flabby sheaves.

That sharp dichotomy between differential algebras of generalized
functions which are flabby sheaves, and on the other hand, those which
fail to be so has other important consequences as well. For instance,
arbitrary Lie group actions, important in the study of linear and non-
linear PDEs, can only be defined globally in the former, and cannot be
defined in the latter. And such a definition of global Lie group actions
in the nowhere dense differential algebras of generalized functions has
led to the first time complete solution of Hilbert’s fifth problem, [9].

5) The topmost problem in PDEs is, of course, to prove existence of
solutions. Certainly, as long as we do not know that a solution ex-
ists, there is no point in discussing regularity or other properties of
assumed to exist solutions.
Consequently, to comment negatively on solutions obtained by certain
methods, while the method one chooses to be limited to is unable not
only to find alternative solutions, but simply cannot even allow the
formulation of the problem of finding respective solutions, is at best
amusing ...
In this regard, one may recall the well known saying ”those who do
not play the game, do not make the rules” ...

Now of course, after proving the existence of solutions, and only after
that, can come the issue of regularity, as well as of other properties of
solutions already proved to exist.
As mentioned, the global Cauchy-Kovalevskaia theorem gives solu-
tions in the nowhere dense, as well as the space-time foam differential
algebras of generalized functions, see section 7, 8 and 10.
On the other hand, in those differential algebras of generalized func-
tions which fail to be flabby sheaves, one cannot even formulate the
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global Cauchy-Kovalevskaia theorem, let alone obtain the correspond-
ing solutions.
In this way, it is indeed rather amusing, and also strange, to find fault
with the solutions obtained for the global Cauchy-Kovalevskaia theo-
rem in the nowhere dense, or the space-time foam differential algebras
of generalized functions, when the reviewer is not able to show ab-
solutely anything comparable in the Colombeau algebras, or for that
matter, in any other differential algebra of generalized functions which
fails to be a flabby sheaf. Actually, and as mentioned, in the algebras
used by the reviewer one cannot even formulate the global Cauchy-
Kovalevskaia theorem ...

In short, those who choose to work in differential algebras of gener-
alized functions which fail to be flabby sheaves place themselves in a
strange position when complaining about solutions of PDEs in other
algebras which are flabby sheaves, solutions which they can never get
in their non-flabby algebras. And such is the case, among others,
with the solution of the global Cauchy-Kovalevskaia theorem in the
nowhere dense, as well as the space-time foam differential algebras of
generalized functions.

6) The claim that the algebra

(17.1) AΩ =
⋃

Γ⊂ Ω, Γ closed, nowhere dense C∞(Ω \ Γ)/ ∼

is almost the same with the nowhere dense differential algebras of
generalized functions is simply completely wrong on the following two
counts :

First, the nowhere dense algebras are considerably larger than the
above one in (17.1), as seen easily from their definition in (7.1).

Second, the above claim misses an elementary, yet essential fact pointed
out up front in (0.1) in section 0, and which is obvious already in
(4.3),(4.5), (6.1) - (6.8), (8.1) - (8.6) about the Heaviside function
H and its two usual representations as a distribution, as well as its
representation in a nowhere dense differential algebra of generalized
functions.
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Namely, it misses the process of regularization of singularities, a pro-
cess which is a main reason why generalized functions, be they linear
or not, have ever been introduced in mathematics in the first place.
A process whose very result are the various spaces of generalized func-
tions, be they vector spaces or algebras.

Indeed, as an element in the differential algebra (17.1), H - just as
is the case with any other function from C∞nd - is considered only on
Ω \ Γ = R \ Γ, where the closed, nowhere dense subset Γ = {0} is the
set of its points of singularity.
However, in this way, one cannot perform algebraic and differential
operations with H globally and singularity free, since one has to take
into account all the time its nonvoid singularity set Γ.
This is precisely why, even in the case of the linear theory of general-
ized functions, one does not stop at (4.3), when dealing with H.
On the other hand, once one considers H as a distribution (4.4), or in
a nowhere dense algebra, as in (6.8), the situation changes completely,
as one can perform all the algebraic and differential operations on H
singularity free, and therefore globally on Ω = R.
In short, the essential difference between the differential algebras (17.1),
and on the other hand, the nowhere dense differential algebras is that
the elements of the latter - that is, the respective generalized functions
- are obtained by a regularization of singularities which is perfectly
identical with that of the Heaviside function H, namely, the regular-
ization that leads to its distribution representation TH in (6.8).

7) In view of 5) and 6) above, it is obvious that the global solutions
of the Cauchy-Kovalevskaia theorem obtained in the nowhere dense
algebras are not elements in the differential algebras (17.1).
On the contrary, the solutions in (17.1) are subjected to a process of
regularization of singularities, process which is perfectly identical with
that used, for instance, for the Heaviside function H in (6.1) - (6.5),
in order to obtain its representation TH as a distribution in (6.8).
And the consequent essential difference between (17.1), and on the
other hand, the nowhere dense algebras, is illustrated, among others,
by the fact that - with the algebraic and differential operations in the
respective nowhere dense algebras - such solutions in these algebras,
solutions obtained by the mentioned regularization of singularities,
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satisfy the respective PDEs on the whole of the domain of definition
Ω of the respective equations, and do so with no regard to any singu-
larities at all.
This is precisely the meaning of such solutions being global on the do-
main of definition of the respective PDEs.
Certainly, if seen only as elements in the differential algebras (17.1),
such solutions do not satisfy the respective PDEs on the sets of sin-
gularities of the respective solutions.
After all, as mentioned in subsection 0.1., this difference is precisely
one of the main reasons spaces of generalized functions have been in-
troduced, be they distributions, or elements in differential algebras of
generalized functions.
In short, what is missed is, indeed, a most simple fact, namely, the es-
sential difference which the regularization of singularities brings about
between the elements of the differential algebras (17.1), and on the
other and, the generalized functions which are elements in the nowhere
dense differential algebras of generalized functions.
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18. In conclusion :

The possible reasons for this kind of most trivial misunderstanding
are not so easy to guess ...
And for as long as such, and similar misunderstandings persist, well,
all we can do is to live with them ...

And the ... culprit ... to blame ?
Well, clearly, it is ... multiplication ... !

More precisely, what appears to be the so very hard to notice and
assimilate, namely, the inevitable infinite branching of multiplication
above certain levels of singularity ...
After all, the unfortunate slogan that ”one cannot multiply distribu-
tions”, which arose as an instant misinterpretation of the so called
1954 Schwartz impossibility result, seems to have survived, even if in
the modified form :

”many do not yet understand the existence of infinitely
many multiplications of generalized functions” ...

Yet, upon a better consideration, we may find that there are reasons
to be cheerful :

In number theory, since Gödel’s 1931 Incompleteness Theorem, it
turned out - so much contrary to most ancient, deep and widespread
conviction - that even addition in Peano arithmetics is not well un-
derstood, and in fact, it could never ever be completely understood,
since arithmetics can branch into no less than infinitely many different
theories ...

But then, until a few centuries ago, even the most learned and wise
most firmly believed that Planet Earth is flat and immobile at the
very center of Creation ...

Well, in the nonlinear theory of generalized functions, so far we have
not had any problems whatsoever with addition ...
Or for that matter, with Planet Earth not being flat and immobile ...
And we only had - and still have, as the above in this study indicate
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- some problems with ... multiplication ...

In this regard, it may be somewhat hard not to recall that the very
first commandment in the Old Testament is :

”Be fruitful, and multiply ...”

And why not, multiply perhaps also distributions and generalized
functions ...

As for a more proper and rather general understanding of such multi-
plications, well, we can possibly wait somewhat longer ...

Meanwhile, let us not extinguish the passion with too hard commen-
taries, that passion which can also be seen in the above quite off the
mark review of a paper of one of my young colleagues, the passion
which - like all passion - not seldom may end up being misdirected,
that passion which however is so much needed, and thus most wel-
come, in any emerging new and hopefully better theory ...
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